1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#include "llvm/Transforms/Vectorize.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/PostOrderIterator.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/ScalarEvolution.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26#include "llvm/Analysis/TargetTransformInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/NoFolder.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Value.h"
37#include "llvm/IR/Verifier.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/VectorUtils.h"
43#include <algorithm>
44#include <map>
45
46using namespace llvm;
47
48#define SV_NAME "slp-vectorizer"
49#define DEBUG_TYPE "SLP"
50
51static cl::opt<int>
52    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
53                     cl::desc("Only vectorize if you gain more than this "
54                              "number "));
55
56static cl::opt<bool>
57ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
58                   cl::desc("Attempt to vectorize horizontal reductions"));
59
60static cl::opt<bool> ShouldStartVectorizeHorAtStore(
61    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
62    cl::desc(
63        "Attempt to vectorize horizontal reductions feeding into a store"));
64
65namespace {
66
67static const unsigned MinVecRegSize = 128;
68
69static const unsigned RecursionMaxDepth = 12;
70
71/// A helper class for numbering instructions in multiple blocks.
72/// Numbers start at zero for each basic block.
73struct BlockNumbering {
74
75  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
76
77  void numberInstructions() {
78    unsigned Loc = 0;
79    InstrIdx.clear();
80    InstrVec.clear();
81    // Number the instructions in the block.
82    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
83      InstrIdx[it] = Loc++;
84      InstrVec.push_back(it);
85      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
86    }
87    Valid = true;
88  }
89
90  int getIndex(Instruction *I) {
91    assert(I->getParent() == BB && "Invalid instruction");
92    if (!Valid)
93      numberInstructions();
94    assert(InstrIdx.count(I) && "Unknown instruction");
95    return InstrIdx[I];
96  }
97
98  Instruction *getInstruction(unsigned loc) {
99    if (!Valid)
100      numberInstructions();
101    assert(InstrVec.size() > loc && "Invalid Index");
102    return InstrVec[loc];
103  }
104
105  void forget() { Valid = false; }
106
107private:
108  /// The block we are numbering.
109  BasicBlock *BB;
110  /// Is the block numbered.
111  bool Valid;
112  /// Maps instructions to numbers and back.
113  SmallDenseMap<Instruction *, int> InstrIdx;
114  /// Maps integers to Instructions.
115  SmallVector<Instruction *, 32> InstrVec;
116};
117
118/// \returns the parent basic block if all of the instructions in \p VL
119/// are in the same block or null otherwise.
120static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
121  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
122  if (!I0)
123    return nullptr;
124  BasicBlock *BB = I0->getParent();
125  for (int i = 1, e = VL.size(); i < e; i++) {
126    Instruction *I = dyn_cast<Instruction>(VL[i]);
127    if (!I)
128      return nullptr;
129
130    if (BB != I->getParent())
131      return nullptr;
132  }
133  return BB;
134}
135
136/// \returns True if all of the values in \p VL are constants.
137static bool allConstant(ArrayRef<Value *> VL) {
138  for (unsigned i = 0, e = VL.size(); i < e; ++i)
139    if (!isa<Constant>(VL[i]))
140      return false;
141  return true;
142}
143
144/// \returns True if all of the values in \p VL are identical.
145static bool isSplat(ArrayRef<Value *> VL) {
146  for (unsigned i = 1, e = VL.size(); i < e; ++i)
147    if (VL[i] != VL[0])
148      return false;
149  return true;
150}
151
152///\returns Opcode that can be clubbed with \p Op to create an alternate
153/// sequence which can later be merged as a ShuffleVector instruction.
154static unsigned getAltOpcode(unsigned Op) {
155  switch (Op) {
156  case Instruction::FAdd:
157    return Instruction::FSub;
158  case Instruction::FSub:
159    return Instruction::FAdd;
160  case Instruction::Add:
161    return Instruction::Sub;
162  case Instruction::Sub:
163    return Instruction::Add;
164  default:
165    return 0;
166  }
167}
168
169///\returns bool representing if Opcode \p Op can be part
170/// of an alternate sequence which can later be merged as
171/// a ShuffleVector instruction.
172static bool canCombineAsAltInst(unsigned Op) {
173  if (Op == Instruction::FAdd || Op == Instruction::FSub ||
174      Op == Instruction::Sub || Op == Instruction::Add)
175    return true;
176  return false;
177}
178
179/// \returns ShuffleVector instruction if intructions in \p VL have
180///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
181/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
182static unsigned isAltInst(ArrayRef<Value *> VL) {
183  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
184  unsigned Opcode = I0->getOpcode();
185  unsigned AltOpcode = getAltOpcode(Opcode);
186  for (int i = 1, e = VL.size(); i < e; i++) {
187    Instruction *I = dyn_cast<Instruction>(VL[i]);
188    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
189      return 0;
190  }
191  return Instruction::ShuffleVector;
192}
193
194/// \returns The opcode if all of the Instructions in \p VL have the same
195/// opcode, or zero.
196static unsigned getSameOpcode(ArrayRef<Value *> VL) {
197  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
198  if (!I0)
199    return 0;
200  unsigned Opcode = I0->getOpcode();
201  for (int i = 1, e = VL.size(); i < e; i++) {
202    Instruction *I = dyn_cast<Instruction>(VL[i]);
203    if (!I || Opcode != I->getOpcode()) {
204      if (canCombineAsAltInst(Opcode) && i == 1)
205        return isAltInst(VL);
206      return 0;
207    }
208  }
209  return Opcode;
210}
211
212/// \returns \p I after propagating metadata from \p VL.
213static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
214  Instruction *I0 = cast<Instruction>(VL[0]);
215  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
216  I0->getAllMetadataOtherThanDebugLoc(Metadata);
217
218  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
219    unsigned Kind = Metadata[i].first;
220    MDNode *MD = Metadata[i].second;
221
222    for (int i = 1, e = VL.size(); MD && i != e; i++) {
223      Instruction *I = cast<Instruction>(VL[i]);
224      MDNode *IMD = I->getMetadata(Kind);
225
226      switch (Kind) {
227      default:
228        MD = nullptr; // Remove unknown metadata
229        break;
230      case LLVMContext::MD_tbaa:
231        MD = MDNode::getMostGenericTBAA(MD, IMD);
232        break;
233      case LLVMContext::MD_fpmath:
234        MD = MDNode::getMostGenericFPMath(MD, IMD);
235        break;
236      }
237    }
238    I->setMetadata(Kind, MD);
239  }
240  return I;
241}
242
243/// \returns The type that all of the values in \p VL have or null if there
244/// are different types.
245static Type* getSameType(ArrayRef<Value *> VL) {
246  Type *Ty = VL[0]->getType();
247  for (int i = 1, e = VL.size(); i < e; i++)
248    if (VL[i]->getType() != Ty)
249      return nullptr;
250
251  return Ty;
252}
253
254/// \returns True if the ExtractElement instructions in VL can be vectorized
255/// to use the original vector.
256static bool CanReuseExtract(ArrayRef<Value *> VL) {
257  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
258  // Check if all of the extracts come from the same vector and from the
259  // correct offset.
260  Value *VL0 = VL[0];
261  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
262  Value *Vec = E0->getOperand(0);
263
264  // We have to extract from the same vector type.
265  unsigned NElts = Vec->getType()->getVectorNumElements();
266
267  if (NElts != VL.size())
268    return false;
269
270  // Check that all of the indices extract from the correct offset.
271  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
272  if (!CI || CI->getZExtValue())
273    return false;
274
275  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
276    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
277    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
278
279    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
280      return false;
281  }
282
283  return true;
284}
285
286static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
287                                           SmallVectorImpl<Value *> &Left,
288                                           SmallVectorImpl<Value *> &Right) {
289
290  SmallVector<Value *, 16> OrigLeft, OrigRight;
291
292  bool AllSameOpcodeLeft = true;
293  bool AllSameOpcodeRight = true;
294  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
295    Instruction *I = cast<Instruction>(VL[i]);
296    Value *V0 = I->getOperand(0);
297    Value *V1 = I->getOperand(1);
298
299    OrigLeft.push_back(V0);
300    OrigRight.push_back(V1);
301
302    Instruction *I0 = dyn_cast<Instruction>(V0);
303    Instruction *I1 = dyn_cast<Instruction>(V1);
304
305    // Check whether all operands on one side have the same opcode. In this case
306    // we want to preserve the original order and not make things worse by
307    // reordering.
308    AllSameOpcodeLeft = I0;
309    AllSameOpcodeRight = I1;
310
311    if (i && AllSameOpcodeLeft) {
312      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
313        if(P0->getOpcode() != I0->getOpcode())
314          AllSameOpcodeLeft = false;
315      } else
316        AllSameOpcodeLeft = false;
317    }
318    if (i && AllSameOpcodeRight) {
319      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
320        if(P1->getOpcode() != I1->getOpcode())
321          AllSameOpcodeRight = false;
322      } else
323        AllSameOpcodeRight = false;
324    }
325
326    // Sort two opcodes. In the code below we try to preserve the ability to use
327    // broadcast of values instead of individual inserts.
328    // vl1 = load
329    // vl2 = phi
330    // vr1 = load
331    // vr2 = vr2
332    //    = vl1 x vr1
333    //    = vl2 x vr2
334    // If we just sorted according to opcode we would leave the first line in
335    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
336    //    = vl1 x vr1
337    //    = vr2 x vl2
338    // Because vr2 and vr1 are from the same load we loose the opportunity of a
339    // broadcast for the packed right side in the backend: we have [vr1, vl2]
340    // instead of [vr1, vr2=vr1].
341    if (I0 && I1) {
342       if(!i && I0->getOpcode() > I1->getOpcode()) {
343         Left.push_back(I1);
344         Right.push_back(I0);
345       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
346         // Try not to destroy a broad cast for no apparent benefit.
347         Left.push_back(I1);
348         Right.push_back(I0);
349       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
350         // Try preserve broadcasts.
351         Left.push_back(I1);
352         Right.push_back(I0);
353       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
354         // Try preserve broadcasts.
355         Left.push_back(I1);
356         Right.push_back(I0);
357       } else {
358         Left.push_back(I0);
359         Right.push_back(I1);
360       }
361       continue;
362    }
363    // One opcode, put the instruction on the right.
364    if (I0) {
365      Left.push_back(V1);
366      Right.push_back(I0);
367      continue;
368    }
369    Left.push_back(V0);
370    Right.push_back(V1);
371  }
372
373  bool LeftBroadcast = isSplat(Left);
374  bool RightBroadcast = isSplat(Right);
375
376  // Don't reorder if the operands where good to begin with.
377  if (!(LeftBroadcast || RightBroadcast) &&
378      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
379    Left = OrigLeft;
380    Right = OrigRight;
381  }
382}
383
384/// Bottom Up SLP Vectorizer.
385class BoUpSLP {
386public:
387  typedef SmallVector<Value *, 8> ValueList;
388  typedef SmallVector<Instruction *, 16> InstrList;
389  typedef SmallPtrSet<Value *, 16> ValueSet;
390  typedef SmallVector<StoreInst *, 8> StoreList;
391
392  BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
393          TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
394          LoopInfo *Li, DominatorTree *Dt)
395      : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
396        Builder(Se->getContext()) {}
397
398  /// \brief Vectorize the tree that starts with the elements in \p VL.
399  /// Returns the vectorized root.
400  Value *vectorizeTree();
401
402  /// \returns the vectorization cost of the subtree that starts at \p VL.
403  /// A negative number means that this is profitable.
