LoopVectorize.cpp revision c2358eb361ee3304e553c0d283c5c3a44f28950f
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is a simple loop vectorizer. We currently only support single block
11// loops. We have a very simple and restrictive legality check: we need to read
12// and write from disjoint memory locations. We still don't have a cost model.
13// This pass has three parts:
14// 1. The main loop pass that drives the different parts.
15// 2. LoopVectorizationLegality - A helper class that checks for the legality
16//    of the vectorization.
17// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
18//    widening of instructions.
19//
20//===----------------------------------------------------------------------===//
21#define LV_NAME "loop-vectorize"
22#define DEBUG_TYPE LV_NAME
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/LoopPass.h"
29#include "llvm/Value.h"
30#include "llvm/Function.h"
31#include "llvm/Module.h"
32#include "llvm/Type.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40#include "llvm/Analysis/ScalarEvolutionExpander.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/Analysis/ValueTracking.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/DataLayout.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<unsigned>
53DefaultVectorizationFactor("default-loop-vectorize-width",
54                          cl::init(4), cl::Hidden,
55                          cl::desc("Set the default loop vectorization width"));
56
57namespace {
58
59/// Vectorize a simple loop. This class performs the widening of simple single
60/// basic block loops into vectors. It does not perform any
61/// vectorization-legality checks, and just does it.  It widens the vectors
62/// to a given vectorization factor (VF).
63class SingleBlockLoopVectorizer {
64public:
65
66  /// Ctor.
67  SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
68                            unsigned VecWidth):
69  Orig(OrigLoop), SE(Se), LI(Li), VF(VecWidth),
70   Builder(0), Induction(0), OldInduction(0) { }
71
72  ~SingleBlockLoopVectorizer() {
73    delete Builder;
74  }
75
76  // Perform the actual loop widening (vectorization).
77  void vectorize() {
78    ///Create a new empty loop. Unlink the old loop and connect the new one.
79    copyEmptyLoop();
80    /// Widen each instruction in the old loop to a new one in the new loop.
81    vectorizeLoop();
82    // Delete the old loop.
83    deleteOldLoop();
84 }
85
86private:
87  /// Create an empty loop, based on the loop ranges of the old loop.
88  void copyEmptyLoop();
89  /// Copy and widen the instructions from the old loop.
90  void vectorizeLoop();
91  /// Delete the old loop.
92  void deleteOldLoop();
93
94  /// This instruction is un-vectorizable. Implement it as a sequence
95  /// of scalars.
96  void scalarizeInstruction(Instruction *Instr);
97
98  /// Create a broadcast instruction. This method generates a broadcast
99  /// instruction (shuffle) for loop invariant values and for the induction
100  /// value. If this is the induction variable then we extend it to N, N+1, ...
101  /// this is needed because each iteration in the loop corresponds to a SIMD
102  /// element.
103  Value *getBroadcastInstrs(Value *V);
104
105  /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
106  /// for each element in the vector. Starting from zero.
107  Value *getConsecutiveVector(Value* Val);
108
109  /// Check that the GEP operands are all uniform except for the last index
110  /// which has to be the induction variable.
111  bool isConsecutiveGep(GetElementPtrInst *Gep);
112
113  /// When we go over instructions in the basic block we rely on previous
114  /// values within the current basic block or on loop invariant values.
115  /// When we widen (vectorize) values we place them in the map. If the values
116  /// are not within the map, they have to be loop invariant, so we simply
117  /// broadcast them into a vector.
118  Value *getVectorValue(Value *V);
119
120  /// The original loop.
121  Loop *Orig;
122  // Scev analysis to use.
123  ScalarEvolution *SE;
124  // Loop Info.
125  LoopInfo *LI;
126  // The vectorization factor to use.
127  unsigned VF;
128
129  // The builder that we use
130  IRBuilder<> *Builder;
131
132  // --- Vectorization state ---
133
134  /// The new Induction variable which was added to the new block.
