LoopVectorize.cpp revision d3071bb042303ed239e5c770fd4026bfc339fcd0
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9#include "LoopVectorize.h"
10#include "llvm/ADT/StringExtras.h"
11#include "llvm/Analysis/AliasAnalysis.h"
12#include "llvm/Analysis/AliasSetTracker.h"
13#include "llvm/Analysis/Dominators.h"
14#include "llvm/Analysis/LoopInfo.h"
15#include "llvm/Analysis/LoopIterator.h"
16#include "llvm/Analysis/LoopPass.h"
17#include "llvm/Analysis/ScalarEvolutionExpander.h"
18#include "llvm/Analysis/ScalarEvolutionExpander.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/Analysis/Verifier.h"
22#include "llvm/Constants.h"
23#include "llvm/DataLayout.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/TargetTransformInfo.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Vectorize.h"
39#include "llvm/Type.h"
40#include "llvm/Value.h"
41
42static cl::opt<unsigned>
43VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
44                    cl::desc("Sets the SIMD width. Zero is autoselect."));
45
46static cl::opt<bool>
47EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
48                   cl::desc("Enable if-conversion during vectorization."));
49
50namespace {
51
52/// The LoopVectorize Pass.
53struct LoopVectorize : public LoopPass {
54  /// Pass identification, replacement for typeid
55  static char ID;
56
57  explicit LoopVectorize() : LoopPass(ID) {
58    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
59  }
60
61  ScalarEvolution *SE;
62  DataLayout *DL;
63  LoopInfo *LI;
64  TargetTransformInfo *TTI;
65  DominatorTree *DT;
66
67  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
68    // We only vectorize innermost loops.
69    if (!L->empty())
70      return false;
71
72    SE = &getAnalysis<ScalarEvolution>();
73    DL = getAnalysisIfAvailable<DataLayout>();
74    LI = &getAnalysis<LoopInfo>();
75    TTI = getAnalysisIfAvailable<TargetTransformInfo>();
76    DT = &getAnalysis<DominatorTree>();
77
78    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
79          L->getHeader()->getParent()->getName() << "\"\n");
80
81    // Check if it is legal to vectorize the loop.
82    LoopVectorizationLegality LVL(L, SE, DL, DT);
83    if (!LVL.canVectorize()) {
84      DEBUG(dbgs() << "LV: Not vectorizing.\n");
85      return false;
86    }
87
88    // Select the preffered vectorization factor.
89    const VectorTargetTransformInfo *VTTI = 0;
90    if (TTI)
91      VTTI = TTI->getVectorTargetTransformInfo();
92    // Use the cost model.
93    LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
94
95    // Check the function attribues to find out if this function should be
96    // optimized for size.
97    Function *F = L->getHeader()->getParent();
98    Attribute::AttrVal SzAttr= Attribute::OptimizeForSize;
99    bool OptForSize = F->getFnAttributes().hasAttribute(SzAttr);
100
101    unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
102
103    if (VF == 1) {
104      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
105      return false;
106    }
107
108    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
109          F->getParent()->getModuleIdentifier()<<"\n");
110
111    // If we decided that it is *legal* to vectorizer the loop then do it.
112    InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF);
113    LB.vectorize(&LVL);
114
115    DEBUG(verifyFunction(*L->getHeader()->getParent()));
116    return true;
117  }
118
119  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
120    LoopPass::getAnalysisUsage(AU);
121    AU.addRequiredID(LoopSimplifyID);
122    AU.addRequiredID(LCSSAID);
123    AU.addRequired<LoopInfo>();
124    AU.addRequired<ScalarEvolution>();
125    AU.addRequired<DominatorTree>();
126    AU.addPreserved<LoopInfo>();
127    AU.addPreserved<DominatorTree>();
128  }
129
130};
131
132}// namespace
133
134//===----------------------------------------------------------------------===//
135// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
136// LoopVectorizationCostModel.
137//===----------------------------------------------------------------------===//
138
139void
140LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
141                                                       Loop *Lp, Value *Ptr) {
142  const SCEV *Sc = SE->getSCEV(Ptr);
143  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
144  assert(AR && "Invalid addrec expression");
145  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
146  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
147  Pointers.push_back(Ptr);
148  Starts.push_back(AR->getStart());
149  Ends.push_back(ScEnd);
150}
151
152Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
153  // Create the types.
154  LLVMContext &C = V->getContext();
155  Type *VTy = VectorType::get(V->getType(), VF);
156  Type *I32 = IntegerType::getInt32Ty(C);
157
158  // Save the current insertion location.
159  Instruction *Loc = Builder.GetInsertPoint();
160
161  // We need to place the broadcast of invariant variables outside the loop.
162  Instruction *Instr = dyn_cast<Instruction>(V);
163  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
164  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
165
166  // Place the code for broadcasting invariant variables in the new preheader.
167  if (Invariant)
168    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
169
170  Constant *Zero = ConstantInt::get(I32, 0);
171  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
172  Value *UndefVal = UndefValue::get(VTy);
173  // Insert the value into a new vector.
174  Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
175  // Broadcast the scalar into all locations in the vector.
176  Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
177                                            "broadcast");
178
179  // Restore the builder insertion point.
180  if (Invariant)
181    Builder.SetInsertPoint(Loc);
182
183  return Shuf;
184}
185
186Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
187  assert(Val->getType()->isVectorTy() && "Must be a vector");
188  assert(Val->getType()->getScalarType()->isIntegerTy() &&
189         "Elem must be an integer");
190  // Create the types.
191  Type *ITy = Val->getType()->getScalarType();
192  VectorType *Ty = cast<VectorType>(Val->getType());
193  int VLen = Ty->getNumElements();
194  SmallVector<Constant*, 8> Indices;
195
196  // Create a vector of consecutive numbers from zero to VF.
197  for (int i = 0; i < VLen; ++i)
198    Indices.push_back(ConstantInt::get(ITy, Negate ? (-i): i ));
199
200  // Add the consecutive indices to the vector value.
201  Constant *Cv = ConstantVector::get(Indices);
202  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
203  return Builder.CreateAdd(Val, Cv, "induction");
204}
205
206bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
207  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
208
209  // If this value is a pointer induction variable we know it is consecutive.
210  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
211  if (Phi && Inductions.count(Phi)) {
212    InductionInfo II = Inductions[Phi];
213    if (PtrInduction == II.IK)
214      return true;
215  }
216
217  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
218  if (!Gep)
219    return false;
220
221  unsigned NumOperands = Gep->getNumOperands();
222  Value *LastIndex = Gep->getOperand(NumOperands - 1);
223
224  // Check that all of the gep indices are uniform except for the last.
225  for (unsigned i = 0; i < NumOperands - 1; ++i)
226    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
227      return false;
228
229  // We can emit wide load/stores only if the last index is the induction
230  // variable.
231  const SCEV *Last = SE->getSCEV(LastIndex);
232  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
233    const SCEV *Step = AR->getStepRecurrence(*SE);
234
235    // The memory is consecutive because the last index is consecutive
236    // and all other indices are loop invariant.
237    if (Step->isOne())
238      return true;
239  }
240
241  return false;
242}
243
244bool LoopVectorizationLegality::isUniform(Value *V) {
245  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
246}
247
248Value *InnerLoopVectorizer::getVectorValue(Value *V) {
249  assert(V != Induction && "The new induction variable should not be used.");
250  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
251  // If we saved a vectorized copy of V, use it.
252  Value *&MapEntry = WidenMap[V];
253  if (MapEntry)
254    return MapEntry;
255
256  // Broadcast V and save the value for future uses.
257  Value *B = getBroadcastInstrs(V);
258  MapEntry = B;
259  return B;
260}
261
262Constant*
263InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
264  return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
265}
266
267void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
268  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
269  // Holds vector parameters or scalars, in case of uniform vals.
270  SmallVector<Value*, 8> Params;
271
272  // Find all of the vectorized parameters.
273  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
274    Value *SrcOp = Instr->getOperand(op);
275
276    // If we are accessing the old induction variable, use the new one.
277    if (SrcOp == OldInduction) {
278      Params.push_back(getVectorValue(SrcOp));
279      continue;
280    }
281
282    // Try using previously calculated values.
283    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
284
285    // If the src is an instruction that appeared earlier in the basic block
286    // then it should already be vectorized.
287    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
288      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
289      // The parameter is a vector value from earlier.
290      Params.push_back(WidenMap[SrcInst]);
291    } else {
292      // The parameter is a scalar from outside the loop. Maybe even a constant.
293      Params.push_back(SrcOp);
294    }
295  }
296
297  assert(Params.size() == Instr->getNumOperands() &&
298         "Invalid number of operands");
299
300  // Does this instruction return a value ?