404  int getTreeCost();
405
406  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
407  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
408  void buildTree(ArrayRef<Value *> Roots,
409                 ArrayRef<Value *> UserIgnoreLst = None);
410
411  /// Clear the internal data structures that are created by 'buildTree'.
412  void deleteTree() {
413    VectorizableTree.clear();
414    ScalarToTreeEntry.clear();
415    MustGather.clear();
416    ExternalUses.clear();
417    MemBarrierIgnoreList.clear();
418  }
419
420  /// \returns true if the memory operations A and B are consecutive.
421  bool isConsecutiveAccess(Value *A, Value *B);
422
423  /// \brief Perform LICM and CSE on the newly generated gather sequences.
424  void optimizeGatherSequence();
425
426private:
427  struct TreeEntry;
428
429  /// \returns the cost of the vectorizable entry.
430  int getEntryCost(TreeEntry *E);
431
432  /// This is the recursive part of buildTree.
433  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
434
435  /// Vectorize a single entry in the tree.
436  Value *vectorizeTree(TreeEntry *E);
437
438  /// Vectorize a single entry in the tree, starting in \p VL.
439  Value *vectorizeTree(ArrayRef<Value *> VL);
440
441  /// \returns the pointer to the vectorized value if \p VL is already
442  /// vectorized, or NULL. They may happen in cycles.
443  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
444
445  /// \brief Take the pointer operand from the Load/Store instruction.
446  /// \returns NULL if this is not a valid Load/Store instruction.
447  static Value *getPointerOperand(Value *I);
448
449  /// \brief Take the address space operand from the Load/Store instruction.
450  /// \returns -1 if this is not a valid Load/Store instruction.
451  static unsigned getAddressSpaceOperand(Value *I);
452
453  /// \returns the scalarization cost for this type. Scalarization in this
454  /// context means the creation of vectors from a group of scalars.
455  int getGatherCost(Type *Ty);
456
457  /// \returns the scalarization cost for this list of values. Assuming that
458  /// this subtree gets vectorized, we may need to extract the values from the
459  /// roots. This method calculates the cost of extracting the values.
460  int getGatherCost(ArrayRef<Value *> VL);
461
462  /// \returns the AA location that is being access by the instruction.
463  AliasAnalysis::Location getLocation(Instruction *I);
464
465  /// \brief Checks if it is possible to sink an instruction from
466  /// \p Src to \p Dst.
467  /// \returns the pointer to the barrier instruction if we can't sink.
468  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
469
470  /// \returns the index of the last instruction in the BB from \p VL.
471  int getLastIndex(ArrayRef<Value *> VL);
472
473  /// \returns the Instruction in the bundle \p VL.
474  Instruction *getLastInstruction(ArrayRef<Value *> VL);
475
476  /// \brief Set the Builder insert point to one after the last instruction in
477  /// the bundle
478  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
479
480  /// \returns a vector from a collection of scalars in \p VL.
481  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
482
483  /// \returns whether the VectorizableTree is fully vectoriable and will
484  /// be beneficial even the tree height is tiny.
485  bool isFullyVectorizableTinyTree();
486
487  struct TreeEntry {
488    TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
489    NeedToGather(0) {}
490
491    /// \returns true if the scalars in VL are equal to this entry.
492    bool isSame(ArrayRef<Value *> VL) const {
493      assert(VL.size() == Scalars.size() && "Invalid size");
494      return std::equal(VL.begin(), VL.end(), Scalars.begin());
495    }
496
497    /// A vector of scalars.
498    ValueList Scalars;
499
500    /// The Scalars are vectorized into this value. It is initialized to Null.
501    Value *VectorizedValue;
502
503    /// The index in the basic block of the last scalar.
504    int LastScalarIndex;
505
506    /// Do we need to gather this sequence ?
507    bool NeedToGather;
508  };
509
510  /// Create a new VectorizableTree entry.
511  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
512    VectorizableTree.push_back(TreeEntry());
513    int idx = VectorizableTree.size() - 1;
514    TreeEntry *Last = &VectorizableTree[idx];
515    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
516    Last->NeedToGather = !Vectorized;
517    if (Vectorized) {
518      Last->LastScalarIndex = getLastIndex(VL);
519      for (int i = 0, e = VL.size(); i != e; ++i) {
520        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
521        ScalarToTreeEntry[VL[i]] = idx;
522      }
523    } else {
524      Last->LastScalarIndex = 0;
525      MustGather.insert(VL.begin(), VL.end());
526    }
527    return Last;
528  }
529
530  /// -- Vectorization State --
531  /// Holds all of the tree entries.
532  std::vector<TreeEntry> VectorizableTree;
533
534  /// Maps a specific scalar to its tree entry.
535  SmallDenseMap<Value*, int> ScalarToTreeEntry;
536
537  /// A list of scalars that we found that we need to keep as scalars.
538  ValueSet MustGather;
539
540  /// This POD struct describes one external user in the vectorized tree.
541  struct ExternalUser {
542    ExternalUser (Value *S, llvm::User *U, int L) :
543      Scalar(S), User(U), Lane(L){};
544    // Which scalar in our function.
545    Value *Scalar;
546    // Which user that uses the scalar.
547    llvm::User *User;
548    // Which lane does the scalar belong to.
549    int Lane;
550  };
551  typedef SmallVector<ExternalUser, 16> UserList;
552
553  /// A list of values that need to extracted out of the tree.
554  /// This list holds pairs of (Internal Scalar : External User).
555  UserList ExternalUses;
556
557  /// A list of instructions to ignore while sinking
558  /// memory instructions. This map must be reset between runs of getCost.
559  ValueSet MemBarrierIgnoreList;
560
561  /// Holds all of the instructions that we gathered.
562  SetVector<Instruction *> GatherSeq;
563  /// A list of blocks that we are going to CSE.
564  SetVector<BasicBlock *> CSEBlocks;
565
566  /// Numbers instructions in different blocks.
567  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
568
569  /// \brief Get the corresponding instruction numbering list for a given
570  /// BasicBlock. The list is allocated lazily.
571  BlockNumbering &getBlockNumbering(BasicBlock *BB) {
572    auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB)));
573    return I.first->second;
574  }
575
576  /// List of users to ignore during scheduling and that don't need extracting.
577  ArrayRef<Value *> UserIgnoreList;
578
579  // Analysis and block reference.
580  Function *F;
581  ScalarEvolution *SE;
582  const DataLayout *DL;
583  TargetTransformInfo *TTI;
584  TargetLibraryInfo *TLI;
585  AliasAnalysis *AA;
586  LoopInfo *LI;
587  DominatorTree *DT;
588  /// Instruction builder to construct the vectorized tree.
589  IRBuilder<> Builder;
590};
591
592void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
593                        ArrayRef<Value *> UserIgnoreLst) {
594  deleteTree();
595  UserIgnoreList = UserIgnoreLst;
596  if (!getSameType(Roots))
597    return;
598  buildTree_rec(Roots, 0);
599
600  // Collect the values that we need to extract from the tree.
601  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
602    TreeEntry *Entry = &VectorizableTree[EIdx];
603
604    // For each lane:
605    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
606      Value *Scalar = Entry->Scalars[Lane];
607
608      // No need to handle users of gathered values.
609      if (Entry->NeedToGather)
610        continue;
611
612      for (User *U : Scalar->users()) {
613        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
614
615        // Skip in-tree scalars that become vectors.
616        if (ScalarToTreeEntry.count(U)) {
617          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
618                *U << ".\n");
619          int Idx = ScalarToTreeEntry[U]; (void) Idx;
620          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
621          continue;
622        }
623        Instruction *UserInst = dyn_cast<Instruction>(U);
624        if (!UserInst)
625          continue;
626
627        // Ignore users in the user ignore list.
628        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
629            UserIgnoreList.end())
630          continue;
631
632        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
633              Lane << " from " << *Scalar << ".\n");
634        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
635      }
636    }
637  }
638}
639
640
641void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
642  bool SameTy = getSameType(VL); (void)SameTy;
643  bool isAltShuffle = false;
644  assert(SameTy && "Invalid types!");
645
646  if (Depth == RecursionMaxDepth) {
647    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
648    newTreeEntry(VL, false);
649    return;
650  }
651
652  // Don't handle vectors.
653  if (VL[0]->getType()->isVectorTy()) {
654    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
655    newTreeEntry(VL, false);
656    return;
657  }
658
659  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
660    if (SI->getValueOperand()->getType()->isVectorTy()) {
661      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
662      newTreeEntry(VL, false);
663      return;
664    }
665  unsigned Opcode = getSameOpcode(VL);
666
667  // Check that this shuffle vector refers to the alternate
668  // sequence of opcodes.
669  if (Opcode == Instruction::ShuffleVector) {
670    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
671    unsigned Op = I0->getOpcode();
672    if (Op != Instruction::ShuffleVector)
673      isAltShuffle = true;
674  }
675
676  // If all of the operands are identical or constant we have a simple solution.
677  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
678    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
679    newTreeEntry(VL, false);
680    return;
681  }
682
683  // We now know that this is a vector of instructions of the same type from
684  // the same block.
685
686  // Check if this is a duplicate of another entry.
687  if (ScalarToTreeEntry.count(VL[0])) {
688    int Idx = ScalarToTreeEntry[VL[0]];
689    TreeEntry *E = &VectorizableTree[Idx];
690    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
691      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
692      if (E->Scalars[i] != VL[i]) {
693        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
694        newTreeEntry(VL, false);
695        return;
696      }
697    }
698    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
699    return;
700  }
701
702  // Check that none of the instructions in the bundle are already in the tree.
703  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
704    if (ScalarToTreeEntry.count(VL[i])) {
705      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
706            ") is already in tree.\n");
707      newTreeEntry(VL, false);
708      return;
709    }
710  }
711
712  // If any of the scalars appears in the table OR it is marked as a value that
713  // needs to stat scalar then we need to gather the scalars.
714  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
715    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
716      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
717      newTreeEntry(VL, false);
718      return;
719    }
720  }
721
722  // Check that all of the users of the scalars that we want to vectorize are
723  // schedulable.
724  Instruction *VL0 = cast<Instruction>(VL[0]);
725  int MyLastIndex = getLastIndex(VL);
726  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
727
728  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
729    Instruction *Scalar = cast<Instruction>(VL[i]);
730    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
731    for (User *U : Scalar->users()) {
732      DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
733      Instruction *UI = dyn_cast<Instruction>(U);
734      if (!UI) {
735        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
736        newTreeEntry(VL, false);
737        return;
738      }
739
740      // We don't care if the user is in a different basic block.
741      BasicBlock *UserBlock = UI->getParent();
742      if (UserBlock != BB) {
743        DEBUG(dbgs() << "SLP: User from a different basic block "
744              << *UI << ". \n");
745        continue;
746      }
747
748      // If this is a PHINode within this basic block then we can place the
749      // extract wherever we want.
750      if (isa<PHINode>(*UI)) {
751        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
752        continue;
753      }
754
755      // Check if this is a safe in-tree user.
756      if (ScalarToTreeEntry.count(UI)) {
757        int Idx = ScalarToTreeEntry[UI];
758        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
759        if (VecLocation <= MyLastIndex) {
760          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
761          newTreeEntry(VL, false);
762          return;
763        }
764        DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
765              VecLocation << " vector value (" << *Scalar << ") at #"
766              << MyLastIndex << ".\n");
767        continue;
768      }
769
770      // Ignore users in the user ignore list.
771      if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
772          UserIgnoreList.end())
773        continue;
774
775      // Make sure that we can schedule this unknown user.
