LoopVectorize.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#include "llvm/Transforms/Vectorize.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/EquivalenceClasses.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/Statistic.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/Analysis/AliasAnalysis.h"
57#include "llvm/Analysis/BlockFrequencyInfo.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/DiagnosticInfo.h"
71#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/LLVMContext.h"
77#include "llvm/IR/Module.h"
78#include "llvm/IR/PatternMatch.h"
79#include "llvm/IR/Type.h"
80#include "llvm/IR/Value.h"
81#include "llvm/IR/ValueHandle.h"
82#include "llvm/IR/Verifier.h"
83#include "llvm/Pass.h"
84#include "llvm/Support/BranchProbability.h"
85#include "llvm/Support/CommandLine.h"
86#include "llvm/Support/Debug.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/Transforms/Scalar.h"
89#include "llvm/Transforms/Utils/BasicBlockUtils.h"
90#include "llvm/Transforms/Utils/Local.h"
91#include "llvm/Transforms/Utils/VectorUtils.h"
92#include <algorithm>
93#include <map>
94#include <tuple>
95
96using namespace llvm;
97using namespace llvm::PatternMatch;
98
99#define LV_NAME "loop-vectorize"
100#define DEBUG_TYPE LV_NAME
101
102STATISTIC(LoopsVectorized, "Number of loops vectorized");
103STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
104
105static cl::opt<unsigned>
106VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
107                    cl::desc("Sets the SIMD width. Zero is autoselect."));
108
109static cl::opt<unsigned>
110VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
111                    cl::desc("Sets the vectorization unroll count. "
112                             "Zero is autoselect."));
113
114static cl::opt<bool>
115EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
116                   cl::desc("Enable if-conversion during vectorization."));
117
118/// We don't vectorize loops with a known constant trip count below this number.
119static cl::opt<unsigned>
120TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
121                             cl::Hidden,
122                             cl::desc("Don't vectorize loops with a constant "
123                                      "trip count that is smaller than this "
124                                      "value."));
125
126/// This enables versioning on the strides of symbolically striding memory
127/// accesses in code like the following.
128///   for (i = 0; i < N; ++i)
129///     A[i * Stride1] += B[i * Stride2] ...
130///
131/// Will be roughly translated to
132///    if (Stride1 == 1 && Stride2 == 1) {
133///      for (i = 0; i < N; i+=4)
134///       A[i:i+3] += ...
135///    } else
136///      ...
137static cl::opt<bool> EnableMemAccessVersioning(
138    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
139    cl::desc("Enable symblic stride memory access versioning"));
140
141/// We don't unroll loops with a known constant trip count below this number.
142static const unsigned TinyTripCountUnrollThreshold = 128;
143
144/// When performing memory disambiguation checks at runtime do not make more
145/// than this number of comparisons.
146static const unsigned RuntimeMemoryCheckThreshold = 8;
147
148/// Maximum simd width.
149static const unsigned MaxVectorWidth = 64;
150
151static cl::opt<unsigned> ForceTargetNumScalarRegs(
152    "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
153    cl::desc("A flag that overrides the target's number of scalar registers."));
154
155static cl::opt<unsigned> ForceTargetNumVectorRegs(
156    "force-target-num-vector-regs", cl::init(0), cl::Hidden,
157    cl::desc("A flag that overrides the target's number of vector registers."));
158
159/// Maximum vectorization unroll count.
160static const unsigned MaxUnrollFactor = 16;
161
162static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
163    "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
164    cl::desc("A flag that overrides the target's max unroll factor for scalar "
165             "loops."));
166
167static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
168    "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
169    cl::desc("A flag that overrides the target's max unroll factor for "
170             "vectorized loops."));
171
172static cl::opt<unsigned> ForceTargetInstructionCost(
173    "force-target-instruction-cost", cl::init(0), cl::Hidden,
174    cl::desc("A flag that overrides the target's expected cost for "
175             "an instruction to a single constant value. Mostly "
176             "useful for getting consistent testing."));
177
178static cl::opt<unsigned> SmallLoopCost(
179    "small-loop-cost", cl::init(20), cl::Hidden,
180    cl::desc("The cost of a loop that is considered 'small' by the unroller."));
181
182static cl::opt<bool> LoopVectorizeWithBlockFrequency(
183    "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
184    cl::desc("Enable the use of the block frequency analysis to access PGO "
185             "heuristics minimizing code growth in cold regions and being more "
186             "aggressive in hot regions."));
187
188// Runtime unroll loops for load/store throughput.
189static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
190    "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
191    cl::desc("Enable runtime unrolling until load/store ports are saturated"));
192
193/// The number of stores in a loop that are allowed to need predication.
194static cl::opt<unsigned> NumberOfStoresToPredicate(
195    "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
196    cl::desc("Max number of stores to be predicated behind an if."));
197
198static cl::opt<bool> EnableIndVarRegisterHeur(
199    "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
200    cl::desc("Count the induction variable only once when unrolling"));
201
202static cl::opt<bool> EnableCondStoresVectorization(
203    "enable-cond-stores-vec", cl::init(false), cl::Hidden,
204    cl::desc("Enable if predication of stores during vectorization."));
205
206namespace {
207
208// Forward declarations.
209class LoopVectorizationLegality;
210class LoopVectorizationCostModel;
211
212/// Optimization analysis message produced during vectorization. Messages inform
213/// the user why vectorization did not occur.
214class Report {
215  std::string Message;
216  raw_string_ostream Out;
217  Instruction *Instr;
218
219public:
220  Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
221    Out << "loop not vectorized: ";
222  }
223
224  template <typename A> Report &operator<<(const A &Value) {
225    Out << Value;
226    return *this;
227  }
228
229  Instruction *getInstr() { return Instr; }
230
231  std::string &str() { return Out.str(); }
232  operator Twine() { return Out.str(); }
233};
234
235/// InnerLoopVectorizer vectorizes loops which contain only one basic
236/// block to a specified vectorization factor (VF).
237/// This class performs the widening of scalars into vectors, or multiple
238/// scalars. This class also implements the following features:
239/// * It inserts an epilogue loop for handling loops that don't have iteration
240///   counts that are known to be a multiple of the vectorization factor.
241/// * It handles the code generation for reduction variables.
242/// * Scalarization (implementation using scalars) of un-vectorizable
243///   instructions.
244/// InnerLoopVectorizer does not perform any vectorization-legality
245/// checks, and relies on the caller to check for the different legality
246/// aspects. The InnerLoopVectorizer relies on the
247/// LoopVectorizationLegality class to provide information about the induction
248/// and reduction variables that were found to a given vectorization factor.
249class InnerLoopVectorizer {
250public:
251  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
252                      DominatorTree *DT, const DataLayout *DL,
253                      const TargetLibraryInfo *TLI, unsigned VecWidth,
254                      unsigned UnrollFactor)
255      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
256        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
257        Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
258        Legal(nullptr) {}
259
260  // Perform the actual loop widening (vectorization).
261  void vectorize(LoopVectorizationLegality *L) {
262    Legal = L;
263    // Create a new empty loop. Unlink the old loop and connect the new one.
264    createEmptyLoop();
265    // Widen each instruction in the old loop to a new one in the new loop.
266    // Use the Legality module to find the induction and reduction variables.
267    vectorizeLoop();
268    // Register the new loop and update the analysis passes.
269    updateAnalysis();
270  }
271
272  virtual ~InnerLoopVectorizer() {}
273
274protected:
275  /// A small list of PHINodes.
276  typedef SmallVector<PHINode*, 4> PhiVector;
277  /// When we unroll loops we have multiple vector values for each scalar.
278  /// This data structure holds the unrolled and vectorized values that
279  /// originated from one scalar instruction.
280  typedef SmallVector<Value*, 2> VectorParts;
281
282  // When we if-convert we need create edge masks. We have to cache values so
283  // that we don't end up with exponential recursion/IR.
284  typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
285                   VectorParts> EdgeMaskCache;
286
287  /// \brief Add code that checks at runtime if the accessed arrays overlap.
288  ///
289  /// Returns a pair of instructions where the first element is the first
290  /// instruction generated in possibly a sequence of instructions and the
291  /// second value is the final comparator value or NULL if no check is needed.
292  std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
293
294  /// \brief Add checks for strides that where assumed to be 1.
295  ///
296  /// Returns the last check instruction and the first check instruction in the
297  /// pair as (first, last).
298  std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
299
300  /// Create an empty loop, based on the loop ranges of the old loop.
301  void createEmptyLoop();
302  /// Copy and widen the instructions from the old loop.
303  virtual void vectorizeLoop();
304
305  /// \brief The Loop exit block may have single value PHI nodes where the
306  /// incoming value is 'Undef'. While vectorizing we only handled real values
307  /// that were defined inside the loop. Here we fix the 'undef case'.
308  /// See PR14725.
309  void fixLCSSAPHIs();
310
311  /// A helper function that computes the predicate of the block BB, assuming
312  /// that the header block of the loop is set to True. It returns the *entry*
313  /// mask for the block BB.
314  VectorParts createBlockInMask(BasicBlock *BB);
315  /// A helper function that computes the predicate of the edge between SRC
316  /// and DST.
317  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
318
319  /// A helper function to vectorize a single BB within the innermost loop.
320  void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
321
322  /// Vectorize a single PHINode in a block. This method handles the induction
323  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
324  /// arbitrary length vectors.
325  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
326                           unsigned UF, unsigned VF, PhiVector *PV);
327
328  /// Insert the new loop to the loop hierarchy and pass manager
329  /// and update the analysis passes.
330  void updateAnalysis();
331
332  /// This instruction is un-vectorizable. Implement it as a sequence
333  /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
334  /// scalarized instruction behind an if block predicated on the control
335  /// dependence of the instruction.
336  virtual void scalarizeInstruction(Instruction *Instr,
337                                    bool IfPredicateStore=false);
338
339  /// Vectorize Load and Store instructions,
340  virtual void vectorizeMemoryInstruction(Instruction *Instr);
341
342  /// Create a broadcast instruction. This method generates a broadcast
343  /// instruction (shuffle) for loop invariant values and for the induction
344  /// value. If this is the induction variable then we extend it to N, N+1, ...
345  /// this is needed because each iteration in the loop corresponds to a SIMD
346  /// element.
347  virtual Value *getBroadcastInstrs(Value *V);
348
349  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
350  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
351  /// The sequence starts at StartIndex.
352  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
353
354  /// When we go over instructions in the basic block we rely on previous
355  /// values within the current basic block or on loop invariant values.
356  /// When we widen (vectorize) values we place them in the map. If the values
357  /// are not within the map, they have to be loop invariant, so we simply
358  /// broadcast them into a vector.
359  VectorParts &getVectorValue(Value *V);
360
361  /// Generate a shuffle sequence that will reverse the vector Vec.
362  virtual Value *reverseVector(Value *Vec);
363
364  /// This is a helper class that holds the vectorizer state. It maps scalar
365  /// instructions to vector instructions. When the code is 'unrolled' then
366  /// then a single scalar value is mapped to multiple vector parts. The parts
367  /// are stored in the VectorPart type.
368  struct ValueMap {
369    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
370    /// are mapped.
371    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
372
373    /// \return True if 'Key' is saved in the Value Map.
374    bool has(Value *Key) const { return MapStorage.count(Key); }
375
376    /// Initializes a new entry in the map. Sets all of the vector parts to the
377    /// save value in 'Val'.
378    /// \return A reference to a vector with splat values.
379    VectorParts &splat(Value *Key, Value *Val) {
380      VectorParts &Entry = MapStorage[Key];
381      Entry.assign(UF, Val);
382      return Entry;
383    }
384
385    ///\return A reference to the value that is stored at 'Key'.
386    VectorParts &get(Value *Key) {
387      VectorParts &Entry = MapStorage[Key];
388      if (Entry.empty())
389        Entry.resize(UF);
390      assert(Entry.size() == UF);
391      return Entry;
392    }
393
394  private:
395    /// The unroll factor. Each entry in the map stores this number of vector
396    /// elements.
397    unsigned UF;
398
399    /// Map storage. We use std::map and not DenseMap because insertions to a
400    /// dense map invalidates its iterators.
401    std::map<Value *, VectorParts> MapStorage;
402  };
403
404  /// The original loop.
405  Loop *OrigLoop;
406  /// Scev analysis to use.
407  ScalarEvolution *SE;
408  /// Loop Info.
409  LoopInfo *LI;
410  /// Dominator Tree.
411  DominatorTree *DT;
412  /// Data Layout.
413  const DataLayout *DL;
414  /// Target Library Info.
415  const TargetLibraryInfo *TLI;
416
417  /// The vectorization SIMD factor to use. Each vector will have this many
418  /// vector elements.
419  unsigned VF;
420
421protected:
422  /// The vectorization unroll factor to use. Each scalar is vectorized to this
423  /// many different vector instructions.
424  unsigned UF;
425
426  /// The builder that we use
427  IRBuilder<> Builder;
428
429  // --- Vectorization state ---
430
431  /// The vector-loop preheader.
432  BasicBlock *LoopVectorPreHeader;
433  /// The scalar-loop preheader.
434  BasicBlock *LoopScalarPreHeader;
435  /// Middle Block between the vector and the scalar.
436  BasicBlock *LoopMiddleBlock;
437  ///The ExitBlock of the scalar loop.
438  BasicBlock *LoopExitBlock;
439  ///The vector loop body.
440  SmallVector<BasicBlock *, 4> LoopVectorBody;
441  ///The scalar loop body.
442  BasicBlock *LoopScalarBody;
443  /// A list of all bypass blocks. The first block is the entry of the loop.
444  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
445
446  /// The new Induction variable which was added to the new block.
447  PHINode *Induction;
448  /// The induction variable of the old basic block.
449  PHINode *OldInduction;
450  /// Holds the extended (to the widest induction type) start index.
451  Value *ExtendedIdx;
452  /// Maps scalars to widened vectors.
453  ValueMap WidenMap;
454  EdgeMaskCache MaskCache;
455
456  LoopVectorizationLegality *Legal;
457};
458
459class InnerLoopUnroller : public InnerLoopVectorizer {
460public:
461  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
462                    DominatorTree *DT, const DataLayout *DL,
463                    const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
464    InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
465
466private:
467  void scalarizeInstruction(Instruction *Instr,
468                            bool IfPredicateStore = false) override;
469  void vectorizeMemoryInstruction(Instruction *Instr) override;
470  Value *getBroadcastInstrs(Value *V) override;
471  Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
472  Value *reverseVector(Value *Vec) override;
473};
474
475/// \brief Look for a meaningful debug location on the instruction or it's
476/// operands.
477static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
478  if (!I)
479    return I;
480
481  DebugLoc Empty;
482  if (I->getDebugLoc() != Empty)
483    return I;
484
485  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
486    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
487      if (OpInst->getDebugLoc() != Empty)
488        return OpInst;
489  }
490
491  return I;
492}
493
494/// \brief Set the debug location in the builder using the debug location in the
495/// instruction.
496static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
497  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
498    B.SetCurrentDebugLocation(Inst->getDebugLoc());
499  else
500    B.SetCurrentDebugLocation(DebugLoc());
501}
502
503#ifndef NDEBUG
504/// \return string containing a file name and a line # for the given loop.
505static std::string getDebugLocString(const Loop *L) {
506  std::string Result;
507  if (L) {
508    raw_string_ostream OS(Result);
509    const DebugLoc LoopDbgLoc = L->getStartLoc();
510    if (!LoopDbgLoc.isUnknown())
511      LoopDbgLoc.print(L->getHeader()->getContext(), OS);
512    else
513      // Just print the module name.
514      OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
515    OS.flush();
516  }
517  return Result;
518}
519#endif
520
521/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
522/// to what vectorization factor.
523/// This class does not look at the profitability of vectorization, only the
524/// legality. This class has two main kinds of checks:
525/// * Memory checks - The code in canVectorizeMemory checks if vectorization
526///   will change the order of memory accesses in a way that will change the
527///   correctness of the program.
528/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
529/// checks for a number of different conditions, such as the availability of a
530/// single induction variable, that all types are supported and vectorize-able,
531/// etc. This code reflects the capabilities of InnerLoopVectorizer.
532/// This class is also used by InnerLoopVectorizer for identifying
533/// induction variable and the different reduction variables.
534class LoopVectorizationLegality {
535public:
536  unsigned NumLoads;
537  unsigned NumStores;
538  unsigned NumPredStores;
539
540  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
541                            DominatorTree *DT, TargetLibraryInfo *TLI,
542                            Function *F)
543      : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
544        DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr),
545        WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
546  }
547
548  /// This enum represents the kinds of reductions that we support.
549  enum ReductionKind {
550    RK_NoReduction, ///< Not a reduction.
551    RK_IntegerAdd,  ///< Sum of integers.
552    RK_IntegerMult, ///< Product of integers.
553    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
554    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
555    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
556    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
557    RK_FloatAdd,    ///< Sum of floats.
558    RK_FloatMult,   ///< Product of floats.
559    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
560  };
561
562  /// This enum represents the kinds of inductions that we support.
563  enum InductionKind {
564    IK_NoInduction,         ///< Not an induction variable.
565    IK_IntInduction,        ///< Integer induction variable. Step = 1.
566    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
567    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
568    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
569  };
570
571  // This enum represents the kind of minmax reduction.
572  enum MinMaxReductionKind {
573    MRK_Invalid,
574    MRK_UIntMin,
575    MRK_UIntMax,
576    MRK_SIntMin,
577    MRK_SIntMax,
578    MRK_FloatMin,
579    MRK_FloatMax
580  };
581
582  /// This struct holds information about reduction variables.
583  struct ReductionDescriptor {
584    ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
585      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
586
587    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
588                        MinMaxReductionKind MK)
589        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
590
591    // The starting value of the reduction.
592    // It does not have to be zero!
593    TrackingVH<Value> StartValue;
594    // The instruction who's value is used outside the loop.
595    Instruction *LoopExitInstr;
596    // The kind of the reduction.
597    ReductionKind Kind;
598    // If this a min/max reduction the kind of reduction.
599    MinMaxReductionKind MinMaxKind;
600  };
601
602  /// This POD struct holds information about a potential reduction operation.
603  struct ReductionInstDesc {
604    ReductionInstDesc(bool IsRedux, Instruction *I) :
605      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
606
607    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
608      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
609
610    // Is this instruction a reduction candidate.
611    bool IsReduction;
612    // The last instruction in a min/max pattern (select of the select(icmp())
613    // pattern), or the current reduction instruction otherwise.
614    Instruction *PatternLastInst;
615    // If this is a min/max pattern the comparison predicate.
616    MinMaxReductionKind MinMaxKind;
617  };
618
619  /// This struct holds information about the memory runtime legality
620  /// check that a group of pointers do not overlap.
621  struct RuntimePointerCheck {
622    RuntimePointerCheck() : Need(false) {}
623
624    /// Reset the state of the pointer runtime information.
625    void reset() {
626      Need = false;
627      Pointers.clear();
628      Starts.clear();
629      Ends.clear();
630      IsWritePtr.clear();
631      DependencySetId.clear();
632    }
633
634    /// Insert a pointer and calculate the start and end SCEVs.
635    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
636                unsigned DepSetId, ValueToValueMap &Strides);
637
638    /// This flag indicates if we need to add the runtime check.
639    bool Need;
640    /// Holds the pointers that we need to check.
641    SmallVector<TrackingVH<Value>, 2> Pointers;
642    /// Holds the pointer value at the beginning of the loop.
643    SmallVector<const SCEV*, 2> Starts;
644    /// Holds the pointer value at the end of the loop.
645    SmallVector<const SCEV*, 2> Ends;
646    /// Holds the information if this pointer is used for writing to memory.
647    SmallVector<bool, 2> IsWritePtr;
648    /// Holds the id of the set of pointers that could be dependent because of a
649    /// shared underlying object.
650    SmallVector<unsigned, 2> DependencySetId;
651  };
652
653  /// A struct for saving information about induction variables.
654  struct InductionInfo {
655    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
656    InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
657    /// Start value.
658    TrackingVH<Value> StartValue;
659    /// Induction kind.
660    InductionKind IK;
661  };
662
663  /// ReductionList contains the reduction descriptors for all
664  /// of the reductions that were found in the loop.
665  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
666
667  /// InductionList saves induction variables and maps them to the
668  /// induction descriptor.
669  typedef MapVector<PHINode*, InductionInfo> InductionList;
670
671  /// Returns true if it is legal to vectorize this loop.
672  /// This does not mean that it is profitable to vectorize this
673  /// loop, only that it is legal to do so.
674  bool canVectorize();
675
676  /// Returns the Induction variable.
677  PHINode *getInduction() { return Induction; }
678
679  /// Returns the reduction variables found in the loop.
680  ReductionList *getReductionVars() { return &Reductions; }
681
682  /// Returns the induction variables found in the loop.
683  InductionList *getInductionVars() { return &Inductions; }
684
685  /// Returns the widest induction type.
686  Type *getWidestInductionType() { return WidestIndTy; }
687
688  /// Returns True if V is an induction variable in this loop.
689  bool isInductionVariable(const Value *V);
690
691  /// Return true if the block BB needs to be predicated in order for the loop
692  /// to be vectorized.
693  bool blockNeedsPredication(BasicBlock *BB);
694
695  /// Check if this  pointer is consecutive when vectorizing. This happens
696  /// when the last index of the GEP is the induction variable, or that the
697  /// pointer itself is an induction variable.
698  /// This check allows us to vectorize A[idx] into a wide load/store.
699  /// Returns:
700  /// 0 - Stride is unknown or non-consecutive.
701  /// 1 - Address is consecutive.
702  /// -1 - Address is consecutive, and decreasing.
703  int isConsecutivePtr(Value *Ptr);
704
705  /// Returns true if the value V is uniform within the loop.
706  bool isUniform(Value *V);
707
708  /// Returns true if this instruction will remain scalar after vectorization.
709  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
710
711  /// Returns the information that we collected about runtime memory check.
712  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
713
714  /// This function returns the identity element (or neutral element) for
715  /// the operation K.
716  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
717
718  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
719
720  bool hasStride(Value *V) { return StrideSet.count(V); }
721  bool mustCheckStrides() { return !StrideSet.empty(); }
722  SmallPtrSet<Value *, 8>::iterator strides_begin() {
723    return StrideSet.begin();
724  }
725  SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
726
727private:
728  /// Check if a single basic block loop is vectorizable.
729  /// At this point we know that this is a loop with a constant trip count
730  /// and we only need to check individual instructions.
731  bool canVectorizeInstrs();
732
733  /// When we vectorize loops we may change the order in which
734  /// we read and write from memory. This method checks if it is
735  /// legal to vectorize the code, considering only memory constrains.
736  /// Returns true if the loop is vectorizable
737  bool canVectorizeMemory();
738
739  /// Return true if we can vectorize this loop using the IF-conversion
740  /// transformation.
741  bool canVectorizeWithIfConvert();
742
743  /// Collect the variables that need to stay uniform after vectorization.
744  void collectLoopUniforms();
745
746  /// Return true if all of the instructions in the block can be speculatively
747  /// executed. \p SafePtrs is a list of addresses that are known to be legal
748  /// and we know that we can read from them without segfault.
749  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
750
751  /// Returns True, if 'Phi' is the kind of reduction variable for type
752  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
753  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
754  /// Returns a struct describing if the instruction 'I' can be a reduction
755  /// variable of type 'Kind'. If the reduction is a min/max pattern of
756  /// select(icmp()) this function advances the instruction pointer 'I' from the
757  /// compare instruction to the select instruction and stores this pointer in
758  /// 'PatternLastInst' member of the returned struct.
759  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
760                                     ReductionInstDesc &Desc);
761  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
762  /// pattern corresponding to a min(X, Y) or max(X, Y).
763  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
764                                                    ReductionInstDesc &Prev);
765  /// Returns the induction kind of Phi. This function may return NoInduction
766  /// if the PHI is not an induction variable.
767  InductionKind isInductionVariable(PHINode *Phi);
768
769  /// \brief Collect memory access with loop invariant strides.
770  ///
771  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
772  /// invariant.
773  void collectStridedAcccess(Value *LoadOrStoreInst);
774
775  /// Report an analysis message to assist the user in diagnosing loops that are
776  /// not vectorized.
777  void emitAnalysis(Report &Message) {
778    DebugLoc DL = TheLoop->getStartLoc();
779    if (Instruction *I = Message.getInstr())
780      DL = I->getDebugLoc();
781    emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
782                                   *TheFunction, DL, Message.str());
783  }
784
785  /// The loop that we evaluate.