301  bool IsVoidRetTy = Instr->getType()->isVoidTy();
302  Value *VecResults = 0;
303
304  // If we have a return value, create an empty vector. We place the scalarized
305  // instructions in this vector.
306  if (!IsVoidRetTy)
307    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
308
309  // For each scalar that we create:
310  for (unsigned i = 0; i < VF; ++i) {
311    Instruction *Cloned = Instr->clone();
312    if (!IsVoidRetTy)
313      Cloned->setName(Instr->getName() + ".cloned");
314    // Replace the operands of the cloned instrucions with extracted scalars.
315    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
316      Value *Op = Params[op];
317      // Param is a vector. Need to extract the right lane.
318      if (Op->getType()->isVectorTy())
319        Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
320      Cloned->setOperand(op, Op);
321    }
322
323    // Place the cloned scalar in the new loop.
324    Builder.Insert(Cloned);
325
326    // If the original scalar returns a value we need to place it in a vector
327    // so that future users will be able to use it.
328    if (!IsVoidRetTy)
329      VecResults = Builder.CreateInsertElement(VecResults, Cloned,
330                                               Builder.getInt32(i));
331  }
332
333  if (!IsVoidRetTy)
334    WidenMap[Instr] = VecResults;
335}
336
337Value*
338InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
339                                     Instruction *Loc) {
340  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
341  Legal->getRuntimePointerCheck();
342
343  if (!PtrRtCheck->Need)
344    return NULL;
345
346  Value *MemoryRuntimeCheck = 0;
347  unsigned NumPointers = PtrRtCheck->Pointers.size();
348  SmallVector<Value* , 2> Starts;
349  SmallVector<Value* , 2> Ends;
350
351  SCEVExpander Exp(*SE, "induction");
352
353  // Use this type for pointer arithmetic.
354  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
355
356  for (unsigned i = 0; i < NumPointers; ++i) {
357    Value *Ptr = PtrRtCheck->Pointers[i];
358    const SCEV *Sc = SE->getSCEV(Ptr);
359
360    if (SE->isLoopInvariant(Sc, OrigLoop)) {
361      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
362            *Ptr <<"\n");
363      Starts.push_back(Ptr);
364      Ends.push_back(Ptr);
365    } else {
366      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
367
368      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
369      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
370      Starts.push_back(Start);
371      Ends.push_back(End);
372    }
373  }
374
375  for (unsigned i = 0; i < NumPointers; ++i) {
376    for (unsigned j = i+1; j < NumPointers; ++j) {
377      Instruction::CastOps Op = Instruction::BitCast;
378      Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
379      Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
380      Value *End0 =   CastInst::Create(Op, Ends[i],   PtrArithTy, "bc", Loc);
381      Value *End1 =   CastInst::Create(Op, Ends[j],   PtrArithTy, "bc", Loc);
382
383      Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
384                                    Start0, End1, "bound0", Loc);
385      Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
386                                    Start1, End0, "bound1", Loc);
387      Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
388                                                 "found.conflict", Loc);
389      if (MemoryRuntimeCheck)
390        MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
391                                                    MemoryRuntimeCheck,
392                                                    IsConflict,
393                                                    "conflict.rdx", Loc);
394      else
395        MemoryRuntimeCheck = IsConflict;
396
397    }
398  }
399
400  return MemoryRuntimeCheck;
401}
402
403void
404InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
405  /*
406   In this function we generate a new loop. The new loop will contain
407   the vectorized instructions while the old loop will continue to run the
408   scalar remainder.
409
410       [ ] <-- vector loop bypass.
411     /  |
412    /   v
413   |   [ ]     <-- vector pre header.
414   |    |
415   |    v
416   |   [  ] \
417   |   [  ]_|   <-- vector loop.
418   |    |
419    \   v
420      >[ ]   <--- middle-block.
421     /  |
422    /   v
423   |   [ ]     <--- new preheader.
424   |    |
425   |    v
426   |   [ ] \
427   |   [ ]_|   <-- old scalar loop to handle remainder.
428    \   |
429     \  v
430      >[ ]     <-- exit block.
431   ...
432   */
433
434  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
435  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
436  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
437  assert(ExitBlock && "Must have an exit block");
438
439  // Some loops have a single integer induction variable, while other loops
440  // don't. One example is c++ iterators that often have multiple pointer
441  // induction variables. In the code below we also support a case where we
442  // don't have a single induction variable.
443  OldInduction = Legal->getInduction();
444  Type *IdxTy = OldInduction ? OldInduction->getType() :
445  DL->getIntPtrType(SE->getContext());
446
447  // Find the loop boundaries.
448  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
449  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
450
451  // Get the total trip count from the count by adding 1.
452  ExitCount = SE->getAddExpr(ExitCount,
453                             SE->getConstant(ExitCount->getType(), 1));
454
455  // Expand the trip count and place the new instructions in the preheader.
456  // Notice that the pre-header does not change, only the loop body.
457  SCEVExpander Exp(*SE, "induction");
458
459  // Count holds the overall loop count (N).
460  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
461                                   BypassBlock->getTerminator());
462
463  // The loop index does not have to start at Zero. Find the original start
464  // value from the induction PHI node. If we don't have an induction variable
465  // then we know that it starts at zero.
466  Value *StartIdx = OldInduction ?
467  OldInduction->getIncomingValueForBlock(BypassBlock):
468  ConstantInt::get(IdxTy, 0);
469
470  assert(BypassBlock && "Invalid loop structure");
471
472  // Generate the code that checks in runtime if arrays overlap.
473  Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
474                                              BypassBlock->getTerminator());
475
476  // Split the single block loop into the two loop structure described above.
477  BasicBlock *VectorPH =
478  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
479  BasicBlock *VecBody =
480  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
481  BasicBlock *MiddleBlock =
482  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
483  BasicBlock *ScalarPH =
484  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
485
486  // This is the location in which we add all of the logic for bypassing
487  // the new vector loop.
488  Instruction *Loc = BypassBlock->getTerminator();
489
490  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
491  // inside the loop.
492  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
493
494  // Generate the induction variable.
495  Induction = Builder.CreatePHI(IdxTy, 2, "index");
496  Constant *Step = ConstantInt::get(IdxTy, VF);
497
498  // We may need to extend the index in case there is a type mismatch.
499  // We know that the count starts at zero and does not overflow.
500  if (Count->getType() != IdxTy) {
501    // The exit count can be of pointer type. Convert it to the correct
502    // integer type.
503    if (ExitCount->getType()->isPointerTy())
504      Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
505    else
506      Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
507  }
508
509  // Add the start index to the loop count to get the new end index.
510  Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
511
512  // Now we need to generate the expression for N - (N % VF), which is
513  // the part that the vectorized body will execute.
514  Constant *CIVF = ConstantInt::get(IdxTy, VF);
515  Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
516  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
517  Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
518                                                     "end.idx.rnd.down", Loc);
519
520  // Now, compare the new count to zero. If it is zero skip the vector loop and
521  // jump to the scalar loop.
522  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
523                               IdxEndRoundDown,
524                               StartIdx,
525                               "cmp.zero", Loc);
526
527  // If we are using memory runtime checks, include them in.
528  if (MemoryRuntimeCheck)
529    Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
530                                 "CntOrMem", Loc);
531
532  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
533  // Remove the old terminator.
534  Loc->eraseFromParent();
535
536  // We are going to resume the execution of the scalar loop.
537  // Go over all of the induction variables that we found and fix the
538  // PHIs that are left in the scalar version of the loop.
539  // The starting values of PHI nodes depend on the counter of the last
540  // iteration in the vectorized loop.
541  // If we come from a bypass edge then we need to start from the original
542  // start value.
543
544  // This variable saves the new starting index for the scalar loop.
545  PHINode *ResumeIndex = 0;
546  LoopVectorizationLegality::InductionList::iterator I, E;
547  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
548  for (I = List->begin(), E = List->end(); I != E; ++I) {
549    PHINode *OrigPhi = I->first;
550    LoopVectorizationLegality::InductionInfo II = I->second;
551    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
552                                         MiddleBlock->getTerminator());
553    Value *EndValue = 0;
554    switch (II.IK) {
555    case LoopVectorizationLegality::NoInduction:
556      llvm_unreachable("Unknown induction");
557    case LoopVectorizationLegality::IntInduction: {
558      // Handle the integer induction counter:
559      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
560      assert(OrigPhi == OldInduction && "Unknown integer PHI");
561      // We know what the end value is.
562      EndValue = IdxEndRoundDown;
563      // We also know which PHI node holds it.
564      ResumeIndex = ResumeVal;
565      break;
566    }
567    case LoopVectorizationLegality::ReverseIntInduction: {
568      // Convert the CountRoundDown variable to the PHI size.