776      BlockNumbering &BN = getBlockNumbering(BB);
777      int UserIndex = BN.getIndex(UI);
778      if (UserIndex < MyLastIndex) {
779
780        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
781              << *UI << ". \n");
782        newTreeEntry(VL, false);
783        return;
784      }
785    }
786  }
787
788  // Check that every instructions appears once in this bundle.
789  for (unsigned i = 0, e = VL.size(); i < e; ++i)
790    for (unsigned j = i+1; j < e; ++j)
791      if (VL[i] == VL[j]) {
792        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
793        newTreeEntry(VL, false);
794        return;
795      }
796
797  // Check that instructions in this bundle don't reference other instructions.
798  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
799  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
800    for (User *U : VL[i]->users()) {
801      for (unsigned j = 0; j < e; ++j) {
802        if (i != j && U == VL[j]) {
803          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
804          newTreeEntry(VL, false);
805          return;
806        }
807      }
808    }
809  }
810
811  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
812
813  // Check if it is safe to sink the loads or the stores.
814  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
815    Instruction *Last = getLastInstruction(VL);
816
817    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
818      if (VL[i] == Last)
819        continue;
820      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
821      if (Barrier) {
822        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
823              << "\n because of " << *Barrier << ".  Gathering.\n");
824        newTreeEntry(VL, false);
825        return;
826      }
827    }
828  }
829
830  switch (Opcode) {
831    case Instruction::PHI: {
832      PHINode *PH = dyn_cast<PHINode>(VL0);
833
834      // Check for terminator values (e.g. invoke).
835      for (unsigned j = 0; j < VL.size(); ++j)
836        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
837          TerminatorInst *Term = dyn_cast<TerminatorInst>(
838              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
839          if (Term) {
840            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
841            newTreeEntry(VL, false);
842            return;
843          }
844        }
845
846      newTreeEntry(VL, true);
847      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
848
849      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
850        ValueList Operands;
851        // Prepare the operand vector.
852        for (unsigned j = 0; j < VL.size(); ++j)
853          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
854              PH->getIncomingBlock(i)));
855
856        buildTree_rec(Operands, Depth + 1);
857      }
858      return;
859    }
860    case Instruction::ExtractElement: {
861      bool Reuse = CanReuseExtract(VL);
862      if (Reuse) {
863        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
864      }
865      newTreeEntry(VL, Reuse);
866      return;
867    }
868    case Instruction::Load: {
869      // Check if the loads are consecutive or of we need to swizzle them.
870      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
871        LoadInst *L = cast<LoadInst>(VL[i]);
872        if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
873          newTreeEntry(VL, false);
874          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
875          return;
876        }
877      }
878      newTreeEntry(VL, true);
879      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
880      return;
881    }
882    case Instruction::ZExt:
883    case Instruction::SExt:
884    case Instruction::FPToUI:
885    case Instruction::FPToSI:
886    case Instruction::FPExt:
887    case Instruction::PtrToInt:
888    case Instruction::IntToPtr:
889    case Instruction::SIToFP:
890    case Instruction::UIToFP:
891    case Instruction::Trunc:
892    case Instruction::FPTrunc:
893    case Instruction::BitCast: {
894      Type *SrcTy = VL0->getOperand(0)->getType();
895      for (unsigned i = 0; i < VL.size(); ++i) {
896        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
897        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
898          newTreeEntry(VL, false);
899          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
900          return;
901        }
902      }
903      newTreeEntry(VL, true);
904      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
905
906      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
907        ValueList Operands;
908        // Prepare the operand vector.
909        for (unsigned j = 0; j < VL.size(); ++j)
910          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
911
912        buildTree_rec(Operands, Depth+1);
913      }
914      return;
915    }
916    case Instruction::ICmp:
917    case Instruction::FCmp: {
918      // Check that all of the compares have the same predicate.
919      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
920      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
921      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
922        CmpInst *Cmp = cast<CmpInst>(VL[i]);
923        if (Cmp->getPredicate() != P0 ||
924            Cmp->getOperand(0)->getType() != ComparedTy) {
925          newTreeEntry(VL, false);
926          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
927          return;
928        }
929      }
930
931      newTreeEntry(VL, true);
932      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
933
934      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
935        ValueList Operands;
936        // Prepare the operand vector.
937        for (unsigned j = 0; j < VL.size(); ++j)
938          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
939
940        buildTree_rec(Operands, Depth+1);
941      }
942      return;
943    }
944    case Instruction::Select:
945    case Instruction::Add:
946    case Instruction::FAdd:
947    case Instruction::Sub:
948    case Instruction::FSub:
949    case Instruction::Mul:
950    case Instruction::FMul:
951    case Instruction::UDiv:
952    case Instruction::SDiv:
953    case Instruction::FDiv:
954    case Instruction::URem:
955    case Instruction::SRem:
956    case Instruction::FRem:
957    case Instruction::Shl:
958    case Instruction::LShr:
959    case Instruction::AShr:
960    case Instruction::And:
961    case Instruction::Or:
962    case Instruction::Xor: {
963      newTreeEntry(VL, true);
964      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
965
966      // Sort operands of the instructions so that each side is more likely to
967      // have the same opcode.
968      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
969        ValueList Left, Right;
970        reorderInputsAccordingToOpcode(VL, Left, Right);
971        BasicBlock *LeftBB = getSameBlock(Left);
972        BasicBlock *RightBB = getSameBlock(Right);
973        // If we have common uses on separate paths in the tree make sure we
974        // process the one with greater common depth first.
975        // We can use block numbering to determine the subtree traversal as
976        // earler user has to come in between the common use and the later user.
977        if (LeftBB && RightBB && LeftBB == RightBB &&
978            getLastIndex(Right) > getLastIndex(Left)) {
979          buildTree_rec(Right, Depth + 1);
980          buildTree_rec(Left, Depth + 1);
981        } else {
982          buildTree_rec(Left, Depth + 1);
983          buildTree_rec(Right, Depth + 1);
984        }
985        return;
986      }
987
988      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
989        ValueList Operands;
990        // Prepare the operand vector.
991        for (unsigned j = 0; j < VL.size(); ++j)
992          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
993
994        buildTree_rec(Operands, Depth+1);
995      }
996      return;
997    }
998    case Instruction::GetElementPtr: {
999      // We don't combine GEPs with complicated (nested) indexing.
1000      for (unsigned j = 0; j < VL.size(); ++j) {
1001        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1002          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1003          newTreeEntry(VL, false);
1004          return;
1005        }
1006      }
1007
1008      // We can't combine several GEPs into one vector if they operate on
1009      // different types.
1010      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1011      for (unsigned j = 0; j < VL.size(); ++j) {
1012        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1013        if (Ty0 != CurTy) {
1014          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1015          newTreeEntry(VL, false);
1016          return;
1017        }
1018      }
1019
1020      // We don't combine GEPs with non-constant indexes.
1021      for (unsigned j = 0; j < VL.size(); ++j) {
1022        auto Op = cast<Instruction>(VL[j])->getOperand(1);
1023        if (!isa<ConstantInt>(Op)) {
1024          DEBUG(
1025              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1026          newTreeEntry(VL, false);
1027          return;
1028        }
1029      }
1030
1031      newTreeEntry(VL, true);
1032      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1033      for (unsigned i = 0, e = 2; i < e; ++i) {
1034        ValueList Operands;
1035        // Prepare the operand vector.
1036        for (unsigned j = 0; j < VL.size(); ++j)
1037          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1038
1039        buildTree_rec(Operands, Depth + 1);
1040      }
1041      return;
1042    }
1043    case Instruction::Store: {
1044      // Check if the stores are consecutive or of we need to swizzle them.
1045      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1046        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
1047          newTreeEntry(VL, false);
1048          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1049          return;
1050        }
1051
1052      newTreeEntry(VL, true);
1053      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1054
1055      ValueList Operands;
1056      for (unsigned j = 0; j < VL.size(); ++j)
1057        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1058
1059      // We can ignore these values because we are sinking them down.
1060      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
1061      buildTree_rec(Operands, Depth + 1);
1062      return;
1063    }
1064    case Instruction::Call: {
1065      // Check if the calls are all to the same vectorizable intrinsic.
1066      CallInst *CI = cast<CallInst>(VL[0]);
1067      // Check if this is an Intrinsic call or something that can be
1068      // represented by an intrinsic call
1069      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1070      if (!isTriviallyVectorizable(ID)) {
1071        newTreeEntry(VL, false);
1072        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1073        return;
1074      }
1075      Function *Int = CI->getCalledFunction();
1076      Value *A1I = nullptr;
1077      if (hasVectorInstrinsicScalarOpd(ID, 1))
1078        A1I = CI->getArgOperand(1);
1079      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1080        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1081        if (!CI2 || CI2->getCalledFunction() != Int ||
1082            getIntrinsicIDForCall(CI2, TLI) != ID) {
1083          newTreeEntry(VL, false);
1084          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1085                       << "\n");
1086          return;
1087        }
1088        // ctlz,cttz and powi are special intrinsics whose second argument
1089        // should be same in order for them to be vectorized.
1090        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1091          Value *A1J = CI2->getArgOperand(1);
1092          if (A1I != A1J) {
1093            newTreeEntry(VL, false);
1094            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1095                         << " argument "<< A1I<<"!=" << A1J
1096                         << "\n");
1097            return;
1098          }
1099        }
1100      }
1101
1102      newTreeEntry(VL, true);
1103      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1104        ValueList Operands;
1105        // Prepare the operand vector.
1106        for (unsigned j = 0; j < VL.size(); ++j) {
1107          CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1108          Operands.push_back(CI2->getArgOperand(i));
1109        }
1110        buildTree_rec(Operands, Depth + 1);
1111      }
1112      return;
1113    }
1114    case Instruction::ShuffleVector: {
1115      // If this is not an alternate sequence of opcode like add-sub
1116      // then do not vectorize this instruction.
1117      if (!isAltShuffle) {
1118        newTreeEntry(VL, false);
1119        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1120        return;
1121      }
1122      newTreeEntry(VL, true);
1123      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1124      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1125        ValueList Operands;
1126        // Prepare the operand vector.
1127        for (unsigned j = 0; j < VL.size(); ++j)
1128          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1129
1130        buildTree_rec(Operands, Depth + 1);
1131      }
1132      return;
1133    }
1134    default:
1135      newTreeEntry(VL, false);
1136      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1137      return;
1138  }
1139}
1140
1141int BoUpSLP::getEntryCost(TreeEntry *E) {
1142  ArrayRef<Value*> VL = E->Scalars;
1143
1144  Type *ScalarTy = VL[0]->getType();
1145  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1146    ScalarTy = SI->getValueOperand()->getType();
1147  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1148
1149  if (E->NeedToGather) {
1150    if (allConstant(VL))
1151      return 0;
1152    if (isSplat(VL)) {
1153      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1154    }
1155    return getGatherCost(E->Scalars);
1156  }
1157  unsigned Opcode = getSameOpcode(VL);
1158  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1159  Instruction *VL0 = cast<Instruction>(VL[0]);
1160  switch (Opcode) {
1161    case Instruction::PHI: {
1162      return 0;
1163    }
1164    case Instruction::ExtractElement: {
1165      if (CanReuseExtract(VL)) {
1166        int DeadCost = 0;
1167        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1168          ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1169          if (E->hasOneUse())
1170            // Take credit for instruction that will become dead.