135  Instruction *Induction;
136  /// The induction variable of the old basic block.
137  Instruction *OldInduction;
138  // Maps scalars to widened vectors.
139  DenseMap<Value*, Value*> WidenMap;
140};
141
142
143/// Perform the vectorization legality check. This class does not look at the
144/// profitability of vectorization, only the legality. At the moment the checks
145/// are very simple and focus on single basic block loops with a constant
146/// iteration count and no reductions.
147class LoopVectorizationLegality {
148public:
149  LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
150  TheLoop(Lp), SE(Se), DL(Dl) { }
151
152  /// Returns the maximum vectorization factor that we *can* use to vectorize
153  /// this loop. This does not mean that it is profitable to vectorize this
154  /// loop, only that it is legal to do so. This may be a large number. We
155  /// can vectorize to any SIMD width below this number.
156  unsigned getLoopMaxVF();
157
158private:
159  /// Check if a single basic block loop is vectorizable.
160  /// At this point we know that this is a loop with a constant trip count
161  /// and we only need to check individual instructions.
162  bool canVectorizeBlock(BasicBlock &BB);
163
164  // Check if a pointer value is known to be disjoint.
165  // Example: Alloca, Global, NoAlias.
166  bool isKnownDisjoint(Value* Val);
167
168  /// The loop that we evaluate.
169  Loop *TheLoop;
170  /// Scev analysis.
171  ScalarEvolution *SE;
172  /// DataLayout analysis.
173  DataLayout *DL;
174};
175
176struct LoopVectorize : public LoopPass {
177  static char ID; // Pass identification, replacement for typeid
178
179  LoopVectorize() : LoopPass(ID) {
180    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
181  }
182
183  AliasAnalysis *AA;
184  ScalarEvolution *SE;
185  DataLayout *DL;
186  LoopInfo *LI;
187
188  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
189    // Only vectorize innermost loops.
190    if (!L->empty())
191      return false;
192
193    AA = &getAnalysis<AliasAnalysis>();
194    SE = &getAnalysis<ScalarEvolution>();
195    DL = getAnalysisIfAvailable<DataLayout>();
196    LI = &getAnalysis<LoopInfo>();
197
198    BasicBlock *Header = L->getHeader();
199    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
200          Header->getParent()->getName() << "\"\n");
201
202    // Check if it is legal to vectorize the loop.
203    LoopVectorizationLegality LVL(L, SE, DL);
204    unsigned MaxVF = LVL.getLoopMaxVF();
205
206    // Check that we can vectorize using the chosen vectorization width.
207    if ((MaxVF < DefaultVectorizationFactor) ||
208        (MaxVF % DefaultVectorizationFactor)) {
209      DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
210      return false;
211    }
212
213    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
214
215    // If we decided that is is *legal* to vectorizer the loop. Do it.
216    SingleBlockLoopVectorizer LB(L, SE, LI, DefaultVectorizationFactor);
217    LB.vectorize();
218
219    // The loop is now vectorized. Remove it from LMP.
220    LPM.deleteLoopFromQueue(L);
221    return true;
222  }
223
224  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
225    LoopPass::getAnalysisUsage(AU);
226    AU.addRequiredID(LoopSimplifyID);
227    AU.addRequired<AliasAnalysis>();
228    AU.addRequired<LoopInfo>();
229    AU.addRequired<ScalarEvolution>();
230  }
231
232};
233
234Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
235  // Instructions that access the old induction variable
236  // actually want to get the new one.
237  if (V == OldInduction)
238    V = Induction;
239  // Create the types.
240  LLVMContext &C = V->getContext();
241  Type *VTy = VectorType::get(V->getType(), VF);
242  Type *I32 = IntegerType::getInt32Ty(C);
243  Constant *Zero = ConstantInt::get(I32, 0);
244  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
245  Value *UndefVal = UndefValue::get(VTy);
246  // Insert the value into a new vector.