786  Loop *TheLoop;
787  /// Scev analysis.
788  ScalarEvolution *SE;
789  /// DataLayout analysis.
790  const DataLayout *DL;
791  /// Dominators.
792  DominatorTree *DT;
793  /// Target Library Info.
794  TargetLibraryInfo *TLI;
795  /// Parent function
796  Function *TheFunction;
797
798  //  ---  vectorization state --- //
799
800  /// Holds the integer induction variable. This is the counter of the
801  /// loop.
802  PHINode *Induction;
803  /// Holds the reduction variables.
804  ReductionList Reductions;
805  /// Holds all of the induction variables that we found in the loop.
806  /// Notice that inductions don't need to start at zero and that induction
807  /// variables can be pointers.
808  InductionList Inductions;
809  /// Holds the widest induction type encountered.
810  Type *WidestIndTy;
811
812  /// Allowed outside users. This holds the reduction
813  /// vars which can be accessed from outside the loop.
814  SmallPtrSet<Value*, 4> AllowedExit;
815  /// This set holds the variables which are known to be uniform after
816  /// vectorization.
817  SmallPtrSet<Instruction*, 4> Uniforms;
818  /// We need to check that all of the pointers in this list are disjoint
819  /// at runtime.
820  RuntimePointerCheck PtrRtCheck;
821  /// Can we assume the absence of NaNs.
822  bool HasFunNoNaNAttr;
823
824  unsigned MaxSafeDepDistBytes;
825
826  ValueToValueMap Strides;
827  SmallPtrSet<Value *, 8> StrideSet;
828};
829
830/// LoopVectorizationCostModel - estimates the expected speedups due to
831/// vectorization.
832/// In many cases vectorization is not profitable. This can happen because of
833/// a number of reasons. In this class we mainly attempt to predict the
834/// expected speedup/slowdowns due to the supported instruction set. We use the
835/// TargetTransformInfo to query the different backends for the cost of
836/// different operations.
837class LoopVectorizationCostModel {
838public:
839  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
840                             LoopVectorizationLegality *Legal,
841                             const TargetTransformInfo &TTI,
842                             const DataLayout *DL, const TargetLibraryInfo *TLI)
843      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
844
845  /// Information about vectorization costs
846  struct VectorizationFactor {
847    unsigned Width; // Vector width with best cost
848    unsigned Cost; // Cost of the loop with that width
849  };
850  /// \return The most profitable vectorization factor and the cost of that VF.
851  /// This method checks every power of two up to VF. If UserVF is not ZERO
852  /// then this vectorization factor will be selected if vectorization is
853  /// possible.
854  VectorizationFactor selectVectorizationFactor(bool OptForSize,
855                                                unsigned UserVF,
856                                                bool ForceVectorization);
857
858  /// \return The size (in bits) of the widest type in the code that
859  /// needs to be vectorized. We ignore values that remain scalar such as
860  /// 64 bit loop indices.
861  unsigned getWidestType();
862
863  /// \return The most profitable unroll factor.
864  /// If UserUF is non-zero then this method finds the best unroll-factor
865  /// based on register pressure and other parameters.
866  /// VF and LoopCost are the selected vectorization factor and the cost of the
867  /// selected VF.
868  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
869                              unsigned LoopCost);
870
871  /// \brief A struct that represents some properties of the register usage
872  /// of a loop.
873  struct RegisterUsage {
874    /// Holds the number of loop invariant values that are used in the loop.
875    unsigned LoopInvariantRegs;
876    /// Holds the maximum number of concurrent live intervals in the loop.
877    unsigned MaxLocalUsers;
878    /// Holds the number of instructions in the loop.
879    unsigned NumInstructions;
880  };
881
882  /// \return  information about the register usage of the loop.
883  RegisterUsage calculateRegisterUsage();
884
885private:
886  /// Returns the expected execution cost. The unit of the cost does
887  /// not matter because we use the 'cost' units to compare different
888  /// vector widths. The cost that is returned is *not* normalized by
889  /// the factor width.
890  unsigned expectedCost(unsigned VF);
891
892  /// Returns the execution time cost of an instruction for a given vector
893  /// width. Vector width of one means scalar.
894  unsigned getInstructionCost(Instruction *I, unsigned VF);
895
896  /// A helper function for converting Scalar types to vector types.
897  /// If the incoming type is void, we return void. If the VF is 1, we return
898  /// the scalar type.
899  static Type* ToVectorTy(Type *Scalar, unsigned VF);
900
901  /// Returns whether the instruction is a load or store and will be a emitted
902  /// as a vector operation.
903  bool isConsecutiveLoadOrStore(Instruction *I);
904
905  /// The loop that we evaluate.
906  Loop *TheLoop;
907  /// Scev analysis.
908  ScalarEvolution *SE;
909  /// Loop Info analysis.
910  LoopInfo *LI;
911  /// Vectorization legality.
912  LoopVectorizationLegality *Legal;
913  /// Vector target information.
914  const TargetTransformInfo &TTI;
915  /// Target data layout information.
916  const DataLayout *DL;
917  /// Target Library Info.
918  const TargetLibraryInfo *TLI;
919};
920
921/// Utility class for getting and setting loop vectorizer hints in the form
922/// of loop metadata.
923class LoopVectorizeHints {
924public:
925  enum ForceKind {
926    FK_Undefined = -1, ///< Not selected.
927    FK_Disabled = 0,   ///< Forcing disabled.
928    FK_Enabled = 1,    ///< Forcing enabled.
929  };
930
931  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
932      : Width(VectorizationFactor),
933        Unroll(DisableUnrolling),
934        Force(FK_Undefined),
935        LoopID(L->getLoopID()) {
936    getHints(L);
937    // force-vector-unroll overrides DisableUnrolling.
938    if (VectorizationUnroll.getNumOccurrences() > 0)
939      Unroll = VectorizationUnroll;
940
941    DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
942          << "LV: Unrolling disabled by the pass manager\n");
943  }
944
945  /// Return the loop vectorizer metadata prefix.
946  static StringRef Prefix() { return "llvm.loop.vectorize."; }
947
948  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
949    SmallVector<Value*, 2> Vals;
950    Vals.push_back(MDString::get(Context, Name));
951    Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
952    return MDNode::get(Context, Vals);
953  }
954
955  /// Mark the loop L as already vectorized by setting the width to 1.
956  void setAlreadyVectorized(Loop *L) {
957    LLVMContext &Context = L->getHeader()->getContext();
958
959    Width = 1;
960
961    // Create a new loop id with one more operand for the already_vectorized
962    // hint. If the loop already has a loop id then copy the existing operands.
963    SmallVector<Value*, 4> Vals(1);
964    if (LoopID)
965      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
966        Vals.push_back(LoopID->getOperand(i));
967
968    Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
969    Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
970
971    MDNode *NewLoopID = MDNode::get(Context, Vals);
972    // Set operand 0 to refer to the loop id itself.
973    NewLoopID->replaceOperandWith(0, NewLoopID);
974
975    L->setLoopID(NewLoopID);
976    if (LoopID)
977      LoopID->replaceAllUsesWith(NewLoopID);
978
979    LoopID = NewLoopID;
980  }
981
982  std::string emitRemark() const {
983    Report R;
984    R << "vectorization ";
985    switch (Force) {
986    case LoopVectorizeHints::FK_Disabled:
987      R << "is explicitly disabled";
988      break;
989    case LoopVectorizeHints::FK_Enabled:
990      R << "is explicitly enabled";
991      if (Width != 0 && Unroll != 0)
992        R << " with width " << Width << " and interleave count " << Unroll;
993      else if (Width != 0)
994        R << " with width " << Width;
995      else if (Unroll != 0)
996        R << " with interleave count " << Unroll;
997      break;
998    case LoopVectorizeHints::FK_Undefined:
999      R << "was not specified";
1000      break;
1001    }
1002    return R.str();
1003  }
1004
1005  unsigned getWidth() const { return Width; }
1006  unsigned getUnroll() const { return Unroll; }
1007  enum ForceKind getForce() const { return Force; }
1008  MDNode *getLoopID() const { return LoopID; }
1009
1010private:
1011  /// Find hints specified in the loop metadata.
1012  void getHints(const Loop *L) {
1013    if (!LoopID)
1014      return;
1015
1016    // First operand should refer to the loop id itself.
1017    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1018    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1019
1020    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1021      const MDString *S = nullptr;
1022      SmallVector<Value*, 4> Args;
1023
1024      // The expected hint is either a MDString or a MDNode with the first
1025      // operand a MDString.
1026      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1027        if (!MD || MD->getNumOperands() == 0)
1028          continue;
1029        S = dyn_cast<MDString>(MD->getOperand(0));
1030        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1031          Args.push_back(MD->getOperand(i));
1032      } else {
1033        S = dyn_cast<MDString>(LoopID->getOperand(i));
1034        assert(Args.size() == 0 && "too many arguments for MDString");
1035      }
1036
1037      if (!S)
1038        continue;
1039
1040      // Check if the hint starts with the vectorizer prefix.
1041      StringRef Hint = S->getString();
1042      if (!Hint.startswith(Prefix()))
1043        continue;
1044      // Remove the prefix.
1045      Hint = Hint.substr(Prefix().size(), StringRef::npos);
1046
1047      if (Args.size() == 1)
1048        getHint(Hint, Args[0]);
1049    }
1050  }
1051
1052  // Check string hint with one operand.
1053  void getHint(StringRef Hint, Value *Arg) {
1054    const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
1055    if (!C) return;
1056    unsigned Val = C->getZExtValue();
1057
1058    if (Hint == "width") {
1059      if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
1060        Width = Val;
1061      else
1062        DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
1063    } else if (Hint == "unroll") {
1064      if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
1065        Unroll = Val;
1066      else
1067        DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
1068    } else if (Hint == "enable") {
1069      if (C->getBitWidth() == 1)
1070        Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
1071                         : LoopVectorizeHints::FK_Disabled;
1072      else
1073        DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
1074    } else {
1075      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
1076    }
1077  }
1078
1079  /// Vectorization width.
1080  unsigned Width;
1081  /// Vectorization unroll factor.
1082  unsigned Unroll;
1083  /// Vectorization forced
1084  enum ForceKind Force;
1085
1086  MDNode *LoopID;
1087};
1088
1089static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1090  if (L.empty())
1091    return V.push_back(&L);
1092
1093  for (Loop *InnerL : L)
1094    addInnerLoop(*InnerL, V);
1095}
1096
1097/// The LoopVectorize Pass.
1098struct LoopVectorize : public FunctionPass {
1099  /// Pass identification, replacement for typeid
1100  static char ID;
1101
1102  explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1103    : FunctionPass(ID),
1104      DisableUnrolling(NoUnrolling),
1105      AlwaysVectorize(AlwaysVectorize) {
1106    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1107  }
1108
1109  ScalarEvolution *SE;
1110  const DataLayout *DL;
1111  LoopInfo *LI;
1112  TargetTransformInfo *TTI;
1113  DominatorTree *DT;
1114  BlockFrequencyInfo *BFI;
1115  TargetLibraryInfo *TLI;
1116  bool DisableUnrolling;
1117  bool AlwaysVectorize;
1118
1119  BlockFrequency ColdEntryFreq;
1120
1121  bool runOnFunction(Function &F) override {
1122    SE = &getAnalysis<ScalarEvolution>();
1123    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1124    DL = DLP ? &DLP->getDataLayout() : nullptr;
1125    LI = &getAnalysis<LoopInfo>();
1126    TTI = &getAnalysis<TargetTransformInfo>();
1127    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1128    BFI = &getAnalysis<BlockFrequencyInfo>();
1129    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1130
1131    // Compute some weights outside of the loop over the loops. Compute this
1132    // using a BranchProbability to re-use its scaling math.
1133    const BranchProbability ColdProb(1, 5); // 20%
1134    ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1135
1136    // If the target claims to have no vector registers don't attempt
1137    // vectorization.
1138    if (!TTI->getNumberOfRegisters(true))
1139      return false;
1140
1141    if (!DL) {
1142      DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
1143                   << ": Missing data layout\n");
1144      return false;
1145    }
1146
1147    // Build up a worklist of inner-loops to vectorize. This is necessary as
1148    // the act of vectorizing or partially unrolling a loop creates new loops
1149    // and can invalidate iterators across the loops.
1150    SmallVector<Loop *, 8> Worklist;
1151
1152    for (Loop *L : *LI)
1153      addInnerLoop(*L, Worklist);
1154
1155    LoopsAnalyzed += Worklist.size();
1156
1157    // Now walk the identified inner loops.
1158    bool Changed = false;
1159    while (!Worklist.empty())
1160      Changed |= processLoop(Worklist.pop_back_val());
1161
1162    // Process each loop nest in the function.
1163    return Changed;
1164  }
1165
1166  bool processLoop(Loop *L) {
1167    assert(L->empty() && "Only process inner loops.");
1168
1169#ifndef NDEBUG
1170    const std::string DebugLocStr = getDebugLocString(L);
1171#endif /* NDEBUG */
1172
1173    DEBUG(dbgs() << "\nLV: Checking a loop in \""
1174                 << L->getHeader()->getParent()->getName() << "\" from "
1175                 << DebugLocStr << "\n");
1176
1177    LoopVectorizeHints Hints(L, DisableUnrolling);
1178
1179    DEBUG(dbgs() << "LV: Loop hints:"
1180                 << " force="
1181                 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1182                         ? "disabled"
1183                         : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1184                                ? "enabled"
1185                                : "?")) << " width=" << Hints.getWidth()
1186                 << " unroll=" << Hints.getUnroll() << "\n");
1187
1188    // Function containing loop
1189    Function *F = L->getHeader()->getParent();
1190
1191    // Looking at the diagnostic output is the only way to determine if a loop
1192    // was vectorized (other than looking at the IR or machine code), so it
1193    // is important to generate an optimization remark for each loop. Most of
1194    // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1195    // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1196    // less verbose reporting vectorized loops and unvectorized loops that may
1197    // benefit from vectorization, respectively.
1198
1199    if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1200      DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1201      emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1202                                     L->getStartLoc(), Hints.emitRemark());
1203      return false;
1204    }
1205
1206    if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1207      DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1208      emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1209                                     L->getStartLoc(), Hints.emitRemark());
1210      return false;
1211    }
1212
1213    if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
1214      DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1215      emitOptimizationRemarkAnalysis(
1216          F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1217          "loop not vectorized: vector width and interleave count are "
1218          "explicitly set to 1");
1219      return false;
1220    }
1221
1222    // Check the loop for a trip count threshold:
1223    // do not vectorize loops with a tiny trip count.
1224    BasicBlock *Latch = L->getLoopLatch();
1225    const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
1226    if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1227      DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1228                   << "This loop is not worth vectorizing.");
1229      if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1230        DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1231      else {
1232        DEBUG(dbgs() << "\n");
1233        emitOptimizationRemarkAnalysis(
1234            F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1235            "vectorization is not beneficial and is not explicitly forced");
1236        return false;
1237      }
1238    }
1239
1240    // Check if it is legal to vectorize the loop.
1241    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F);
1242    if (!LVL.canVectorize()) {
1243      DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1244      emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1245                                   L->getStartLoc(), Hints.emitRemark());
1246      return false;
1247    }
1248
1249    // Use the cost model.
1250    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
1251
1252    // Check the function attributes to find out if this function should be
1253    // optimized for size.
1254    bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1255                      F->hasFnAttribute(Attribute::OptimizeForSize);
1256
1257    // Compute the weighted frequency of this loop being executed and see if it
1258    // is less than 20% of the function entry baseline frequency. Note that we
1259    // always have a canonical loop here because we think we *can* vectoriez.
1260    // FIXME: This is hidden behind a flag due to pervasive problems with
1261    // exactly what block frequency models.
1262    if (LoopVectorizeWithBlockFrequency) {
1263      BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1264      if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1265          LoopEntryFreq < ColdEntryFreq)
1266        OptForSize = true;
1267    }
1268
1269    // Check the function attributes to see if implicit floats are allowed.a
1270    // FIXME: This check doesn't seem possibly correct -- what if the loop is
1271    // an integer loop and the vector instructions selected are purely integer
1272    // vector instructions?
1273    if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1274      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1275            "attribute is used.\n");
1276      emitOptimizationRemarkAnalysis(
1277          F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1278          "loop not vectorized due to NoImplicitFloat attribute");
1279      emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1280                                   L->getStartLoc(), Hints.emitRemark());
1281      return false;
1282    }
1283
1284    // Select the optimal vectorization factor.
1285    const LoopVectorizationCostModel::VectorizationFactor VF =
1286        CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
1287                                     Hints.getForce() ==
1288                                         LoopVectorizeHints::FK_Enabled);
1289
1290    // Select the unroll factor.
1291    const unsigned UF =
1292        CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
1293
1294    DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1295                 << DebugLocStr << '\n');
1296    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1297
1298    if (VF.Width == 1) {
1299      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1300
1301      if (UF == 1) {
1302        emitOptimizationRemarkAnalysis(
1303            F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1304            "not beneficial to vectorize and user disabled interleaving");
1305        return false;
1306      }
1307      DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1308
1309      // Report the unrolling decision.
1310      emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1311                             Twine("unrolled with interleaving factor " +
1312                                   Twine(UF) +
1313                                   " (vectorization not beneficial)"));
1314
1315      // We decided not to vectorize, but we may want to unroll.
1316
1317      InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1318      Unroller.vectorize(&LVL);
1319    } else {
1320      // If we decided that it is *legal* to vectorize the loop then do it.
1321      InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1322      LB.vectorize(&LVL);
1323      ++LoopsVectorized;
1324
1325      // Report the vectorization decision.
1326      emitOptimizationRemark(
1327          F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1328          Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1329              ", unrolling interleave factor: " + Twine(UF) + ")");
1330    }
1331
1332    // Mark the loop as already vectorized to avoid vectorizing again.
1333    Hints.setAlreadyVectorized(L);
1334
1335    DEBUG(verifyFunction(*L->getHeader()->getParent()));
1336    return true;
1337  }
1338
1339  void getAnalysisUsage(AnalysisUsage &AU) const override {
1340    AU.addRequiredID(LoopSimplifyID);
1341    AU.addRequiredID(LCSSAID);
1342    AU.addRequired<BlockFrequencyInfo>();
1343    AU.addRequired<DominatorTreeWrapperPass>();
1344    AU.addRequired<LoopInfo>();
1345    AU.addRequired<ScalarEvolution>();
1346    AU.addRequired<TargetTransformInfo>();
1347    AU.addPreserved<LoopInfo>();
1348    AU.addPreserved<DominatorTreeWrapperPass>();
1349  }
1350
1351};
1352
1353} // end anonymous namespace
1354
1355//===----------------------------------------------------------------------===//
1356// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1357// LoopVectorizationCostModel.
1358//===----------------------------------------------------------------------===//
1359
1360static Value *stripIntegerCast(Value *V) {
1361  if (CastInst *CI = dyn_cast<CastInst>(V))
1362    if (CI->getOperand(0)->getType()->isIntegerTy())
1363      return CI->getOperand(0);
1364  return V;
1365}
1366
1367///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1368///
1369/// If \p OrigPtr is not null, use it to look up the stride value instead of
1370/// \p Ptr.
1371static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1372                                             ValueToValueMap &PtrToStride,
1373                                             Value *Ptr, Value *OrigPtr = nullptr) {
1374
1375  const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1376
1377  // If there is an entry in the map return the SCEV of the pointer with the
1378  // symbolic stride replaced by one.
1379  ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1380  if (SI != PtrToStride.end()) {
1381    Value *StrideVal = SI->second;
1382
1383    // Strip casts.
1384    StrideVal = stripIntegerCast(StrideVal);
1385
1386    // Replace symbolic stride by one.
1387    Value *One = ConstantInt::get(StrideVal->getType(), 1);
1388    ValueToValueMap RewriteMap;
1389    RewriteMap[StrideVal] = One;
1390
1391    const SCEV *ByOne =
1392        SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1393    DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
1394                 << "\n");
1395    return ByOne;
1396  }
1397
1398  // Otherwise, just return the SCEV of the original pointer.
1399  return SE->getSCEV(Ptr);
1400}
1401
1402void LoopVectorizationLegality::RuntimePointerCheck::insert(
1403    ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
1404    ValueToValueMap &Strides) {
1405  // Get the stride replaced scev.
1406  const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1407  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1408  assert(AR && "Invalid addrec expression");
1409  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1410  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1411  Pointers.push_back(Ptr);
1412  Starts.push_back(AR->getStart());
1413  Ends.push_back(ScEnd);
1414  IsWritePtr.push_back(WritePtr);
1415  DependencySetId.push_back(DepSetId);
1416}
1417
1418Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1419  // We need to place the broadcast of invariant variables outside the loop.
1420  Instruction *Instr = dyn_cast<Instruction>(V);
1421  bool NewInstr =
1422      (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1423                          Instr->getParent()) != LoopVectorBody.end());
1424  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1425
1426  // Place the code for broadcasting invariant variables in the new preheader.
1427  IRBuilder<>::InsertPointGuard Guard(Builder);
1428  if (Invariant)
1429    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1430
1431  // Broadcast the scalar into all locations in the vector.
1432  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1433
1434  return Shuf;
1435}
1436
1437Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1438                                                 bool Negate) {
1439  assert(Val->getType()->isVectorTy() && "Must be a vector");
1440  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1441         "Elem must be an integer");
1442  // Create the types.
1443  Type *ITy = Val->getType()->getScalarType();
1444  VectorType *Ty = cast<VectorType>(Val->getType());
1445  int VLen = Ty->getNumElements();
1446  SmallVector<Constant*, 8> Indices;
1447
1448  // Create a vector of consecutive numbers from zero to VF.
1449  for (int i = 0; i < VLen; ++i) {
1450    int64_t Idx = Negate ? (-i) : i;
1451    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1452  }
1453
1454  // Add the consecutive indices to the vector value.
1455  Constant *Cv = ConstantVector::get(Indices);
1456  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1457  return Builder.CreateAdd(Val, Cv, "induction");
1458}
1459
1460/// \brief Find the operand of the GEP that should be checked for consecutive
1461/// stores. This ignores trailing indices that have no effect on the final
1462/// pointer.
1463static unsigned getGEPInductionOperand(const DataLayout *DL,
1464                                       const GetElementPtrInst *Gep) {
1465  unsigned LastOperand = Gep->getNumOperands() - 1;
1466  unsigned GEPAllocSize = DL->getTypeAllocSize(
1467      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1468
1469  // Walk backwards and try to peel off zeros.
1470  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1471    // Find the type we're currently indexing into.
1472    gep_type_iterator GEPTI = gep_type_begin(Gep);
1473    std::advance(GEPTI, LastOperand - 1);
1474
1475    // If it's a type with the same allocation size as the result of the GEP we
1476    // can peel off the zero index.
1477    if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1478      break;
1479    --LastOperand;
1480  }
1481
1482  return LastOperand;
1483}
1484
1485int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1486  assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1487  // Make sure that the pointer does not point to structs.
1488  if (Ptr->getType()->getPointerElementType()->isAggregateType())
1489    return 0;
1490
1491  // If this value is a pointer induction variable we know it is consecutive.
1492  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1493  if (Phi && Inductions.count(Phi)) {
1494    InductionInfo II = Inductions[Phi];
1495    if (IK_PtrInduction == II.IK)
1496      return 1;
1497    else if (IK_ReversePtrInduction == II.IK)
1498      return -1;
1499  }
1500
1501  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1502  if (!Gep)
1503    return 0;
1504
1505  unsigned NumOperands = Gep->getNumOperands();
1506  Value *GpPtr = Gep->getPointerOperand();
1507  // If this GEP value is a consecutive pointer induction variable and all of
1508  // the indices are constant then we know it is consecutive. We can
1509  Phi = dyn_cast<PHINode>(GpPtr);
1510  if (Phi && Inductions.count(Phi)) {
1511
1512    // Make sure that the pointer does not point to structs.
1513    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1514    if (GepPtrType->getElementType()->isAggregateType())
1515      return 0;
1516
1517    // Make sure that all of the index operands are loop invariant.
1518    for (unsigned i = 1; i < NumOperands; ++i)
1519      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1520        return 0;
1521
1522    InductionInfo II = Inductions[Phi];
1523    if (IK_PtrInduction == II.IK)
1524      return 1;
1525    else if (IK_ReversePtrInduction == II.IK)
1526      return -1;
1527  }
1528
1529  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1530
1531  // Check that all of the gep indices are uniform except for our induction
1532  // operand.