1171            DeadCost +=
1172                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1173        }
1174        return -DeadCost;
1175      }
1176      return getGatherCost(VecTy);
1177    }
1178    case Instruction::ZExt:
1179    case Instruction::SExt:
1180    case Instruction::FPToUI:
1181    case Instruction::FPToSI:
1182    case Instruction::FPExt:
1183    case Instruction::PtrToInt:
1184    case Instruction::IntToPtr:
1185    case Instruction::SIToFP:
1186    case Instruction::UIToFP:
1187    case Instruction::Trunc:
1188    case Instruction::FPTrunc:
1189    case Instruction::BitCast: {
1190      Type *SrcTy = VL0->getOperand(0)->getType();
1191
1192      // Calculate the cost of this instruction.
1193      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1194                                                         VL0->getType(), SrcTy);
1195
1196      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1197      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1198      return VecCost - ScalarCost;
1199    }
1200    case Instruction::FCmp:
1201    case Instruction::ICmp:
1202    case Instruction::Select:
1203    case Instruction::Add:
1204    case Instruction::FAdd:
1205    case Instruction::Sub:
1206    case Instruction::FSub:
1207    case Instruction::Mul:
1208    case Instruction::FMul:
1209    case Instruction::UDiv:
1210    case Instruction::SDiv:
1211    case Instruction::FDiv:
1212    case Instruction::URem:
1213    case Instruction::SRem:
1214    case Instruction::FRem:
1215    case Instruction::Shl:
1216    case Instruction::LShr:
1217    case Instruction::AShr:
1218    case Instruction::And:
1219    case Instruction::Or:
1220    case Instruction::Xor: {
1221      // Calculate the cost of this instruction.
1222      int ScalarCost = 0;
1223      int VecCost = 0;
1224      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1225          Opcode == Instruction::Select) {
1226        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1227        ScalarCost = VecTy->getNumElements() *
1228        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1229        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1230      } else {
1231        // Certain instructions can be cheaper to vectorize if they have a
1232        // constant second vector operand.
1233        TargetTransformInfo::OperandValueKind Op1VK =
1234            TargetTransformInfo::OK_AnyValue;
1235        TargetTransformInfo::OperandValueKind Op2VK =
1236            TargetTransformInfo::OK_UniformConstantValue;
1237
1238        // If all operands are exactly the same ConstantInt then set the
1239        // operand kind to OK_UniformConstantValue.
1240        // If instead not all operands are constants, then set the operand kind
1241        // to OK_AnyValue. If all operands are constants but not the same,
1242        // then set the operand kind to OK_NonUniformConstantValue.
1243        ConstantInt *CInt = nullptr;
1244        for (unsigned i = 0; i < VL.size(); ++i) {
1245          const Instruction *I = cast<Instruction>(VL[i]);
1246          if (!isa<ConstantInt>(I->getOperand(1))) {
1247            Op2VK = TargetTransformInfo::OK_AnyValue;
1248            break;
1249          }
1250          if (i == 0) {
1251            CInt = cast<ConstantInt>(I->getOperand(1));
1252            continue;
1253          }
1254          if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1255              CInt != cast<ConstantInt>(I->getOperand(1)))
1256            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1257        }
1258
1259        ScalarCost =
1260            VecTy->getNumElements() *
1261            TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1262        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1263      }
1264      return VecCost - ScalarCost;
1265    }
1266    case Instruction::GetElementPtr: {
1267      TargetTransformInfo::OperandValueKind Op1VK =
1268          TargetTransformInfo::OK_AnyValue;
1269      TargetTransformInfo::OperandValueKind Op2VK =
1270          TargetTransformInfo::OK_UniformConstantValue;
1271
1272      int ScalarCost =
1273          VecTy->getNumElements() *
1274          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1275      int VecCost =
1276          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1277
1278      return VecCost - ScalarCost;
1279    }
1280    case Instruction::Load: {
1281      // Cost of wide load - cost of scalar loads.
1282      int ScalarLdCost = VecTy->getNumElements() *
1283      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1284      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1285      return VecLdCost - ScalarLdCost;
1286    }
1287    case Instruction::Store: {
1288      // We know that we can merge the stores. Calculate the cost.
1289      int ScalarStCost = VecTy->getNumElements() *
1290      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1291      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1292      return VecStCost - ScalarStCost;
1293    }
1294    case Instruction::Call: {
1295      CallInst *CI = cast<CallInst>(VL0);
1296      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1297
1298      // Calculate the cost of the scalar and vector calls.
1299      SmallVector<Type*, 4> ScalarTys, VecTys;
1300      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1301        ScalarTys.push_back(CI->getArgOperand(op)->getType());
1302        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1303                                         VecTy->getNumElements()));
1304      }
1305
1306      int ScalarCallCost = VecTy->getNumElements() *
1307          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1308
1309      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1310
1311      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1312            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1313            << " for " << *CI << "\n");
1314
1315      return VecCallCost - ScalarCallCost;
1316    }
1317    case Instruction::ShuffleVector: {
1318      TargetTransformInfo::OperandValueKind Op1VK =
1319          TargetTransformInfo::OK_AnyValue;
1320      TargetTransformInfo::OperandValueKind Op2VK =
1321          TargetTransformInfo::OK_AnyValue;
1322      int ScalarCost = 0;
1323      int VecCost = 0;
1324      for (unsigned i = 0; i < VL.size(); ++i) {
1325        Instruction *I = cast<Instruction>(VL[i]);
1326        if (!I)
1327          break;
1328        ScalarCost +=
1329            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1330      }
1331      // VecCost is equal to sum of the cost of creating 2 vectors
1332      // and the cost of creating shuffle.
1333      Instruction *I0 = cast<Instruction>(VL[0]);
1334      VecCost =
1335          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1336      Instruction *I1 = cast<Instruction>(VL[1]);
1337      VecCost +=
1338          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1339      VecCost +=
1340          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1341      return VecCost - ScalarCost;
1342    }
1343    default:
1344      llvm_unreachable("Unknown instruction");
1345  }
1346}
1347
1348bool BoUpSLP::isFullyVectorizableTinyTree() {
1349  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1350        VectorizableTree.size() << " is fully vectorizable .\n");
1351
1352  // We only handle trees of height 2.
1353  if (VectorizableTree.size() != 2)
1354    return false;
1355
1356  // Handle splat stores.
1357  if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
1358    return true;
1359
1360  // Gathering cost would be too much for tiny trees.
1361  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1362    return false;
1363
1364  return true;
1365}
1366
1367int BoUpSLP::getTreeCost() {
1368  int Cost = 0;
1369  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1370        VectorizableTree.size() << ".\n");
1371
1372  // We only vectorize tiny trees if it is fully vectorizable.
1373  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1374    if (!VectorizableTree.size()) {
1375      assert(!ExternalUses.size() && "We should not have any external users");
1376    }
1377    return INT_MAX;
1378  }
1379
1380  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1381
1382  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1383    int C = getEntryCost(&VectorizableTree[i]);
1384    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1385          << *VectorizableTree[i].Scalars[0] << " .\n");
1386    Cost += C;
1387  }
1388
1389  SmallSet<Value *, 16> ExtractCostCalculated;
1390  int ExtractCost = 0;
1391  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1392       I != E; ++I) {
1393    // We only add extract cost once for the same scalar.
1394    if (!ExtractCostCalculated.insert(I->Scalar))
1395      continue;
1396
1397    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1398    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1399                                           I->Lane);
1400  }
1401
1402  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1403  return  Cost + ExtractCost;
1404}
1405
1406int BoUpSLP::getGatherCost(Type *Ty) {
1407  int Cost = 0;
1408  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1409    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1410  return Cost;
1411}
1412
1413int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1414  // Find the type of the operands in VL.
1415  Type *ScalarTy = VL[0]->getType();
1416  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1417    ScalarTy = SI->getValueOperand()->getType();
1418  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1419  // Find the cost of inserting/extracting values from the vector.
1420  return getGatherCost(VecTy);
1421}
1422
1423AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1424  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1425    return AA->getLocation(SI);
1426  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1427    return AA->getLocation(LI);
1428  return AliasAnalysis::Location();
1429}
1430
1431Value *BoUpSLP::getPointerOperand(Value *I) {
1432  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1433    return LI->getPointerOperand();
1434  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1435    return SI->getPointerOperand();
1436  return nullptr;
1437}
1438
1439unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1440  if (LoadInst *L = dyn_cast<LoadInst>(I))
1441    return L->getPointerAddressSpace();
1442  if (StoreInst *S = dyn_cast<StoreInst>(I))
1443    return S->getPointerAddressSpace();
1444  return -1;
1445}
1446
1447bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1448  Value *PtrA = getPointerOperand(A);
1449  Value *PtrB = getPointerOperand(B);
1450  unsigned ASA = getAddressSpaceOperand(A);
1451  unsigned ASB = getAddressSpaceOperand(B);
1452
1453  // Check that the address spaces match and that the pointers are valid.
1454  if (!PtrA || !PtrB || (ASA != ASB))
1455    return false;
1456
1457  // Make sure that A and B are different pointers of the same type.
1458  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1459    return false;
1460
1461  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1462  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1463  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1464
1465  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1466  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1467  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1468
1469  APInt OffsetDelta = OffsetB - OffsetA;
1470
1471  // Check if they are based on the same pointer. That makes the offsets
1472  // sufficient.
1473  if (PtrA == PtrB)
1474    return OffsetDelta == Size;
1475
1476  // Compute the necessary base pointer delta to have the necessary final delta
1477  // equal to the size.
1478  APInt BaseDelta = Size - OffsetDelta;
1479
1480  // Otherwise compute the distance with SCEV between the base pointers.
1481  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1482  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1483  const SCEV *C = SE->getConstant(BaseDelta);
1484  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1485  return X == PtrSCEVB;
1486}
1487
1488Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1489  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1490  BasicBlock::iterator I = Src, E = Dst;
1491  /// Scan all of the instruction from SRC to DST and check if
1492  /// the source may alias.
1493  for (++I; I != E; ++I) {
1494    // Ignore store instructions that are marked as 'ignore'.
1495    if (MemBarrierIgnoreList.count(I))
1496      continue;
1497    if (Src->mayWriteToMemory()) /* Write */ {
1498      if (!I->mayReadOrWriteMemory())
1499        continue;
1500    } else /* Read */ {
1501      if (!I->mayWriteToMemory())
1502        continue;
1503    }
1504    AliasAnalysis::Location A = getLocation(&*I);
1505    AliasAnalysis::Location B = getLocation(Src);
1506
1507    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1508      return I;
1509  }
1510  return nullptr;
1511}
1512
1513int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1514  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1515  assert(BB == getSameBlock(VL) && "Invalid block");
1516  BlockNumbering &BN = getBlockNumbering(BB);
1517
1518  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1519  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1520    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1521  return MaxIdx;
1522}
1523
1524Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1525  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1526  assert(BB == getSameBlock(VL) && "Invalid block");
1527  BlockNumbering &BN = getBlockNumbering(BB);
1528
1529  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1530  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1531    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1532  Instruction *I = BN.getInstruction(MaxIdx);
1533  assert(I && "bad location");
1534  return I;
1535}
1536
1537void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1538  Instruction *VL0 = cast<Instruction>(VL[0]);
1539  Instruction *LastInst = getLastInstruction(VL);
1540  BasicBlock::iterator NextInst = LastInst;
1541  ++NextInst;
1542  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1543  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1544}
1545
1546Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1547  Value *Vec = UndefValue::get(Ty);
1548  // Generate the 'InsertElement' instruction.