247  Value *SingleElem = Builder->CreateInsertElement(UndefVal, V, Zero);
248  // Broadcast the scalar into all locations in the vector.
249  Value *Shuf = Builder->CreateShuffleVector(SingleElem, UndefVal, Zeros,
250                                             "broadcast");
251  // We are accessing the induction variable. Make sure to promote the
252  // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
253  if (V == Induction)
254    return getConsecutiveVector(Shuf);
255  return Shuf;
256}
257
258Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
259  assert(Val->getType()->isVectorTy() && "Must be a vector");
260  assert(Val->getType()->getScalarType()->isIntegerTy() &&
261         "Elem must be an integer");
262  // Create the types.
263  Type *ITy = Val->getType()->getScalarType();
264  VectorType *Ty = cast<VectorType>(Val->getType());
265  unsigned VLen = Ty->getNumElements();
266  SmallVector<Constant*, 8> Indices;
267
268  // Create a vector of consecutive numbers from zero to VF.
269  for (unsigned i = 0; i < VLen; ++i)
270    Indices.push_back(ConstantInt::get(ITy, i));
271
272  // Add the consecutive indices to the vector value.
273  Constant *Cv = ConstantVector::get(Indices);
274  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
275  return Builder->CreateAdd(Val, Cv, "induction");
276}
277
278
279bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) {
280  if (!Gep)
281    return false;
282
283  unsigned NumOperands = Gep->getNumOperands();
284  Value *LastIndex = Gep->getOperand(NumOperands - 1);
285
286  // Check that all of the gep indices are uniform except for the last.
287  for (unsigned i = 0; i < NumOperands - 1; ++i)
288    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), Orig))
289      return false;
290
291  // The last operand has to be the induction in order to emit
292  // a wide load/store.
293  const SCEV *Last = SE->getSCEV(LastIndex);
294  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
295    const SCEV *Step = AR->getStepRecurrence(*SE);
296
297    // The memory is consecutive because the last index is consecutive
298    // and all other indices are loop invariant.
299    if (Step->isOne())
300      return true;
301  }
302
303  return false;
304}
305
306Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
307  if (WidenMap.count(V))
308    return WidenMap[V];
309  return getBroadcastInstrs(V);
310}
311
312void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
313  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
314  // Holds vector parameters or scalars, in case of uniform vals.
315  SmallVector<Value*, 8> Params;
316
317  // Find all of the vectorized parameters.
318  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
319    Value *SrcOp = Instr->getOperand(op);
320
321    // If we are accessing the old induction variable, use the new one.
322    if (SrcOp == OldInduction) {
323      Params.push_back(getBroadcastInstrs(Induction));
324      continue;
325    }
326
327    // Try using previously calculated values.
328    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
329
330    // If the src is an instruction that appeared earlier in the basic block
331    // then it should already be vectorized.
332    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
333      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
334      // The parameter is a vector value from earlier.
335      Params.push_back(WidenMap[SrcInst]);
336    } else {
337      // The parameter is a scalar from outside the loop. Maybe even a constant.
338      Params.push_back(SrcOp);
339    }
340  }
341
342  assert(Params.size() == Instr->getNumOperands() &&
343         "Invalid number of operands");
344
345  // Does this instruction return a value ?
346  bool IsVoidRetTy = Instr->getType()->isVoidTy();
347  Value *VecResults = 0;
348
349  // If we have a return value, create an empty vector. We place the scalarized
350  // instructions in this vector.
351  if (!IsVoidRetTy)
352    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
353
354  // For each scalar that we create.
355  for (unsigned i = 0; i < VF; ++i) {
356    Instruction *Cloned = Instr->clone();
357    if (!IsVoidRetTy)
358      Cloned->setName(Instr->getName() + ".cloned");
359    // Replace the operands of the cloned instrucions with extracted scalars.
360    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
361      Value *Op = Params[op];
362      // Param is a vector. Need to extract the right lane.