1533  for (unsigned i = 0; i != NumOperands; ++i)
1534    if (i != InductionOperand &&
1535        !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1536      return 0;
1537
1538  // We can emit wide load/stores only if the last non-zero index is the
1539  // induction variable.
1540  const SCEV *Last = nullptr;
1541  if (!Strides.count(Gep))
1542    Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1543  else {
1544    // Because of the multiplication by a stride we can have a s/zext cast.
1545    // We are going to replace this stride by 1 so the cast is safe to ignore.
1546    //
1547    //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1548    //  %0 = trunc i64 %indvars.iv to i32
1549    //  %mul = mul i32 %0, %Stride1
1550    //  %idxprom = zext i32 %mul to i64  << Safe cast.
1551    //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1552    //
1553    Last = replaceSymbolicStrideSCEV(SE, Strides,
1554                                     Gep->getOperand(InductionOperand), Gep);
1555    if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1556      Last =
1557          (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1558              ? C->getOperand()
1559              : Last;
1560  }
1561  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1562    const SCEV *Step = AR->getStepRecurrence(*SE);
1563
1564    // The memory is consecutive because the last index is consecutive
1565    // and all other indices are loop invariant.
1566    if (Step->isOne())
1567      return 1;
1568    if (Step->isAllOnesValue())
1569      return -1;
1570  }
1571
1572  return 0;
1573}
1574
1575bool LoopVectorizationLegality::isUniform(Value *V) {
1576  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1577}
1578
1579InnerLoopVectorizer::VectorParts&
1580InnerLoopVectorizer::getVectorValue(Value *V) {
1581  assert(V != Induction && "The new induction variable should not be used.");
1582  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1583
1584  // If we have a stride that is replaced by one, do it here.
1585  if (Legal->hasStride(V))
1586    V = ConstantInt::get(V->getType(), 1);
1587
1588  // If we have this scalar in the map, return it.
1589  if (WidenMap.has(V))
1590    return WidenMap.get(V);
1591
1592  // If this scalar is unknown, assume that it is a constant or that it is
1593  // loop invariant. Broadcast V and save the value for future uses.
1594  Value *B = getBroadcastInstrs(V);
1595  return WidenMap.splat(V, B);
1596}
1597
1598Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1599  assert(Vec->getType()->isVectorTy() && "Invalid type");
1600  SmallVector<Constant*, 8> ShuffleMask;
1601  for (unsigned i = 0; i < VF; ++i)
1602    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1603
1604  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1605                                     ConstantVector::get(ShuffleMask),
1606                                     "reverse");
1607}
1608
1609void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1610  // Attempt to issue a wide load.
1611  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1612  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1613
1614  assert((LI || SI) && "Invalid Load/Store instruction");
1615
1616  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1617  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1618  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1619  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1620  // An alignment of 0 means target abi alignment. We need to use the scalar's
1621  // target abi alignment in such a case.
1622  if (!Alignment)
1623    Alignment = DL->getABITypeAlignment(ScalarDataTy);
1624  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1625  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1626  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1627
1628  if (SI && Legal->blockNeedsPredication(SI->getParent()))
1629    return scalarizeInstruction(Instr, true);
1630
1631  if (ScalarAllocatedSize != VectorElementSize)
1632    return scalarizeInstruction(Instr);
1633
1634  // If the pointer is loop invariant or if it is non-consecutive,
1635  // scalarize the load.
1636  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1637  bool Reverse = ConsecutiveStride < 0;
1638  bool UniformLoad = LI && Legal->isUniform(Ptr);
1639  if (!ConsecutiveStride || UniformLoad)
1640    return scalarizeInstruction(Instr);
1641
1642  Constant *Zero = Builder.getInt32(0);
1643  VectorParts &Entry = WidenMap.get(Instr);
1644
1645  // Handle consecutive loads/stores.
1646  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1647  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1648    setDebugLocFromInst(Builder, Gep);
1649    Value *PtrOperand = Gep->getPointerOperand();
1650    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1651    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1652
1653    // Create the new GEP with the new induction variable.
1654    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1655    Gep2->setOperand(0, FirstBasePtr);
1656    Gep2->setName("gep.indvar.base");
1657    Ptr = Builder.Insert(Gep2);
1658  } else if (Gep) {
1659    setDebugLocFromInst(Builder, Gep);
1660    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1661                               OrigLoop) && "Base ptr must be invariant");
1662
1663    // The last index does not have to be the induction. It can be
1664    // consecutive and be a function of the index. For example A[I+1];
1665    unsigned NumOperands = Gep->getNumOperands();
1666    unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1667    // Create the new GEP with the new induction variable.
1668    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1669
1670    for (unsigned i = 0; i < NumOperands; ++i) {
1671      Value *GepOperand = Gep->getOperand(i);
1672      Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1673
1674      // Update last index or loop invariant instruction anchored in loop.
1675      if (i == InductionOperand ||
1676          (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1677        assert((i == InductionOperand ||
1678               SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1679               "Must be last index or loop invariant");
1680
1681        VectorParts &GEPParts = getVectorValue(GepOperand);
1682        Value *Index = GEPParts[0];
1683        Index = Builder.CreateExtractElement(Index, Zero);
1684        Gep2->setOperand(i, Index);
1685        Gep2->setName("gep.indvar.idx");
1686      }
1687    }
1688    Ptr = Builder.Insert(Gep2);
1689  } else {
1690    // Use the induction element ptr.
1691    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1692    setDebugLocFromInst(Builder, Ptr);
1693    VectorParts &PtrVal = getVectorValue(Ptr);
1694    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1695  }
1696
1697  // Handle Stores:
1698  if (SI) {
1699    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1700           "We do not allow storing to uniform addresses");
1701    setDebugLocFromInst(Builder, SI);
1702    // We don't want to update the value in the map as it might be used in
1703    // another expression. So don't use a reference type for "StoredVal".
1704    VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1705
1706    for (unsigned Part = 0; Part < UF; ++Part) {
1707      // Calculate the pointer for the specific unroll-part.
1708      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1709
1710      if (Reverse) {
1711        // If we store to reverse consecutive memory locations then we need
1712        // to reverse the order of elements in the stored value.
1713        StoredVal[Part] = reverseVector(StoredVal[Part]);
1714        // If the address is consecutive but reversed, then the
1715        // wide store needs to start at the last vector element.
1716        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1717        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1718      }
1719
1720      Value *VecPtr = Builder.CreateBitCast(PartPtr,
1721                                            DataTy->getPointerTo(AddressSpace));
1722      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1723    }
1724    return;
1725  }
1726
1727  // Handle loads.
1728  assert(LI && "Must have a load instruction");
1729  setDebugLocFromInst(Builder, LI);
1730  for (unsigned Part = 0; Part < UF; ++Part) {
1731    // Calculate the pointer for the specific unroll-part.
1732    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1733
1734    if (Reverse) {
1735      // If the address is consecutive but reversed, then the
1736      // wide store needs to start at the last vector element.
1737      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1738      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1739    }
1740
1741    Value *VecPtr = Builder.CreateBitCast(PartPtr,
1742                                          DataTy->getPointerTo(AddressSpace));
1743    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1744    cast<LoadInst>(LI)->setAlignment(Alignment);
1745    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1746  }
1747}
1748
1749void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1750  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1751  // Holds vector parameters or scalars, in case of uniform vals.
1752  SmallVector<VectorParts, 4> Params;
1753
1754  setDebugLocFromInst(Builder, Instr);
1755
1756  // Find all of the vectorized parameters.
1757  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1758    Value *SrcOp = Instr->getOperand(op);
1759
1760    // If we are accessing the old induction variable, use the new one.
1761    if (SrcOp == OldInduction) {
1762      Params.push_back(getVectorValue(SrcOp));
1763      continue;
1764    }
1765
1766    // Try using previously calculated values.
1767    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1768
1769    // If the src is an instruction that appeared earlier in the basic block
1770    // then it should already be vectorized.
1771    if (SrcInst && OrigLoop->contains(SrcInst)) {
1772      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1773      // The parameter is a vector value from earlier.
1774      Params.push_back(WidenMap.get(SrcInst));
1775    } else {
1776      // The parameter is a scalar from outside the loop. Maybe even a constant.
1777      VectorParts Scalars;
1778      Scalars.append(UF, SrcOp);
1779      Params.push_back(Scalars);
1780    }
1781  }
1782
1783  assert(Params.size() == Instr->getNumOperands() &&
1784         "Invalid number of operands");
1785
1786  // Does this instruction return a value ?
1787  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1788
1789  Value *UndefVec = IsVoidRetTy ? nullptr :
1790    UndefValue::get(VectorType::get(Instr->getType(), VF));
1791  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1792  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1793
1794  Instruction *InsertPt = Builder.GetInsertPoint();
1795  BasicBlock *IfBlock = Builder.GetInsertBlock();
1796  BasicBlock *CondBlock = nullptr;
1797
1798  VectorParts Cond;
1799  Loop *VectorLp = nullptr;
1800  if (IfPredicateStore) {
1801    assert(Instr->getParent()->getSinglePredecessor() &&
1802           "Only support single predecessor blocks");
1803    Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1804                          Instr->getParent());
1805    VectorLp = LI->getLoopFor(IfBlock);
1806    assert(VectorLp && "Must have a loop for this block");
1807  }
1808
1809  // For each vector unroll 'part':
1810  for (unsigned Part = 0; Part < UF; ++Part) {
1811    // For each scalar that we create:
1812    for (unsigned Width = 0; Width < VF; ++Width) {
1813
1814      // Start if-block.
1815      Value *Cmp = nullptr;
1816      if (IfPredicateStore) {
1817        Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
1818        Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
1819        CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1820        LoopVectorBody.push_back(CondBlock);
1821        VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
1822        // Update Builder with newly created basic block.
1823        Builder.SetInsertPoint(InsertPt);
1824      }
1825
1826      Instruction *Cloned = Instr->clone();
1827      if (!IsVoidRetTy)
1828        Cloned->setName(Instr->getName() + ".cloned");
1829      // Replace the operands of the cloned instructions with extracted scalars.
1830      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1831        Value *Op = Params[op][Part];
1832        // Param is a vector. Need to extract the right lane.
1833        if (Op->getType()->isVectorTy())
1834          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1835        Cloned->setOperand(op, Op);
1836      }
1837
1838      // Place the cloned scalar in the new loop.
1839      Builder.Insert(Cloned);
1840
1841      // If the original scalar returns a value we need to place it in a vector
1842      // so that future users will be able to use it.
1843      if (!IsVoidRetTy)
1844        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1845                                                       Builder.getInt32(Width));
1846      // End if-block.
1847      if (IfPredicateStore) {
1848         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1849         LoopVectorBody.push_back(NewIfBlock);
1850         VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
1851         Builder.SetInsertPoint(InsertPt);
1852         Instruction *OldBr = IfBlock->getTerminator();
1853         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1854         OldBr->eraseFromParent();
1855         IfBlock = NewIfBlock;
1856      }
1857    }
1858  }
1859}
1860
1861static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1862                                 Instruction *Loc) {
1863  if (FirstInst)
1864    return FirstInst;
1865  if (Instruction *I = dyn_cast<Instruction>(V))
1866    return I->getParent() == Loc->getParent() ? I : nullptr;
1867  return nullptr;
1868}
1869
1870std::pair<Instruction *, Instruction *>
1871InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
1872  Instruction *tnullptr = nullptr;
1873  if (!Legal->mustCheckStrides())
1874    return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
1875
1876  IRBuilder<> ChkBuilder(Loc);
1877
1878  // Emit checks.
1879  Value *Check = nullptr;
1880  Instruction *FirstInst = nullptr;
1881  for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
1882                                         SE = Legal->strides_end();
1883       SI != SE; ++SI) {
1884    Value *Ptr = stripIntegerCast(*SI);
1885    Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
1886                                       "stride.chk");
1887    // Store the first instruction we create.
1888    FirstInst = getFirstInst(FirstInst, C, Loc);
1889    if (Check)
1890      Check = ChkBuilder.CreateOr(Check, C);
1891    else
1892      Check = C;
1893  }
1894
1895  // We have to do this trickery because the IRBuilder might fold the check to a
1896  // constant expression in which case there is no Instruction anchored in a
1897  // the block.
1898  LLVMContext &Ctx = Loc->getContext();
1899  Instruction *TheCheck =
1900      BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
1901  ChkBuilder.Insert(TheCheck, "stride.not.one");
1902  FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
1903
1904  return std::make_pair(FirstInst, TheCheck);
1905}
1906
1907std::pair<Instruction *, Instruction *>
1908InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
1909  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1910  Legal->getRuntimePointerCheck();
1911
1912  Instruction *tnullptr = nullptr;
1913  if (!PtrRtCheck->Need)
1914    return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
1915
1916  unsigned NumPointers = PtrRtCheck->Pointers.size();
1917  SmallVector<TrackingVH<Value> , 2> Starts;
1918  SmallVector<TrackingVH<Value> , 2> Ends;
1919
1920  LLVMContext &Ctx = Loc->getContext();
1921  SCEVExpander Exp(*SE, "induction");
1922  Instruction *FirstInst = nullptr;
1923
1924  for (unsigned i = 0; i < NumPointers; ++i) {
1925    Value *Ptr = PtrRtCheck->Pointers[i];
1926    const SCEV *Sc = SE->getSCEV(Ptr);
1927
1928    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1929      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1930            *Ptr <<"\n");
1931      Starts.push_back(Ptr);
1932      Ends.push_back(Ptr);
1933    } else {
1934      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1935      unsigned AS = Ptr->getType()->getPointerAddressSpace();
1936
1937      // Use this type for pointer arithmetic.
1938      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1939
1940      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1941      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1942      Starts.push_back(Start);
1943      Ends.push_back(End);
1944    }
1945  }
1946
1947  IRBuilder<> ChkBuilder(Loc);
1948  // Our instructions might fold to a constant.
1949  Value *MemoryRuntimeCheck = nullptr;
1950  for (unsigned i = 0; i < NumPointers; ++i) {
1951    for (unsigned j = i+1; j < NumPointers; ++j) {
1952      // No need to check if two readonly pointers intersect.
1953      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1954        continue;
1955
1956      // Only need to check pointers between two different dependency sets.
1957      if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1958       continue;
1959
1960      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1961      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1962
1963      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1964             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1965             "Trying to bounds check pointers with different address spaces");
1966
1967      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1968      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1969
1970      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1971      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1972      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1973      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1974
1975      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1976      FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1977      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1978      FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1979      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1980      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1981      if (MemoryRuntimeCheck) {
1982        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1983                                         "conflict.rdx");
1984        FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1985      }
1986      MemoryRuntimeCheck = IsConflict;
1987    }
1988  }
1989
1990  // We have to do this trickery because the IRBuilder might fold the check to a
1991  // constant expression in which case there is no Instruction anchored in a
1992  // the block.
1993  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1994                                                 ConstantInt::getTrue(Ctx));
1995  ChkBuilder.Insert(Check, "memcheck.conflict");
1996  FirstInst = getFirstInst(FirstInst, Check, Loc);
1997  return std::make_pair(FirstInst, Check);
1998}
1999
2000void InnerLoopVectorizer::createEmptyLoop() {
2001  /*
2002   In this function we generate a new loop. The new loop will contain
2003   the vectorized instructions while the old loop will continue to run the
2004   scalar remainder.
2005
2006       [ ] <-- Back-edge taken count overflow check.
2007    /   |
2008   /    v
2009  |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2010  |  /  |
2011  | /   v
2012  ||   [ ]     <-- vector pre header.
2013  ||    |
2014  ||    v
2015  ||   [  ] \
2016  ||   [  ]_|   <-- vector loop.
2017  ||    |
2018  | \   v
2019  |   >[ ]   <--- middle-block.
2020  |  /  |
2021  | /   v
2022  -|- >[ ]     <--- new preheader.
2023   |    |
2024   |    v
2025   |   [ ] \
2026   |   [ ]_|   <-- old scalar loop to handle remainder.
2027    \   |
2028     \  v
2029      >[ ]     <-- exit block.
2030   ...
2031   */
2032
2033  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2034  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2035  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2036  assert(BypassBlock && "Invalid loop structure");
2037  assert(ExitBlock && "Must have an exit block");
2038
2039  // Some loops have a single integer induction variable, while other loops
2040  // don't. One example is c++ iterators that often have multiple pointer
2041  // induction variables. In the code below we also support a case where we
2042  // don't have a single induction variable.
2043  OldInduction = Legal->getInduction();
2044  Type *IdxTy = Legal->getWidestInductionType();
2045
2046  // Find the loop boundaries.
2047  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2048  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2049
2050  // The exit count might have the type of i64 while the phi is i32. This can
2051  // happen if we have an induction variable that is sign extended before the
2052  // compare. The only way that we get a backedge taken count is that the
2053  // induction variable was signed and as such will not overflow. In such a case
2054  // truncation is legal.
2055  if (ExitCount->getType()->getPrimitiveSizeInBits() >
2056      IdxTy->getPrimitiveSizeInBits())
2057    ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2058
2059  const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2060  // Get the total trip count from the count by adding 1.
2061  ExitCount = SE->getAddExpr(BackedgeTakeCount,
2062                             SE->getConstant(BackedgeTakeCount->getType(), 1));
2063
2064  // Expand the trip count and place the new instructions in the preheader.
2065  // Notice that the pre-header does not change, only the loop body.
2066  SCEVExpander Exp(*SE, "induction");
2067
2068  // We need to test whether the backedge-taken count is uint##_max. Adding one
2069  // to it will cause overflow and an incorrect loop trip count in the vector
2070  // body. In case of overflow we want to directly jump to the scalar remainder
2071  // loop.
2072  Value *BackedgeCount =
2073      Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2074                        BypassBlock->getTerminator());
2075  if (BackedgeCount->getType()->isPointerTy())
2076    BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2077                                                "backedge.ptrcnt.to.int",
2078                                                BypassBlock->getTerminator());
2079  Instruction *CheckBCOverflow =
2080      CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2081                      Constant::getAllOnesValue(BackedgeCount->getType()),
2082                      "backedge.overflow", BypassBlock->getTerminator());
2083
2084  // The loop index does not have to start at Zero. Find the original start
2085  // value from the induction PHI node. If we don't have an induction variable
2086  // then we know that it starts at zero.
2087  Builder.SetInsertPoint(BypassBlock->getTerminator());
2088  Value *StartIdx = ExtendedIdx = OldInduction ?
2089    Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2090                       IdxTy):
2091    ConstantInt::get(IdxTy, 0);
2092
2093  // We need an instruction to anchor the overflow check on. StartIdx needs to
2094  // be defined before the overflow check branch. Because the scalar preheader
2095  // is going to merge the start index and so the overflow branch block needs to
2096  // contain a definition of the start index.
2097  Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2098      StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2099      BypassBlock->getTerminator());
2100
2101  // Count holds the overall loop count (N).
2102  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2103                                   BypassBlock->getTerminator());
2104
2105  LoopBypassBlocks.push_back(BypassBlock);
2106
2107  // Split the single block loop into the two loop structure described above.
2108  BasicBlock *VectorPH =
2109  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2110  BasicBlock *VecBody =
2111  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2112  BasicBlock *MiddleBlock =
2113  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2114  BasicBlock *ScalarPH =
2115  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2116
2117  // Create and register the new vector loop.
2118  Loop* Lp = new Loop();
2119  Loop *ParentLoop = OrigLoop->getParentLoop();
2120
2121  // Insert the new loop into the loop nest and register the new basic blocks
2122  // before calling any utilities such as SCEV that require valid LoopInfo.
2123  if (ParentLoop) {
2124    ParentLoop->addChildLoop(Lp);
2125    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
2126    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
2127    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
2128  } else {
2129    LI->addTopLevelLoop(Lp);
2130  }
2131  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
2132
2133  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2134  // inside the loop.
2135  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2136
2137  // Generate the induction variable.
2138  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2139  Induction = Builder.CreatePHI(IdxTy, 2, "index");
2140  // The loop step is equal to the vectorization factor (num of SIMD elements)
2141  // times the unroll factor (num of SIMD instructions).
2142  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2143
2144  // This is the IR builder that we use to add all of the logic for bypassing
2145  // the new vector loop.
2146  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2147  setDebugLocFromInst(BypassBuilder,
2148                      getDebugLocFromInstOrOperands(OldInduction));
2149
2150  // We may need to extend the index in case there is a type mismatch.
2151  // We know that the count starts at zero and does not overflow.
2152  if (Count->getType() != IdxTy) {
2153    // The exit count can be of pointer type. Convert it to the correct
2154    // integer type.
2155    if (ExitCount->getType()->isPointerTy())
2156      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2157    else
2158      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2159  }
2160
2161  // Add the start index to the loop count to get the new end index.
2162  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2163
2164  // Now we need to generate the expression for N - (N % VF), which is
2165  // the part that the vectorized body will execute.
2166  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2167  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2168  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2169                                                     "end.idx.rnd.down");
2170
2171  // Now, compare the new count to zero. If it is zero skip the vector loop and
2172  // jump to the scalar loop.
2173  Value *Cmp =
2174      BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2175
2176  BasicBlock *LastBypassBlock = BypassBlock;
2177
2178  // Generate code to check that the loops trip count that we computed by adding
2179  // one to the backedge-taken count will not overflow.
2180  {
2181    auto PastOverflowCheck =
2182        std::next(BasicBlock::iterator(OverflowCheckAnchor));
2183    BasicBlock *CheckBlock =
2184      LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2185    if (ParentLoop)
2186      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2187    LoopBypassBlocks.push_back(CheckBlock);
2188    Instruction *OldTerm = LastBypassBlock->getTerminator();
2189    BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2190    OldTerm->eraseFromParent();
2191    LastBypassBlock = CheckBlock;
2192  }
2193
2194  // Generate the code to check that the strides we assumed to be one are really
2195  // one. We want the new basic block to start at the first instruction in a
2196  // sequence of instructions that form a check.
2197  Instruction *StrideCheck;
2198  Instruction *FirstCheckInst;
2199  std::tie(FirstCheckInst, StrideCheck) =
2200      addStrideCheck(LastBypassBlock->getTerminator());
2201  if (StrideCheck) {
2202    // Create a new block containing the stride check.
2203    BasicBlock *CheckBlock =
2204        LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2205    if (ParentLoop)
2206      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2207    LoopBypassBlocks.push_back(CheckBlock);
2208
2209    // Replace the branch into the memory check block with a conditional branch
2210    // for the "few elements case".
2211    Instruction *OldTerm = LastBypassBlock->getTerminator();
2212    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2213    OldTerm->eraseFromParent();
2214
2215    Cmp = StrideCheck;
2216    LastBypassBlock = CheckBlock;
2217  }
2218
2219  // Generate the code that checks in runtime if arrays overlap. We put the
2220  // checks into a separate block to make the more common case of few elements
2221  // faster.
2222  Instruction *MemRuntimeCheck;
2223  std::tie(FirstCheckInst, MemRuntimeCheck) =
2224      addRuntimeCheck(LastBypassBlock->getTerminator());
2225  if (MemRuntimeCheck) {
2226    // Create a new block containing the memory check.
2227    BasicBlock *CheckBlock =
2228        LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2229    if (ParentLoop)
2230      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2231    LoopBypassBlocks.push_back(CheckBlock);
2232
2233    // Replace the branch into the memory check block with a conditional branch
2234    // for the "few elements case".
2235    Instruction *OldTerm = LastBypassBlock->getTerminator();
2236    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2237    OldTerm->eraseFromParent();
2238
2239    Cmp = MemRuntimeCheck;
2240    LastBypassBlock = CheckBlock;
2241  }
2242
2243  LastBypassBlock->getTerminator()->eraseFromParent();
2244  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2245                     LastBypassBlock);
2246
2247  // We are going to resume the execution of the scalar loop.
2248  // Go over all of the induction variables that we found and fix the
2249  // PHIs that are left in the scalar version of the loop.
2250  // The starting values of PHI nodes depend on the counter of the last
2251  // iteration in the vectorized loop.
2252  // If we come from a bypass edge then we need to start from the original
2253  // start value.
2254
2255  // This variable saves the new starting index for the scalar loop.
2256  PHINode *ResumeIndex = nullptr;
2257  LoopVectorizationLegality::InductionList::iterator I, E;
2258  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2259  // Set builder to point to last bypass block.