569      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
570      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
571      Value *CRD = CountRoundDown;
572      if (CRDSize > IISize)
573        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
574                               II.StartValue->getType(),
575                               "tr.crd", BypassBlock->getTerminator());
576      else if (CRDSize < IISize)
577        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
578                               II.StartValue->getType(),
579                               "sext.crd", BypassBlock->getTerminator());
580      // Handle reverse integer induction counter:
581      EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
582                                           BypassBlock->getTerminator());
583      break;
584    }
585    case LoopVectorizationLegality::PtrInduction: {
586      // For pointer induction variables, calculate the offset using
587      // the end index.
588      EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
589                                           "ptr.ind.end",
590                                           BypassBlock->getTerminator());
591      break;
592    }
593    }// end of case
594
595    // The new PHI merges the original incoming value, in case of a bypass,
596    // or the value at the end of the vectorized loop.
597    ResumeVal->addIncoming(II.StartValue, BypassBlock);
598    ResumeVal->addIncoming(EndValue, VecBody);
599
600    // Fix the scalar body counter (PHI node).
601    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
602    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
603  }
604
605  // If we are generating a new induction variable then we also need to
606  // generate the code that calculates the exit value. This value is not
607  // simply the end of the counter because we may skip the vectorized body
608  // in case of a runtime check.
609  if (!OldInduction){
610    assert(!ResumeIndex && "Unexpected resume value found");
611    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
612                                  MiddleBlock->getTerminator());
613    ResumeIndex->addIncoming(StartIdx, BypassBlock);
614    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
615  }
616
617  // Make sure that we found the index where scalar loop needs to continue.
618  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
619         "Invalid resume Index");
620
621  // Add a check in the middle block to see if we have completed
622  // all of the iterations in the first vector loop.
623  // If (N - N%VF) == N, then we *don't* need to run the remainder.
624  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
625                                ResumeIndex, "cmp.n",
626                                MiddleBlock->getTerminator());
627
628  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
629  // Remove the old terminator.
630  MiddleBlock->getTerminator()->eraseFromParent();
631
632  // Create i+1 and fill the PHINode.
633  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
634  Induction->addIncoming(StartIdx, VectorPH);
635  Induction->addIncoming(NextIdx, VecBody);
636  // Create the compare.
637  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
638  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
639
640  // Now we have two terminators. Remove the old one from the block.
641  VecBody->getTerminator()->eraseFromParent();
642
643  // Get ready to start creating new instructions into the vectorized body.
644  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
645
646  // Create and register the new vector loop.
647  Loop* Lp = new Loop();
648  Loop *ParentLoop = OrigLoop->getParentLoop();
649
650  // Insert the new loop into the loop nest and register the new basic blocks.
651  if (ParentLoop) {
652    ParentLoop->addChildLoop(Lp);
653    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
654    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
655    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
656  } else {
657    LI->addTopLevelLoop(Lp);
658  }
659
660  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
661
662  // Save the state.
663  LoopVectorPreHeader = VectorPH;
664  LoopScalarPreHeader = ScalarPH;
665  LoopMiddleBlock = MiddleBlock;
666  LoopExitBlock = ExitBlock;
667  LoopVectorBody = VecBody;
668  LoopScalarBody = OldBasicBlock;
669  LoopBypassBlock = BypassBlock;
670}
671
672/// This function returns the identity element (or neutral element) for
673/// the operation K.
674static unsigned
675getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
676  switch (K) {
677  case LoopVectorizationLegality::IntegerXor:
678  case LoopVectorizationLegality::IntegerAdd:
679  case LoopVectorizationLegality::IntegerOr:
680    // Adding, Xoring, Oring zero to a number does not change it.
681    return 0;
682  case LoopVectorizationLegality::IntegerMult:
683    // Multiplying a number by 1 does not change it.
684    return 1;
685  case LoopVectorizationLegality::IntegerAnd:
686    // AND-ing a number with an all-1 value does not change it.
687    return -1;
688  default:
689    llvm_unreachable("Unknown reduction kind");
690  }
691}
692
693static bool
694isTriviallyVectorizableIntrinsic(Instruction *Inst) {
695  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
696  if (!II)
697    return false;
698  switch (II->getIntrinsicID()) {
699  case Intrinsic::sqrt:
700  case Intrinsic::sin:
701  case Intrinsic::cos:
702  case Intrinsic::exp:
703  case Intrinsic::exp2:
704  case Intrinsic::log:
705  case Intrinsic::log10:
706  case Intrinsic::log2:
707  case Intrinsic::fabs:
708  case Intrinsic::floor:
709  case Intrinsic::ceil:
710  case Intrinsic::trunc:
711  case Intrinsic::rint:
712  case Intrinsic::nearbyint:
713  case Intrinsic::pow:
714  case Intrinsic::fma:
715    return true;
716  default:
717    return false;
718  }
719  return false;
720}
721
722void
723InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
724  //===------------------------------------------------===//
725  //
726  // Notice: any optimization or new instruction that go
727  // into the code below should be also be implemented in
728  // the cost-model.
729  //
730  //===------------------------------------------------===//
731  BasicBlock &BB = *OrigLoop->getHeader();
732  Constant *Zero =
733  ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
734
735  // In order to support reduction variables we need to be able to vectorize
736  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
737  // stages. First, we create a new vector PHI node with no incoming edges.
738  // We use this value when we vectorize all of the instructions that use the
739  // PHI. Next, after all of the instructions in the block are complete we
740  // add the new incoming edges to the PHI. At this point all of the
741  // instructions in the basic block are vectorized, so we can use them to
742  // construct the PHI.
743  PhiVector RdxPHIsToFix;
744
745  // Scan the loop in a topological order to ensure that defs are vectorized
746  // before users.
747  LoopBlocksDFS DFS(OrigLoop);
748  DFS.perform(LI);
749
750  // Vectorize all of the blocks in the original loop.
751  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
752       be = DFS.endRPO(); bb != be; ++bb)
753    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
754
755  // At this point every instruction in the original loop is widened to
756  // a vector form. We are almost done. Now, we need to fix the PHI nodes
757  // that we vectorized. The PHI nodes are currently empty because we did
758  // not want to introduce cycles. Notice that the remaining PHI nodes
759  // that we need to fix are reduction variables.
760
761  // Create the 'reduced' values for each of the induction vars.
762  // The reduced values are the vector values that we scalarize and combine
763  // after the loop is finished.
764  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
765       it != e; ++it) {
766    PHINode *RdxPhi = *it;
767    PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
768    assert(RdxPhi && "Unable to recover vectorized PHI");
769
770    // Find the reduction variable descriptor.
771    assert(Legal->getReductionVars()->count(RdxPhi) &&
772           "Unable to find the reduction variable");
773    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
774    (*Legal->getReductionVars())[RdxPhi];
775
776    // We need to generate a reduction vector from the incoming scalar.
777    // To do so, we need to generate the 'identity' vector and overide
778    // one of the elements with the incoming scalar reduction. We need
779    // to do it in the vector-loop preheader.
780    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
781
782    // This is the vector-clone of the value that leaves the loop.
783    Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
784    Type *VecTy = VectorExit->getType();
785
786    // Find the reduction identity variable. Zero for addition, or, xor,
787    // one for multiplication, -1 for And.
788    Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
789                                          VecTy->getScalarType());
790
791    // This vector is the Identity vector where the first element is the
792    // incoming scalar reduction.
793    Value *VectorStart = Builder.CreateInsertElement(Identity,
794                                                     RdxDesc.StartValue, Zero);
795
796    // Fix the vector-loop phi.
797    // We created the induction variable so we know that the
798    // preheader is the first entry.
799    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
800
801    // Reductions do not have to start at zero. They can start with
802    // any loop invariant values.
803    VecRdxPhi->addIncoming(VectorStart, VecPreheader);
804    Value *Val =
805    getVectorValue(RdxPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
806    VecRdxPhi->addIncoming(Val, LoopVectorBody);
807
808    // Before each round, move the insertion point right between
809    // the PHIs and the values we are going to write.
810    // This allows us to write both PHINodes and the extractelement
811    // instructions.
812    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
813
814    // This PHINode contains the vectorized reduction variable, or
815    // the initial value vector, if we bypass the vector loop.
816    PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
817    NewPhi->addIncoming(VectorStart, LoopBypassBlock);
818    NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
819
820    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
821    // and vector ops, reducing the set of values being computed by half each
822    // round.
823    assert(isPowerOf2_32(VF) &&
824           "Reduction emission only supported for pow2 vectors!");
825    Value *TmpVec = NewPhi;
826    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
827    for (unsigned i = VF; i != 1; i >>= 1) {
828      // Move the upper half of the vector to the lower half.
829      for (unsigned j = 0; j != i/2; ++j)
830        ShuffleMask[j] = Builder.getInt32(i/2 + j);
831
832      // Fill the rest of the mask with undef.