1549  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1550    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1551    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1552      GatherSeq.insert(Insrt);
1553      CSEBlocks.insert(Insrt->getParent());
1554
1555      // Add to our 'need-to-extract' list.
1556      if (ScalarToTreeEntry.count(VL[i])) {
1557        int Idx = ScalarToTreeEntry[VL[i]];
1558        TreeEntry *E = &VectorizableTree[Idx];
1559        // Find which lane we need to extract.
1560        int FoundLane = -1;
1561        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1562          // Is this the lane of the scalar that we are looking for ?
1563          if (E->Scalars[Lane] == VL[i]) {
1564            FoundLane = Lane;
1565            break;
1566          }
1567        }
1568        assert(FoundLane >= 0 && "Could not find the correct lane");
1569        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1570      }
1571    }
1572  }
1573
1574  return Vec;
1575}
1576
1577Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1578  SmallDenseMap<Value*, int>::const_iterator Entry
1579    = ScalarToTreeEntry.find(VL[0]);
1580  if (Entry != ScalarToTreeEntry.end()) {
1581    int Idx = Entry->second;
1582    const TreeEntry *En = &VectorizableTree[Idx];
1583    if (En->isSame(VL) && En->VectorizedValue)
1584      return En->VectorizedValue;
1585  }
1586  return nullptr;
1587}
1588
1589Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1590  if (ScalarToTreeEntry.count(VL[0])) {
1591    int Idx = ScalarToTreeEntry[VL[0]];
1592    TreeEntry *E = &VectorizableTree[Idx];
1593    if (E->isSame(VL))
1594      return vectorizeTree(E);
1595  }
1596
1597  Type *ScalarTy = VL[0]->getType();
1598  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1599    ScalarTy = SI->getValueOperand()->getType();
1600  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1601
1602  return Gather(VL, VecTy);
1603}
1604
1605Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1606  IRBuilder<>::InsertPointGuard Guard(Builder);
1607
1608  if (E->VectorizedValue) {
1609    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1610    return E->VectorizedValue;
1611  }
1612
1613  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1614  Type *ScalarTy = VL0->getType();
1615  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1616    ScalarTy = SI->getValueOperand()->getType();
1617  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1618
1619  if (E->NeedToGather) {
1620    setInsertPointAfterBundle(E->Scalars);
1621    return Gather(E->Scalars, VecTy);
1622  }
1623  unsigned Opcode = getSameOpcode(E->Scalars);
1624
1625  switch (Opcode) {
1626    case Instruction::PHI: {
1627      PHINode *PH = dyn_cast<PHINode>(VL0);
1628      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1629      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1630      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1631      E->VectorizedValue = NewPhi;
1632
1633      // PHINodes may have multiple entries from the same block. We want to
1634      // visit every block once.
1635      SmallSet<BasicBlock*, 4> VisitedBBs;
1636
1637      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1638        ValueList Operands;
1639        BasicBlock *IBB = PH->getIncomingBlock(i);
1640
1641        if (!VisitedBBs.insert(IBB)) {
1642          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1643          continue;
1644        }
1645
1646        // Prepare the operand vector.
1647        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1648          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1649                             getIncomingValueForBlock(IBB));
1650
1651        Builder.SetInsertPoint(IBB->getTerminator());
1652        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1653        Value *Vec = vectorizeTree(Operands);
1654        NewPhi->addIncoming(Vec, IBB);
1655      }
1656
1657      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1658             "Invalid number of incoming values");
1659      return NewPhi;
1660    }
1661
1662    case Instruction::ExtractElement: {
1663      if (CanReuseExtract(E->Scalars)) {
1664        Value *V = VL0->getOperand(0);
1665        E->VectorizedValue = V;
1666        return V;
1667      }
1668      return Gather(E->Scalars, VecTy);
1669    }
1670    case Instruction::ZExt:
1671    case Instruction::SExt:
1672    case Instruction::FPToUI:
1673    case Instruction::FPToSI:
1674    case Instruction::FPExt:
1675    case Instruction::PtrToInt:
1676    case Instruction::IntToPtr:
1677    case Instruction::SIToFP:
1678    case Instruction::UIToFP:
1679    case Instruction::Trunc:
1680    case Instruction::FPTrunc:
1681    case Instruction::BitCast: {
1682      ValueList INVL;
1683      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1684        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1685
1686      setInsertPointAfterBundle(E->Scalars);
1687
1688      Value *InVec = vectorizeTree(INVL);
1689
1690      if (Value *V = alreadyVectorized(E->Scalars))
1691        return V;
1692
1693      CastInst *CI = dyn_cast<CastInst>(VL0);
1694      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1695      E->VectorizedValue = V;
1696      return V;
1697    }
1698    case Instruction::FCmp:
1699    case Instruction::ICmp: {
1700      ValueList LHSV, RHSV;
1701      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1702        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1703        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1704      }
1705
1706      setInsertPointAfterBundle(E->Scalars);
1707
1708      Value *L = vectorizeTree(LHSV);
1709      Value *R = vectorizeTree(RHSV);
1710
1711      if (Value *V = alreadyVectorized(E->Scalars))
1712        return V;
1713
1714      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1715      Value *V;
1716      if (Opcode == Instruction::FCmp)
1717        V = Builder.CreateFCmp(P0, L, R);
1718      else
1719        V = Builder.CreateICmp(P0, L, R);
1720
1721      E->VectorizedValue = V;
1722      return V;
1723    }
1724    case Instruction::Select: {
1725      ValueList TrueVec, FalseVec, CondVec;
1726      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1727        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1728        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1729        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1730      }
1731
1732      setInsertPointAfterBundle(E->Scalars);
1733
1734      Value *Cond = vectorizeTree(CondVec);
1735      Value *True = vectorizeTree(TrueVec);
1736      Value *False = vectorizeTree(FalseVec);
1737
1738      if (Value *V = alreadyVectorized(E->Scalars))
1739        return V;
1740
1741      Value *V = Builder.CreateSelect(Cond, True, False);
1742      E->VectorizedValue = V;
1743      return V;
1744    }
1745    case Instruction::Add:
1746    case Instruction::FAdd:
1747    case Instruction::Sub:
1748    case Instruction::FSub:
1749    case Instruction::Mul:
1750    case Instruction::FMul:
1751    case Instruction::UDiv:
1752    case Instruction::SDiv:
1753    case Instruction::FDiv:
1754    case Instruction::URem:
1755    case Instruction::SRem:
1756    case Instruction::FRem:
1757    case Instruction::Shl:
1758    case Instruction::LShr:
1759    case Instruction::AShr:
1760    case Instruction::And:
1761    case Instruction::Or:
1762    case Instruction::Xor: {
1763      ValueList LHSVL, RHSVL;
1764      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1765        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1766      else
1767        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1768          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1769          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1770        }
1771
1772      setInsertPointAfterBundle(E->Scalars);
1773
1774      Value *LHS = vectorizeTree(LHSVL);
1775      Value *RHS = vectorizeTree(RHSVL);
1776
1777      if (LHS == RHS && isa<Instruction>(LHS)) {
1778        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1779      }
1780
1781      if (Value *V = alreadyVectorized(E->Scalars))
1782        return V;
1783
1784      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1785      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1786      E->VectorizedValue = V;
1787
1788      if (Instruction *I = dyn_cast<Instruction>(V))
1789        return propagateMetadata(I, E->Scalars);
1790
1791      return V;
1792    }
1793    case Instruction::Load: {
1794      // Loads are inserted at the head of the tree because we don't want to
1795      // sink them all the way down past store instructions.
1796      setInsertPointAfterBundle(E->Scalars);
1797
1798      LoadInst *LI = cast<LoadInst>(VL0);
1799      unsigned AS = LI->getPointerAddressSpace();
1800
1801      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1802                                            VecTy->getPointerTo(AS));
1803      unsigned Alignment = LI->getAlignment();
1804      LI = Builder.CreateLoad(VecPtr);
1805      if (!Alignment)
1806        Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType());
1807      LI->setAlignment(Alignment);
1808      E->VectorizedValue = LI;
1809      return propagateMetadata(LI, E->Scalars);
1810    }
1811    case Instruction::Store: {
1812      StoreInst *SI = cast<StoreInst>(VL0);
1813      unsigned Alignment = SI->getAlignment();
1814      unsigned AS = SI->getPointerAddressSpace();
1815
1816      ValueList ValueOp;
1817      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1818        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1819
1820      setInsertPointAfterBundle(E->Scalars);
1821
1822      Value *VecValue = vectorizeTree(ValueOp);
1823      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1824                                            VecTy->getPointerTo(AS));
1825      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1826      if (!Alignment)
1827        Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType());
1828      S->setAlignment(Alignment);
1829      E->VectorizedValue = S;
1830      return propagateMetadata(S, E->Scalars);
1831    }
1832    case Instruction::GetElementPtr: {
1833      setInsertPointAfterBundle(E->Scalars);
1834
1835      ValueList Op0VL;
1836      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1837        Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0));
1838
1839      Value *Op0 = vectorizeTree(Op0VL);
1840
1841      std::vector<Value *> OpVecs;
1842      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
1843           ++j) {
1844        ValueList OpVL;
1845        for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1846          OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j));
1847
1848        Value *OpVec = vectorizeTree(OpVL);
1849        OpVecs.push_back(OpVec);
1850      }
1851
1852      Value *V = Builder.CreateGEP(Op0, OpVecs);
1853      E->VectorizedValue = V;
1854
1855      if (Instruction *I = dyn_cast<Instruction>(V))
1856        return propagateMetadata(I, E->Scalars);
1857
1858      return V;
1859    }
1860    case Instruction::Call: {
1861      CallInst *CI = cast<CallInst>(VL0);
1862      setInsertPointAfterBundle(E->Scalars);
1863      Function *FI;
1864      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
1865      if (CI && (FI = CI->getCalledFunction())) {
1866        IID = (Intrinsic::ID) FI->getIntrinsicID();
1867      }
1868      std::vector<Value *> OpVecs;
1869      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
1870        ValueList OpVL;
1871        // ctlz,cttz and powi are special intrinsics whose second argument is
1872        // a scalar. This argument should not be vectorized.
1873        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
1874          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
1875          OpVecs.push_back(CEI->getArgOperand(j));
1876          continue;
1877        }
1878        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1879          CallInst *CEI = cast<CallInst>(E->Scalars[i]);
1880          OpVL.push_back(CEI->getArgOperand(j));
1881        }
1882
1883        Value *OpVec = vectorizeTree(OpVL);
1884        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
1885        OpVecs.push_back(OpVec);
1886      }
1887
1888      Module *M = F->getParent();
1889      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1890      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
1891      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
1892      Value *V = Builder.CreateCall(CF, OpVecs);
1893      E->VectorizedValue = V;
1894      return V;
1895    }
1896    case Instruction::ShuffleVector: {
1897      ValueList LHSVL, RHSVL;
1898      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1899        LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1900        RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1901      }
1902      setInsertPointAfterBundle(E->Scalars);
1903
1904      Value *LHS = vectorizeTree(LHSVL);
1905      Value *RHS = vectorizeTree(RHSVL);
1906
1907      if (Value *V = alreadyVectorized(E->Scalars))
1908        return V;
1909
1910      // Create a vector of LHS op1 RHS
1911      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
1912      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
1913
1914      // Create a vector of LHS op2 RHS
1915      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
1916      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
1917      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
1918
1919      // Create appropriate shuffle to take alternative operations from
1920      // the vector.