2260  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2261  for (I = List->begin(), E = List->end(); I != E; ++I) {
2262    PHINode *OrigPhi = I->first;
2263    LoopVectorizationLegality::InductionInfo II = I->second;
2264
2265    Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2266    PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2267                                         MiddleBlock->getTerminator());
2268    // We might have extended the type of the induction variable but we need a
2269    // truncated version for the scalar loop.
2270    PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2271      PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2272                      MiddleBlock->getTerminator()) : nullptr;
2273
2274    // Create phi nodes to merge from the  backedge-taken check block.
2275    PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2276                                           ScalarPH->getTerminator());
2277    BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2278
2279    PHINode *BCTruncResumeVal = nullptr;
2280    if (OrigPhi == OldInduction) {
2281      BCTruncResumeVal =
2282          PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2283                          ScalarPH->getTerminator());
2284      BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2285    }
2286
2287    Value *EndValue = nullptr;
2288    switch (II.IK) {
2289    case LoopVectorizationLegality::IK_NoInduction:
2290      llvm_unreachable("Unknown induction");
2291    case LoopVectorizationLegality::IK_IntInduction: {
2292      // Handle the integer induction counter.
2293      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2294
2295      // We have the canonical induction variable.
2296      if (OrigPhi == OldInduction) {
2297        // Create a truncated version of the resume value for the scalar loop,
2298        // we might have promoted the type to a larger width.
2299        EndValue =
2300          BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2301        // The new PHI merges the original incoming value, in case of a bypass,
2302        // or the value at the end of the vectorized loop.
2303        for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2304          TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2305        TruncResumeVal->addIncoming(EndValue, VecBody);
2306
2307        BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2308
2309        // We know what the end value is.
2310        EndValue = IdxEndRoundDown;
2311        // We also know which PHI node holds it.
2312        ResumeIndex = ResumeVal;
2313        break;
2314      }
2315
2316      // Not the canonical induction variable - add the vector loop count to the
2317      // start value.
2318      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2319                                                   II.StartValue->getType(),
2320                                                   "cast.crd");
2321      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
2322      break;
2323    }
2324    case LoopVectorizationLegality::IK_ReverseIntInduction: {
2325      // Convert the CountRoundDown variable to the PHI size.
2326      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2327                                                   II.StartValue->getType(),
2328                                                   "cast.crd");
2329      // Handle reverse integer induction counter.
2330      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
2331      break;
2332    }
2333    case LoopVectorizationLegality::IK_PtrInduction: {
2334      // For pointer induction variables, calculate the offset using
2335      // the end index.
2336      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
2337                                         "ptr.ind.end");
2338      break;
2339    }
2340    case LoopVectorizationLegality::IK_ReversePtrInduction: {
2341      // The value at the end of the loop for the reverse pointer is calculated
2342      // by creating a GEP with a negative index starting from the start value.
2343      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
2344      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
2345                                              "rev.ind.end");
2346      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
2347                                         "rev.ptr.ind.end");
2348      break;
2349    }
2350    }// end of case
2351
2352    // The new PHI merges the original incoming value, in case of a bypass,
2353    // or the value at the end of the vectorized loop.
2354    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2355      if (OrigPhi == OldInduction)
2356        ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2357      else
2358        ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2359    }
2360    ResumeVal->addIncoming(EndValue, VecBody);
2361
2362    // Fix the scalar body counter (PHI node).
2363    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2364
2365    // The old induction's phi node in the scalar body needs the truncated
2366    // value.
2367    if (OrigPhi == OldInduction) {
2368      BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2369      OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2370    } else {
2371      BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2372      OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2373    }
2374  }
2375
2376  // If we are generating a new induction variable then we also need to
2377  // generate the code that calculates the exit value. This value is not
2378  // simply the end of the counter because we may skip the vectorized body
2379  // in case of a runtime check.
2380  if (!OldInduction){
2381    assert(!ResumeIndex && "Unexpected resume value found");
2382    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2383                                  MiddleBlock->getTerminator());
2384    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2385      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2386    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2387  }
2388
2389  // Make sure that we found the index where scalar loop needs to continue.
2390  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2391         "Invalid resume Index");
2392
2393  // Add a check in the middle block to see if we have completed
2394  // all of the iterations in the first vector loop.
2395  // If (N - N%VF) == N, then we *don't* need to run the remainder.
2396  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2397                                ResumeIndex, "cmp.n",
2398                                MiddleBlock->getTerminator());
2399
2400  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2401  // Remove the old terminator.
2402  MiddleBlock->getTerminator()->eraseFromParent();
2403
2404  // Create i+1 and fill the PHINode.
2405  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2406  Induction->addIncoming(StartIdx, VectorPH);
2407  Induction->addIncoming(NextIdx, VecBody);
2408  // Create the compare.
2409  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2410  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2411
2412  // Now we have two terminators. Remove the old one from the block.
2413  VecBody->getTerminator()->eraseFromParent();
2414
2415  // Get ready to start creating new instructions into the vectorized body.
2416  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2417
2418  // Save the state.
2419  LoopVectorPreHeader = VectorPH;
2420  LoopScalarPreHeader = ScalarPH;
2421  LoopMiddleBlock = MiddleBlock;
2422  LoopExitBlock = ExitBlock;
2423  LoopVectorBody.push_back(VecBody);
2424  LoopScalarBody = OldBasicBlock;
2425
2426  LoopVectorizeHints Hints(Lp, true);
2427  Hints.setAlreadyVectorized(Lp);
2428}
2429
2430/// This function returns the identity element (or neutral element) for
2431/// the operation K.
2432Constant*
2433LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2434  switch (K) {
2435  case RK_IntegerXor:
2436  case RK_IntegerAdd:
2437  case RK_IntegerOr:
2438    // Adding, Xoring, Oring zero to a number does not change it.
2439    return ConstantInt::get(Tp, 0);
2440  case RK_IntegerMult:
2441    // Multiplying a number by 1 does not change it.
2442    return ConstantInt::get(Tp, 1);
2443  case RK_IntegerAnd:
2444    // AND-ing a number with an all-1 value does not change it.
2445    return ConstantInt::get(Tp, -1, true);
2446  case  RK_FloatMult:
2447    // Multiplying a number by 1 does not change it.
2448    return ConstantFP::get(Tp, 1.0L);
2449  case  RK_FloatAdd:
2450    // Adding zero to a number does not change it.
2451    return ConstantFP::get(Tp, 0.0L);
2452  default:
2453    llvm_unreachable("Unknown reduction kind");
2454  }
2455}
2456
2457/// This function translates the reduction kind to an LLVM binary operator.
2458static unsigned
2459getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2460  switch (Kind) {
2461    case LoopVectorizationLegality::RK_IntegerAdd:
2462      return Instruction::Add;
2463    case LoopVectorizationLegality::RK_IntegerMult:
2464      return Instruction::Mul;
2465    case LoopVectorizationLegality::RK_IntegerOr:
2466      return Instruction::Or;
2467    case LoopVectorizationLegality::RK_IntegerAnd:
2468      return Instruction::And;
2469    case LoopVectorizationLegality::RK_IntegerXor:
2470      return Instruction::Xor;
2471    case LoopVectorizationLegality::RK_FloatMult:
2472      return Instruction::FMul;
2473    case LoopVectorizationLegality::RK_FloatAdd:
2474      return Instruction::FAdd;
2475    case LoopVectorizationLegality::RK_IntegerMinMax:
2476      return Instruction::ICmp;
2477    case LoopVectorizationLegality::RK_FloatMinMax:
2478      return Instruction::FCmp;
2479    default:
2480      llvm_unreachable("Unknown reduction operation");
2481  }
2482}
2483
2484Value *createMinMaxOp(IRBuilder<> &Builder,
2485                      LoopVectorizationLegality::MinMaxReductionKind RK,
2486                      Value *Left,
2487                      Value *Right) {
2488  CmpInst::Predicate P = CmpInst::ICMP_NE;
2489  switch (RK) {
2490  default:
2491    llvm_unreachable("Unknown min/max reduction kind");
2492  case LoopVectorizationLegality::MRK_UIntMin:
2493    P = CmpInst::ICMP_ULT;
2494    break;
2495  case LoopVectorizationLegality::MRK_UIntMax:
2496    P = CmpInst::ICMP_UGT;
2497    break;
2498  case LoopVectorizationLegality::MRK_SIntMin:
2499    P = CmpInst::ICMP_SLT;
2500    break;
2501  case LoopVectorizationLegality::MRK_SIntMax:
2502    P = CmpInst::ICMP_SGT;
2503    break;
2504  case LoopVectorizationLegality::MRK_FloatMin:
2505    P = CmpInst::FCMP_OLT;
2506    break;
2507  case LoopVectorizationLegality::MRK_FloatMax:
2508    P = CmpInst::FCMP_OGT;
2509    break;
2510  }
2511
2512  Value *Cmp;
2513  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2514      RK == LoopVectorizationLegality::MRK_FloatMax)
2515    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2516  else
2517    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2518
2519  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2520  return Select;
2521}
2522
2523namespace {
2524struct CSEDenseMapInfo {
2525  static bool canHandle(Instruction *I) {
2526    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2527           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2528  }
2529  static inline Instruction *getEmptyKey() {
2530    return DenseMapInfo<Instruction *>::getEmptyKey();
2531  }
2532  static inline Instruction *getTombstoneKey() {
2533    return DenseMapInfo<Instruction *>::getTombstoneKey();
2534  }
2535  static unsigned getHashValue(Instruction *I) {
2536    assert(canHandle(I) && "Unknown instruction!");
2537    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2538                                                           I->value_op_end()));
2539  }
2540  static bool isEqual(Instruction *LHS, Instruction *RHS) {
2541    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2542        LHS == getTombstoneKey() || RHS == getTombstoneKey())
2543      return LHS == RHS;
2544    return LHS->isIdenticalTo(RHS);
2545  }
2546};
2547}
2548
2549/// \brief Check whether this block is a predicated block.
2550/// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2551/// = ...;  " blocks. We start with one vectorized basic block. For every
2552/// conditional block we split this vectorized block. Therefore, every second
2553/// block will be a predicated one.
2554static bool isPredicatedBlock(unsigned BlockNum) {
2555  return BlockNum % 2;
2556}
2557
2558///\brief Perform cse of induction variable instructions.
2559static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2560  // Perform simple cse.
2561  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2562  for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2563    BasicBlock *BB = BBs[i];
2564    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2565      Instruction *In = I++;
2566
2567      if (!CSEDenseMapInfo::canHandle(In))
2568        continue;
2569
2570      // Check if we can replace this instruction with any of the
2571      // visited instructions.
2572      if (Instruction *V = CSEMap.lookup(In)) {
2573        In->replaceAllUsesWith(V);
2574        In->eraseFromParent();
2575        continue;
2576      }
2577      // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2578      // ...;" blocks for predicated stores. Every second block is a predicated
2579      // block.
2580      if (isPredicatedBlock(i))
2581        continue;
2582
2583      CSEMap[In] = In;
2584    }
2585  }
2586}
2587
2588/// \brief Adds a 'fast' flag to floating point operations.
2589static Value *addFastMathFlag(Value *V) {
2590  if (isa<FPMathOperator>(V)){
2591    FastMathFlags Flags;
2592    Flags.setUnsafeAlgebra();
2593    cast<Instruction>(V)->setFastMathFlags(Flags);
2594  }
2595  return V;
2596}
2597
2598void InnerLoopVectorizer::vectorizeLoop() {
2599  //===------------------------------------------------===//
2600  //
2601  // Notice: any optimization or new instruction that go
2602  // into the code below should be also be implemented in
2603  // the cost-model.
2604  //
2605  //===------------------------------------------------===//
2606  Constant *Zero = Builder.getInt32(0);
2607
2608  // In order to support reduction variables we need to be able to vectorize
2609  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2610  // stages. First, we create a new vector PHI node with no incoming edges.
2611  // We use this value when we vectorize all of the instructions that use the
2612  // PHI. Next, after all of the instructions in the block are complete we
2613  // add the new incoming edges to the PHI. At this point all of the
2614  // instructions in the basic block are vectorized, so we can use them to
2615  // construct the PHI.
2616  PhiVector RdxPHIsToFix;
2617
2618  // Scan the loop in a topological order to ensure that defs are vectorized
2619  // before users.
2620  LoopBlocksDFS DFS(OrigLoop);
2621  DFS.perform(LI);
2622
2623  // Vectorize all of the blocks in the original loop.
2624  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2625       be = DFS.endRPO(); bb != be; ++bb)
2626    vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2627
2628  // At this point every instruction in the original loop is widened to
2629  // a vector form. We are almost done. Now, we need to fix the PHI nodes
2630  // that we vectorized. The PHI nodes are currently empty because we did
2631  // not want to introduce cycles. Notice that the remaining PHI nodes
2632  // that we need to fix are reduction variables.
2633
2634  // Create the 'reduced' values for each of the induction vars.
2635  // The reduced values are the vector values that we scalarize and combine
2636  // after the loop is finished.
2637  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2638       it != e; ++it) {
2639    PHINode *RdxPhi = *it;
2640    assert(RdxPhi && "Unable to recover vectorized PHI");
2641
2642    // Find the reduction variable descriptor.
2643    assert(Legal->getReductionVars()->count(RdxPhi) &&
2644           "Unable to find the reduction variable");
2645    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2646    (*Legal->getReductionVars())[RdxPhi];
2647
2648    setDebugLocFromInst(Builder, RdxDesc.StartValue);
2649
2650    // We need to generate a reduction vector from the incoming scalar.
2651    // To do so, we need to generate the 'identity' vector and override
2652    // one of the elements with the incoming scalar reduction. We need
2653    // to do it in the vector-loop preheader.
2654    Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2655
2656    // This is the vector-clone of the value that leaves the loop.
2657    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2658    Type *VecTy = VectorExit[0]->getType();
2659
2660    // Find the reduction identity variable. Zero for addition, or, xor,
2661    // one for multiplication, -1 for And.
2662    Value *Identity;
2663    Value *VectorStart;
2664    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2665        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2666      // MinMax reduction have the start value as their identify.
2667      if (VF == 1) {
2668        VectorStart = Identity = RdxDesc.StartValue;
2669      } else {
2670        VectorStart = Identity = Builder.CreateVectorSplat(VF,
2671                                                           RdxDesc.StartValue,
2672                                                           "minmax.ident");
2673      }
2674    } else {
2675      // Handle other reduction kinds:
2676      Constant *Iden =
2677      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2678                                                      VecTy->getScalarType());
2679      if (VF == 1) {
2680        Identity = Iden;
2681        // This vector is the Identity vector where the first element is the
2682        // incoming scalar reduction.
2683        VectorStart = RdxDesc.StartValue;
2684      } else {
2685        Identity = ConstantVector::getSplat(VF, Iden);
2686
2687        // This vector is the Identity vector where the first element is the
2688        // incoming scalar reduction.
2689        VectorStart = Builder.CreateInsertElement(Identity,
2690                                                  RdxDesc.StartValue, Zero);
2691      }
2692    }
2693
2694    // Fix the vector-loop phi.
2695    // We created the induction variable so we know that the
2696    // preheader is the first entry.
2697    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2698
2699    // Reductions do not have to start at zero. They can start with
2700    // any loop invariant values.
2701    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2702    BasicBlock *Latch = OrigLoop->getLoopLatch();
2703    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2704    VectorParts &Val = getVectorValue(LoopVal);
2705    for (unsigned part = 0; part < UF; ++part) {
2706      // Make sure to add the reduction stat value only to the
2707      // first unroll part.
2708      Value *StartVal = (part == 0) ? VectorStart : Identity;
2709      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2710      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2711                                                  LoopVectorBody.back());
2712    }
2713
2714    // Before each round, move the insertion point right between
2715    // the PHIs and the values we are going to write.
2716    // This allows us to write both PHINodes and the extractelement
2717    // instructions.
2718    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2719
2720    VectorParts RdxParts;
2721    setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2722    for (unsigned part = 0; part < UF; ++part) {
2723      // This PHINode contains the vectorized reduction variable, or
2724      // the initial value vector, if we bypass the vector loop.
2725      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2726      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2727      Value *StartVal = (part == 0) ? VectorStart : Identity;
2728      for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2729        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2730      NewPhi->addIncoming(RdxExitVal[part],
2731                          LoopVectorBody.back());
2732      RdxParts.push_back(NewPhi);
2733    }
2734
2735    // Reduce all of the unrolled parts into a single vector.
2736    Value *ReducedPartRdx = RdxParts[0];
2737    unsigned Op = getReductionBinOp(RdxDesc.Kind);
2738    setDebugLocFromInst(Builder, ReducedPartRdx);
2739    for (unsigned part = 1; part < UF; ++part) {
2740      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2741        // Floating point operations had to be 'fast' to enable the reduction.
2742        ReducedPartRdx = addFastMathFlag(
2743            Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2744                                ReducedPartRdx, "bin.rdx"));
2745      else
2746        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2747                                        ReducedPartRdx, RdxParts[part]);
2748    }
2749
2750    if (VF > 1) {
2751      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2752      // and vector ops, reducing the set of values being computed by half each
2753      // round.
2754      assert(isPowerOf2_32(VF) &&
2755             "Reduction emission only supported for pow2 vectors!");
2756      Value *TmpVec = ReducedPartRdx;
2757      SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2758      for (unsigned i = VF; i != 1; i >>= 1) {
2759        // Move the upper half of the vector to the lower half.
2760        for (unsigned j = 0; j != i/2; ++j)
2761          ShuffleMask[j] = Builder.getInt32(i/2 + j);
2762
2763        // Fill the rest of the mask with undef.
2764        std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2765                  UndefValue::get(Builder.getInt32Ty()));
2766
2767        Value *Shuf =
2768        Builder.CreateShuffleVector(TmpVec,
2769                                    UndefValue::get(TmpVec->getType()),
2770                                    ConstantVector::get(ShuffleMask),
2771                                    "rdx.shuf");
2772
2773        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2774          // Floating point operations had to be 'fast' to enable the reduction.
2775          TmpVec = addFastMathFlag(Builder.CreateBinOp(
2776              (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2777        else
2778          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2779      }
2780
2781      // The result is in the first element of the vector.
2782      ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2783                                                    Builder.getInt32(0));
2784    }
2785
2786    // Create a phi node that merges control-flow from the backedge-taken check
2787    // block and the middle block.
2788    PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2789                                          LoopScalarPreHeader->getTerminator());
2790    BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2791    BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2792
2793    // Now, we need to fix the users of the reduction variable
2794    // inside and outside of the scalar remainder loop.
2795    // We know that the loop is in LCSSA form. We need to update the
2796    // PHI nodes in the exit blocks.
2797    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2798         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2799      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2800      if (!LCSSAPhi) break;
2801
2802      // All PHINodes need to have a single entry edge, or two if
2803      // we already fixed them.
2804      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2805
2806      // We found our reduction value exit-PHI. Update it with the
2807      // incoming bypass edge.
2808      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2809        // Add an edge coming from the bypass.
2810        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2811        break;
2812      }
2813    }// end of the LCSSA phi scan.
2814
2815    // Fix the scalar loop reduction variable with the incoming reduction sum
2816    // from the vector body and from the backedge value.
2817    int IncomingEdgeBlockIdx =
2818    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2819    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2820    // Pick the other block.
2821    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2822    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
2823    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2824  }// end of for each redux variable.
2825
2826  fixLCSSAPHIs();
2827
2828  // Remove redundant induction instructions.
2829  cse(LoopVectorBody);
2830}
2831
2832void InnerLoopVectorizer::fixLCSSAPHIs() {
2833  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2834       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2835    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2836    if (!LCSSAPhi) break;
2837    if (LCSSAPhi->getNumIncomingValues() == 1)
2838      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2839                            LoopMiddleBlock);
2840  }
2841}
2842
2843InnerLoopVectorizer::VectorParts
2844InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2845  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2846         "Invalid edge");
2847
2848  // Look for cached value.
2849  std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2850  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2851  if (ECEntryIt != MaskCache.end())
2852    return ECEntryIt->second;
2853
2854  VectorParts SrcMask = createBlockInMask(Src);
2855
2856  // The terminator has to be a branch inst!
2857  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2858  assert(BI && "Unexpected terminator found");
2859
2860  if (BI->isConditional()) {
2861    VectorParts EdgeMask = getVectorValue(BI->getCondition());
2862
2863    if (BI->getSuccessor(0) != Dst)
2864      for (unsigned part = 0; part < UF; ++part)
2865        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2866
2867    for (unsigned part = 0; part < UF; ++part)
2868      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2869
2870    MaskCache[Edge] = EdgeMask;
2871    return EdgeMask;
2872  }
2873
2874  MaskCache[Edge] = SrcMask;
2875  return SrcMask;
2876}
2877
2878InnerLoopVectorizer::VectorParts
2879InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2880  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2881
2882  // Loop incoming mask is all-one.
2883  if (OrigLoop->getHeader() == BB) {
2884    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2885    return getVectorValue(C);
2886  }
2887
2888  // This is the block mask. We OR all incoming edges, and with zero.
2889  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2890  VectorParts BlockMask = getVectorValue(Zero);
2891
2892  // For each pred:
2893  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2894    VectorParts EM = createEdgeMask(*it, BB);
2895    for (unsigned part = 0; part < UF; ++part)
2896      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2897  }
2898
2899  return BlockMask;
2900}
2901
2902void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2903                                              InnerLoopVectorizer::VectorParts &Entry,
2904                                              unsigned UF, unsigned VF, PhiVector *PV) {
2905  PHINode* P = cast<PHINode>(PN);
2906  // Handle reduction variables:
2907  if (Legal->getReductionVars()->count(P)) {
2908    for (unsigned part = 0; part < UF; ++part) {
2909      // This is phase one of vectorizing PHIs.
2910      Type *VecTy = (VF == 1) ? PN->getType() :
2911      VectorType::get(PN->getType(), VF);
2912      Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2913                                    LoopVectorBody.back()-> getFirstInsertionPt());
2914    }
2915    PV->push_back(P);
2916    return;
2917  }
2918
2919  setDebugLocFromInst(Builder, P);
2920  // Check for PHI nodes that are lowered to vector selects.
2921  if (P->getParent() != OrigLoop->getHeader()) {
2922    // We know that all PHIs in non-header blocks are converted into
2923    // selects, so we don't have to worry about the insertion order and we
2924    // can just use the builder.
2925    // At this point we generate the predication tree. There may be
2926    // duplications since this is a simple recursive scan, but future
2927    // optimizations will clean it up.
2928
2929    unsigned NumIncoming = P->getNumIncomingValues();
2930
2931    // Generate a sequence of selects of the form:
2932    // SELECT(Mask3, In3,
2933    //      SELECT(Mask2, In2,
2934    //                   ( ...)))
2935    for (unsigned In = 0; In < NumIncoming; In++) {
2936      VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2937                                        P->getParent());
2938      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2939
2940      for (unsigned part = 0; part < UF; ++part) {
2941        // We might have single edge PHIs (blocks) - use an identity
2942        // 'select' for the first PHI operand.
2943        if (In == 0)
2944          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2945                                             In0[part]);
2946        else
2947          // Select between the current value and the previous incoming edge
2948          // based on the incoming mask.
2949          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2950                                             Entry[part], "predphi");
2951      }
2952    }
2953    return;
2954  }
2955
2956  // This PHINode must be an induction variable.
2957  // Make sure that we know about it.
2958  assert(Legal->getInductionVars()->count(P) &&
2959         "Not an induction variable");
2960
2961  LoopVectorizationLegality::InductionInfo II =
2962  Legal->getInductionVars()->lookup(P);
2963
2964  switch (II.IK) {
2965    case LoopVectorizationLegality::IK_NoInduction:
2966      llvm_unreachable("Unknown induction");
2967    case LoopVectorizationLegality::IK_IntInduction: {
2968      assert(P->getType() == II.StartValue->getType() && "Types must match");
2969      Type *PhiTy = P->getType();
2970      Value *Broadcasted;
2971      if (P == OldInduction) {
2972        // Handle the canonical induction variable. We might have had to
2973        // extend the type.
2974        Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2975      } else {
2976        // Handle other induction variables that are now based on the
2977        // canonical one.
2978        Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2979                                                 "normalized.idx");
2980        NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2981        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2982                                        "offset.idx");
2983      }
2984      Broadcasted = getBroadcastInstrs(Broadcasted);
2985      // After broadcasting the induction variable we need to make the vector
2986      // consecutive by adding 0, 1, 2, etc.