833      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
834                UndefValue::get(Builder.getInt32Ty()));
835
836      Value *Shuf =
837        Builder.CreateShuffleVector(TmpVec,
838                                    UndefValue::get(TmpVec->getType()),
839                                    ConstantVector::get(ShuffleMask),
840                                    "rdx.shuf");
841
842      // Emit the operation on the shuffled value.
843      switch (RdxDesc.Kind) {
844      case LoopVectorizationLegality::IntegerAdd:
845        TmpVec = Builder.CreateAdd(TmpVec, Shuf, "add.rdx");
846        break;
847      case LoopVectorizationLegality::IntegerMult:
848        TmpVec = Builder.CreateMul(TmpVec, Shuf, "mul.rdx");
849        break;
850      case LoopVectorizationLegality::IntegerOr:
851        TmpVec = Builder.CreateOr(TmpVec, Shuf, "or.rdx");
852        break;
853      case LoopVectorizationLegality::IntegerAnd:
854        TmpVec = Builder.CreateAnd(TmpVec, Shuf, "and.rdx");
855        break;
856      case LoopVectorizationLegality::IntegerXor:
857        TmpVec = Builder.CreateXor(TmpVec, Shuf, "xor.rdx");
858        break;
859      default:
860        llvm_unreachable("Unknown reduction operation");
861      }
862    }
863
864    // The result is in the first element of the vector.
865    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
866
867    // Now, we need to fix the users of the reduction variable
868    // inside and outside of the scalar remainder loop.
869    // We know that the loop is in LCSSA form. We need to update the
870    // PHI nodes in the exit blocks.
871    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
872         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
873      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
874      if (!LCSSAPhi) continue;
875
876      // All PHINodes need to have a single entry edge, or two if
877      // we already fixed them.
878      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
879
880      // We found our reduction value exit-PHI. Update it with the
881      // incoming bypass edge.
882      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
883        // Add an edge coming from the bypass.
884        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
885        break;
886      }
887    }// end of the LCSSA phi scan.
888
889    // Fix the scalar loop reduction variable with the incoming reduction sum
890    // from the vector body and from the backedge value.
891    int IncomingEdgeBlockIdx =
892    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
893    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
894    // Pick the other block.
895    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
896    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
897    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
898  }// end of for each redux variable.
899}
900
901Value *InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
902  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
903         "Invalid edge");
904
905  Value *SrcMask = createBlockInMask(Src);
906
907  // The terminator has to be a branch inst!
908  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
909  assert(BI && "Unexpected terminator found");
910
911  Value *EdgeMask = SrcMask;
912  if (BI->isConditional()) {
913    EdgeMask = getVectorValue(BI->getCondition());
914    if (BI->getSuccessor(0) != Dst)
915      EdgeMask = Builder.CreateNot(EdgeMask);
916  }
917
918  return Builder.CreateAnd(EdgeMask, SrcMask);
919}
920
921Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
922  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
923
924  // Loop incoming mask is all-one.
925  if (OrigLoop->getHeader() == BB) {
926    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
927    return getVectorValue(C);
928  }
929
930  // This is the block mask. We OR all incoming edges, and with zero.
931  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
932  Value *BlockMask = getVectorValue(Zero);
933
934  // For each pred:
935  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it)
936    BlockMask = Builder.CreateOr(BlockMask, createEdgeMask(*it, BB));
937
938  return BlockMask;
939}
940
941void
942InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
943                                          BasicBlock *BB, PhiVector *PV) {
944  Constant *Zero =
945  ConstantInt::get(IntegerType::getInt32Ty(BB->getContext()), 0);
946
947  // For each instruction in the old loop.
948  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
949    switch (it->getOpcode()) {
950    case Instruction::Br:
951      // Nothing to do for PHIs and BR, since we already took care of the
952      // loop control flow instructions.
953      continue;
954    case Instruction::PHI:{
955      PHINode* P = cast<PHINode>(it);
956      // Handle reduction variables:
957      if (Legal->getReductionVars()->count(P)) {
958        // This is phase one of vectorizing PHIs.
959        Type *VecTy = VectorType::get(it->getType(), VF);
960        WidenMap[it] =
961          PHINode::Create(VecTy, 2, "vec.phi",
962                          LoopVectorBody->getFirstInsertionPt());
963        PV->push_back(P);
964        continue;
965      }
966
967      // Check for PHI nodes that are lowered to vector selects.
968      if (P->getParent() != OrigLoop->getHeader()) {
969        // We know that all PHIs in non header blocks are converted into
970        // selects, so we don't have to worry about the insertion order and we
971        // can just use the builder.
972
973        // At this point we generate the predication tree. There may be
974        // duplications since this is a simple recursive scan, but future
975        // optimizations will clean it up.
976        Value *Cond = createEdgeMask(P->getIncomingBlock(0), P->getParent());
977        WidenMap[P] =
978          Builder.CreateSelect(Cond,
979                               getVectorValue(P->getIncomingValue(0)),
980                               getVectorValue(P->getIncomingValue(1)),
981                               "predphi");
982        continue;
983      }
984
985      // This PHINode must be an induction variable.
986      // Make sure that we know about it.
987      assert(Legal->getInductionVars()->count(P) &&
988             "Not an induction variable");
989
990      LoopVectorizationLegality::InductionInfo II =
991        Legal->getInductionVars()->lookup(P);
992
993      switch (II.IK) {
994      case LoopVectorizationLegality::NoInduction:
995        llvm_unreachable("Unknown induction");
996      case LoopVectorizationLegality::IntInduction: {
997        assert(P == OldInduction && "Unexpected PHI");
998        Value *Broadcasted = getBroadcastInstrs(Induction);
999        // After broadcasting the induction variable we need to make the
1000        // vector consecutive by adding 0, 1, 2 ...
1001        Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted);
1002        WidenMap[OldInduction] = ConsecutiveInduction;
1003        continue;
1004      }
1005      case LoopVectorizationLegality::ReverseIntInduction:
1006      case LoopVectorizationLegality::PtrInduction:
1007        // Handle reverse integer and pointer inductions.
1008        Value *StartIdx = 0;
1009        // If we have a single integer induction variable then use it.
1010        // Otherwise, start counting at zero.
1011        if (OldInduction) {
1012          LoopVectorizationLegality::InductionInfo OldII =
1013            Legal->getInductionVars()->lookup(OldInduction);
1014          StartIdx = OldII.StartValue;
1015        } else {
1016          StartIdx = ConstantInt::get(Induction->getType(), 0);
1017        }
1018        // This is the normalized GEP that starts counting at zero.
1019        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
1020                                                 "normalized.idx");
1021
1022        // Handle the reverse integer induction variable case.
1023        if (LoopVectorizationLegality::ReverseIntInduction == II.IK) {
1024          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
1025          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
1026                                                 "resize.norm.idx");
1027          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
1028                                                 "reverse.idx");
1029
1030          // This is a new value so do not hoist it out.
1031          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
1032          // After broadcasting the induction variable we need to make the
1033          // vector consecutive by adding  ... -3, -2, -1, 0.
1034          Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted,
1035                                                             true);
1036          WidenMap[it] = ConsecutiveInduction;
1037          continue;
1038        }
1039
1040        // Handle the pointer induction variable case.
1041        assert(P->getType()->isPointerTy() && "Unexpected type.");
1042
1043        // This is the vector of results. Notice that we don't generate
1044        // vector geps because scalar geps result in better code.
1045        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
1046        for (unsigned int i = 0; i < VF; ++i) {
1047          Constant *Idx = ConstantInt::get(Induction->getType(), i);
1048          Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
1049                                               "gep.idx");
1050          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
1051                                             "next.gep");
1052          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
1053                                               Builder.getInt32(i),
1054                                               "insert.gep");
1055        }
1056
1057        WidenMap[it] = VecVal;
1058        continue;
1059      }
1060
1061    }// End of PHI.
1062
1063    case Instruction::Add:
1064    case Instruction::FAdd:
1065    case Instruction::Sub:
1066    case Instruction::FSub:
1067    case Instruction::Mul:
1068    case Instruction::FMul:
1069    case Instruction::UDiv:
1070    case Instruction::SDiv:
1071    case Instruction::FDiv:
1072    case Instruction::URem:
1073    case Instruction::SRem:
1074    case Instruction::FRem:
1075    case Instruction::Shl:
1076    case Instruction::LShr:
1077    case Instruction::AShr:
1078    case Instruction::And:
1079    case Instruction::Or:
1080    case Instruction::Xor: {
1081      // Just widen binops.
1082      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
1083      Value *A = getVectorValue(it->getOperand(0));
1084      Value *B = getVectorValue(it->getOperand(1));
1085
1086      // Use this vector value for all users of the original instruction.
1087      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
1088      WidenMap[it] = V;
1089
1090      // Update the NSW, NUW and Exact flags.