363      if (Op->getType()->isVectorTy())
364        Op = Builder->CreateExtractElement(Op, Builder->getInt32(i));
365      Cloned->setOperand(op, Op);
366    }
367
368    // Place the cloned scalar in the new loop.
369    Builder->Insert(Cloned);
370
371    // If the original scalar returns a value we need to place it in a vector
372    // so that future users will be able to use it.
373    if (!IsVoidRetTy)
374      VecResults = Builder->CreateInsertElement(VecResults, Cloned,
375                                               Builder->getInt32(i));
376  }
377
378  if (!IsVoidRetTy)
379    WidenMap[Instr] = VecResults;
380}
381
382void SingleBlockLoopVectorizer::copyEmptyLoop() {
383  assert(Orig->getNumBlocks() == 1 && "Invalid loop");
384  BasicBlock *PH = Orig->getLoopPreheader();
385  BasicBlock *ExitBlock = Orig->getExitBlock();
386  assert(ExitBlock && "Invalid loop exit");
387
388  // Create a new single-basic block loop.
389  BasicBlock *BB = BasicBlock::Create(PH->getContext(), "vectorizedloop",
390                                      PH->getParent(), ExitBlock);
391
392  // Find the induction variable.
393  BasicBlock *OldBasicBlock = Orig->getHeader();
394  PHINode *OldInd = dyn_cast<PHINode>(OldBasicBlock->begin());
395  assert(OldInd && "We must have a single phi node.");
396  Type *IdxTy = OldInd->getType();
397
398  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
399  // inside the loop.
400  Builder = new IRBuilder<>(BB);
401
402  // Generate the induction variable.
403  PHINode *Phi = Builder->CreatePHI(IdxTy, 2, "index");
404  Constant *Zero = ConstantInt::get(IdxTy, 0);
405  Constant *Step = ConstantInt::get(IdxTy, VF);
406
407  // Find the loop boundaries.
408  const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader());
409  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
410
411  // Get the trip count from the count by adding 1.
412  ExitCount = SE->getAddExpr(ExitCount,
413                             SE->getConstant(ExitCount->getType(), 1));
414
415  // Expand the trip count and place the new instructions in the preheader.
416  // Notice that the pre-header does not change, only the loop body.
417  SCEVExpander Exp(*SE, "induction");
418  Instruction *Loc = Orig->getLoopPreheader()->getTerminator();
419  if (ExitCount->getType() != Phi->getType())
420    ExitCount = SE->getSignExtendExpr(ExitCount, Phi->getType());
421  Value *Count = Exp.expandCodeFor(ExitCount, Phi->getType(), Loc);
422
423  // Create i+1 and fill the PHINode.
424  Value *Next = Builder->CreateAdd(Phi, Step, "index.next");
425  Phi->addIncoming(Zero, PH);
426  Phi->addIncoming(Next, BB);
427  // Create the compare.
428  Value *ICmp = Builder->CreateICmpEQ(Next, Count);
429  Builder->CreateCondBr(ICmp, ExitBlock, BB);
430  // Fix preheader.
431  PH->getTerminator()->setSuccessor(0, BB);
432  Builder->SetInsertPoint(BB->getFirstInsertionPt());
433
434  // Save the induction variables.
435  Induction = Phi;
436  OldInduction = OldInd;
437}
438
439void SingleBlockLoopVectorizer::vectorizeLoop() {
440  BasicBlock &BB = *Orig->getHeader();
441
442  // For each instruction in the old loop.
443  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
444    Instruction *Inst = it;
445
446    switch (Inst->getOpcode()) {
447      case Instruction::PHI:
448      case Instruction::Br:
449        // Nothing to do for PHIs and BR, since we already took care of the
450        // loop control flow instructions.