2987      for (unsigned part = 0; part < UF; ++part)
2988        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2989      return;
2990    }
2991    case LoopVectorizationLegality::IK_ReverseIntInduction:
2992    case LoopVectorizationLegality::IK_PtrInduction:
2993    case LoopVectorizationLegality::IK_ReversePtrInduction:
2994      // Handle reverse integer and pointer inductions.
2995      Value *StartIdx = ExtendedIdx;
2996      // This is the normalized GEP that starts counting at zero.
2997      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2998                                               "normalized.idx");
2999
3000      // Handle the reverse integer induction variable case.
3001      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
3002        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
3003        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
3004                                               "resize.norm.idx");
3005        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
3006                                               "reverse.idx");
3007
3008        // This is a new value so do not hoist it out.
3009        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
3010        // After broadcasting the induction variable we need to make the
3011        // vector consecutive by adding  ... -3, -2, -1, 0.
3012        for (unsigned part = 0; part < UF; ++part)
3013          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
3014                                             true);
3015        return;
3016      }
3017
3018      // Handle the pointer induction variable case.
3019      assert(P->getType()->isPointerTy() && "Unexpected type.");
3020
3021      // Is this a reverse induction ptr or a consecutive induction ptr.
3022      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
3023                      II.IK);
3024
3025      // This is the vector of results. Notice that we don't generate
3026      // vector geps because scalar geps result in better code.
3027      for (unsigned part = 0; part < UF; ++part) {
3028        if (VF == 1) {
3029          int EltIndex = (part) * (Reverse ? -1 : 1);
3030          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3031          Value *GlobalIdx;
3032          if (Reverse)
3033            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3034          else
3035            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3036
3037          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3038                                             "next.gep");
3039          Entry[part] = SclrGep;
3040          continue;
3041        }
3042
3043        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3044        for (unsigned int i = 0; i < VF; ++i) {
3045          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
3046          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3047          Value *GlobalIdx;
3048          if (!Reverse)
3049            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3050          else
3051            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3052
3053          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3054                                             "next.gep");
3055          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3056                                               Builder.getInt32(i),
3057                                               "insert.gep");
3058        }
3059        Entry[part] = VecVal;
3060      }
3061      return;
3062  }
3063}
3064
3065void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3066  // For each instruction in the old loop.
3067  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3068    VectorParts &Entry = WidenMap.get(it);
3069    switch (it->getOpcode()) {
3070    case Instruction::Br:
3071      // Nothing to do for PHIs and BR, since we already took care of the
3072      // loop control flow instructions.
3073      continue;
3074    case Instruction::PHI:{
3075      // Vectorize PHINodes.
3076      widenPHIInstruction(it, Entry, UF, VF, PV);
3077      continue;
3078    }// End of PHI.
3079
3080    case Instruction::Add:
3081    case Instruction::FAdd:
3082    case Instruction::Sub:
3083    case Instruction::FSub:
3084    case Instruction::Mul:
3085    case Instruction::FMul:
3086    case Instruction::UDiv:
3087    case Instruction::SDiv:
3088    case Instruction::FDiv:
3089    case Instruction::URem:
3090    case Instruction::SRem:
3091    case Instruction::FRem:
3092    case Instruction::Shl:
3093    case Instruction::LShr:
3094    case Instruction::AShr:
3095    case Instruction::And:
3096    case Instruction::Or:
3097    case Instruction::Xor: {
3098      // Just widen binops.
3099      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3100      setDebugLocFromInst(Builder, BinOp);
3101      VectorParts &A = getVectorValue(it->getOperand(0));
3102      VectorParts &B = getVectorValue(it->getOperand(1));
3103
3104      // Use this vector value for all users of the original instruction.
3105      for (unsigned Part = 0; Part < UF; ++Part) {
3106        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3107
3108        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
3109        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
3110        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
3111          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
3112          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
3113        }
3114        if (VecOp && isa<PossiblyExactOperator>(VecOp))
3115          VecOp->setIsExact(BinOp->isExact());
3116
3117        // Copy the fast-math flags.
3118        if (VecOp && isa<FPMathOperator>(V))
3119          VecOp->setFastMathFlags(it->getFastMathFlags());
3120
3121        Entry[Part] = V;
3122      }
3123      break;
3124    }
3125    case Instruction::Select: {
3126      // Widen selects.
3127      // If the selector is loop invariant we can create a select
3128      // instruction with a scalar condition. Otherwise, use vector-select.
3129      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3130                                               OrigLoop);
3131      setDebugLocFromInst(Builder, it);
3132
3133      // The condition can be loop invariant  but still defined inside the
3134      // loop. This means that we can't just use the original 'cond' value.
3135      // We have to take the 'vectorized' value and pick the first lane.
3136      // Instcombine will make this a no-op.
3137      VectorParts &Cond = getVectorValue(it->getOperand(0));
3138      VectorParts &Op0  = getVectorValue(it->getOperand(1));
3139      VectorParts &Op1  = getVectorValue(it->getOperand(2));
3140
3141      Value *ScalarCond = (VF == 1) ? Cond[0] :
3142        Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3143
3144      for (unsigned Part = 0; Part < UF; ++Part) {
3145        Entry[Part] = Builder.CreateSelect(
3146          InvariantCond ? ScalarCond : Cond[Part],
3147          Op0[Part],
3148          Op1[Part]);
3149      }
3150      break;
3151    }
3152
3153    case Instruction::ICmp:
3154    case Instruction::FCmp: {
3155      // Widen compares. Generate vector compares.
3156      bool FCmp = (it->getOpcode() == Instruction::FCmp);
3157      CmpInst *Cmp = dyn_cast<CmpInst>(it);
3158      setDebugLocFromInst(Builder, it);
3159      VectorParts &A = getVectorValue(it->getOperand(0));
3160      VectorParts &B = getVectorValue(it->getOperand(1));
3161      for (unsigned Part = 0; Part < UF; ++Part) {
3162        Value *C = nullptr;
3163        if (FCmp)
3164          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3165        else
3166          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3167        Entry[Part] = C;
3168      }
3169      break;
3170    }
3171
3172    case Instruction::Store:
3173    case Instruction::Load:
3174      vectorizeMemoryInstruction(it);
3175        break;
3176    case Instruction::ZExt:
3177    case Instruction::SExt:
3178    case Instruction::FPToUI:
3179    case Instruction::FPToSI:
3180    case Instruction::FPExt:
3181    case Instruction::PtrToInt:
3182    case Instruction::IntToPtr:
3183    case Instruction::SIToFP:
3184    case Instruction::UIToFP:
3185    case Instruction::Trunc:
3186    case Instruction::FPTrunc:
3187    case Instruction::BitCast: {
3188      CastInst *CI = dyn_cast<CastInst>(it);
3189      setDebugLocFromInst(Builder, it);
3190      /// Optimize the special case where the source is the induction
3191      /// variable. Notice that we can only optimize the 'trunc' case
3192      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3193      /// c. other casts depend on pointer size.
3194      if (CI->getOperand(0) == OldInduction &&
3195          it->getOpcode() == Instruction::Trunc) {
3196        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3197                                               CI->getType());
3198        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3199        for (unsigned Part = 0; Part < UF; ++Part)
3200          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
3201        break;
3202      }
3203      /// Vectorize casts.
3204      Type *DestTy = (VF == 1) ? CI->getType() :
3205                                 VectorType::get(CI->getType(), VF);
3206
3207      VectorParts &A = getVectorValue(it->getOperand(0));
3208      for (unsigned Part = 0; Part < UF; ++Part)
3209        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3210      break;
3211    }
3212
3213    case Instruction::Call: {
3214      // Ignore dbg intrinsics.
3215      if (isa<DbgInfoIntrinsic>(it))
3216        break;
3217      setDebugLocFromInst(Builder, it);
3218
3219      Module *M = BB->getParent()->getParent();
3220      CallInst *CI = cast<CallInst>(it);
3221      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3222      assert(ID && "Not an intrinsic call!");
3223      switch (ID) {
3224      case Intrinsic::lifetime_end:
3225      case Intrinsic::lifetime_start:
3226        scalarizeInstruction(it);
3227        break;
3228      default:
3229        bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
3230        for (unsigned Part = 0; Part < UF; ++Part) {
3231          SmallVector<Value *, 4> Args;
3232          for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3233            if (HasScalarOpd && i == 1) {
3234              Args.push_back(CI->getArgOperand(i));
3235              continue;
3236            }
3237            VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
3238            Args.push_back(Arg[Part]);
3239          }
3240          Type *Tys[] = {CI->getType()};
3241          if (VF > 1)
3242            Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3243
3244          Function *F = Intrinsic::getDeclaration(M, ID, Tys);
3245          Entry[Part] = Builder.CreateCall(F, Args);
3246        }
3247        break;
3248      }
3249      break;
3250    }
3251
3252    default:
3253      // All other instructions are unsupported. Scalarize them.
3254      scalarizeInstruction(it);
3255      break;
3256    }// end of switch.
3257  }// end of for_each instr.
3258}
3259
3260void InnerLoopVectorizer::updateAnalysis() {
3261  // Forget the original basic block.
3262  SE->forgetLoop(OrigLoop);
3263
3264  // Update the dominator tree information.
3265  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3266         "Entry does not dominate exit.");
3267
3268  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3269    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3270  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3271
3272  // Due to if predication of stores we might create a sequence of "if(pred)
3273  // a[i] = ...;  " blocks.
3274  for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3275    if (i == 0)
3276      DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3277    else if (isPredicatedBlock(i)) {
3278      DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3279    } else {
3280      DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3281    }
3282  }
3283
3284  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3285  DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3286  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3287  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3288
3289  DEBUG(DT->verifyDomTree());
3290}
3291
3292/// \brief Check whether it is safe to if-convert this phi node.
3293///
3294/// Phi nodes with constant expressions that can trap are not safe to if
3295/// convert.
3296static bool canIfConvertPHINodes(BasicBlock *BB) {
3297  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3298    PHINode *Phi = dyn_cast<PHINode>(I);
3299    if (!Phi)
3300      return true;
3301    for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3302      if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3303        if (C->canTrap())
3304          return false;
3305  }
3306  return true;
3307}
3308
3309bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3310  if (!EnableIfConversion) {
3311    emitAnalysis(Report() << "if-conversion is disabled");
3312    return false;
3313  }
3314
3315  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
3316
3317  // A list of pointers that we can safely read and write to.
3318  SmallPtrSet<Value *, 8> SafePointes;
3319
3320  // Collect safe addresses.
3321  for (Loop::block_iterator BI = TheLoop->block_begin(),
3322         BE = TheLoop->block_end(); BI != BE; ++BI) {
3323    BasicBlock *BB = *BI;
3324
3325    if (blockNeedsPredication(BB))
3326      continue;
3327
3328    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3329      if (LoadInst *LI = dyn_cast<LoadInst>(I))
3330        SafePointes.insert(LI->getPointerOperand());
3331      else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3332        SafePointes.insert(SI->getPointerOperand());
3333    }
3334  }
3335
3336  // Collect the blocks that need predication.
3337  BasicBlock *Header = TheLoop->getHeader();
3338  for (Loop::block_iterator BI = TheLoop->block_begin(),
3339         BE = TheLoop->block_end(); BI != BE; ++BI) {
3340    BasicBlock *BB = *BI;
3341
3342    // We don't support switch statements inside loops.
3343    if (!isa<BranchInst>(BB->getTerminator())) {
3344      emitAnalysis(Report(BB->getTerminator())
3345                   << "loop contains a switch statement");
3346      return false;
3347    }
3348
3349    // We must be able to predicate all blocks that need to be predicated.
3350    if (blockNeedsPredication(BB)) {
3351      if (!blockCanBePredicated(BB, SafePointes)) {
3352        emitAnalysis(Report(BB->getTerminator())
3353                     << "control flow cannot be substituted for a select");
3354        return false;
3355      }
3356    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3357      emitAnalysis(Report(BB->getTerminator())
3358                   << "control flow cannot be substituted for a select");
3359      return false;
3360    }
3361  }
3362
3363  // We can if-convert this loop.
3364  return true;
3365}
3366
3367bool LoopVectorizationLegality::canVectorize() {
3368  // We must have a loop in canonical form. Loops with indirectbr in them cannot
3369  // be canonicalized.
3370  if (!TheLoop->getLoopPreheader()) {
3371    emitAnalysis(
3372        Report() << "loop control flow is not understood by vectorizer");
3373    return false;
3374  }
3375
3376  // We can only vectorize innermost loops.
3377  if (TheLoop->getSubLoopsVector().size()) {
3378    emitAnalysis(Report() << "loop is not the innermost loop");
3379    return false;
3380  }
3381
3382  // We must have a single backedge.
3383  if (TheLoop->getNumBackEdges() != 1) {
3384    emitAnalysis(
3385        Report() << "loop control flow is not understood by vectorizer");
3386    return false;
3387  }
3388
3389  // We must have a single exiting block.
3390  if (!TheLoop->getExitingBlock()) {
3391    emitAnalysis(
3392        Report() << "loop control flow is not understood by vectorizer");
3393    return false;
3394  }
3395
3396  // We need to have a loop header.
3397  DEBUG(dbgs() << "LV: Found a loop: " <<
3398        TheLoop->getHeader()->getName() << '\n');
3399
3400  // Check if we can if-convert non-single-bb loops.
3401  unsigned NumBlocks = TheLoop->getNumBlocks();
3402  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3403    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
3404    return false;
3405  }
3406
3407  // ScalarEvolution needs to be able to find the exit count.
3408  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3409  if (ExitCount == SE->getCouldNotCompute()) {
3410    emitAnalysis(Report() << "could not determine number of loop iterations");
3411    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
3412    return false;
3413  }
3414
3415  // Check if we can vectorize the instructions and CFG in this loop.
3416  if (!canVectorizeInstrs()) {
3417    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
3418    return false;
3419  }
3420
3421  // Go over each instruction and look at memory deps.
3422  if (!canVectorizeMemory()) {
3423    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
3424    return false;
3425  }
3426
3427  // Collect all of the variables that remain uniform after vectorization.
3428  collectLoopUniforms();
3429
3430  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
3431        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
3432        <<"!\n");
3433
3434  // Okay! We can vectorize. At this point we don't have any other mem analysis
3435  // which may limit our maximum vectorization factor, so just return true with
3436  // no restrictions.
3437  return true;
3438}
3439
3440static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3441  if (Ty->isPointerTy())
3442    return DL.getIntPtrType(Ty);
3443
3444  // It is possible that char's or short's overflow when we ask for the loop's
3445  // trip count, work around this by changing the type size.
3446  if (Ty->getScalarSizeInBits() < 32)
3447    return Type::getInt32Ty(Ty->getContext());
3448
3449  return Ty;
3450}
3451
3452static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3453  Ty0 = convertPointerToIntegerType(DL, Ty0);
3454  Ty1 = convertPointerToIntegerType(DL, Ty1);
3455  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3456    return Ty0;
3457  return Ty1;
3458}
3459
3460/// \brief Check that the instruction has outside loop users and is not an
3461/// identified reduction variable.
3462static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3463                               SmallPtrSet<Value *, 4> &Reductions) {
3464  // Reduction instructions are allowed to have exit users. All other
3465  // instructions must not have external users.
3466  if (!Reductions.count(Inst))
3467    //Check that all of the users of the loop are inside the BB.
3468    for (User *U : Inst->users()) {
3469      Instruction *UI = cast<Instruction>(U);
3470      // This user may be a reduction exit value.
3471      if (!TheLoop->contains(UI)) {
3472        DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
3473        return true;
3474      }
3475    }
3476  return false;
3477}
3478
3479bool LoopVectorizationLegality::canVectorizeInstrs() {
3480  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3481  BasicBlock *Header = TheLoop->getHeader();
3482
3483  // Look for the attribute signaling the absence of NaNs.
3484  Function &F = *Header->getParent();
3485  if (F.hasFnAttribute("no-nans-fp-math"))
3486    HasFunNoNaNAttr = F.getAttributes().getAttribute(
3487      AttributeSet::FunctionIndex,
3488      "no-nans-fp-math").getValueAsString() == "true";
3489
3490  // For each block in the loop.
3491  for (Loop::block_iterator bb = TheLoop->block_begin(),
3492       be = TheLoop->block_end(); bb != be; ++bb) {
3493
3494    // Scan the instructions in the block and look for hazards.
3495    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3496         ++it) {
3497
3498      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3499        Type *PhiTy = Phi->getType();
3500        // Check that this PHI type is allowed.
3501        if (!PhiTy->isIntegerTy() &&
3502            !PhiTy->isFloatingPointTy() &&
3503            !PhiTy->isPointerTy()) {
3504          emitAnalysis(Report(it)
3505                       << "loop control flow is not understood by vectorizer");
3506          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
3507          return false;
3508        }
3509
3510        // If this PHINode is not in the header block, then we know that we
3511        // can convert it to select during if-conversion. No need to check if
3512        // the PHIs in this block are induction or reduction variables.
3513        if (*bb != Header) {
3514          // Check that this instruction has no outside users or is an
3515          // identified reduction value with an outside user.
3516          if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3517            continue;
3518          emitAnalysis(Report(it) << "value that could not be identified as "
3519                                     "reduction is used outside the loop");
3520          return false;
3521        }
3522
3523        // We only allow if-converted PHIs with more than two incoming values.
3524        if (Phi->getNumIncomingValues() != 2) {
3525          emitAnalysis(Report(it)
3526                       << "control flow not understood by vectorizer");
3527          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3528          return false;
3529        }
3530
3531        // This is the value coming from the preheader.
3532        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3533        // Check if this is an induction variable.
3534        InductionKind IK = isInductionVariable(Phi);
3535
3536        if (IK_NoInduction != IK) {
3537          // Get the widest type.
3538          if (!WidestIndTy)
3539            WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3540          else
3541            WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3542
3543          // Int inductions are special because we only allow one IV.
3544          if (IK == IK_IntInduction) {
3545            // Use the phi node with the widest type as induction. Use the last
3546            // one if there are multiple (no good reason for doing this other
3547            // than it is expedient).
3548            if (!Induction || PhiTy == WidestIndTy)
3549              Induction = Phi;
3550          }
3551
3552          DEBUG(dbgs() << "LV: Found an induction variable.\n");
3553          Inductions[Phi] = InductionInfo(StartValue, IK);
3554
3555          // Until we explicitly handle the case of an induction variable with
3556          // an outside loop user we have to give up vectorizing this loop.
3557          if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3558            emitAnalysis(Report(it) << "use of induction value outside of the "
3559                                       "loop is not handled by vectorizer");
3560            return false;
3561          }
3562
3563          continue;
3564        }
3565
3566        if (AddReductionVar(Phi, RK_IntegerAdd)) {
3567          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3568          continue;
3569        }
3570        if (AddReductionVar(Phi, RK_IntegerMult)) {
3571          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3572          continue;
3573        }
3574        if (AddReductionVar(Phi, RK_IntegerOr)) {
3575          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3576          continue;
3577        }
3578        if (AddReductionVar(Phi, RK_IntegerAnd)) {
3579          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3580          continue;
3581        }
3582        if (AddReductionVar(Phi, RK_IntegerXor)) {
3583          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3584          continue;
3585        }
3586        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3587          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3588          continue;
3589        }
3590        if (AddReductionVar(Phi, RK_FloatMult)) {
3591          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3592          continue;
3593        }
3594        if (AddReductionVar(Phi, RK_FloatAdd)) {
3595          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3596          continue;
3597        }
3598        if (AddReductionVar(Phi, RK_FloatMinMax)) {
3599          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3600                "\n");
3601          continue;
3602        }
3603
3604        emitAnalysis(Report(it) << "unvectorizable operation");
3605        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3606        return false;
3607      }// end of PHI handling
3608
3609      // We still don't handle functions. However, we can ignore dbg intrinsic
3610      // calls and we do handle certain intrinsic and libm functions.
3611      CallInst *CI = dyn_cast<CallInst>(it);
3612      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3613        emitAnalysis(Report(it) << "call instruction cannot be vectorized");
3614        DEBUG(dbgs() << "LV: Found a call site.\n");
3615        return false;
3616      }
3617
3618      // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3619      // second argument is the same (i.e. loop invariant)
3620      if (CI &&
3621          hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3622        if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3623          emitAnalysis(Report(it)
3624                       << "intrinsic instruction cannot be vectorized");
3625          DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
3626          return false;
3627        }
3628      }
3629
3630      // Check that the instruction return type is vectorizable.
3631      // Also, we can't vectorize extractelement instructions.
3632      if ((!VectorType::isValidElementType(it->getType()) &&
3633           !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3634        emitAnalysis(Report(it)
3635                     << "instruction return type cannot be vectorized");
3636        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3637        return false;
3638      }
3639
3640      // Check that the stored type is vectorizable.
3641      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3642        Type *T = ST->getValueOperand()->getType();
3643        if (!VectorType::isValidElementType(T)) {
3644          emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
3645          return false;
3646        }
3647        if (EnableMemAccessVersioning)
3648          collectStridedAcccess(ST);
3649      }
3650
3651      if (EnableMemAccessVersioning)
3652        if (LoadInst *LI = dyn_cast<LoadInst>(it))
3653          collectStridedAcccess(LI);
3654
3655      // Reduction instructions are allowed to have exit users.
3656      // All other instructions must not have external users.
3657      if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3658        emitAnalysis(Report(it) << "value cannot be used outside the loop");
3659        return false;
3660      }
3661
3662    } // next instr.
3663
3664  }
3665
3666  if (!Induction) {
3667    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3668    if (Inductions.empty()) {
3669      emitAnalysis(Report()
3670                   << "loop induction variable could not be identified");
3671      return false;
3672    }
3673  }
3674
3675  return true;
3676}
3677
3678///\brief Remove GEPs whose indices but the last one are loop invariant and
3679/// return the induction operand of the gep pointer.
3680static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
3681                                 const DataLayout *DL, Loop *Lp) {
3682  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3683  if (!GEP)
3684    return Ptr;
3685
3686  unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
3687
3688  // Check that all of the gep indices are uniform except for our induction
3689  // operand.
3690  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3691    if (i != InductionOperand &&
3692        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3693      return Ptr;
3694  return GEP->getOperand(InductionOperand);
3695}
3696
3697///\brief Look for a cast use of the passed value.
3698static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3699  Value *UniqueCast = nullptr;
3700  for (User *U : Ptr->users()) {
3701    CastInst *CI = dyn_cast<CastInst>(U);
3702    if (CI && CI->getType() == Ty) {
3703      if (!UniqueCast)
3704        UniqueCast = CI;
3705      else
3706        return nullptr;
3707    }
3708  }
3709  return UniqueCast;
3710}
3711
3712///\brief Get the stride of a pointer access in a loop.
3713/// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3714/// pointer to the Value, or null otherwise.
3715static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
3716                                   const DataLayout *DL, Loop *Lp) {
3717  const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3718  if (!PtrTy || PtrTy->isAggregateType())
3719    return nullptr;
3720
3721  // Try to remove a gep instruction to make the pointer (actually index at this
3722  // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3723  // pointer, otherwise, we are analyzing the index.
3724  Value *OrigPtr = Ptr;
3725
3726  // The size of the pointer access.
3727  int64_t PtrAccessSize = 1;
3728
3729  Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
3730  const SCEV *V = SE->getSCEV(Ptr);
3731
3732  if (Ptr != OrigPtr)
3733    // Strip off casts.
3734    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3735      V = C->getOperand();
3736
3737  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3738  if (!S)
3739    return nullptr;
3740
3741  V = S->getStepRecurrence(*SE);
3742  if (!V)
3743    return nullptr;
3744
3745  // Strip off the size of access multiplication if we are still analyzing the
3746  // pointer.
3747  if (OrigPtr == Ptr) {
3748    DL->getTypeAllocSize(PtrTy->getElementType());
3749    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3750      if (M->getOperand(0)->getSCEVType() != scConstant)
3751        return nullptr;
3752
3753      const APInt &APStepVal =
3754          cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3755
3756      // Huge step value - give up.
3757      if (APStepVal.getBitWidth() > 64)
3758        return nullptr;
3759
3760      int64_t StepVal = APStepVal.getSExtValue();
3761      if (PtrAccessSize != StepVal)
3762        return nullptr;
3763      V = M->getOperand(1);
3764    }
3765  }
3766
3767  // Strip off casts.
3768  Type *StripedOffRecurrenceCast = nullptr;
3769  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3770    StripedOffRecurrenceCast = C->getType();
3771    V = C->getOperand();
3772  }
3773
3774  // Look for the loop invariant symbolic value.