1091      BinaryOperator *VecOp = cast<BinaryOperator>(V);
1092      if (isa<OverflowingBinaryOperator>(BinOp)) {
1093        VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
1094        VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
1095      }
1096      if (isa<PossiblyExactOperator>(VecOp))
1097        VecOp->setIsExact(BinOp->isExact());
1098      break;
1099    }
1100    case Instruction::Select: {
1101      // Widen selects.
1102      // If the selector is loop invariant we can create a select
1103      // instruction with a scalar condition. Otherwise, use vector-select.
1104      Value *Cond = it->getOperand(0);
1105      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
1106
1107      // The condition can be loop invariant  but still defined inside the
1108      // loop. This means that we can't just use the original 'cond' value.
1109      // We have to take the 'vectorized' value and pick the first lane.
1110      // Instcombine will make this a no-op.
1111      Cond = getVectorValue(Cond);
1112      if (InvariantCond)
1113        Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
1114
1115      Value *Op0 = getVectorValue(it->getOperand(1));
1116      Value *Op1 = getVectorValue(it->getOperand(2));
1117      WidenMap[it] = Builder.CreateSelect(Cond, Op0, Op1);
1118      break;
1119    }
1120
1121    case Instruction::ICmp:
1122    case Instruction::FCmp: {
1123      // Widen compares. Generate vector compares.
1124      bool FCmp = (it->getOpcode() == Instruction::FCmp);
1125      CmpInst *Cmp = dyn_cast<CmpInst>(it);
1126      Value *A = getVectorValue(it->getOperand(0));
1127      Value *B = getVectorValue(it->getOperand(1));
1128      if (FCmp)
1129        WidenMap[it] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
1130      else
1131        WidenMap[it] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
1132      break;
1133    }
1134
1135    case Instruction::Store: {
1136      // Attempt to issue a wide store.
1137      StoreInst *SI = dyn_cast<StoreInst>(it);
1138      Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
1139      Value *Ptr = SI->getPointerOperand();
1140      unsigned Alignment = SI->getAlignment();
1141
1142      assert(!Legal->isUniform(Ptr) &&
1143             "We do not allow storing to uniform addresses");
1144
1145      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1146
1147      // This store does not use GEPs.
1148      if (!Legal->isConsecutivePtr(Ptr)) {
1149        scalarizeInstruction(it);
1150        break;
1151      }
1152
1153      if (Gep) {
1154        // The last index does not have to be the induction. It can be
1155        // consecutive and be a function of the index. For example A[I+1];
1156        unsigned NumOperands = Gep->getNumOperands();
1157        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
1158        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1159
1160        // Create the new GEP with the new induction variable.
1161        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1162        Gep2->setOperand(NumOperands - 1, LastIndex);
1163        Ptr = Builder.Insert(Gep2);
1164      } else {
1165        // Use the induction element ptr.
1166        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1167        Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
1168      }
1169      Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
1170      Value *Val = getVectorValue(SI->getValueOperand());
1171      Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
1172      break;
1173    }
1174    case Instruction::Load: {
1175      // Attempt to issue a wide load.
1176      LoadInst *LI = dyn_cast<LoadInst>(it);
1177      Type *RetTy = VectorType::get(LI->getType(), VF);
1178      Value *Ptr = LI->getPointerOperand();
1179      unsigned Alignment = LI->getAlignment();
1180      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1181
1182      // If the pointer is loop invariant or if it is non consecutive,
1183      // scalarize the load.
1184      bool Con = Legal->isConsecutivePtr(Ptr);
1185      if (Legal->isUniform(Ptr) || !Con) {
1186        scalarizeInstruction(it);
1187        break;
1188      }
1189
1190      if (Gep) {
1191        // The last index does not have to be the induction. It can be
1192        // consecutive and be a function of the index. For example A[I+1];
1193        unsigned NumOperands = Gep->getNumOperands();
1194        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
1195        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1196
1197        // Create the new GEP with the new induction variable.
1198        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1199        Gep2->setOperand(NumOperands - 1, LastIndex);
1200        Ptr = Builder.Insert(Gep2);
1201      } else {
1202        // Use the induction element ptr.
1203        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1204        Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
1205      }
1206
1207      Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
1208      LI = Builder.CreateLoad(Ptr);
1209      LI->setAlignment(Alignment);
1210      // Use this vector value for all users of the load.
1211      WidenMap[it] = LI;
1212      break;
1213    }
1214    case Instruction::ZExt:
1215    case Instruction::SExt:
1216    case Instruction::FPToUI:
1217    case Instruction::FPToSI:
1218    case Instruction::FPExt:
1219    case Instruction::PtrToInt:
1220    case Instruction::IntToPtr:
1221    case Instruction::SIToFP:
1222    case Instruction::UIToFP:
1223    case Instruction::Trunc:
1224    case Instruction::FPTrunc:
1225    case Instruction::BitCast: {
1226      CastInst *CI = dyn_cast<CastInst>(it);
1227      /// Optimize the special case where the source is the induction
1228      /// variable. Notice that we can only optimize the 'trunc' case
1229      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
1230      /// c. other casts depend on pointer size.
1231      if (CI->getOperand(0) == OldInduction &&
1232          it->getOpcode() == Instruction::Trunc) {
1233        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
1234                                               CI->getType());
1235        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
1236        WidenMap[it] = getConsecutiveVector(Broadcasted);
1237        break;
1238      }
1239      /// Vectorize casts.
1240      Value *A = getVectorValue(it->getOperand(0));
1241      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
1242      WidenMap[it] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
1243      break;
1244    }
1245
1246    case Instruction::Call: {
1247      assert(isTriviallyVectorizableIntrinsic(it));
1248      Module *M = BB->getParent()->getParent();
1249      IntrinsicInst *II = cast<IntrinsicInst>(it);
1250      Intrinsic::ID ID = II->getIntrinsicID();
1251      SmallVector<Value*, 4> Args;
1252      for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
1253        Args.push_back(getVectorValue(II->getArgOperand(i)));
1254      Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
1255      Function *F = Intrinsic::getDeclaration(M, ID, Tys);
1256      WidenMap[it] = Builder.CreateCall(F, Args);
1257      break;
1258    }
1259
1260    default:
1261      // All other instructions are unsupported. Scalarize them.
1262      scalarizeInstruction(it);
1263      break;
1264    }// end of switch.
1265  }// end of for_each instr.
1266}
1267
1268void InnerLoopVectorizer::updateAnalysis() {
1269  // Forget the original basic block.
1270  SE->forgetLoop(OrigLoop);
1271
1272  // Update the dominator tree information.
1273  assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
1274         "Entry does not dominate exit.");
1275
1276  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
1277  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
1278  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
1279  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
1280  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
1281  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
1282
1283  DEBUG(DT->verifyAnalysis());
1284}
1285
1286bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1287  if (!EnableIfConversion)
1288    return false;
1289
1290  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1291  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
1292
1293  // Collect the blocks that need predication.
1294  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
1295    BasicBlock *BB = LoopBlocks[i];
1296
1297    // We don't support switch statements inside loops.
1298    if (!isa<BranchInst>(BB->getTerminator()))
1299      return false;
1300
1301    // We must have at most two predecessors because we need to convert
1302    // all PHIs to selects.
1303    unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
1304    if (Preds > 2)
1305      return false;
1306
1307    // We must be able to predicate all blocks that need to be predicated.
1308    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
1309      return false;
1310  }
1311
1312  // We can if-convert this loop.
1313  return true;
1314}
1315
1316bool LoopVectorizationLegality::canVectorize() {
1317  assert(TheLoop->getLoopPreheader() && "No preheader!!");
1318
1319  // We can only vectorize innermost loops.
1320  if (TheLoop->getSubLoopsVector().size())
1321    return false;
1322
1323  // We must have a single backedge.
1324  if (TheLoop->getNumBackEdges() != 1)
1325    return false;
1326
1327  // We must have a single exiting block.
1328  if (!TheLoop->getExitingBlock())
1329    return false;
1330
1331  unsigned NumBlocks = TheLoop->getNumBlocks();
1332
1333  // Check if we can if-convert non single-bb loops.
1334  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1335    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1336    return false;
1337  }
1338
1339  // We need to have a loop header.
1340  BasicBlock *Latch = TheLoop->getLoopLatch();
1341  DEBUG(dbgs() << "LV: Found a loop: " <<
1342        TheLoop->getHeader()->getName() << "\n");
1343
1344  // ScalarEvolution needs to be able to find the exit count.
1345  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
1346  if (ExitCount == SE->getCouldNotCompute()) {
1347    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
1348    return false;
1349  }
1350
1351  // Do not loop-vectorize loops with a tiny trip count.
1352  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
1353  if (TC > 0u && TC < TinyTripCountThreshold) {
1354    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
1355          "This loop is not worth vectorizing.\n");
1356    return false;
1357  }
1358
1359  // Check if we can vectorize the instructions and CFG in this loop.