451        continue;
452
453      case Instruction::Add:
454      case Instruction::FAdd:
455      case Instruction::Sub:
456      case Instruction::FSub:
457      case Instruction::Mul:
458      case Instruction::FMul:
459      case Instruction::UDiv:
460      case Instruction::SDiv:
461      case Instruction::FDiv:
462      case Instruction::URem:
463      case Instruction::SRem:
464      case Instruction::FRem:
465      case Instruction::Shl:
466      case Instruction::LShr:
467      case Instruction::AShr:
468      case Instruction::And:
469      case Instruction::Or:
470      case Instruction::Xor: {
471        // Just widen binops.
472        BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
473        Value *A = getVectorValue(Inst->getOperand(0));
474        Value *B = getVectorValue(Inst->getOperand(1));
475        // Use this vector value for all users of the original instruction.
476        WidenMap[Inst] = Builder->CreateBinOp(BinOp->getOpcode(), A, B);
477        break;
478      }
479      case Instruction::Select: {
480        // Widen selects.
481        Value *A = getVectorValue(Inst->getOperand(0));
482        Value *B = getVectorValue(Inst->getOperand(1));
483        Value *C = getVectorValue(Inst->getOperand(2));
484        WidenMap[Inst] = Builder->CreateSelect(A, B, C);
485        break;
486      }
487
488      case Instruction::ICmp:
489      case Instruction::FCmp: {
490        // Widen compares. Generate vector compares.
491        bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
492        CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
493        Value *A = getVectorValue(Inst->getOperand(0));
494        Value *B = getVectorValue(Inst->getOperand(1));
495        if (FCmp)
496          WidenMap[Inst] = Builder->CreateFCmp(Cmp->getPredicate(), A, B);
497        else
498          WidenMap[Inst] = Builder->CreateICmp(Cmp->getPredicate(), A, B);
499        break;
500      }
501
502      case Instruction::Store: {
503        // Attempt to issue a wide store.
504        StoreInst *SI = dyn_cast<StoreInst>(Inst);
505        Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
506        Value *Ptr = SI->getPointerOperand();
507        unsigned Alignment = SI->getAlignment();
508        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
509        // This store does not use GEPs.
510        if (!isConsecutiveGep(Gep)) {
511          scalarizeInstruction(Inst);
512          break;
513        }
514
515        // Create the new GEP with the new induction variable.
516        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
517        unsigned NumOperands = Gep->getNumOperands();
518        Gep2->setOperand(NumOperands - 1, Induction);
519        Ptr = Builder->Insert(Gep2);
520        Ptr = Builder->CreateBitCast(Ptr, StTy->getPointerTo());
521        Value *Val = getVectorValue(SI->getValueOperand());
522        Builder->CreateStore(Val, Ptr)->setAlignment(Alignment);
523        break;
524      }
525      case Instruction::Load: {
526        // Attempt to issue a wide load.
527        LoadInst *LI = dyn_cast<LoadInst>(Inst);
528        Type *RetTy = VectorType::get(LI->getType(), VF);
529        Value *Ptr = LI->getPointerOperand();
530        unsigned Alignment = LI->getAlignment();
531        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
532
533        // We don't have a gep. Scalarize the load.
534        if (!isConsecutiveGep(Gep)) {
535          scalarizeInstruction(Inst);
536          break;
537        }
538
539        // Create the new GEP with the new induction variable.
540        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
541        unsigned NumOperands = Gep->getNumOperands();
542        Gep2->setOperand(NumOperands - 1, Induction);
543        Ptr = Builder->Insert(Gep2);
544        Ptr = Builder->CreateBitCast(Ptr, RetTy->getPointerTo());
545        LI = Builder->CreateLoad(Ptr);
546        LI->setAlignment(Alignment);
547        // Use this vector value for all users of the load.
548        WidenMap[Inst] = LI;
549        break;
550      }
551      case Instruction::ZExt:
552      case Instruction::SExt:
553      case Instruction::FPToUI:
554      case Instruction::FPToSI:
555      case Instruction::FPExt:
556      case Instruction::PtrToInt:
557      case Instruction::IntToPtr:
558      case Instruction::SIToFP:
559      case Instruction::UIToFP:
560      case Instruction::Trunc:
561      case Instruction::FPTrunc:
562      case Instruction::BitCast: {
563        /// Vectorize bitcasts.