3775  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3776  if (!U)
3777    return nullptr;
3778
3779  Value *Stride = U->getValue();
3780  if (!Lp->isLoopInvariant(Stride))
3781    return nullptr;
3782
3783  // If we have stripped off the recurrence cast we have to make sure that we
3784  // return the value that is used in this loop so that we can replace it later.
3785  if (StripedOffRecurrenceCast)
3786    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3787
3788  return Stride;
3789}
3790
3791void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
3792  Value *Ptr = nullptr;
3793  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
3794    Ptr = LI->getPointerOperand();
3795  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
3796    Ptr = SI->getPointerOperand();
3797  else
3798    return;
3799
3800  Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
3801  if (!Stride)
3802    return;
3803
3804  DEBUG(dbgs() << "LV: Found a strided access that we can version");
3805  DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
3806  Strides[Ptr] = Stride;
3807  StrideSet.insert(Stride);
3808}
3809
3810void LoopVectorizationLegality::collectLoopUniforms() {
3811  // We now know that the loop is vectorizable!
3812  // Collect variables that will remain uniform after vectorization.
3813  std::vector<Value*> Worklist;
3814  BasicBlock *Latch = TheLoop->getLoopLatch();
3815
3816  // Start with the conditional branch and walk up the block.
3817  Worklist.push_back(Latch->getTerminator()->getOperand(0));
3818
3819  // Also add all consecutive pointer values; these values will be uniform
3820  // after vectorization (and subsequent cleanup) and, until revectorization is
3821  // supported, all dependencies must also be uniform.
3822  for (Loop::block_iterator B = TheLoop->block_begin(),
3823       BE = TheLoop->block_end(); B != BE; ++B)
3824    for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
3825         I != IE; ++I)
3826      if (I->getType()->isPointerTy() && isConsecutivePtr(I))
3827        Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3828
3829  while (Worklist.size()) {
3830    Instruction *I = dyn_cast<Instruction>(Worklist.back());
3831    Worklist.pop_back();
3832
3833    // Look at instructions inside this loop.
3834    // Stop when reaching PHI nodes.
3835    // TODO: we need to follow values all over the loop, not only in this block.
3836    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3837      continue;
3838
3839    // This is a known uniform.
3840    Uniforms.insert(I);
3841
3842    // Insert all operands.
3843    Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3844  }
3845}
3846
3847namespace {
3848/// \brief Analyses memory accesses in a loop.
3849///
3850/// Checks whether run time pointer checks are needed and builds sets for data
3851/// dependence checking.
3852class AccessAnalysis {
3853public:
3854  /// \brief Read or write access location.
3855  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3856  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3857
3858  /// \brief Set of potential dependent memory accesses.
3859  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3860
3861  AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) :
3862    DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3863    AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3864
3865  /// \brief Register a load  and whether it is only read from.
3866  void addLoad(Value *Ptr, bool IsReadOnly) {
3867    Accesses.insert(MemAccessInfo(Ptr, false));
3868    if (IsReadOnly)
3869      ReadOnlyPtr.insert(Ptr);
3870  }
3871
3872  /// \brief Register a store.
3873  void addStore(Value *Ptr) {
3874    Accesses.insert(MemAccessInfo(Ptr, true));
3875  }
3876
3877  /// \brief Check whether we can check the pointers at runtime for
3878  /// non-intersection.
3879  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3880                       unsigned &NumComparisons, ScalarEvolution *SE,
3881                       Loop *TheLoop, ValueToValueMap &Strides,
3882                       bool ShouldCheckStride = false);
3883
3884  /// \brief Goes over all memory accesses, checks whether a RT check is needed
3885  /// and builds sets of dependent accesses.
3886  void buildDependenceSets() {
3887    // Process read-write pointers first.
3888    processMemAccesses(false);
3889    // Next, process read pointers.
3890    processMemAccesses(true);
3891  }
3892
3893  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3894
3895  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3896  void resetDepChecks() { CheckDeps.clear(); }
3897
3898  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3899
3900private:
3901  typedef SetVector<MemAccessInfo> PtrAccessSet;
3902  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3903
3904  /// \brief Go over all memory access or only the deferred ones if
3905  /// \p UseDeferred is true and check whether runtime pointer checks are needed
3906  /// and build sets of dependency check candidates.
3907  void processMemAccesses(bool UseDeferred);
3908
3909  /// Set of all accesses.
3910  PtrAccessSet Accesses;
3911
3912  /// Set of access to check after all writes have been processed.
3913  PtrAccessSet DeferredAccesses;
3914
3915  /// Map of pointers to last access encountered.
3916  UnderlyingObjToAccessMap ObjToLastAccess;
3917
3918  /// Set of accesses that need a further dependence check.
3919  MemAccessInfoSet CheckDeps;
3920
3921  /// Set of pointers that are read only.
3922  SmallPtrSet<Value*, 16> ReadOnlyPtr;
3923
3924  /// Set of underlying objects already written to.
3925  SmallPtrSet<Value*, 16> WriteObjects;
3926
3927  const DataLayout *DL;
3928
3929  /// Sets of potentially dependent accesses - members of one set share an
3930  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3931  /// dependence check.
3932  DepCandidates &DepCands;
3933
3934  bool AreAllWritesIdentified;
3935  bool AreAllReadsIdentified;
3936  bool IsRTCheckNeeded;
3937};
3938
3939} // end anonymous namespace
3940
3941/// \brief Check whether a pointer can participate in a runtime bounds check.
3942static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
3943                                Value *Ptr) {
3944  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
3945  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3946  if (!AR)
3947    return false;
3948
3949  return AR->isAffine();
3950}
3951
3952/// \brief Check the stride of the pointer and ensure that it does not wrap in
3953/// the address space.
3954static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
3955                        const Loop *Lp, ValueToValueMap &StridesMap);
3956
3957bool AccessAnalysis::canCheckPtrAtRT(
3958    LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3959    unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
3960    ValueToValueMap &StridesMap, bool ShouldCheckStride) {
3961  // Find pointers with computable bounds. We are going to use this information
3962  // to place a runtime bound check.
3963  unsigned NumReadPtrChecks = 0;
3964  unsigned NumWritePtrChecks = 0;
3965  bool CanDoRT = true;
3966
3967  bool IsDepCheckNeeded = isDependencyCheckNeeded();
3968  // We assign consecutive id to access from different dependence sets.
3969  // Accesses within the same set don't need a runtime check.
3970  unsigned RunningDepId = 1;
3971  DenseMap<Value *, unsigned> DepSetId;
3972
3973  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3974       AI != AE; ++AI) {
3975    const MemAccessInfo &Access = *AI;
3976    Value *Ptr = Access.getPointer();
3977    bool IsWrite = Access.getInt();
3978
3979    // Just add write checks if we have both.
3980    if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3981      continue;
3982
3983    if (IsWrite)
3984      ++NumWritePtrChecks;
3985    else
3986      ++NumReadPtrChecks;
3987
3988    if (hasComputableBounds(SE, StridesMap, Ptr) &&
3989        // When we run after a failing dependency check we have to make sure we
3990        // don't have wrapping pointers.
3991        (!ShouldCheckStride ||
3992         isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
3993      // The id of the dependence set.
3994      unsigned DepId;
3995
3996      if (IsDepCheckNeeded) {
3997        Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3998        unsigned &LeaderId = DepSetId[Leader];
3999        if (!LeaderId)
4000          LeaderId = RunningDepId++;
4001        DepId = LeaderId;
4002      } else
4003        // Each access has its own dependence set.
4004        DepId = RunningDepId++;
4005
4006      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap);
4007
4008      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
4009    } else {
4010      CanDoRT = false;
4011    }
4012  }
4013
4014  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
4015    NumComparisons = 0; // Only one dependence set.
4016  else {
4017    NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
4018                                           NumWritePtrChecks - 1));
4019  }
4020
4021  // If the pointers that we would use for the bounds comparison have different
4022  // address spaces, assume the values aren't directly comparable, so we can't
4023  // use them for the runtime check. We also have to assume they could
4024  // overlap. In the future there should be metadata for whether address spaces
4025  // are disjoint.
4026  unsigned NumPointers = RtCheck.Pointers.size();
4027  for (unsigned i = 0; i < NumPointers; ++i) {
4028    for (unsigned j = i + 1; j < NumPointers; ++j) {
4029      // Only need to check pointers between two different dependency sets.
4030      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
4031       continue;
4032
4033      Value *PtrI = RtCheck.Pointers[i];
4034      Value *PtrJ = RtCheck.Pointers[j];
4035
4036      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
4037      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
4038      if (ASi != ASj) {
4039        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
4040                       " different address spaces\n");
4041        return false;
4042      }
4043    }
4044  }
4045
4046  return CanDoRT;
4047}
4048
4049static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
4050  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
4051}
4052
4053void AccessAnalysis::processMemAccesses(bool UseDeferred) {
4054  // We process the set twice: first we process read-write pointers, last we
4055  // process read-only pointers. This allows us to skip dependence tests for
4056  // read-only pointers.
4057
4058  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
4059  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
4060    const MemAccessInfo &Access = *AI;
4061    Value *Ptr = Access.getPointer();
4062    bool IsWrite = Access.getInt();
4063
4064    DepCands.insert(Access);
4065
4066    // Memorize read-only pointers for later processing and skip them in the
4067    // first round (they need to be checked after we have seen all write
4068    // pointers). Note: we also mark pointer that are not consecutive as
4069    // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
4070    // second check for "!IsWrite".
4071    bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
4072    if (!UseDeferred && IsReadOnlyPtr) {
4073      DeferredAccesses.insert(Access);
4074      continue;
4075    }
4076
4077    bool NeedDepCheck = false;
4078    // Check whether there is the possibility of dependency because of
4079    // underlying objects being the same.
4080    typedef SmallVector<Value*, 16> ValueVector;
4081    ValueVector TempObjects;
4082    GetUnderlyingObjects(Ptr, TempObjects, DL);
4083    for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
4084         UI != UE; ++UI) {
4085      Value *UnderlyingObj = *UI;
4086
4087      // If this is a write then it needs to be an identified object.  If this a
4088      // read and all writes (so far) are identified function scope objects we
4089      // don't need an identified underlying object but only an Argument (the
4090      // next write is going to invalidate this assumption if it is
4091      // unidentified).
4092      // This is a micro-optimization for the case where all writes are
4093      // identified and we have one argument pointer.
4094      // Otherwise, we do need a runtime check.
4095      if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
4096          (!IsWrite && (!AreAllWritesIdentified ||
4097                        !isa<Argument>(UnderlyingObj)) &&
4098           !isIdentifiedObject(UnderlyingObj))) {
4099        DEBUG(dbgs() << "LV: Found an unidentified " <<
4100              (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
4101              "\n");
4102        IsRTCheckNeeded = (IsRTCheckNeeded ||
4103                           !isIdentifiedObject(UnderlyingObj) ||
4104                           !AreAllReadsIdentified);
4105
4106        if (IsWrite)
4107          AreAllWritesIdentified = false;
4108        if (!IsWrite)
4109          AreAllReadsIdentified = false;
4110      }
4111
4112      // If this is a write - check other reads and writes for conflicts.  If
4113      // this is a read only check other writes for conflicts (but only if there
4114      // is no other write to the ptr - this is an optimization to catch "a[i] =
4115      // a[i] + " without having to do a dependence check).
4116      if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
4117        NeedDepCheck = true;
4118
4119      if (IsWrite)
4120        WriteObjects.insert(UnderlyingObj);
4121
4122      // Create sets of pointers connected by shared underlying objects.
4123      UnderlyingObjToAccessMap::iterator Prev =
4124        ObjToLastAccess.find(UnderlyingObj);
4125      if (Prev != ObjToLastAccess.end())
4126        DepCands.unionSets(Access, Prev->second);
4127
4128      ObjToLastAccess[UnderlyingObj] = Access;
4129    }
4130
4131    if (NeedDepCheck)
4132      CheckDeps.insert(Access);
4133  }
4134}
4135
4136namespace {
4137/// \brief Checks memory dependences among accesses to the same underlying
4138/// object to determine whether there vectorization is legal or not (and at
4139/// which vectorization factor).
4140///
4141/// This class works under the assumption that we already checked that memory
4142/// locations with different underlying pointers are "must-not alias".
4143/// We use the ScalarEvolution framework to symbolically evalutate access
4144/// functions pairs. Since we currently don't restructure the loop we can rely
4145/// on the program order of memory accesses to determine their safety.
4146/// At the moment we will only deem accesses as safe for:
4147///  * A negative constant distance assuming program order.
4148///
4149///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
4150///            a[i] = tmp;                y = a[i];
4151///
4152///   The latter case is safe because later checks guarantuee that there can't
4153///   be a cycle through a phi node (that is, we check that "x" and "y" is not
4154///   the same variable: a header phi can only be an induction or a reduction, a
4155///   reduction can't have a memory sink, an induction can't have a memory
4156///   source). This is important and must not be violated (or we have to
4157///   resort to checking for cycles through memory).
4158///
4159///  * A positive constant distance assuming program order that is bigger
4160///    than the biggest memory access.
4161///
4162///     tmp = a[i]        OR              b[i] = x
4163///     a[i+2] = tmp                      y = b[i+2];
4164///
4165///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
4166///
4167///  * Zero distances and all accesses have the same size.
4168///
4169class MemoryDepChecker {
4170public:
4171  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4172  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4173
4174  MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
4175      : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
4176        ShouldRetryWithRuntimeCheck(false) {}
4177
4178  /// \brief Register the location (instructions are given increasing numbers)
4179  /// of a write access.
4180  void addAccess(StoreInst *SI) {
4181    Value *Ptr = SI->getPointerOperand();
4182    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
4183    InstMap.push_back(SI);
4184    ++AccessIdx;
4185  }
4186
4187  /// \brief Register the location (instructions are given increasing numbers)
4188  /// of a write access.
4189  void addAccess(LoadInst *LI) {
4190    Value *Ptr = LI->getPointerOperand();
4191    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
4192    InstMap.push_back(LI);
4193    ++AccessIdx;
4194  }
4195
4196  /// \brief Check whether the dependencies between the accesses are safe.
4197  ///
4198  /// Only checks sets with elements in \p CheckDeps.
4199  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4200                   MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
4201
4202  /// \brief The maximum number of bytes of a vector register we can vectorize
4203  /// the accesses safely with.
4204  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
4205
4206  /// \brief In same cases when the dependency check fails we can still
4207  /// vectorize the loop with a dynamic array access check.
4208  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
4209
4210private:
4211  ScalarEvolution *SE;
4212  const DataLayout *DL;
4213  const Loop *InnermostLoop;
4214
4215  /// \brief Maps access locations (ptr, read/write) to program order.
4216  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
4217
4218  /// \brief Memory access instructions in program order.
4219  SmallVector<Instruction *, 16> InstMap;
4220
4221  /// \brief The program order index to be used for the next instruction.
4222  unsigned AccessIdx;
4223
4224  // We can access this many bytes in parallel safely.
4225  unsigned MaxSafeDepDistBytes;
4226
4227  /// \brief If we see a non-constant dependence distance we can still try to
4228  /// vectorize this loop with runtime checks.
4229  bool ShouldRetryWithRuntimeCheck;
4230
4231  /// \brief Check whether there is a plausible dependence between the two
4232  /// accesses.
4233  ///
4234  /// Access \p A must happen before \p B in program order. The two indices
4235  /// identify the index into the program order map.
4236  ///
4237  /// This function checks  whether there is a plausible dependence (or the
4238  /// absence of such can't be proved) between the two accesses. If there is a
4239  /// plausible dependence but the dependence distance is bigger than one
4240  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
4241  /// distance is smaller than any other distance encountered so far).
4242  /// Otherwise, this function returns true signaling a possible dependence.
4243  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
4244                   const MemAccessInfo &B, unsigned BIdx,
4245                   ValueToValueMap &Strides);
4246
4247  /// \brief Check whether the data dependence could prevent store-load
4248  /// forwarding.
4249  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
4250};
4251
4252} // end anonymous namespace
4253
4254static bool isInBoundsGep(Value *Ptr) {
4255  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
4256    return GEP->isInBounds();
4257  return false;
4258}
4259
4260/// \brief Check whether the access through \p Ptr has a constant stride.
4261static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4262                        const Loop *Lp, ValueToValueMap &StridesMap) {
4263  const Type *Ty = Ptr->getType();
4264  assert(Ty->isPointerTy() && "Unexpected non-ptr");
4265
4266  // Make sure that the pointer does not point to aggregate types.
4267  const PointerType *PtrTy = cast<PointerType>(Ty);
4268  if (PtrTy->getElementType()->isAggregateType()) {
4269    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
4270          "\n");
4271    return 0;
4272  }
4273
4274  const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
4275
4276  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4277  if (!AR) {
4278    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
4279          << *Ptr << " SCEV: " << *PtrScev << "\n");
4280    return 0;
4281  }
4282
4283  // The accesss function must stride over the innermost loop.
4284  if (Lp != AR->getLoop()) {
4285    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
4286          *Ptr << " SCEV: " << *PtrScev << "\n");
4287  }
4288
4289  // The address calculation must not wrap. Otherwise, a dependence could be
4290  // inverted.
4291  // An inbounds getelementptr that is a AddRec with a unit stride
4292  // cannot wrap per definition. The unit stride requirement is checked later.
4293  // An getelementptr without an inbounds attribute and unit stride would have
4294  // to access the pointer value "0" which is undefined behavior in address
4295  // space 0, therefore we can also vectorize this case.
4296  bool IsInBoundsGEP = isInBoundsGep(Ptr);
4297  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
4298  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
4299  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
4300    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
4301          << *Ptr << " SCEV: " << *PtrScev << "\n");
4302    return 0;
4303  }
4304
4305  // Check the step is constant.
4306  const SCEV *Step = AR->getStepRecurrence(*SE);
4307
4308  // Calculate the pointer stride and check if it is consecutive.
4309  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4310  if (!C) {
4311    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
4312          " SCEV: " << *PtrScev << "\n");
4313    return 0;
4314  }
4315
4316  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
4317  const APInt &APStepVal = C->getValue()->getValue();
4318
4319  // Huge step value - give up.
4320  if (APStepVal.getBitWidth() > 64)
4321    return 0;
4322
4323  int64_t StepVal = APStepVal.getSExtValue();
4324
4325  // Strided access.
4326  int64_t Stride = StepVal / Size;
4327  int64_t Rem = StepVal % Size;
4328  if (Rem)
4329    return 0;
4330
4331  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
4332  // know we can't "wrap around the address space". In case of address space
4333  // zero we know that this won't happen without triggering undefined behavior.
4334  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
4335      Stride != 1 && Stride != -1)
4336    return 0;
4337
4338  return Stride;
4339}
4340
4341bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
4342                                                    unsigned TypeByteSize) {
4343  // If loads occur at a distance that is not a multiple of a feasible vector
4344  // factor store-load forwarding does not take place.
4345  // Positive dependences might cause troubles because vectorizing them might
4346  // prevent store-load forwarding making vectorized code run a lot slower.
4347  //   a[i] = a[i-3] ^ a[i-8];
4348  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
4349  //   hence on your typical architecture store-load forwarding does not take
4350  //   place. Vectorizing in such cases does not make sense.
4351  // Store-load forwarding distance.
4352  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
4353  // Maximum vector factor.
4354  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
4355  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
4356    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
4357
4358  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
4359       vf *= 2) {
4360    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
4361      MaxVFWithoutSLForwardIssues = (vf >>=1);
4362      break;
4363    }
4364  }
4365
4366  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
4367    DEBUG(dbgs() << "LV: Distance " << Distance <<
4368          " that could cause a store-load forwarding conflict\n");
4369    return true;
4370  }
4371
4372  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
4373      MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
4374    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
4375  return false;
4376}
4377
4378bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
4379                                   const MemAccessInfo &B, unsigned BIdx,
4380                                   ValueToValueMap &Strides) {
4381  assert (AIdx < BIdx && "Must pass arguments in program order");
4382
4383  Value *APtr = A.getPointer();
4384  Value *BPtr = B.getPointer();
4385  bool AIsWrite = A.getInt();
4386  bool BIsWrite = B.getInt();
4387
4388  // Two reads are independent.
4389  if (!AIsWrite && !BIsWrite)
4390    return false;
4391
4392  const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
4393  const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
4394
4395  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
4396  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
4397
4398  const SCEV *Src = AScev;
4399  const SCEV *Sink = BScev;
4400
4401  // If the induction step is negative we have to invert source and sink of the
4402  // dependence.
4403  if (StrideAPtr < 0) {
4404    //Src = BScev;
4405    //Sink = AScev;
4406    std::swap(APtr, BPtr);
4407    std::swap(Src, Sink);
4408    std::swap(AIsWrite, BIsWrite);
4409    std::swap(AIdx, BIdx);
4410    std::swap(StrideAPtr, StrideBPtr);
4411  }
4412
4413  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
4414
4415  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
4416        << "(Induction step: " << StrideAPtr <<  ")\n");
4417  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
4418        << *InstMap[BIdx] << ": " << *Dist << "\n");
4419
4420  // Need consecutive accesses. We don't want to vectorize
4421  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
4422  // the address space.
4423  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
4424    DEBUG(dbgs() << "Non-consecutive pointer access\n");
4425    return true;
4426  }
4427
4428  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
4429  if (!C) {
4430    DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
4431    ShouldRetryWithRuntimeCheck = true;
4432    return true;
4433  }
4434
4435  Type *ATy = APtr->getType()->getPointerElementType();
4436  Type *BTy = BPtr->getType()->getPointerElementType();
4437  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
4438
4439  // Negative distances are not plausible dependencies.
4440  const APInt &Val = C->getValue()->getValue();
4441  if (Val.isNegative()) {
4442    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
4443    if (IsTrueDataDependence &&
4444        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
4445         ATy != BTy))
4446      return true;
4447
4448    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
4449    return false;
4450  }
4451
4452  // Write to the same location with the same size.
4453  // Could be improved to assert type sizes are the same (i32 == float, etc).
4454  if (Val == 0) {
4455    if (ATy == BTy)
4456      return false;
4457    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
4458    return true;
4459  }
4460
4461  assert(Val.isStrictlyPositive() && "Expect a positive value");
4462
4463  // Positive distance bigger than max vectorization factor.
4464  if (ATy != BTy) {
4465    DEBUG(dbgs() <<
4466          "LV: ReadWrite-Write positive dependency with different types\n");
4467    return false;
4468  }
4469
4470  unsigned Distance = (unsigned) Val.getZExtValue();
4471
4472  // Bail out early if passed-in parameters make vectorization not feasible.
4473  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
4474  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
4475
4476  // The distance must be bigger than the size needed for a vectorized version
4477  // of the operation and the size of the vectorized operation must not be
4478  // bigger than the currrent maximum size.
4479  if (Distance < 2*TypeByteSize ||
4480      2*TypeByteSize > MaxSafeDepDistBytes ||
4481      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
4482    DEBUG(dbgs() << "LV: Failure because of Positive distance "
4483        << Val.getSExtValue() << '\n');
4484    return true;
4485  }
4486
4487  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
4488    Distance : MaxSafeDepDistBytes;
4489
4490  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
4491  if (IsTrueDataDependence &&
4492      couldPreventStoreLoadForward(Distance, TypeByteSize))
4493     return true;
4494
4495  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
4496        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
4497
4498  return false;
4499}
4500
4501bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4502                                   MemAccessInfoSet &CheckDeps,
4503                                   ValueToValueMap &Strides) {
4504
4505  MaxSafeDepDistBytes = -1U;
4506  while (!CheckDeps.empty()) {
4507    MemAccessInfo CurAccess = *CheckDeps.begin();
4508
4509    // Get the relevant memory access set.
4510    EquivalenceClasses<MemAccessInfo>::iterator I =
4511      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
4512
4513    // Check accesses within this set.
4514    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
4515    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
4516
4517    // Check every access pair.
4518    while (AI != AE) {
4519      CheckDeps.erase(*AI);
4520      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
4521      while (OI != AE) {
4522        // Check every accessing instruction pair in program order.
4523        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
4524             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
4525          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
4526               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
4527            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
4528              return false;
4529            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
4530              return false;
4531          }
4532        ++OI;
4533      }
4534      AI++;
4535    }
4536  }
4537  return true;
4538}
4539
4540bool LoopVectorizationLegality::canVectorizeMemory() {
4541
4542  typedef SmallVector<Value*, 16> ValueVector;
4543  typedef SmallPtrSet<Value*, 16> ValueSet;
4544
4545  // Holds the Load and Store *instructions*.