1360  if (!canVectorizeInstrs()) {
1361    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1362    return false;
1363  }
1364
1365  // Go over each instruction and look at memory deps.
1366  if (!canVectorizeMemory()) {
1367    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1368    return false;
1369  }
1370
1371  // Collect all of the variables that remain uniform after vectorization.
1372  collectLoopUniforms();
1373
1374  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
1375        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
1376        <<"!\n");
1377
1378  // Okay! We can vectorize. At this point we don't have any other mem analysis
1379  // which may limit our maximum vectorization factor, so just return true with
1380  // no restrictions.
1381  return true;
1382}
1383
1384bool LoopVectorizationLegality::canVectorizeInstrs() {
1385  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
1386  BasicBlock *Header = TheLoop->getHeader();
1387
1388  // For each block in the loop.
1389  for (Loop::block_iterator bb = TheLoop->block_begin(),
1390       be = TheLoop->block_end(); bb != be; ++bb) {
1391
1392    // Scan the instructions in the block and look for hazards.
1393    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1394         ++it) {
1395
1396      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
1397        // This should not happen because the loop should be normalized.
1398        if (Phi->getNumIncomingValues() != 2) {
1399          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
1400          return false;
1401        }
1402
1403        // Check that this PHI type is allowed.
1404        if (!Phi->getType()->isIntegerTy() &&
1405            !Phi->getType()->isPointerTy()) {
1406          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
1407          return false;
1408        }
1409
1410        // If this PHINode is not in the header block, then we know that we
1411        // can convert it to select during if-conversion. No need to check if
1412        // the PHIs in this block are induction or reduction variables.
1413        if (*bb != Header)
1414          continue;
1415
1416        // This is the value coming from the preheader.
1417        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
1418        // Check if this is an induction variable.
1419        InductionKind IK = isInductionVariable(Phi);
1420
1421        if (NoInduction != IK) {
1422          // Int inductions are special because we only allow one IV.
1423          if (IK == IntInduction) {
1424            if (Induction) {
1425              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
1426              return false;
1427            }
1428            Induction = Phi;
1429          }
1430
1431          DEBUG(dbgs() << "LV: Found an induction variable.\n");
1432          Inductions[Phi] = InductionInfo(StartValue, IK);
1433          continue;
1434        }
1435
1436        if (AddReductionVar(Phi, IntegerAdd)) {
1437          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
1438          continue;
1439        }
1440        if (AddReductionVar(Phi, IntegerMult)) {
1441          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
1442          continue;
1443        }
1444        if (AddReductionVar(Phi, IntegerOr)) {
1445          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
1446          continue;
1447        }
1448        if (AddReductionVar(Phi, IntegerAnd)) {
1449          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
1450          continue;
1451        }
1452        if (AddReductionVar(Phi, IntegerXor)) {
1453          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
1454          continue;
1455        }
1456
1457        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
1458        return false;
1459      }// end of PHI handling
1460
1461      // We still don't handle functions.
1462      CallInst *CI = dyn_cast<CallInst>(it);
1463      if (CI && !isTriviallyVectorizableIntrinsic(it)) {
1464        DEBUG(dbgs() << "LV: Found a call site.\n");
1465        return false;
1466      }
1467
1468      // We do not re-vectorize vectors.
1469      if (!VectorType::isValidElementType(it->getType()) &&
1470          !it->getType()->isVoidTy()) {
1471        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
1472        return false;
1473      }
1474
1475      // Reduction instructions are allowed to have exit users.
1476      // All other instructions must not have external users.
1477      if (!AllowedExit.count(it))
1478        //Check that all of the users of the loop are inside the BB.
1479        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
1480             I != E; ++I) {
1481          Instruction *U = cast<Instruction>(*I);
1482          // This user may be a reduction exit value.
1483          if (!TheLoop->contains(U)) {
1484            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
1485            return false;
1486          }
1487        }
1488    } // next instr.
1489
1490  }
1491
1492  if (!Induction) {
1493    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1494    assert(getInductionVars()->size() && "No induction variables");
1495  }
1496
1497  return true;
1498}
1499
1500void LoopVectorizationLegality::collectLoopUniforms() {
1501  // We now know that the loop is vectorizable!
1502  // Collect variables that will remain uniform after vectorization.
1503  std::vector<Value*> Worklist;
1504  BasicBlock *Latch = TheLoop->getLoopLatch();
1505
1506  // Start with the conditional branch and walk up the block.
1507  Worklist.push_back(Latch->getTerminator()->getOperand(0));
1508
1509  while (Worklist.size()) {
1510    Instruction *I = dyn_cast<Instruction>(Worklist.back());
1511    Worklist.pop_back();
1512
1513    // Look at instructions inside this loop.
1514    // Stop when reaching PHI nodes.
1515    // TODO: we need to follow values all over the loop, not only in this block.
1516    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
1517      continue;
1518
1519    // This is a known uniform.
1520    Uniforms.insert(I);
1521
1522    // Insert all operands.
1523    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
1524      Worklist.push_back(I->getOperand(i));
1525    }
1526  }
1527}
1528
1529bool LoopVectorizationLegality::canVectorizeMemory() {
1530  typedef SmallVector<Value*, 16> ValueVector;
1531  typedef SmallPtrSet<Value*, 16> ValueSet;
1532  // Holds the Load and Store *instructions*.
1533  ValueVector Loads;
1534  ValueVector Stores;
1535  PtrRtCheck.Pointers.clear();
1536  PtrRtCheck.Need = false;
1537
1538  // For each block.
1539  for (Loop::block_iterator bb = TheLoop->block_begin(),
1540       be = TheLoop->block_end(); bb != be; ++bb) {
1541
1542    // Scan the BB and collect legal loads and stores.
1543    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1544         ++it) {
1545
1546      // If this is a load, save it. If this instruction can read from memory
1547      // but is not a load, then we quit. Notice that we don't handle function
1548      // calls that read or write.
1549      if (it->mayReadFromMemory()) {
1550        LoadInst *Ld = dyn_cast<LoadInst>(it);
1551        if (!Ld) return false;
1552        if (!Ld->isSimple()) {
1553          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
1554          return false;
1555        }
1556        Loads.push_back(Ld);
1557        continue;
1558      }
1559
1560      // Save 'store' instructions. Abort if other instructions write to memory.
1561      if (it->mayWriteToMemory()) {
1562        StoreInst *St = dyn_cast<StoreInst>(it);
1563        if (!St) return false;
1564        if (!St->isSimple()) {
1565          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
1566          return false;
1567        }
1568        Stores.push_back(St);
1569      }
1570    } // next instr.
1571  } // next block.
1572
1573  // Now we have two lists that hold the loads and the stores.
1574  // Next, we find the pointers that they use.
1575
1576  // Check if we see any stores. If there are no stores, then we don't
1577  // care if the pointers are *restrict*.
1578  if (!Stores.size()) {
1579    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
1580    return true;
1581  }
1582
1583  // Holds the read and read-write *pointers* that we find.
1584  ValueVector Reads;
1585  ValueVector ReadWrites;
1586
1587  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1588  // multiple times on the same object. If the ptr is accessed twice, once
1589  // for read and once for write, it will only appear once (on the write
1590  // list). This is okay, since we are going to check for conflicts between
1591  // writes and between reads and writes, but not between reads and reads.
1592  ValueSet Seen;
1593
1594  ValueVector::iterator I, IE;
1595  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1596    StoreInst *ST = dyn_cast<StoreInst>(*I);
1597    assert(ST && "Bad StoreInst");
1598    Value* Ptr = ST->getPointerOperand();
1599
1600    if (isUniform(Ptr)) {
1601      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
1602      return false;
1603    }
1604
1605    // If we did *not* see this pointer before, insert it to
1606    // the read-write list. At this phase it is only a 'write' list.
1607    if (Seen.insert(Ptr))
1608      ReadWrites.push_back(Ptr);
1609  }
1610
1611  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1612    LoadInst *LD = dyn_cast<LoadInst>(*I);
1613    assert(LD && "Bad LoadInst");
1614    Value* Ptr = LD->getPointerOperand();
1615    // If we did *not* see this pointer before, insert it to the
1616    // read list. If we *did* see it before, then it is already in
1617    // the read-write list. This allows us to vectorize expressions
1618    // such as A[i] += x;  Because the address of A[i] is a read-write
1619    // pointer. This only works if the index of A[i] is consecutive.
1620    // If the address of i is unknown (for example A[B[i]]) then we may
1621    // read a few words, modify, and write a few words, and some of the
1622    // words may be written to the same address.
1623    if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
1624      Reads.push_back(Ptr);
1625  }
1626
1627  // If we write (or read-write) to a single destination and there are no
1628  // other reads in this loop then is it safe to vectorize.