1921      std::vector<Constant *> Mask(E->Scalars.size());
1922      unsigned e = E->Scalars.size();
1923      for (unsigned i = 0; i < e; ++i) {
1924        if (i & 1)
1925          Mask[i] = Builder.getInt32(e + i);
1926        else
1927          Mask[i] = Builder.getInt32(i);
1928      }
1929
1930      Value *ShuffleMask = ConstantVector::get(Mask);
1931
1932      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
1933      E->VectorizedValue = V;
1934      if (Instruction *I = dyn_cast<Instruction>(V))
1935        return propagateMetadata(I, E->Scalars);
1936
1937      return V;
1938    }
1939    default:
1940    llvm_unreachable("unknown inst");
1941  }
1942  return nullptr;
1943}
1944
1945Value *BoUpSLP::vectorizeTree() {
1946  Builder.SetInsertPoint(F->getEntryBlock().begin());
1947  vectorizeTree(&VectorizableTree[0]);
1948
1949  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1950
1951  // Extract all of the elements with the external uses.
1952  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1953       it != e; ++it) {
1954    Value *Scalar = it->Scalar;
1955    llvm::User *User = it->User;
1956
1957    // Skip users that we already RAUW. This happens when one instruction
1958    // has multiple uses of the same value.
1959    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
1960        Scalar->user_end())
1961      continue;
1962    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1963
1964    int Idx = ScalarToTreeEntry[Scalar];
1965    TreeEntry *E = &VectorizableTree[Idx];
1966    assert(!E->NeedToGather && "Extracting from a gather list");
1967
1968    Value *Vec = E->VectorizedValue;
1969    assert(Vec && "Can't find vectorizable value");
1970
1971    Value *Lane = Builder.getInt32(it->Lane);
1972    // Generate extracts for out-of-tree users.
1973    // Find the insertion point for the extractelement lane.
1974    if (isa<Instruction>(Vec)){
1975      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1976        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1977          if (PH->getIncomingValue(i) == Scalar) {
1978            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1979            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1980            CSEBlocks.insert(PH->getIncomingBlock(i));
1981            PH->setOperand(i, Ex);
1982          }
1983        }
1984      } else {
1985        Builder.SetInsertPoint(cast<Instruction>(User));
1986        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1987        CSEBlocks.insert(cast<Instruction>(User)->getParent());
1988        User->replaceUsesOfWith(Scalar, Ex);
1989     }
1990    } else {
1991      Builder.SetInsertPoint(F->getEntryBlock().begin());
1992      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1993      CSEBlocks.insert(&F->getEntryBlock());
1994      User->replaceUsesOfWith(Scalar, Ex);
1995    }
1996
1997    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1998  }
1999
2000  // For each vectorized value:
2001  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2002    TreeEntry *Entry = &VectorizableTree[EIdx];
2003
2004    // For each lane:
2005    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2006      Value *Scalar = Entry->Scalars[Lane];
2007      // No need to handle users of gathered values.
2008      if (Entry->NeedToGather)
2009        continue;
2010
2011      assert(Entry->VectorizedValue && "Can't find vectorizable value");
2012
2013      Type *Ty = Scalar->getType();
2014      if (!Ty->isVoidTy()) {
2015#ifndef NDEBUG
2016        for (User *U : Scalar->users()) {
2017          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2018
2019          assert((ScalarToTreeEntry.count(U) ||
2020                  // It is legal to replace users in the ignorelist by undef.
2021                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2022                   UserIgnoreList.end())) &&
2023                 "Replacing out-of-tree value with undef");
2024        }
2025#endif
2026        Value *Undef = UndefValue::get(Ty);
2027        Scalar->replaceAllUsesWith(Undef);
2028      }
2029      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2030      cast<Instruction>(Scalar)->eraseFromParent();
2031    }
2032  }
2033
2034  for (auto &BN : BlocksNumbers)
2035    BN.second.forget();
2036
2037  Builder.ClearInsertionPoint();
2038
2039  return VectorizableTree[0].VectorizedValue;
2040}
2041
2042void BoUpSLP::optimizeGatherSequence() {
2043  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2044        << " gather sequences instructions.\n");
2045  // LICM InsertElementInst sequences.
2046  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2047       e = GatherSeq.end(); it != e; ++it) {
2048    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2049
2050    if (!Insert)
2051      continue;
2052
2053    // Check if this block is inside a loop.
2054    Loop *L = LI->getLoopFor(Insert->getParent());
2055    if (!L)
2056      continue;
2057
2058    // Check if it has a preheader.
2059    BasicBlock *PreHeader = L->getLoopPreheader();
2060    if (!PreHeader)
2061      continue;
2062
2063    // If the vector or the element that we insert into it are
2064    // instructions that are defined in this basic block then we can't
2065    // hoist this instruction.
2066    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2067    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2068    if (CurrVec && L->contains(CurrVec))
2069      continue;
2070    if (NewElem && L->contains(NewElem))
2071      continue;
2072
2073    // We can hoist this instruction. Move it to the pre-header.
2074    Insert->moveBefore(PreHeader->getTerminator());
2075  }
2076
2077  // Make a list of all reachable blocks in our CSE queue.
2078  SmallVector<const DomTreeNode *, 8> CSEWorkList;
2079  CSEWorkList.reserve(CSEBlocks.size());
2080  for (BasicBlock *BB : CSEBlocks)
2081    if (DomTreeNode *N = DT->getNode(BB)) {
2082      assert(DT->isReachableFromEntry(N));
2083      CSEWorkList.push_back(N);
2084    }
2085
2086  // Sort blocks by domination. This ensures we visit a block after all blocks
2087  // dominating it are visited.
2088  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2089                   [this](const DomTreeNode *A, const DomTreeNode *B) {
2090    return DT->properlyDominates(A, B);
2091  });
2092
2093  // Perform O(N^2) search over the gather sequences and merge identical
2094  // instructions. TODO: We can further optimize this scan if we split the
2095  // instructions into different buckets based on the insert lane.
2096  SmallVector<Instruction *, 16> Visited;
2097  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2098    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2099           "Worklist not sorted properly!");
2100    BasicBlock *BB = (*I)->getBlock();
2101    // For all instructions in blocks containing gather sequences:
2102    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2103      Instruction *In = it++;
2104      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2105        continue;
2106
2107      // Check if we can replace this instruction with any of the
2108      // visited instructions.
2109      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2110                                                    ve = Visited.end();
2111           v != ve; ++v) {
2112        if (In->isIdenticalTo(*v) &&
2113            DT->dominates((*v)->getParent(), In->getParent())) {
2114          In->replaceAllUsesWith(*v);
2115          In->eraseFromParent();
2116          In = nullptr;
2117          break;
2118        }
2119      }
2120      if (In) {
2121        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2122        Visited.push_back(In);
2123      }
2124    }
2125  }
2126  CSEBlocks.clear();
2127  GatherSeq.clear();
2128}
2129
2130/// The SLPVectorizer Pass.
2131struct SLPVectorizer : public FunctionPass {
2132  typedef SmallVector<StoreInst *, 8> StoreList;
2133  typedef MapVector<Value *, StoreList> StoreListMap;
2134
2135  /// Pass identification, replacement for typeid
2136  static char ID;
2137
2138  explicit SLPVectorizer() : FunctionPass(ID) {
2139    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
2140  }
2141
2142  ScalarEvolution *SE;
2143  const DataLayout *DL;
2144  TargetTransformInfo *TTI;
2145  TargetLibraryInfo *TLI;
2146  AliasAnalysis *AA;
2147  LoopInfo *LI;
2148  DominatorTree *DT;
2149
2150  bool runOnFunction(Function &F) override {
2151    if (skipOptnoneFunction(F))
2152      return false;
2153
2154    SE = &getAnalysis<ScalarEvolution>();
2155    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2156    DL = DLP ? &DLP->getDataLayout() : nullptr;
2157    TTI = &getAnalysis<TargetTransformInfo>();
2158    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
2159    AA = &getAnalysis<AliasAnalysis>();
2160    LI = &getAnalysis<LoopInfo>();
2161    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2162
2163    StoreRefs.clear();
2164    bool Changed = false;
2165
2166    // If the target claims to have no vector registers don't attempt
2167    // vectorization.
2168    if (!TTI->getNumberOfRegisters(true))
2169      return false;
2170
2171    // Must have DataLayout. We can't require it because some tests run w/o
2172    // triple.
2173    if (!DL)
2174      return false;
2175
2176    // Don't vectorize when the attribute NoImplicitFloat is used.
2177    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
2178      return false;
2179
2180    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
2181
2182    // Use the bottom up slp vectorizer to construct chains that start with
2183    // store instructions.
2184    BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT);
2185
2186    // Scan the blocks in the function in post order.
2187    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
2188         e = po_end(&F.getEntryBlock()); it != e; ++it) {
2189      BasicBlock *BB = *it;
2190      // Vectorize trees that end at stores.
2191      if (unsigned count = collectStores(BB, R)) {
2192        (void)count;
2193        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
2194        Changed |= vectorizeStoreChains(R);
2195      }
2196
2197      // Vectorize trees that end at reductions.
2198      Changed |= vectorizeChainsInBlock(BB, R);
2199    }
2200
2201    if (Changed) {
2202      R.optimizeGatherSequence();
2203      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
2204      DEBUG(verifyFunction(F));
2205    }
2206    return Changed;
2207  }
2208
2209  void getAnalysisUsage(AnalysisUsage &AU) const override {
2210    FunctionPass::getAnalysisUsage(AU);
2211    AU.addRequired<ScalarEvolution>();
2212    AU.addRequired<AliasAnalysis>();
2213    AU.addRequired<TargetTransformInfo>();
2214    AU.addRequired<LoopInfo>();
2215    AU.addRequired<DominatorTreeWrapperPass>();
2216    AU.addPreserved<LoopInfo>();
2217    AU.addPreserved<DominatorTreeWrapperPass>();
2218    AU.setPreservesCFG();
2219  }
2220
2221private:
2222
2223  /// \brief Collect memory references and sort them according to their base
2224  /// object. We sort the stores to their base objects to reduce the cost of the
2225  /// quadratic search on the stores. TODO: We can further reduce this cost
2226  /// if we flush the chain creation every time we run into a memory barrier.
2227  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
2228
2229  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
2230  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
2231
2232  /// \brief Try to vectorize a list of operands.
2233  /// \@param BuildVector A list of users to ignore for the purpose of
2234  ///                     scheduling and that don't need extracting.
2235  /// \returns true if a value was vectorized.
2236  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
2237                          ArrayRef<Value *> BuildVector = None);
2238
2239  /// \brief Try to vectorize a chain that may start at the operands of \V;
2240  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
2241
2242  /// \brief Vectorize the stores that were collected in StoreRefs.
2243  bool vectorizeStoreChains(BoUpSLP &R);
2244
2245  /// \brief Scan the basic block and look for patterns that are likely to start
2246  /// a vectorization chain.
2247  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
2248
2249  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
2250                           BoUpSLP &R);
2251
2252  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
2253                       BoUpSLP &R);
2254private:
2255  StoreListMap StoreRefs;
2256};
2257
2258/// \brief Check that the Values in the slice in VL array are still existent in
2259/// the WeakVH array.
2260/// Vectorization of part of the VL array may cause later values in the VL array
2261/// to become invalid. We track when this has happened in the WeakVH array.