4546  ValueVector Loads;
4547  ValueVector Stores;
4548
4549  // Holds all the different accesses in the loop.
4550  unsigned NumReads = 0;
4551  unsigned NumReadWrites = 0;
4552
4553  PtrRtCheck.Pointers.clear();
4554  PtrRtCheck.Need = false;
4555
4556  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4557  MemoryDepChecker DepChecker(SE, DL, TheLoop);
4558
4559  // For each block.
4560  for (Loop::block_iterator bb = TheLoop->block_begin(),
4561       be = TheLoop->block_end(); bb != be; ++bb) {
4562
4563    // Scan the BB and collect legal loads and stores.
4564    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4565         ++it) {
4566
4567      // If this is a load, save it. If this instruction can read from memory
4568      // but is not a load, then we quit. Notice that we don't handle function
4569      // calls that read or write.
4570      if (it->mayReadFromMemory()) {
4571        // Many math library functions read the rounding mode. We will only
4572        // vectorize a loop if it contains known function calls that don't set
4573        // the flag. Therefore, it is safe to ignore this read from memory.
4574        CallInst *Call = dyn_cast<CallInst>(it);
4575        if (Call && getIntrinsicIDForCall(Call, TLI))
4576          continue;
4577
4578        LoadInst *Ld = dyn_cast<LoadInst>(it);
4579        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
4580          emitAnalysis(Report(Ld)
4581                       << "read with atomic ordering or volatile read");
4582          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
4583          return false;
4584        }
4585        NumLoads++;
4586        Loads.push_back(Ld);
4587        DepChecker.addAccess(Ld);
4588        continue;
4589      }
4590
4591      // Save 'store' instructions. Abort if other instructions write to memory.
4592      if (it->mayWriteToMemory()) {
4593        StoreInst *St = dyn_cast<StoreInst>(it);
4594        if (!St) {
4595          emitAnalysis(Report(it) << "instruction cannot be vectorized");
4596          return false;
4597        }
4598        if (!St->isSimple() && !IsAnnotatedParallel) {
4599          emitAnalysis(Report(St)
4600                       << "write with atomic ordering or volatile write");
4601          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
4602          return false;
4603        }
4604        NumStores++;
4605        Stores.push_back(St);
4606        DepChecker.addAccess(St);
4607      }
4608    } // Next instr.
4609  } // Next block.
4610
4611  // Now we have two lists that hold the loads and the stores.
4612  // Next, we find the pointers that they use.
4613
4614  // Check if we see any stores. If there are no stores, then we don't
4615  // care if the pointers are *restrict*.
4616  if (!Stores.size()) {
4617    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
4618    return true;
4619  }
4620
4621  AccessAnalysis::DepCandidates DependentAccesses;
4622  AccessAnalysis Accesses(DL, DependentAccesses);
4623
4624  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
4625  // multiple times on the same object. If the ptr is accessed twice, once
4626  // for read and once for write, it will only appear once (on the write
4627  // list). This is okay, since we are going to check for conflicts between
4628  // writes and between reads and writes, but not between reads and reads.
4629  ValueSet Seen;
4630
4631  ValueVector::iterator I, IE;
4632  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
4633    StoreInst *ST = cast<StoreInst>(*I);
4634    Value* Ptr = ST->getPointerOperand();
4635
4636    if (isUniform(Ptr)) {
4637      emitAnalysis(
4638          Report(ST)
4639          << "write to a loop invariant address could not be vectorized");
4640      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4641      return false;
4642    }
4643
4644    // If we did *not* see this pointer before, insert it to  the read-write
4645    // list. At this phase it is only a 'write' list.
4646    if (Seen.insert(Ptr)) {
4647      ++NumReadWrites;
4648      Accesses.addStore(Ptr);
4649    }
4650  }
4651
4652  if (IsAnnotatedParallel) {
4653    DEBUG(dbgs()
4654          << "LV: A loop annotated parallel, ignore memory dependency "
4655          << "checks.\n");
4656    return true;
4657  }
4658
4659  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
4660    LoadInst *LD = cast<LoadInst>(*I);
4661    Value* Ptr = LD->getPointerOperand();
4662    // If we did *not* see this pointer before, insert it to the
4663    // read list. If we *did* see it before, then it is already in
4664    // the read-write list. This allows us to vectorize expressions
4665    // such as A[i] += x;  Because the address of A[i] is a read-write
4666    // pointer. This only works if the index of A[i] is consecutive.
4667    // If the address of i is unknown (for example A[B[i]]) then we may
4668    // read a few words, modify, and write a few words, and some of the
4669    // words may be written to the same address.
4670    bool IsReadOnlyPtr = false;
4671    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
4672      ++NumReads;
4673      IsReadOnlyPtr = true;
4674    }
4675    Accesses.addLoad(Ptr, IsReadOnlyPtr);
4676  }
4677
4678  // If we write (or read-write) to a single destination and there are no
4679  // other reads in this loop then is it safe to vectorize.
4680  if (NumReadWrites == 1 && NumReads == 0) {
4681    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
4682    return true;
4683  }
4684
4685  // Build dependence sets and check whether we need a runtime pointer bounds
4686  // check.
4687  Accesses.buildDependenceSets();
4688  bool NeedRTCheck = Accesses.isRTCheckNeeded();
4689
4690  // Find pointers with computable bounds. We are going to use this information
4691  // to place a runtime bound check.
4692  unsigned NumComparisons = 0;
4693  bool CanDoRT = false;
4694  if (NeedRTCheck)
4695    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
4696                                       Strides);
4697
4698  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
4699        " pointer comparisons.\n");
4700
4701  // If we only have one set of dependences to check pointers among we don't
4702  // need a runtime check.
4703  if (NumComparisons == 0 && NeedRTCheck)
4704    NeedRTCheck = false;
4705
4706  // Check that we did not collect too many pointers or found an unsizeable
4707  // pointer.
4708  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4709    PtrRtCheck.reset();
4710    CanDoRT = false;
4711  }
4712
4713  if (CanDoRT) {
4714    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
4715  }
4716
4717  if (NeedRTCheck && !CanDoRT) {
4718    emitAnalysis(Report() << "cannot identify array bounds");
4719    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
4720          "the array bounds.\n");
4721    PtrRtCheck.reset();
4722    return false;
4723  }
4724
4725  PtrRtCheck.Need = NeedRTCheck;
4726
4727  bool CanVecMem = true;
4728  if (Accesses.isDependencyCheckNeeded()) {
4729    DEBUG(dbgs() << "LV: Checking memory dependencies\n");
4730    CanVecMem = DepChecker.areDepsSafe(
4731        DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
4732    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4733
4734    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4735      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
4736      NeedRTCheck = true;
4737
4738      // Clear the dependency checks. We assume they are not needed.
4739      Accesses.resetDepChecks();
4740
4741      PtrRtCheck.reset();
4742      PtrRtCheck.Need = true;
4743
4744      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4745                                         TheLoop, Strides, true);
4746      // Check that we did not collect too many pointers or found an unsizeable
4747      // pointer.
4748      if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4749        if (!CanDoRT && NumComparisons > 0)
4750          emitAnalysis(Report()
4751                       << "cannot check memory dependencies at runtime");
4752        else
4753          emitAnalysis(Report()
4754                       << NumComparisons << " exceeds limit of "
4755                       << RuntimeMemoryCheckThreshold
4756                       << " dependent memory operations checked at runtime");
4757        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4758        PtrRtCheck.reset();
4759        return false;
4760      }
4761
4762      CanVecMem = true;
4763    }
4764  }
4765
4766  if (!CanVecMem)
4767    emitAnalysis(Report() << "unsafe dependent memory operations in loop");
4768
4769  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4770        " need a runtime memory check.\n");
4771
4772  return CanVecMem;
4773}
4774
4775static bool hasMultipleUsesOf(Instruction *I,
4776                              SmallPtrSet<Instruction *, 8> &Insts) {
4777  unsigned NumUses = 0;
4778  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4779    if (Insts.count(dyn_cast<Instruction>(*Use)))
4780      ++NumUses;
4781    if (NumUses > 1)
4782      return true;
4783  }
4784
4785  return false;
4786}
4787
4788static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4789  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4790    if (!Set.count(dyn_cast<Instruction>(*Use)))
4791      return false;
4792  return true;
4793}
4794
4795bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4796                                                ReductionKind Kind) {
4797  if (Phi->getNumIncomingValues() != 2)
4798    return false;
4799
4800  // Reduction variables are only found in the loop header block.
4801  if (Phi->getParent() != TheLoop->getHeader())
4802    return false;
4803
4804  // Obtain the reduction start value from the value that comes from the loop
4805  // preheader.
4806  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4807
4808  // ExitInstruction is the single value which is used outside the loop.
4809  // We only allow for a single reduction value to be used outside the loop.
4810  // This includes users of the reduction, variables (which form a cycle
4811  // which ends in the phi node).
4812  Instruction *ExitInstruction = nullptr;
4813  // Indicates that we found a reduction operation in our scan.
4814  bool FoundReduxOp = false;
4815
4816  // We start with the PHI node and scan for all of the users of this
4817  // instruction. All users must be instructions that can be used as reduction
4818  // variables (such as ADD). We must have a single out-of-block user. The cycle
4819  // must include the original PHI.
4820  bool FoundStartPHI = false;
4821
4822  // To recognize min/max patterns formed by a icmp select sequence, we store
4823  // the number of instruction we saw from the recognized min/max pattern,
4824  //  to make sure we only see exactly the two instructions.
4825  unsigned NumCmpSelectPatternInst = 0;
4826  ReductionInstDesc ReduxDesc(false, nullptr);
4827
4828  SmallPtrSet<Instruction *, 8> VisitedInsts;
4829  SmallVector<Instruction *, 8> Worklist;
4830  Worklist.push_back(Phi);
4831  VisitedInsts.insert(Phi);
4832
4833  // A value in the reduction can be used:
4834  //  - By the reduction:
4835  //      - Reduction operation:
4836  //        - One use of reduction value (safe).
4837  //        - Multiple use of reduction value (not safe).
4838  //      - PHI:
4839  //        - All uses of the PHI must be the reduction (safe).
4840  //        - Otherwise, not safe.
4841  //  - By one instruction outside of the loop (safe).
4842  //  - By further instructions outside of the loop (not safe).
4843  //  - By an instruction that is not part of the reduction (not safe).
4844  //    This is either:
4845  //      * An instruction type other than PHI or the reduction operation.
4846  //      * A PHI in the header other than the initial PHI.
4847  while (!Worklist.empty()) {
4848    Instruction *Cur = Worklist.back();
4849    Worklist.pop_back();
4850
4851    // No Users.
4852    // If the instruction has no users then this is a broken chain and can't be
4853    // a reduction variable.
4854    if (Cur->use_empty())
4855      return false;
4856
4857    bool IsAPhi = isa<PHINode>(Cur);
4858
4859    // A header PHI use other than the original PHI.
4860    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4861      return false;
4862
4863    // Reductions of instructions such as Div, and Sub is only possible if the
4864    // LHS is the reduction variable.
4865    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4866        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4867        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4868      return false;
4869
4870    // Any reduction instruction must be of one of the allowed kinds.
4871    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4872    if (!ReduxDesc.IsReduction)
4873      return false;
4874
4875    // A reduction operation must only have one use of the reduction value.
4876    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4877        hasMultipleUsesOf(Cur, VisitedInsts))
4878      return false;
4879
4880    // All inputs to a PHI node must be a reduction value.
4881    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4882      return false;
4883
4884    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4885                                     isa<SelectInst>(Cur)))
4886      ++NumCmpSelectPatternInst;
4887    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4888                                   isa<SelectInst>(Cur)))
4889      ++NumCmpSelectPatternInst;
4890
4891    // Check  whether we found a reduction operator.
4892    FoundReduxOp |= !IsAPhi;
4893
4894    // Process users of current instruction. Push non-PHI nodes after PHI nodes
4895    // onto the stack. This way we are going to have seen all inputs to PHI
4896    // nodes once we get to them.
4897    SmallVector<Instruction *, 8> NonPHIs;
4898    SmallVector<Instruction *, 8> PHIs;
4899    for (User *U : Cur->users()) {
4900      Instruction *UI = cast<Instruction>(U);
4901
4902      // Check if we found the exit user.
4903      BasicBlock *Parent = UI->getParent();
4904      if (!TheLoop->contains(Parent)) {
4905        // Exit if you find multiple outside users or if the header phi node is
4906        // being used. In this case the user uses the value of the previous
4907        // iteration, in which case we would loose "VF-1" iterations of the
4908        // reduction operation if we vectorize.
4909        if (ExitInstruction != nullptr || Cur == Phi)
4910          return false;
4911
4912        // The instruction used by an outside user must be the last instruction
4913        // before we feed back to the reduction phi. Otherwise, we loose VF-1
4914        // operations on the value.
4915        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4916         return false;
4917
4918        ExitInstruction = Cur;
4919        continue;
4920      }
4921
4922      // Process instructions only once (termination). Each reduction cycle
4923      // value must only be used once, except by phi nodes and min/max
4924      // reductions which are represented as a cmp followed by a select.
4925      ReductionInstDesc IgnoredVal(false, nullptr);
4926      if (VisitedInsts.insert(UI)) {
4927        if (isa<PHINode>(UI))
4928          PHIs.push_back(UI);
4929        else
4930          NonPHIs.push_back(UI);
4931      } else if (!isa<PHINode>(UI) &&
4932                 ((!isa<FCmpInst>(UI) &&
4933                   !isa<ICmpInst>(UI) &&
4934                   !isa<SelectInst>(UI)) ||
4935                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
4936        return false;
4937
4938      // Remember that we completed the cycle.
4939      if (UI == Phi)
4940        FoundStartPHI = true;
4941    }
4942    Worklist.append(PHIs.begin(), PHIs.end());
4943    Worklist.append(NonPHIs.begin(), NonPHIs.end());
4944  }
4945
4946  // This means we have seen one but not the other instruction of the
4947  // pattern or more than just a select and cmp.
4948  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4949      NumCmpSelectPatternInst != 2)
4950    return false;
4951
4952  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4953    return false;
4954
4955  // We found a reduction var if we have reached the original phi node and we
4956  // only have a single instruction with out-of-loop users.
4957
4958  // This instruction is allowed to have out-of-loop users.
4959  AllowedExit.insert(ExitInstruction);
4960
4961  // Save the description of this reduction variable.
4962  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4963                         ReduxDesc.MinMaxKind);
4964  Reductions[Phi] = RD;
4965  // We've ended the cycle. This is a reduction variable if we have an
4966  // outside user and it has a binary op.
4967
4968  return true;
4969}
4970
4971/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4972/// pattern corresponding to a min(X, Y) or max(X, Y).
4973LoopVectorizationLegality::ReductionInstDesc
4974LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4975                                                    ReductionInstDesc &Prev) {
4976
4977  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4978         "Expect a select instruction");
4979  Instruction *Cmp = nullptr;
4980  SelectInst *Select = nullptr;
4981
4982  // We must handle the select(cmp()) as a single instruction. Advance to the
4983  // select.
4984  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4985    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
4986      return ReductionInstDesc(false, I);
4987    return ReductionInstDesc(Select, Prev.MinMaxKind);
4988  }
4989
4990  // Only handle single use cases for now.
4991  if (!(Select = dyn_cast<SelectInst>(I)))
4992    return ReductionInstDesc(false, I);
4993  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4994      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4995    return ReductionInstDesc(false, I);
4996  if (!Cmp->hasOneUse())
4997    return ReductionInstDesc(false, I);
4998
4999  Value *CmpLeft;
5000  Value *CmpRight;
5001
5002  // Look for a min/max pattern.
5003  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5004    return ReductionInstDesc(Select, MRK_UIntMin);
5005  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5006    return ReductionInstDesc(Select, MRK_UIntMax);
5007  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5008    return ReductionInstDesc(Select, MRK_SIntMax);
5009  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5010    return ReductionInstDesc(Select, MRK_SIntMin);
5011  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5012    return ReductionInstDesc(Select, MRK_FloatMin);
5013  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5014    return ReductionInstDesc(Select, MRK_FloatMax);
5015  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5016    return ReductionInstDesc(Select, MRK_FloatMin);
5017  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5018    return ReductionInstDesc(Select, MRK_FloatMax);
5019
5020  return ReductionInstDesc(false, I);
5021}
5022
5023LoopVectorizationLegality::ReductionInstDesc
5024LoopVectorizationLegality::isReductionInstr(Instruction *I,
5025                                            ReductionKind Kind,
5026                                            ReductionInstDesc &Prev) {
5027  bool FP = I->getType()->isFloatingPointTy();
5028  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
5029  switch (I->getOpcode()) {
5030  default:
5031    return ReductionInstDesc(false, I);
5032  case Instruction::PHI:
5033      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
5034                 Kind != RK_FloatMinMax))
5035        return ReductionInstDesc(false, I);
5036    return ReductionInstDesc(I, Prev.MinMaxKind);
5037  case Instruction::Sub:
5038  case Instruction::Add:
5039    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
5040  case Instruction::Mul:
5041    return ReductionInstDesc(Kind == RK_IntegerMult, I);
5042  case Instruction::And:
5043    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
5044  case Instruction::Or:
5045    return ReductionInstDesc(Kind == RK_IntegerOr, I);
5046  case Instruction::Xor:
5047    return ReductionInstDesc(Kind == RK_IntegerXor, I);
5048  case Instruction::FMul:
5049    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
5050  case Instruction::FAdd:
5051    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
5052  case Instruction::FCmp:
5053  case Instruction::ICmp:
5054  case Instruction::Select:
5055    if (Kind != RK_IntegerMinMax &&
5056        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
5057      return ReductionInstDesc(false, I);
5058    return isMinMaxSelectCmpPattern(I, Prev);
5059  }
5060}
5061
5062LoopVectorizationLegality::InductionKind
5063LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
5064  Type *PhiTy = Phi->getType();
5065  // We only handle integer and pointer inductions variables.
5066  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
5067    return IK_NoInduction;
5068
5069  // Check that the PHI is consecutive.
5070  const SCEV *PhiScev = SE->getSCEV(Phi);
5071  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
5072  if (!AR) {
5073    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
5074    return IK_NoInduction;
5075  }
5076  const SCEV *Step = AR->getStepRecurrence(*SE);
5077
5078  // Integer inductions need to have a stride of one.
5079  if (PhiTy->isIntegerTy()) {
5080    if (Step->isOne())
5081      return IK_IntInduction;
5082    if (Step->isAllOnesValue())
5083      return IK_ReverseIntInduction;
5084    return IK_NoInduction;
5085  }
5086
5087  // Calculate the pointer stride and check if it is consecutive.
5088  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5089  if (!C)
5090    return IK_NoInduction;
5091
5092  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
5093  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
5094  if (C->getValue()->equalsInt(Size))
5095    return IK_PtrInduction;
5096  else if (C->getValue()->equalsInt(0 - Size))
5097    return IK_ReversePtrInduction;
5098
5099  return IK_NoInduction;
5100}
5101
5102bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5103  Value *In0 = const_cast<Value*>(V);
5104  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5105  if (!PN)
5106    return false;
5107
5108  return Inductions.count(PN);
5109}
5110
5111bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
5112  assert(TheLoop->contains(BB) && "Unknown block used");
5113
5114  // Blocks that do not dominate the latch need predication.
5115  BasicBlock* Latch = TheLoop->getLoopLatch();
5116  return !DT->dominates(BB, Latch);
5117}
5118
5119bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
5120                                            SmallPtrSet<Value *, 8>& SafePtrs) {
5121  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5122    // We might be able to hoist the load.
5123    if (it->mayReadFromMemory()) {
5124      LoadInst *LI = dyn_cast<LoadInst>(it);
5125      if (!LI || !SafePtrs.count(LI->getPointerOperand()))
5126        return false;
5127    }
5128
5129    // We don't predicate stores at the moment.
5130    if (it->mayWriteToMemory()) {
5131      StoreInst *SI = dyn_cast<StoreInst>(it);
5132      // We only support predication of stores in basic blocks with one
5133      // predecessor.
5134      if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
5135          !SafePtrs.count(SI->getPointerOperand()) ||
5136          !SI->getParent()->getSinglePredecessor())
5137        return false;
5138    }
5139    if (it->mayThrow())
5140      return false;
5141
5142    // Check that we don't have a constant expression that can trap as operand.
5143    for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
5144         OI != OE; ++OI) {
5145      if (Constant *C = dyn_cast<Constant>(*OI))
5146        if (C->canTrap())
5147          return false;
5148    }
5149
5150    // The instructions below can trap.
5151    switch (it->getOpcode()) {
5152    default: continue;
5153    case Instruction::UDiv:
5154    case Instruction::SDiv:
5155    case Instruction::URem:
5156    case Instruction::SRem:
5157             return false;
5158    }
5159  }
5160
5161  return true;
5162}
5163
5164LoopVectorizationCostModel::VectorizationFactor
5165LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
5166                                                      unsigned UserVF,
5167                                                      bool ForceVectorization) {
5168  // Width 1 means no vectorize
5169  VectorizationFactor Factor = { 1U, 0U };
5170  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
5171    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
5172    return Factor;
5173  }
5174
5175  if (!EnableCondStoresVectorization && Legal->NumPredStores) {
5176    DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5177    return Factor;
5178  }
5179
5180  // Find the trip count.
5181  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
5182  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5183
5184  unsigned WidestType = getWidestType();
5185  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5186  unsigned MaxSafeDepDist = -1U;
5187  if (Legal->getMaxSafeDepDistBytes() != -1U)
5188    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5189  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
5190                    WidestRegister : MaxSafeDepDist);
5191  unsigned MaxVectorSize = WidestRegister / WidestType;
5192  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
5193  DEBUG(dbgs() << "LV: The Widest register is: "
5194          << WidestRegister << " bits.\n");
5195
5196  if (MaxVectorSize == 0) {
5197    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5198    MaxVectorSize = 1;
5199  }
5200
5201  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
5202         " into one vector!");
5203
5204  unsigned VF = MaxVectorSize;
5205
5206  // If we optimize the program for size, avoid creating the tail loop.
5207  if (OptForSize) {
5208    // If we are unable to calculate the trip count then don't try to vectorize.
5209    if (TC < 2) {
5210      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5211      return Factor;
5212    }
5213
5214    // Find the maximum SIMD width that can fit within the trip count.
5215    VF = TC % MaxVectorSize;
5216
5217    if (VF == 0)
5218      VF = MaxVectorSize;
5219
5220    // If the trip count that we found modulo the vectorization factor is not
5221    // zero then we require a tail.
5222    if (VF < 2) {
5223      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5224      return Factor;
5225    }
5226  }
5227
5228  if (UserVF != 0) {
5229    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5230    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5231
5232    Factor.Width = UserVF;
5233    return Factor;
5234  }
5235
5236  float Cost = expectedCost(1);
5237#ifndef NDEBUG
5238  const float ScalarCost = Cost;
5239#endif /* NDEBUG */
5240  unsigned Width = 1;
5241  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5242
5243  // Ignore scalar width, because the user explicitly wants vectorization.
5244  if (ForceVectorization && VF > 1) {
5245    Width = 2;
5246    Cost = expectedCost(Width) / (float)Width;
5247  }
5248
5249  for (unsigned i=2; i <= VF; i*=2) {
5250    // Notice that the vector loop needs to be executed less times, so
5251    // we need to divide the cost of the vector loops by the width of
5252    // the vector elements.
5253    float VectorCost = expectedCost(i) / (float)i;
5254    DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
5255          (int)VectorCost << ".\n");
5256    if (VectorCost < Cost) {
5257      Cost = VectorCost;
5258      Width = i;
5259    }
5260  }
5261
5262  DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5263        << "LV: Vectorization seems to be not beneficial, "
5264        << "but was forced by a user.\n");
5265  DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
5266  Factor.Width = Width;
5267  Factor.Cost = Width * Cost;
5268  return Factor;
5269}
5270
5271unsigned LoopVectorizationCostModel::getWidestType() {
5272  unsigned MaxWidth = 8;
5273
5274  // For each block.
5275  for (Loop::block_iterator bb = TheLoop->block_begin(),
5276       be = TheLoop->block_end(); bb != be; ++bb) {
5277    BasicBlock *BB = *bb;
5278
5279    // For each instruction in the loop.
5280    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5281      Type *T = it->getType();
5282
5283      // Only examine Loads, Stores and PHINodes.