1629  if (ReadWrites.size() == 1 && Reads.size() == 0) {
1630    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
1631    return true;
1632  }
1633
1634  // Find pointers with computable bounds. We are going to use this information
1635  // to place a runtime bound check.
1636  bool RT = true;
1637  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
1638    if (hasComputableBounds(*I)) {
1639      PtrRtCheck.insert(SE, TheLoop, *I);
1640      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
1641    } else {
1642      RT = false;
1643      break;
1644    }
1645  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
1646    if (hasComputableBounds(*I)) {
1647      PtrRtCheck.insert(SE, TheLoop, *I);
1648      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
1649    } else {
1650      RT = false;
1651      break;
1652    }
1653
1654  // Check that we did not collect too many pointers or found a
1655  // unsizeable pointer.
1656  if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
1657    PtrRtCheck.reset();
1658    RT = false;
1659  }
1660
1661  PtrRtCheck.Need = RT;
1662
1663  if (RT) {
1664    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
1665  }
1666
1667  // Now that the pointers are in two lists (Reads and ReadWrites), we
1668  // can check that there are no conflicts between each of the writes and
1669  // between the writes to the reads.
1670  ValueSet WriteObjects;
1671  ValueVector TempObjects;
1672
1673  // Check that the read-writes do not conflict with other read-write
1674  // pointers.
1675  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
1676    GetUnderlyingObjects(*I, TempObjects, DL);
1677    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1678         it != e; ++it) {
1679      if (!isIdentifiedObject(*it)) {
1680        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
1681        return RT;
1682      }
1683      if (!WriteObjects.insert(*it)) {
1684        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
1685              << **it <<"\n");
1686        return RT;
1687      }
1688    }
1689    TempObjects.clear();
1690  }
1691
1692  /// Check that the reads don't conflict with the read-writes.
1693  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
1694    GetUnderlyingObjects(*I, TempObjects, DL);
1695    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1696         it != e; ++it) {
1697      if (!isIdentifiedObject(*it)) {
1698        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
1699        return RT;
1700      }
1701      if (WriteObjects.count(*it)) {
1702        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
1703              << **it <<"\n");
1704        return RT;
1705      }
1706    }
1707    TempObjects.clear();
1708  }
1709
1710  // It is safe to vectorize and we don't need any runtime checks.
1711  DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
1712  PtrRtCheck.reset();
1713  return true;
1714}
1715
1716bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
1717                                                ReductionKind Kind) {
1718  if (Phi->getNumIncomingValues() != 2)
1719    return false;
1720
1721  // Reduction variables are only found in the loop header block.
1722  if (Phi->getParent() != TheLoop->getHeader())
1723    return false;
1724
1725  // Obtain the reduction start value from the value that comes from the loop
1726  // preheader.
1727  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
1728
1729  // ExitInstruction is the single value which is used outside the loop.
1730  // We only allow for a single reduction value to be used outside the loop.
1731  // This includes users of the reduction, variables (which form a cycle
1732  // which ends in the phi node).
1733  Instruction *ExitInstruction = 0;
1734
1735  // Iter is our iterator. We start with the PHI node and scan for all of the
1736  // users of this instruction. All users must be instructions which can be
1737  // used as reduction variables (such as ADD). We may have a single
1738  // out-of-block user. They cycle must end with the original PHI.
1739  // Also, we can't have multiple block-local users.
1740  Instruction *Iter = Phi;
1741  while (true) {
1742    // If the instruction has no users then this is a broken
1743    // chain and can't be a reduction variable.
1744    if (Iter->use_empty())
1745      return false;
1746
1747    // Any reduction instr must be of one of the allowed kinds.
1748    if (!isReductionInstr(Iter, Kind))
1749      return false;
1750
1751    // Did we find a user inside this block ?
1752    bool FoundInBlockUser = false;
1753    // Did we reach the initial PHI node ?
1754    bool FoundStartPHI = false;
1755
1756    // For each of the *users* of iter.
1757    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
1758         it != e; ++it) {
1759      Instruction *U = cast<Instruction>(*it);
1760      // We already know that the PHI is a user.
1761      if (U == Phi) {
1762        FoundStartPHI = true;
1763        continue;
1764      }
1765
1766      // Check if we found the exit user.
1767      BasicBlock *Parent = U->getParent();
1768      if (!TheLoop->contains(Parent)) {
1769        // Exit if you find multiple outside users.
1770        if (ExitInstruction != 0)
1771          return false;
1772        ExitInstruction = Iter;
1773      }
1774
1775      // We allow in-loop PHINodes which are not the original reduction PHI
1776      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
1777      // structure) then don't skip this PHI.
1778      if (isa<PHINode>(U) && U->getParent() != TheLoop->getHeader() &&
1779          TheLoop->contains(U) && Iter->getNumUses() > 1)
1780        continue;
1781
1782      // We can't have multiple inside users.
1783      if (FoundInBlockUser)
1784        return false;
1785      FoundInBlockUser = true;
1786      Iter = U;
1787    }
1788
1789    // We found a reduction var if we have reached the original
1790    // phi node and we only have a single instruction with out-of-loop
1791    // users.
1792    if (FoundStartPHI && ExitInstruction) {
1793      // This instruction is allowed to have out-of-loop users.
1794      AllowedExit.insert(ExitInstruction);
1795
1796      // Save the description of this reduction variable.
1797      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
1798      Reductions[Phi] = RD;
1799      return true;
1800    }
1801
1802    // If we've reached the start PHI but did not find an outside user then
1803    // this is dead code. Abort.
1804    if (FoundStartPHI)
1805      return false;
1806  }
1807}
1808
1809bool
1810LoopVectorizationLegality::isReductionInstr(Instruction *I,
1811                                            ReductionKind Kind) {
1812  switch (I->getOpcode()) {
1813  default:
1814    return false;
1815  case Instruction::PHI:
1816    // possibly.
1817    return true;
1818  case Instruction::Add:
1819  case Instruction::Sub:
1820    return Kind == IntegerAdd;
1821  case Instruction::Mul:
1822    return Kind == IntegerMult;
1823  case Instruction::And:
1824    return Kind == IntegerAnd;
1825  case Instruction::Or:
1826    return Kind == IntegerOr;
1827  case Instruction::Xor:
1828    return Kind == IntegerXor;
1829  }
1830}
1831
1832LoopVectorizationLegality::InductionKind
1833LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
1834  Type *PhiTy = Phi->getType();
1835  // We only handle integer and pointer inductions variables.
1836  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1837    return NoInduction;
1838
1839  // Check that the PHI is consecutive and starts at zero.
1840  const SCEV *PhiScev = SE->getSCEV(Phi);
1841  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1842  if (!AR) {
1843    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1844    return NoInduction;
1845  }
1846  const SCEV *Step = AR->getStepRecurrence(*SE);
1847
1848  // Integer inductions need to have a stride of one.
1849  if (PhiTy->isIntegerTy()) {
1850    if (Step->isOne())
1851      return IntInduction;
1852    if (Step->isAllOnesValue())
1853      return ReverseIntInduction;
1854    return NoInduction;
1855  }
1856
1857  // Calculate the pointer stride and check if it is consecutive.
1858  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1859  if (!C)
1860    return NoInduction;
1861
1862  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1863  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
1864  if (C->getValue()->equalsInt(Size))
1865    return PtrInduction;
1866
1867  return NoInduction;
1868}
1869
1870bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
1871  Value *In0 = const_cast<Value*>(V);
1872  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1873  if (!PN)
1874    return false;
1875
1876  return Inductions.count(PN);
1877}
1878
1879bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
1880  assert(TheLoop->contains(BB) && "Unknown block used");
1881
1882  // Blocks that do not dominate the latch need predication.
1883  BasicBlock* Latch = TheLoop->getLoopLatch();
1884  return !DT->dominates(BB, Latch);
1885}
1886
1887bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
1888  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1889    // We don't predicate loads/stores at the moment.
1890    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
1891      return false;
1892
1893    // The instructions below can trap.
1894    switch (it->getOpcode()) {
1895    default: continue;
1896    case Instruction::UDiv:
1897    case Instruction::SDiv:
1898    case Instruction::URem:
1899    case Instruction::SRem:
1900             return false;
1901    }
1902  }
1903
1904  return true;
1905}
1906
1907bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
1908  const SCEV *PhiScev = SE->getSCEV(Ptr);
1909  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1910  if (!AR)
1911    return false;
1912
1913  return AR->isAffine();
1914}
1915
1916unsigned
1917LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
1918                                                        unsigned UserVF) {
1919  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
1920    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
1921    return 1;
1922  }
1923
1924  // Find the trip count.
1925  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
1926  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
1927
1928  unsigned VF = MaxVectorSize;
1929
1930  // If we optimize the program for size, avoid creating the tail loop.