564        CastInst *CI = dyn_cast<CastInst>(Inst);
565        Value *A = getVectorValue(Inst->getOperand(0));
566        Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
567        WidenMap[Inst] = Builder->CreateCast(CI->getOpcode(), A, DestTy);
568        break;
569      }
570
571      default:
572        /// All other instructions are unsupported. Scalarize them.
573        scalarizeInstruction(Inst);
574        break;
575    }// end of switch.
576  }// end of for_each instr.
577}
578
579void SingleBlockLoopVectorizer::deleteOldLoop() {
580  // The original basic block.
581  BasicBlock *BB = Orig->getHeader();
582  SE->forgetLoop(Orig);
583
584  LI->removeBlock(BB);
585  Orig->addBasicBlockToLoop(Induction->getParent(), LI->getBase());
586
587  // Remove the old loop block.
588  DeleteDeadBlock(BB);
589}
590
591unsigned LoopVectorizationLegality::getLoopMaxVF() {
592  if (!TheLoop->getLoopPreheader()) {
593    assert(false && "No preheader!!");
594    DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
595    return  1;
596  }
597
598  // We can only vectorize single basic block loops.
599  unsigned NumBlocks = TheLoop->getNumBlocks();
600  if (NumBlocks != 1) {
601    DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
602    return 1;
603  }
604
605  // We need to have a loop header.
606  BasicBlock *BB = TheLoop->getHeader();
607  DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
608
609  // Find the max vectorization factor.
610  unsigned MaxVF = SE->getSmallConstantTripMultiple(TheLoop, BB);
611
612
613  // Perform an early check. Do not scan the block if we did not find a loop.
614  if (MaxVF < 2) {
615    DEBUG(dbgs() << "LV: Can't find a vectorizable loop structure\n");
616    return 1;
617  }
618
619  // Go over each instruction and look at memory deps.
620  if (!canVectorizeBlock(*BB)) {
621    DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
622    return 1;
623  }
624
625  DEBUG(dbgs() << "LV: We can vectorize this loop! VF="<<MaxVF<<"\n");
626
627  // Okay! We can vectorize. Return the max trip multiple.
628  return MaxVF;
629}
630
631bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
632  // Holds the read and write pointers that we find.
633  typedef SmallVector<Value*, 10> ValueVector;
634  ValueVector Reads;
635  ValueVector Writes;
636
637  unsigned NumPhis = 0;
638  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
639    Instruction *I = it;
640
641    PHINode *Phi = dyn_cast<PHINode>(I);
642    if (Phi) {
643      NumPhis++;
644      // We only look at integer phi nodes.
645      if (!Phi->getType()->isIntegerTy()) {
646        DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
647        return false;
648      }
649
650      // If we found an induction variable.
651      if (NumPhis > 1) {
652        DEBUG(dbgs() << "LV: Found more than one PHI.\n");
653        return false;
654      }
655
656      // This should not happen because the loop should be normalized.
657      if (Phi->getNumIncomingValues() != 2) {
658        DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
659        return false;
660      }
661
662      // Check that the PHI is consecutive and starts at zero.
663      const SCEV *PhiScev = SE->getSCEV(Phi);
664      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
665      if (!AR) {
666        DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
667        return false;
668      }
669
670      const SCEV *Step = AR->getStepRecurrence(*SE);
671      const SCEV *Start = AR->getStart();
672
673      if (!Step->isOne() || !Start->isZero()) {
674        DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
675        return false;
676      }
677    }
678
679    // If this is a load, record its pointer. If it is not a load, abort.
680    // Notice that we don't handle function calls that read or write.