2262static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
2263                               SmallVectorImpl<WeakVH> &VH,
2264                               unsigned SliceBegin,
2265                               unsigned SliceSize) {
2266  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
2267    if (VH[i] != VL[i])
2268      return true;
2269
2270  return false;
2271}
2272
2273bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
2274                                          int CostThreshold, BoUpSLP &R) {
2275  unsigned ChainLen = Chain.size();
2276  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
2277        << "\n");
2278  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
2279  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
2280  unsigned VF = MinVecRegSize / Sz;
2281
2282  if (!isPowerOf2_32(Sz) || VF < 2)
2283    return false;
2284
2285  // Keep track of values that were deleted by vectorizing in the loop below.
2286  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
2287
2288  bool Changed = false;
2289  // Look for profitable vectorizable trees at all offsets, starting at zero.
2290  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
2291    if (i + VF > e)
2292      break;
2293
2294    // Check that a previous iteration of this loop did not delete the Value.
2295    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
2296      continue;
2297
2298    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
2299          << "\n");
2300    ArrayRef<Value *> Operands = Chain.slice(i, VF);
2301
2302    R.buildTree(Operands);
2303
2304    int Cost = R.getTreeCost();
2305
2306    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
2307    if (Cost < CostThreshold) {
2308      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
2309      R.vectorizeTree();
2310
2311      // Move to the next bundle.
2312      i += VF - 1;
2313      Changed = true;
2314    }
2315  }
2316
2317  return Changed;
2318}
2319
2320bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
2321                                    int costThreshold, BoUpSLP &R) {
2322  SetVector<Value *> Heads, Tails;
2323  SmallDenseMap<Value *, Value *> ConsecutiveChain;
2324
2325  // We may run into multiple chains that merge into a single chain. We mark the
2326  // stores that we vectorized so that we don't visit the same store twice.
2327  BoUpSLP::ValueSet VectorizedStores;
2328  bool Changed = false;
2329
2330  // Do a quadratic search on all of the given stores and find
2331  // all of the pairs of stores that follow each other.
2332  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
2333    for (unsigned j = 0; j < e; ++j) {
2334      if (i == j)
2335        continue;
2336
2337      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
2338        Tails.insert(Stores[j]);
2339        Heads.insert(Stores[i]);
2340        ConsecutiveChain[Stores[i]] = Stores[j];
2341      }
2342    }
2343  }
2344
2345  // For stores that start but don't end a link in the chain:
2346  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
2347       it != e; ++it) {
2348    if (Tails.count(*it))
2349      continue;
2350
2351    // We found a store instr that starts a chain. Now follow the chain and try
2352    // to vectorize it.
2353    BoUpSLP::ValueList Operands;
2354    Value *I = *it;
2355    // Collect the chain into a list.
2356    while (Tails.count(I) || Heads.count(I)) {
2357      if (VectorizedStores.count(I))
2358        break;
2359      Operands.push_back(I);
2360      // Move to the next value in the chain.
2361      I = ConsecutiveChain[I];
2362    }
2363
2364    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
2365
2366    // Mark the vectorized stores so that we don't vectorize them again.
2367    if (Vectorized)
2368      VectorizedStores.insert(Operands.begin(), Operands.end());
2369    Changed |= Vectorized;
2370  }
2371
2372  return Changed;
2373}
2374
2375
2376unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
2377  unsigned count = 0;
2378  StoreRefs.clear();
2379  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2380    StoreInst *SI = dyn_cast<StoreInst>(it);
2381    if (!SI)
2382      continue;
2383
2384    // Don't touch volatile stores.
2385    if (!SI->isSimple())
2386      continue;
2387
2388    // Check that the pointer points to scalars.
2389    Type *Ty = SI->getValueOperand()->getType();
2390    if (Ty->isAggregateType() || Ty->isVectorTy())
2391      continue;
2392
2393    // Find the base pointer.
2394    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2395
2396    // Save the store locations.
2397    StoreRefs[Ptr].push_back(SI);
2398    count++;
2399  }
2400  return count;
2401}
2402
2403bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2404  if (!A || !B)
2405    return false;
2406  Value *VL[] = { A, B };
2407  return tryToVectorizeList(VL, R);
2408}
2409
2410bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
2411                                       ArrayRef<Value *> BuildVector) {
2412  if (VL.size() < 2)
2413    return false;
2414
2415  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2416
2417  // Check that all of the parts are scalar instructions of the same type.
2418  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2419  if (!I0)
2420    return false;
2421
2422  unsigned Opcode0 = I0->getOpcode();
2423
2424  Type *Ty0 = I0->getType();
2425  unsigned Sz = DL->getTypeSizeInBits(Ty0);
2426  unsigned VF = MinVecRegSize / Sz;
2427
2428  for (int i = 0, e = VL.size(); i < e; ++i) {
2429    Type *Ty = VL[i]->getType();
2430    if (Ty->isAggregateType() || Ty->isVectorTy())
2431      return false;
2432    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2433    if (!Inst || Inst->getOpcode() != Opcode0)
2434      return false;
2435  }
2436
2437  bool Changed = false;
2438
2439  // Keep track of values that were deleted by vectorizing in the loop below.
2440  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2441
2442  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2443    unsigned OpsWidth = 0;
2444
2445    if (i + VF > e)
2446      OpsWidth = e - i;
2447    else
2448      OpsWidth = VF;
2449
2450    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2451      break;
2452
2453    // Check that a previous iteration of this loop did not delete the Value.
2454    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2455      continue;
2456
2457    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2458                 << "\n");
2459    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2460
2461    ArrayRef<Value *> BuildVectorSlice;
2462    if (!BuildVector.empty())
2463      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
2464
2465    R.buildTree(Ops, BuildVectorSlice);
2466    int Cost = R.getTreeCost();
2467
2468    if (Cost < -SLPCostThreshold) {
2469      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
2470      Value *VectorizedRoot = R.vectorizeTree();
2471
2472      // Reconstruct the build vector by extracting the vectorized root. This
2473      // way we handle the case where some elements of the vector are undefined.
2474      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
2475      if (!BuildVectorSlice.empty()) {
2476        // The insert point is the last build vector instruction. The vectorized
2477        // root will precede it. This guarantees that we get an instruction. The
2478        // vectorized tree could have been constant folded.
2479        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
2480        unsigned VecIdx = 0;
2481        for (auto &V : BuildVectorSlice) {
2482          IRBuilder<true, NoFolder> Builder(
2483              ++BasicBlock::iterator(InsertAfter));
2484          InsertElementInst *IE = cast<InsertElementInst>(V);
2485          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
2486              VectorizedRoot, Builder.getInt32(VecIdx++)));
2487          IE->setOperand(1, Extract);
2488          IE->removeFromParent();
2489          IE->insertAfter(Extract);
2490          InsertAfter = IE;
2491        }
2492      }
2493      // Move to the next bundle.
2494      i += VF - 1;
2495      Changed = true;
2496    }
2497  }
2498
2499  return Changed;
2500}
2501
2502bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2503  if (!V)
2504    return false;
2505
2506  // Try to vectorize V.
2507  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2508    return true;
2509
2510  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2511  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2512  // Try to skip B.
2513  if (B && B->hasOneUse()) {
2514    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2515    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2516    if (tryToVectorizePair(A, B0, R)) {
2517      B->moveBefore(V);
2518      return true;
2519    }
2520    if (tryToVectorizePair(A, B1, R)) {
2521      B->moveBefore(V);
2522      return true;
2523    }
2524  }
2525
2526  // Try to skip A.
2527  if (A && A->hasOneUse()) {
2528    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2529    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2530    if (tryToVectorizePair(A0, B, R)) {
2531      A->moveBefore(V);
2532      return true;
2533    }
2534    if (tryToVectorizePair(A1, B, R)) {
2535      A->moveBefore(V);
2536      return true;
2537    }
2538  }
2539  return 0;
2540}
2541
2542/// \brief Generate a shuffle mask to be used in a reduction tree.
2543///
2544/// \param VecLen The length of the vector to be reduced.
2545/// \param NumEltsToRdx The number of elements that should be reduced in the
2546///        vector.
2547/// \param IsPairwise Whether the reduction is a pairwise or splitting
2548///        reduction. A pairwise reduction will generate a mask of
2549///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2550///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2551/// \param IsLeft True will generate a mask of even elements, odd otherwise.
2552static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2553                                   bool IsPairwise, bool IsLeft,
2554                                   IRBuilder<> &Builder) {
2555  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2556
2557  SmallVector<Constant *, 32> ShuffleMask(
2558      VecLen, UndefValue::get(Builder.getInt32Ty()));
2559
2560  if (IsPairwise)
2561    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2562    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2563      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2564  else
2565    // Move the upper half of the vector to the lower half.
2566    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2567      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2568
2569  return ConstantVector::get(ShuffleMask);
2570}
2571
2572
2573/// Model horizontal reductions.
2574///
2575/// A horizontal reduction is a tree of reduction operations (currently add and
2576/// fadd) that has operations that can be put into a vector as its leaf.
2577/// For example, this tree:
2578///
2579/// mul mul mul mul
2580///  \  /    \  /
2581///   +       +
2582///    \     /
2583///       +
2584/// This tree has "mul" as its reduced values and "+" as its reduction
2585/// operations. A reduction might be feeding into a store or a binary operation
2586/// feeding a phi.
2587///    ...
2588///    \  /
2589///     +
2590///     |
2591///  phi +=
2592///
2593///  Or:
2594///    ...
2595///    \  /
2596///     +
2597///     |
2598///   *p =
2599///
2600class HorizontalReduction {
2601  SmallVector<Value *, 16> ReductionOps;
2602  SmallVector<Value *, 32> ReducedVals;
2603
2604  BinaryOperator *ReductionRoot;
2605  PHINode *ReductionPHI;
2606
2607  /// The opcode of the reduction.
2608  unsigned ReductionOpcode;
2609  /// The opcode of the values we perform a reduction on.
2610  unsigned ReducedValueOpcode;
2611  /// The width of one full horizontal reduction operation.
2612  unsigned ReduxWidth;
2613  /// Should we model this reduction as a pairwise reduction tree or a tree that
2614  /// splits the vector in halves and adds those halves.
2615  bool IsPairwiseReduction;
2616
2617public:
2618  HorizontalReduction()
2619    : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
2620    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2621
2622  /// \brief Try to find a reduction tree.
2623  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2624                                 const DataLayout *DL) {
2625    assert((!Phi ||
2626            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2627           "Thi phi needs to use the binary operator");
2628
2629    // We could have a initial reductions that is not an add.
2630    //  r *= v1 + v2 + v3 + v4
2631    // In such a case start looking for a tree rooted in the first '+'.
2632    if (Phi) {
2633      if (B->getOperand(0) == Phi) {
2634        Phi = nullptr;
2635        B = dyn_cast<BinaryOperator>(B->getOperand(1));
2636      } else if (B->getOperand(1) == Phi) {
2637        Phi = nullptr;
2638        B = dyn_cast<BinaryOperator>(B->getOperand(0));
2639      }
2640    }
2641
2642    if (!B)
2643      return false;
2644
2645    Type *Ty = B->getType();
2646    if (Ty->isVectorTy())
2647      return false;
2648
2649    ReductionOpcode = B->getOpcode();
2650    ReducedValueOpcode = 0;
2651    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2652    ReductionRoot = B;
2653    ReductionPHI = Phi;
2654
2655    if (ReduxWidth < 4)
2656      return false;
2657
2658    // We currently only support adds.
2659    if (ReductionOpcode != Instruction::Add &&
2660        ReductionOpcode != Instruction::FAdd)
2661      return false;
2662
2663    // Post order traverse the reduction tree starting at B. We only handle true
2664    // trees containing only binary operators.