1931  if (OptForSize) {
1932    // If we are unable to calculate the trip count then don't try to vectorize.
1933    if (TC < 2) {
1934      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
1935      return 1;
1936    }
1937
1938    // Find the maximum SIMD width that can fit within the trip count.
1939    VF = TC % MaxVectorSize;
1940
1941    if (VF == 0)
1942      VF = MaxVectorSize;
1943
1944    // If the trip count that we found modulo the vectorization factor is not
1945    // zero then we require a tail.
1946    if (VF < 2) {
1947      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
1948      return 1;
1949    }
1950  }
1951
1952  if (UserVF != 0) {
1953    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
1954    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
1955
1956    return UserVF;
1957  }
1958
1959  if (!VTTI) {
1960    DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
1961    return 1;
1962  }
1963
1964  float Cost = expectedCost(1);
1965  unsigned Width = 1;
1966  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
1967  for (unsigned i=2; i <= VF; i*=2) {
1968    // Notice that the vector loop needs to be executed less times, so
1969    // we need to divide the cost of the vector loops by the width of
1970    // the vector elements.
1971    float VectorCost = expectedCost(i) / (float)i;
1972    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
1973          (int)VectorCost << ".\n");
1974    if (VectorCost < Cost) {
1975      Cost = VectorCost;
1976      Width = i;
1977    }
1978  }
1979
1980  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
1981  return Width;
1982}
1983
1984unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
1985  unsigned Cost = 0;
1986
1987  // For each block.
1988  for (Loop::block_iterator bb = TheLoop->block_begin(),
1989       be = TheLoop->block_end(); bb != be; ++bb) {
1990    unsigned BlockCost = 0;
1991    BasicBlock *BB = *bb;
1992
1993    // For each instruction in the old loop.
1994    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1995      unsigned C = getInstructionCost(it, VF);
1996      Cost += C;
1997      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
1998            VF << " For instruction: "<< *it << "\n");
1999    }
2000
2001    // We assume that if-converted blocks have a 50% chance of being executed.
2002    // When the code is scalar then some of the blocks are avoided due to CF.
2003    // When the code is vectorized we execute all code paths.
2004    if (Legal->blockNeedsPredication(*bb) && VF == 1)
2005      BlockCost /= 2;
2006
2007    Cost += BlockCost;
2008  }
2009
2010  return Cost;
2011}
2012
2013unsigned
2014LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
2015  assert(VTTI && "Invalid vector target transformation info");
2016
2017  // If we know that this instruction will remain uniform, check the cost of
2018  // the scalar version.
2019  if (Legal->isUniformAfterVectorization(I))
2020    VF = 1;
2021
2022  Type *RetTy = I->getType();
2023  Type *VectorTy = ToVectorTy(RetTy, VF);
2024
2025  // TODO: We need to estimate the cost of intrinsic calls.
2026  switch (I->getOpcode()) {
2027  case Instruction::GetElementPtr:
2028    // We mark this instruction as zero-cost because scalar GEPs are usually
2029    // lowered to the intruction addressing mode. At the moment we don't
2030    // generate vector geps.
2031    return 0;
2032  case Instruction::Br: {
2033    return VTTI->getCFInstrCost(I->getOpcode());
2034  }
2035  case Instruction::PHI:
2036    //TODO: IF-converted IFs become selects.
2037    return 0;
2038  case Instruction::Add:
2039  case Instruction::FAdd:
2040  case Instruction::Sub:
2041  case Instruction::FSub:
2042  case Instruction::Mul:
2043  case Instruction::FMul:
2044  case Instruction::UDiv:
2045  case Instruction::SDiv:
2046  case Instruction::FDiv:
2047  case Instruction::URem:
2048  case Instruction::SRem:
2049  case Instruction::FRem:
2050  case Instruction::Shl:
2051  case Instruction::LShr:
2052  case Instruction::AShr:
2053  case Instruction::And:
2054  case Instruction::Or:
2055  case Instruction::Xor:
2056    return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
2057  case Instruction::Select: {
2058    SelectInst *SI = cast<SelectInst>(I);
2059    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
2060    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
2061    Type *CondTy = SI->getCondition()->getType();
2062    if (ScalarCond)
2063      CondTy = VectorType::get(CondTy, VF);
2064
2065    return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
2066  }
2067  case Instruction::ICmp:
2068  case Instruction::FCmp: {
2069    Type *ValTy = I->getOperand(0)->getType();
2070    VectorTy = ToVectorTy(ValTy, VF);
2071    return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
2072  }
2073  case Instruction::Store: {
2074    StoreInst *SI = cast<StoreInst>(I);
2075    Type *ValTy = SI->getValueOperand()->getType();
2076    VectorTy = ToVectorTy(ValTy, VF);
2077
2078    if (VF == 1)
2079      return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
2080                                   SI->getAlignment(),
2081                                   SI->getPointerAddressSpace());
2082
2083    // Scalarized stores.
2084    if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
2085      unsigned Cost = 0;
2086      unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
2087                                            ValTy);
2088      // The cost of extracting from the value vector.
2089      Cost += VF * (ExtCost);
2090      // The cost of the scalar stores.
2091      Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
2092                                         ValTy->getScalarType(),
2093                                         SI->getAlignment(),
2094                                         SI->getPointerAddressSpace());
2095      return Cost;
2096    }
2097
2098    // Wide stores.
2099    return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
2100                                 SI->getPointerAddressSpace());
2101  }
2102  case Instruction::Load: {
2103    LoadInst *LI = cast<LoadInst>(I);
2104
2105    if (VF == 1)
2106      return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
2107                                   LI->getAlignment(),
2108                                   LI->getPointerAddressSpace());
2109
2110    // Scalarized loads.
2111    if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
2112      unsigned Cost = 0;
2113      unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
2114      // The cost of inserting the loaded value into the result vector.
2115      Cost += VF * (InCost);
2116      // The cost of the scalar stores.
2117      Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
2118                                         RetTy->getScalarType(),
2119                                         LI->getAlignment(),
2120                                         LI->getPointerAddressSpace());
2121      return Cost;
2122    }
2123
2124    // Wide loads.
2125    return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
2126                                 LI->getPointerAddressSpace());
2127  }
2128  case Instruction::ZExt:
2129  case Instruction::SExt:
2130  case Instruction::FPToUI:
2131  case Instruction::FPToSI:
2132  case Instruction::FPExt:
2133  case Instruction::PtrToInt:
2134  case Instruction::IntToPtr:
2135  case Instruction::SIToFP:
2136  case Instruction::UIToFP:
2137  case Instruction::Trunc:
2138  case Instruction::FPTrunc:
2139  case Instruction::BitCast: {
2140    // We optimize the truncation of induction variable.
2141    // The cost of these is the same as the scalar operation.
2142    if (I->getOpcode() == Instruction::Trunc &&
2143        Legal->isInductionVariable(I->getOperand(0)))
2144         return VTTI->getCastInstrCost(I->getOpcode(), I->getType(),
2145                                       I->getOperand(0)->getType());
2146
2147    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
2148    return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
2149  }
2150  case Instruction::Call: {
2151    assert(isTriviallyVectorizableIntrinsic(I));
2152    IntrinsicInst *II = cast<IntrinsicInst>(I);
2153    Type *RetTy = ToVectorTy(II->getType(), VF);
2154    SmallVector<Type*, 4> Tys;
2155    for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
2156      Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
2157    return VTTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
2158  }
2159  default: {
2160    // We are scalarizing the instruction. Return the cost of the scalar
2161    // instruction, plus the cost of insert and extract into vector
2162    // elements, times the vector width.
2163    unsigned Cost = 0;
2164
2165    bool IsVoid = RetTy->isVoidTy();
2166
2167    unsigned InsCost = (IsVoid ? 0 :
2168                        VTTI->getInstrCost(Instruction::InsertElement,
2169                                           VectorTy));
2170
2171    unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
2172                                          VectorTy);
2173
2174    // The cost of inserting the results plus extracting each one of the
2175    // operands.
2176    Cost += VF * (InsCost + ExtCost * I->getNumOperands());
2177
2178    // The cost of executing VF copies of the scalar instruction.
2179    Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
2180    return Cost;
2181  }
2182  }// end of switch.
2183}
2184
2185Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
2186  if (Scalar->isVoidTy() || VF == 1)
2187    return Scalar;
2188  return VectorType::get(Scalar, VF);
2189}
2190
2191char LoopVectorize::ID = 0;
2192static const char lv_name[] = "Loop Vectorization";
2193INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
2194INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2195INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2196INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2197INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
2198
2199namespace llvm {
2200  Pass *createLoopVectorizePass() {
2201    return new LoopVectorize();
2202  }
2203}
2204
2205
2206