681    if (I->mayReadFromMemory()) {
682      LoadInst *Ld = dyn_cast<LoadInst>(I);
683      if (!Ld) return false;
684      if (!Ld->isSimple()) {
685        DEBUG(dbgs() << "LV: Found a non-simple load.\n");
686        return false;
687      }
688      GetUnderlyingObjects(Ld->getPointerOperand(), Reads, DL);
689    }
690
691    // Record store pointers. Abort on all other instructions that write to
692    // memory.
693    if (I->mayWriteToMemory()) {
694      StoreInst *St = dyn_cast<StoreInst>(I);
695      if (!St) return false;
696      if (!St->isSimple()) {
697        DEBUG(dbgs() << "LV: Found a non-simple store.\n");
698        return false;
699      }
700      GetUnderlyingObjects(St->getPointerOperand(), Writes, DL);
701    }
702
703    // We still don't handle functions.
704    CallInst *CI = dyn_cast<CallInst>(I);
705    if (CI) {
706      DEBUG(dbgs() << "LV: Found a call site:"<<
707            CI->getCalledFunction()->getName() << "\n");
708      return false;
709    }
710
711    // We do not re-vectorize vectors.
712    if (!VectorType::isValidElementType(I->getType()) &&
713        !I->getType()->isVoidTy()) {
714      DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
715      return false;
716    }
717    //Check that all of the users of the loop are inside the BB.
718    for (Value::use_iterator it = I->use_begin(), e = I->use_end();
719         it != e; ++it) {
720      Instruction *U = cast<Instruction>(*it);
721      BasicBlock *Parent = U->getParent();
722      if (Parent != &BB) {
723        DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
724        return false;
725      }
726    }
727  } // next instr.
728
729  // Check that the underlying objects of the reads and writes are either
730  // disjoint memory locations, or that they are no-alias arguments.
731  ValueVector::iterator r, re, w, we;
732  for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
733    if (!isKnownDisjoint(*r)) {
734      DEBUG(dbgs() << "LV: Found a bad read Ptr: "<< **r << "\n");
735      return false;
736    }
737  }
738
739  for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
740    if (!isKnownDisjoint(*w)) {
741      DEBUG(dbgs() << "LV: Found a bad write Ptr: "<< **w << "\n");
742      return false;
743    }
744  }
745
746  // Check that there are no multiple write locations to the same pointer.
747  SmallPtrSet<Value*, 8> BasePointers;
748  for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
749    if (BasePointers.count(*w)) {
750      DEBUG(dbgs() << "LV: Multiple writes to the same index :"<< **w << "\n");
751      return false;
752    }
753    BasePointers.insert(*w);
754  }
755
756  // Sort the writes vector so that we can use a binary search.
757  std::sort(Writes.begin(), Writes.end());
758  // Check that the reads and the writes are disjoint.
759  for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
760    if (std::binary_search(Writes.begin(), Writes.end(), *r)) {
761      DEBUG(dbgs() << "Vectorizer: Found a read/write ptr:"<< **r << "\n");
762      return false;
763    }
764  }
765
766  // All is okay.
767  return true;
768}
769
770/// Checks if the value is a Global variable or if it is an Arguments
771/// marked with the NoAlias attribute.
772bool LoopVectorizationLegality::isKnownDisjoint(Value* Val) {
773  assert(Val && "Invalid value");
774  if (dyn_cast<GlobalValue>(Val))
775    return true;
776  if (dyn_cast<AllocaInst>(Val))
777    return true;
778  Argument *A = dyn_cast<Argument>(Val);
779  if (!A)
780    return false;
781  return A->hasNoAliasAttr();
782}
783
784} // namespace
785
786char LoopVectorize::ID = 0;
787static const char lv_name[] = "Loop Vectorization";
788INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
789INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
790INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
791INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
792INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
793
794namespace llvm {
795  Pass *createLoopVectorizePass() {
796    return new LoopVectorize();
797  }
798
799}
800
801