5284      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
5285        continue;
5286
5287      // Examine PHI nodes that are reduction variables.
5288      if (PHINode *PN = dyn_cast<PHINode>(it))
5289        if (!Legal->getReductionVars()->count(PN))
5290          continue;
5291
5292      // Examine the stored values.
5293      if (StoreInst *ST = dyn_cast<StoreInst>(it))
5294        T = ST->getValueOperand()->getType();
5295
5296      // Ignore loaded pointer types and stored pointer types that are not
5297      // consecutive. However, we do want to take consecutive stores/loads of
5298      // pointer vectors into account.
5299      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
5300        continue;
5301
5302      MaxWidth = std::max(MaxWidth,
5303                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
5304    }
5305  }
5306
5307  return MaxWidth;
5308}
5309
5310unsigned
5311LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
5312                                               unsigned UserUF,
5313                                               unsigned VF,
5314                                               unsigned LoopCost) {
5315
5316  // -- The unroll heuristics --
5317  // We unroll the loop in order to expose ILP and reduce the loop overhead.
5318  // There are many micro-architectural considerations that we can't predict
5319  // at this level. For example frontend pressure (on decode or fetch) due to
5320  // code size, or the number and capabilities of the execution ports.
5321  //
5322  // We use the following heuristics to select the unroll factor:
5323  // 1. If the code has reductions the we unroll in order to break the cross
5324  // iteration dependency.
5325  // 2. If the loop is really small then we unroll in order to reduce the loop
5326  // overhead.
5327  // 3. We don't unroll if we think that we will spill registers to memory due
5328  // to the increased register pressure.
5329
5330  // Use the user preference, unless 'auto' is selected.
5331  if (UserUF != 0)
5332    return UserUF;
5333
5334  // When we optimize for size we don't unroll.
5335  if (OptForSize)
5336    return 1;
5337
5338  // We used the distance for the unroll factor.
5339  if (Legal->getMaxSafeDepDistBytes() != -1U)
5340    return 1;
5341
5342  // Do not unroll loops with a relatively small trip count.
5343  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
5344                                              TheLoop->getLoopLatch());
5345  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
5346    return 1;
5347
5348  unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5349  DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
5350        " registers\n");
5351
5352  if (VF == 1) {
5353    if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5354      TargetNumRegisters = ForceTargetNumScalarRegs;
5355  } else {
5356    if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5357      TargetNumRegisters = ForceTargetNumVectorRegs;
5358  }
5359
5360  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
5361  // We divide by these constants so assume that we have at least one
5362  // instruction that uses at least one register.
5363  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5364  R.NumInstructions = std::max(R.NumInstructions, 1U);
5365
5366  // We calculate the unroll factor using the following formula.
5367  // Subtract the number of loop invariants from the number of available
5368  // registers. These registers are used by all of the unrolled instances.
5369  // Next, divide the remaining registers by the number of registers that is
5370  // required by the loop, in order to estimate how many parallel instances
5371  // fit without causing spills. All of this is rounded down if necessary to be
5372  // a power of two. We want power of two unroll factors to simplify any
5373  // addressing operations or alignment considerations.
5374  unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5375                              R.MaxLocalUsers);
5376
5377  // Don't count the induction variable as unrolled.
5378  if (EnableIndVarRegisterHeur)
5379    UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5380                       std::max(1U, (R.MaxLocalUsers - 1)));
5381
5382  // Clamp the unroll factor ranges to reasonable factors.
5383  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
5384
5385  // Check if the user has overridden the unroll max.
5386  if (VF == 1) {
5387    if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
5388      MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
5389  } else {
5390    if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
5391      MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
5392  }
5393
5394  // If we did not calculate the cost for VF (because the user selected the VF)
5395  // then we calculate the cost of VF here.
5396  if (LoopCost == 0)
5397    LoopCost = expectedCost(VF);
5398
5399  // Clamp the calculated UF to be between the 1 and the max unroll factor
5400  // that the target allows.
5401  if (UF > MaxUnrollSize)
5402    UF = MaxUnrollSize;
5403  else if (UF < 1)
5404    UF = 1;
5405
5406  // Unroll if we vectorized this loop and there is a reduction that could
5407  // benefit from unrolling.
5408  if (VF > 1 && Legal->getReductionVars()->size()) {
5409    DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
5410    return UF;
5411  }
5412
5413  // Note that if we've already vectorized the loop we will have done the
5414  // runtime check and so unrolling won't require further checks.
5415  bool UnrollingRequiresRuntimePointerCheck =
5416      (VF == 1 && Legal->getRuntimePointerCheck()->Need);
5417
5418  // We want to unroll small loops in order to reduce the loop overhead and
5419  // potentially expose ILP opportunities.
5420  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5421  if (!UnrollingRequiresRuntimePointerCheck &&
5422      LoopCost < SmallLoopCost) {
5423    // We assume that the cost overhead is 1 and we use the cost model
5424    // to estimate the cost of the loop and unroll until the cost of the
5425    // loop overhead is about 5% of the cost of the loop.
5426    unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5427
5428    // Unroll until store/load ports (estimated by max unroll factor) are
5429    // saturated.
5430    unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
5431    unsigned LoadsUF = UF /  (Legal->NumLoads ? Legal->NumLoads : 1);
5432
5433    if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
5434      DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
5435      return std::max(StoresUF, LoadsUF);
5436    }
5437
5438    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
5439    return SmallUF;
5440  }
5441
5442  DEBUG(dbgs() << "LV: Not Unrolling.\n");
5443  return 1;
5444}
5445
5446LoopVectorizationCostModel::RegisterUsage
5447LoopVectorizationCostModel::calculateRegisterUsage() {
5448  // This function calculates the register usage by measuring the highest number
5449  // of values that are alive at a single location. Obviously, this is a very
5450  // rough estimation. We scan the loop in a topological order in order and
5451  // assign a number to each instruction. We use RPO to ensure that defs are
5452  // met before their users. We assume that each instruction that has in-loop
5453  // users starts an interval. We record every time that an in-loop value is
5454  // used, so we have a list of the first and last occurrences of each
5455  // instruction. Next, we transpose this data structure into a multi map that
5456  // holds the list of intervals that *end* at a specific location. This multi
5457  // map allows us to perform a linear search. We scan the instructions linearly
5458  // and record each time that a new interval starts, by placing it in a set.
5459  // If we find this value in the multi-map then we remove it from the set.
5460  // The max register usage is the maximum size of the set.
5461  // We also search for instructions that are defined outside the loop, but are
5462  // used inside the loop. We need this number separately from the max-interval
5463  // usage number because when we unroll, loop-invariant values do not take
5464  // more register.
5465  LoopBlocksDFS DFS(TheLoop);
5466  DFS.perform(LI);
5467
5468  RegisterUsage R;
5469  R.NumInstructions = 0;
5470
5471  // Each 'key' in the map opens a new interval. The values
5472  // of the map are the index of the 'last seen' usage of the
5473  // instruction that is the key.
5474  typedef DenseMap<Instruction*, unsigned> IntervalMap;
5475  // Maps instruction to its index.
5476  DenseMap<unsigned, Instruction*> IdxToInstr;
5477  // Marks the end of each interval.
5478  IntervalMap EndPoint;
5479  // Saves the list of instruction indices that are used in the loop.
5480  SmallSet<Instruction*, 8> Ends;
5481  // Saves the list of values that are used in the loop but are
5482  // defined outside the loop, such as arguments and constants.
5483  SmallPtrSet<Value*, 8> LoopInvariants;
5484
5485  unsigned Index = 0;
5486  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5487       be = DFS.endRPO(); bb != be; ++bb) {
5488    R.NumInstructions += (*bb)->size();
5489    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
5490         ++it) {
5491      Instruction *I = it;
5492      IdxToInstr[Index++] = I;
5493
5494      // Save the end location of each USE.
5495      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
5496        Value *U = I->getOperand(i);
5497        Instruction *Instr = dyn_cast<Instruction>(U);
5498
5499        // Ignore non-instruction values such as arguments, constants, etc.
5500        if (!Instr) continue;
5501
5502        // If this instruction is outside the loop then record it and continue.
5503        if (!TheLoop->contains(Instr)) {
5504          LoopInvariants.insert(Instr);
5505          continue;
5506        }
5507
5508        // Overwrite previous end points.
5509        EndPoint[Instr] = Index;
5510        Ends.insert(Instr);
5511      }
5512    }
5513  }
5514
5515  // Saves the list of intervals that end with the index in 'key'.
5516  typedef SmallVector<Instruction*, 2> InstrList;
5517  DenseMap<unsigned, InstrList> TransposeEnds;
5518
5519  // Transpose the EndPoints to a list of values that end at each index.
5520  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5521       it != e; ++it)
5522    TransposeEnds[it->second].push_back(it->first);
5523
5524  SmallSet<Instruction*, 8> OpenIntervals;
5525  unsigned MaxUsage = 0;
5526
5527
5528  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5529  for (unsigned int i = 0; i < Index; ++i) {
5530    Instruction *I = IdxToInstr[i];
5531    // Ignore instructions that are never used within the loop.
5532    if (!Ends.count(I)) continue;
5533
5534    // Remove all of the instructions that end at this location.
5535    InstrList &List = TransposeEnds[i];
5536    for (unsigned int j=0, e = List.size(); j < e; ++j)
5537      OpenIntervals.erase(List[j]);
5538
5539    // Count the number of live interals.
5540    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
5541
5542    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
5543          OpenIntervals.size() << '\n');
5544
5545    // Add the current instruction to the list of open intervals.
5546    OpenIntervals.insert(I);
5547  }
5548
5549  unsigned Invariant = LoopInvariants.size();
5550  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
5551  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5552  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
5553
5554  R.LoopInvariantRegs = Invariant;
5555  R.MaxLocalUsers = MaxUsage;
5556  return R;
5557}
5558
5559unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5560  unsigned Cost = 0;
5561
5562  // For each block.
5563  for (Loop::block_iterator bb = TheLoop->block_begin(),
5564       be = TheLoop->block_end(); bb != be; ++bb) {
5565    unsigned BlockCost = 0;
5566    BasicBlock *BB = *bb;
5567
5568    // For each instruction in the old loop.
5569    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5570      // Skip dbg intrinsics.
5571      if (isa<DbgInfoIntrinsic>(it))
5572        continue;
5573
5574      unsigned C = getInstructionCost(it, VF);
5575
5576      // Check if we should override the cost.
5577      if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5578        C = ForceTargetInstructionCost;
5579
5580      BlockCost += C;
5581      DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
5582            VF << " For instruction: " << *it << '\n');
5583    }
5584
5585    // We assume that if-converted blocks have a 50% chance of being executed.
5586    // When the code is scalar then some of the blocks are avoided due to CF.
5587    // When the code is vectorized we execute all code paths.
5588    if (VF == 1 && Legal->blockNeedsPredication(*bb))
5589      BlockCost /= 2;
5590
5591    Cost += BlockCost;
5592  }
5593
5594  return Cost;
5595}
5596
5597/// \brief Check whether the address computation for a non-consecutive memory
5598/// access looks like an unlikely candidate for being merged into the indexing
5599/// mode.
5600///
5601/// We look for a GEP which has one index that is an induction variable and all
5602/// other indices are loop invariant. If the stride of this access is also
5603/// within a small bound we decide that this address computation can likely be
5604/// merged into the addressing mode.
5605/// In all other cases, we identify the address computation as complex.
5606static bool isLikelyComplexAddressComputation(Value *Ptr,
5607                                              LoopVectorizationLegality *Legal,
5608                                              ScalarEvolution *SE,
5609                                              const Loop *TheLoop) {
5610  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5611  if (!Gep)
5612    return true;
5613
5614  // We are looking for a gep with all loop invariant indices except for one
5615  // which should be an induction variable.
5616  unsigned NumOperands = Gep->getNumOperands();
5617  for (unsigned i = 1; i < NumOperands; ++i) {
5618    Value *Opd = Gep->getOperand(i);
5619    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5620        !Legal->isInductionVariable(Opd))
5621      return true;
5622  }
5623
5624  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5625  // can likely be merged into the address computation.
5626  unsigned MaxMergeDistance = 64;
5627
5628  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5629  if (!AddRec)
5630    return true;
5631
5632  // Check the step is constant.
5633  const SCEV *Step = AddRec->getStepRecurrence(*SE);
5634  // Calculate the pointer stride and check if it is consecutive.
5635  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5636  if (!C)
5637    return true;
5638
5639  const APInt &APStepVal = C->getValue()->getValue();
5640
5641  // Huge step value - give up.
5642  if (APStepVal.getBitWidth() > 64)
5643    return true;
5644
5645  int64_t StepVal = APStepVal.getSExtValue();
5646
5647  return StepVal > MaxMergeDistance;
5648}
5649
5650static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5651  if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
5652    return true;
5653  return false;
5654}
5655
5656unsigned
5657LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5658  // If we know that this instruction will remain uniform, check the cost of
5659  // the scalar version.
5660  if (Legal->isUniformAfterVectorization(I))
5661    VF = 1;
5662
5663  Type *RetTy = I->getType();
5664  Type *VectorTy = ToVectorTy(RetTy, VF);
5665
5666  // TODO: We need to estimate the cost of intrinsic calls.
5667  switch (I->getOpcode()) {
5668  case Instruction::GetElementPtr:
5669    // We mark this instruction as zero-cost because the cost of GEPs in
5670    // vectorized code depends on whether the corresponding memory instruction
5671    // is scalarized or not. Therefore, we handle GEPs with the memory
5672    // instruction cost.
5673    return 0;
5674  case Instruction::Br: {
5675    return TTI.getCFInstrCost(I->getOpcode());
5676  }
5677  case Instruction::PHI:
5678    //TODO: IF-converted IFs become selects.
5679    return 0;
5680  case Instruction::Add:
5681  case Instruction::FAdd:
5682  case Instruction::Sub:
5683  case Instruction::FSub:
5684  case Instruction::Mul:
5685  case Instruction::FMul:
5686  case Instruction::UDiv:
5687  case Instruction::SDiv:
5688  case Instruction::FDiv:
5689  case Instruction::URem:
5690  case Instruction::SRem:
5691  case Instruction::FRem:
5692  case Instruction::Shl:
5693  case Instruction::LShr:
5694  case Instruction::AShr:
5695  case Instruction::And:
5696  case Instruction::Or:
5697  case Instruction::Xor: {
5698    // Since we will replace the stride by 1 the multiplication should go away.
5699    if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5700      return 0;
5701    // Certain instructions can be cheaper to vectorize if they have a constant
5702    // second vector operand. One example of this are shifts on x86.
5703    TargetTransformInfo::OperandValueKind Op1VK =
5704      TargetTransformInfo::OK_AnyValue;
5705    TargetTransformInfo::OperandValueKind Op2VK =
5706      TargetTransformInfo::OK_AnyValue;
5707    Value *Op2 = I->getOperand(1);
5708
5709    // Check for a splat of a constant or for a non uniform vector of constants.
5710    if (isa<ConstantInt>(Op2))
5711      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5712    else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5713      Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5714      if (cast<Constant>(Op2)->getSplatValue() != nullptr)
5715        Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5716    }
5717
5718    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
5719  }
5720  case Instruction::Select: {
5721    SelectInst *SI = cast<SelectInst>(I);
5722    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5723    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5724    Type *CondTy = SI->getCondition()->getType();
5725    if (!ScalarCond)
5726      CondTy = VectorType::get(CondTy, VF);
5727
5728    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5729  }
5730  case Instruction::ICmp:
5731  case Instruction::FCmp: {
5732    Type *ValTy = I->getOperand(0)->getType();
5733    VectorTy = ToVectorTy(ValTy, VF);
5734    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5735  }
5736  case Instruction::Store:
5737  case Instruction::Load: {
5738    StoreInst *SI = dyn_cast<StoreInst>(I);
5739    LoadInst *LI = dyn_cast<LoadInst>(I);
5740    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
5741                   LI->getType());
5742    VectorTy = ToVectorTy(ValTy, VF);
5743
5744    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5745    unsigned AS = SI ? SI->getPointerAddressSpace() :
5746      LI->getPointerAddressSpace();
5747    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5748    // We add the cost of address computation here instead of with the gep
5749    // instruction because only here we know whether the operation is
5750    // scalarized.
5751    if (VF == 1)
5752      return TTI.getAddressComputationCost(VectorTy) +
5753        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5754
5755    // Scalarized loads/stores.
5756    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5757    bool Reverse = ConsecutiveStride < 0;
5758    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
5759    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
5760    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
5761      bool IsComplexComputation =
5762        isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5763      unsigned Cost = 0;
5764      // The cost of extracting from the value vector and pointer vector.
5765      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5766      for (unsigned i = 0; i < VF; ++i) {
5767        //  The cost of extracting the pointer operand.
5768        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
5769        // In case of STORE, the cost of ExtractElement from the vector.
5770        // In case of LOAD, the cost of InsertElement into the returned
5771        // vector.
5772        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
5773                                            Instruction::InsertElement,
5774                                            VectorTy, i);
5775      }
5776
5777      // The cost of the scalar loads/stores.
5778      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
5779      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5780                                       Alignment, AS);
5781      return Cost;
5782    }
5783
5784    // Wide load/stores.
5785    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
5786    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5787
5788    if (Reverse)
5789      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
5790                                  VectorTy, 0);
5791    return Cost;
5792  }
5793  case Instruction::ZExt:
5794  case Instruction::SExt:
5795  case Instruction::FPToUI:
5796  case Instruction::FPToSI:
5797  case Instruction::FPExt:
5798  case Instruction::PtrToInt:
5799  case Instruction::IntToPtr:
5800  case Instruction::SIToFP:
5801  case Instruction::UIToFP:
5802  case Instruction::Trunc:
5803  case Instruction::FPTrunc:
5804  case Instruction::BitCast: {
5805    // We optimize the truncation of induction variable.
5806    // The cost of these is the same as the scalar operation.
5807    if (I->getOpcode() == Instruction::Trunc &&
5808        Legal->isInductionVariable(I->getOperand(0)))
5809      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
5810                                  I->getOperand(0)->getType());
5811
5812    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
5813    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
5814  }
5815  case Instruction::Call: {
5816    CallInst *CI = cast<CallInst>(I);
5817    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
5818    assert(ID && "Not an intrinsic call!");
5819    Type *RetTy = ToVectorTy(CI->getType(), VF);
5820    SmallVector<Type*, 4> Tys;
5821    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
5822      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
5823    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
5824  }
5825  default: {
5826    // We are scalarizing the instruction. Return the cost of the scalar
5827    // instruction, plus the cost of insert and extract into vector
5828    // elements, times the vector width.
5829    unsigned Cost = 0;
5830
5831    if (!RetTy->isVoidTy() && VF != 1) {
5832      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
5833                                                VectorTy);
5834      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
5835                                                VectorTy);
5836
5837      // The cost of inserting the results plus extracting each one of the
5838      // operands.
5839      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
5840    }
5841
5842    // The cost of executing VF copies of the scalar instruction. This opcode
5843    // is unknown. Assume that it is the same as 'mul'.
5844    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
5845    return Cost;
5846  }
5847  }// end of switch.
5848}
5849
5850Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
5851  if (Scalar->isVoidTy() || VF == 1)
5852    return Scalar;
5853  return VectorType::get(Scalar, VF);
5854}
5855
5856char LoopVectorize::ID = 0;
5857static const char lv_name[] = "Loop Vectorization";
5858INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5859INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5860INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
5861INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5862INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5863INITIALIZE_PASS_DEPENDENCY(LCSSA)
5864INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5865INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5866INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5867
5868namespace llvm {
5869  Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
5870    return new LoopVectorize(NoUnrolling, AlwaysVectorize);
5871  }
5872}
5873
5874bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5875  // Check for a store.
5876  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5877    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5878
5879  // Check for a load.
5880  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5881    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5882
5883  return false;
5884}
5885
5886
5887void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
5888                                             bool IfPredicateStore) {
5889  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5890  // Holds vector parameters or scalars, in case of uniform vals.
5891  SmallVector<VectorParts, 4> Params;
5892
5893  setDebugLocFromInst(Builder, Instr);
5894
5895  // Find all of the vectorized parameters.
5896  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5897    Value *SrcOp = Instr->getOperand(op);
5898
5899    // If we are accessing the old induction variable, use the new one.
5900    if (SrcOp == OldInduction) {
5901      Params.push_back(getVectorValue(SrcOp));
5902      continue;
5903    }
5904
5905    // Try using previously calculated values.
5906    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5907
5908    // If the src is an instruction that appeared earlier in the basic block
5909    // then it should already be vectorized.
5910    if (SrcInst && OrigLoop->contains(SrcInst)) {
5911      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5912      // The parameter is a vector value from earlier.
5913      Params.push_back(WidenMap.get(SrcInst));
5914    } else {
5915      // The parameter is a scalar from outside the loop. Maybe even a constant.
5916      VectorParts Scalars;
5917      Scalars.append(UF, SrcOp);
5918      Params.push_back(Scalars);
5919    }
5920  }
5921
5922  assert(Params.size() == Instr->getNumOperands() &&
5923         "Invalid number of operands");
5924
5925  // Does this instruction return a value ?
5926  bool IsVoidRetTy = Instr->getType()->isVoidTy();
5927
5928  Value *UndefVec = IsVoidRetTy ? nullptr :
5929  UndefValue::get(Instr->getType());
5930  // Create a new entry in the WidenMap and initialize it to Undef or Null.
5931  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5932
5933  Instruction *InsertPt = Builder.GetInsertPoint();
5934  BasicBlock *IfBlock = Builder.GetInsertBlock();
5935  BasicBlock *CondBlock = nullptr;
5936
5937  VectorParts Cond;
5938  Loop *VectorLp = nullptr;
5939  if (IfPredicateStore) {
5940    assert(Instr->getParent()->getSinglePredecessor() &&
5941           "Only support single predecessor blocks");
5942    Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
5943                          Instr->getParent());
5944    VectorLp = LI->getLoopFor(IfBlock);
5945    assert(VectorLp && "Must have a loop for this block");
5946  }
5947
5948  // For each vector unroll 'part':
5949  for (unsigned Part = 0; Part < UF; ++Part) {
5950    // For each scalar that we create:
5951
5952    // Start an "if (pred) a[i] = ..." block.
5953    Value *Cmp = nullptr;
5954    if (IfPredicateStore) {
5955      if (Cond[Part]->getType()->isVectorTy())
5956        Cond[Part] =
5957            Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
5958      Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
5959                               ConstantInt::get(Cond[Part]->getType(), 1));
5960      CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
5961      LoopVectorBody.push_back(CondBlock);
5962      VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
5963      // Update Builder with newly created basic block.
5964      Builder.SetInsertPoint(InsertPt);
5965    }
5966
5967    Instruction *Cloned = Instr->clone();
5968      if (!IsVoidRetTy)
5969        Cloned->setName(Instr->getName() + ".cloned");
5970      // Replace the operands of the cloned instructions with extracted scalars.
5971      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5972        Value *Op = Params[op][Part];
5973        Cloned->setOperand(op, Op);
5974      }
5975
5976      // Place the cloned scalar in the new loop.
5977      Builder.Insert(Cloned);
5978
5979      // If the original scalar returns a value we need to place it in a vector
5980      // so that future users will be able to use it.
5981      if (!IsVoidRetTy)
5982        VecResults[Part] = Cloned;
5983
5984    // End if-block.
5985      if (IfPredicateStore) {
5986        BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
5987        LoopVectorBody.push_back(NewIfBlock);
5988        VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
5989        Builder.SetInsertPoint(InsertPt);
5990        Instruction *OldBr = IfBlock->getTerminator();
5991        BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
5992        OldBr->eraseFromParent();
5993        IfBlock = NewIfBlock;
5994      }
5995  }
5996}
5997
5998void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
5999  StoreInst *SI = dyn_cast<StoreInst>(Instr);
6000  bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6001
6002  return scalarizeInstruction(Instr, IfPredicateStore);
6003}
6004
6005Value *InnerLoopUnroller::reverseVector(Value *Vec) {
6006  return Vec;
6007}
6008
6009Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
6010  return V;
6011}
6012
6013Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
6014                                               bool Negate) {
6015  // When unrolling and the VF is 1, we only need to add a simple scalar.
6016  Type *ITy = Val->getType();
6017  assert(!ITy->isVectorTy() && "Val must be a scalar");
6018  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
6019  return Builder.CreateAdd(Val, C, "induction");
6020}
6021