2665    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2666    Stack.push_back(std::make_pair(B, 0));
2667    while (!Stack.empty()) {
2668      BinaryOperator *TreeN = Stack.back().first;
2669      unsigned EdgeToVist = Stack.back().second++;
2670      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2671
2672      // Only handle trees in the current basic block.
2673      if (TreeN->getParent() != B->getParent())
2674        return false;
2675
2676      // Each tree node needs to have one user except for the ultimate
2677      // reduction.
2678      if (!TreeN->hasOneUse() && TreeN != B)
2679        return false;
2680
2681      // Postorder vist.
2682      if (EdgeToVist == 2 || IsReducedValue) {
2683        if (IsReducedValue) {
2684          // Make sure that the opcodes of the operations that we are going to
2685          // reduce match.
2686          if (!ReducedValueOpcode)
2687            ReducedValueOpcode = TreeN->getOpcode();
2688          else if (ReducedValueOpcode != TreeN->getOpcode())
2689            return false;
2690          ReducedVals.push_back(TreeN);
2691        } else {
2692          // We need to be able to reassociate the adds.
2693          if (!TreeN->isAssociative())
2694            return false;
2695          ReductionOps.push_back(TreeN);
2696        }
2697        // Retract.
2698        Stack.pop_back();
2699        continue;
2700      }
2701
2702      // Visit left or right.
2703      Value *NextV = TreeN->getOperand(EdgeToVist);
2704      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2705      if (Next)
2706        Stack.push_back(std::make_pair(Next, 0));
2707      else if (NextV != Phi)
2708        return false;
2709    }
2710    return true;
2711  }
2712
2713  /// \brief Attempt to vectorize the tree found by
2714  /// matchAssociativeReduction.
2715  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2716    if (ReducedVals.empty())
2717      return false;
2718
2719    unsigned NumReducedVals = ReducedVals.size();
2720    if (NumReducedVals < ReduxWidth)
2721      return false;
2722
2723    Value *VectorizedTree = nullptr;
2724    IRBuilder<> Builder(ReductionRoot);
2725    FastMathFlags Unsafe;
2726    Unsafe.setUnsafeAlgebra();
2727    Builder.SetFastMathFlags(Unsafe);
2728    unsigned i = 0;
2729
2730    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2731      ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2732      V.buildTree(ValsToReduce, ReductionOps);
2733
2734      // Estimate cost.
2735      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2736      if (Cost >= -SLPCostThreshold)
2737        break;
2738
2739      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2740                   << ". (HorRdx)\n");
2741
2742      // Vectorize a tree.
2743      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2744      Value *VectorizedRoot = V.vectorizeTree();
2745
2746      // Emit a reduction.
2747      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2748      if (VectorizedTree) {
2749        Builder.SetCurrentDebugLocation(Loc);
2750        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2751                                     ReducedSubTree, "bin.rdx");
2752      } else
2753        VectorizedTree = ReducedSubTree;
2754    }
2755
2756    if (VectorizedTree) {
2757      // Finish the reduction.
2758      for (; i < NumReducedVals; ++i) {
2759        Builder.SetCurrentDebugLocation(
2760          cast<Instruction>(ReducedVals[i])->getDebugLoc());
2761        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2762                                     ReducedVals[i]);
2763      }
2764      // Update users.
2765      if (ReductionPHI) {
2766        assert(ReductionRoot && "Need a reduction operation");
2767        ReductionRoot->setOperand(0, VectorizedTree);
2768        ReductionRoot->setOperand(1, ReductionPHI);
2769      } else
2770        ReductionRoot->replaceAllUsesWith(VectorizedTree);
2771    }
2772    return VectorizedTree != nullptr;
2773  }
2774
2775private:
2776
2777  /// \brief Calcuate the cost of a reduction.
2778  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2779    Type *ScalarTy = FirstReducedVal->getType();
2780    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2781
2782    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2783    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2784
2785    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2786    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2787
2788    int ScalarReduxCost =
2789        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2790
2791    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2792                 << " for reduction that starts with " << *FirstReducedVal
2793                 << " (It is a "
2794                 << (IsPairwiseReduction ? "pairwise" : "splitting")
2795                 << " reduction)\n");
2796
2797    return VecReduxCost - ScalarReduxCost;
2798  }
2799
2800  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2801                            Value *R, const Twine &Name = "") {
2802    if (Opcode == Instruction::FAdd)
2803      return Builder.CreateFAdd(L, R, Name);
2804    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2805  }
2806
2807  /// \brief Emit a horizontal reduction of the vectorized value.
2808  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2809    assert(VectorizedValue && "Need to have a vectorized tree node");
2810    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2811    assert(isPowerOf2_32(ReduxWidth) &&
2812           "We only handle power-of-two reductions for now");
2813
2814    Value *TmpVec = ValToReduce;
2815    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2816      if (IsPairwiseReduction) {
2817        Value *LeftMask =
2818          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2819        Value *RightMask =
2820          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2821
2822        Value *LeftShuf = Builder.CreateShuffleVector(
2823          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2824        Value *RightShuf = Builder.CreateShuffleVector(
2825          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2826          "rdx.shuf.r");
2827        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2828                             "bin.rdx");
2829      } else {
2830        Value *UpperHalf =
2831          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2832        Value *Shuf = Builder.CreateShuffleVector(
2833          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2834        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2835      }
2836    }
2837
2838    // The result is in the first element of the vector.
2839    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2840  }
2841};
2842
2843/// \brief Recognize construction of vectors like
2844///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2845///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2846///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2847///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2848///
2849/// Returns true if it matches
2850///
2851static bool findBuildVector(InsertElementInst *FirstInsertElem,
2852                            SmallVectorImpl<Value *> &BuildVector,
2853                            SmallVectorImpl<Value *> &BuildVectorOpds) {
2854  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
2855    return false;
2856
2857  InsertElementInst *IE = FirstInsertElem;
2858  while (true) {
2859    BuildVector.push_back(IE);
2860    BuildVectorOpds.push_back(IE->getOperand(1));
2861
2862    if (IE->use_empty())
2863      return false;
2864
2865    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
2866    if (!NextUse)
2867      return true;
2868
2869    // If this isn't the final use, make sure the next insertelement is the only
2870    // use. It's OK if the final constructed vector is used multiple times
2871    if (!IE->hasOneUse())
2872      return false;
2873
2874    IE = NextUse;
2875  }
2876
2877  return false;
2878}
2879
2880static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2881  return V->getType() < V2->getType();
2882}
2883
2884bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2885  bool Changed = false;
2886  SmallVector<Value *, 4> Incoming;
2887  SmallSet<Value *, 16> VisitedInstrs;
2888
2889  bool HaveVectorizedPhiNodes = true;
2890  while (HaveVectorizedPhiNodes) {
2891    HaveVectorizedPhiNodes = false;
2892
2893    // Collect the incoming values from the PHIs.
2894    Incoming.clear();
2895    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2896         ++instr) {
2897      PHINode *P = dyn_cast<PHINode>(instr);
2898      if (!P)
2899        break;
2900
2901      if (!VisitedInstrs.count(P))
2902        Incoming.push_back(P);
2903    }
2904
2905    // Sort by type.
2906    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2907
2908    // Try to vectorize elements base on their type.
2909    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2910                                           E = Incoming.end();
2911         IncIt != E;) {
2912
2913      // Look for the next elements with the same type.
2914      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2915      while (SameTypeIt != E &&
2916             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2917        VisitedInstrs.insert(*SameTypeIt);
2918        ++SameTypeIt;
2919      }
2920
2921      // Try to vectorize them.
2922      unsigned NumElts = (SameTypeIt - IncIt);
2923      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2924      if (NumElts > 1 &&
2925          tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2926        // Success start over because instructions might have been changed.
2927        HaveVectorizedPhiNodes = true;
2928        Changed = true;
2929        break;
2930      }
2931
2932      // Start over at the next instruction of a different type (or the end).
2933      IncIt = SameTypeIt;
2934    }
2935  }
2936
2937  VisitedInstrs.clear();
2938
2939  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2940    // We may go through BB multiple times so skip the one we have checked.
2941    if (!VisitedInstrs.insert(it))
2942      continue;
2943
2944    if (isa<DbgInfoIntrinsic>(it))
2945      continue;
2946
2947    // Try to vectorize reductions that use PHINodes.
2948    if (PHINode *P = dyn_cast<PHINode>(it)) {
2949      // Check that the PHI is a reduction PHI.
2950      if (P->getNumIncomingValues() != 2)
2951        return Changed;
2952      Value *Rdx =
2953          (P->getIncomingBlock(0) == BB
2954               ? (P->getIncomingValue(0))
2955               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
2956                                               : nullptr));
2957      // Check if this is a Binary Operator.
2958      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2959      if (!BI)
2960        continue;
2961
2962      // Try to match and vectorize a horizontal reduction.
2963      HorizontalReduction HorRdx;
2964      if (ShouldVectorizeHor &&
2965          HorRdx.matchAssociativeReduction(P, BI, DL) &&
2966          HorRdx.tryToReduce(R, TTI)) {
2967        Changed = true;
2968        it = BB->begin();
2969        e = BB->end();
2970        continue;
2971      }
2972
2973     Value *Inst = BI->getOperand(0);
2974      if (Inst == P)
2975        Inst = BI->getOperand(1);
2976
2977      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2978        // We would like to start over since some instructions are deleted
2979        // and the iterator may become invalid value.
2980        Changed = true;
2981        it = BB->begin();
2982        e = BB->end();
2983        continue;
2984      }
2985
2986      continue;
2987    }
2988
2989    // Try to vectorize horizontal reductions feeding into a store.
2990    if (ShouldStartVectorizeHorAtStore)
2991      if (StoreInst *SI = dyn_cast<StoreInst>(it))
2992        if (BinaryOperator *BinOp =
2993                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2994          HorizontalReduction HorRdx;
2995          if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
2996                HorRdx.tryToReduce(R, TTI)) ||
2997               tryToVectorize(BinOp, R))) {
2998            Changed = true;
2999            it = BB->begin();
3000            e = BB->end();
3001            continue;
3002          }
3003        }
3004
3005    // Try to vectorize trees that start at compare instructions.
3006    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
3007      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
3008        Changed = true;
3009        // We would like to start over since some instructions are deleted
3010        // and the iterator may become invalid value.
3011        it = BB->begin();
3012        e = BB->end();
3013        continue;
3014      }
3015
3016      for (int i = 0; i < 2; ++i) {
3017         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
3018            if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
3019              Changed = true;
3020              // We would like to start over since some instructions are deleted
3021              // and the iterator may become invalid value.
3022              it = BB->begin();
3023              e = BB->end();
3024            }
3025         }
3026      }
3027      continue;
3028    }
3029
3030    // Try to vectorize trees that start at insertelement instructions.
3031    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
3032      SmallVector<Value *, 16> BuildVector;
3033      SmallVector<Value *, 16> BuildVectorOpds;
3034      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
3035        continue;
3036
3037      // Vectorize starting with the build vector operands ignoring the
3038      // BuildVector instructions for the purpose of scheduling and user
3039      // extraction.
3040      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
3041        Changed = true;
3042        it = BB->begin();
3043        e = BB->end();
3044      }
3045
3046      continue;
3047    }
3048  }
3049
3050  return Changed;
3051}
3052
3053bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
3054  bool Changed = false;
3055  // Attempt to sort and vectorize each of the store-groups.
3056  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
3057       it != e; ++it) {
3058    if (it->second.size() < 2)
3059      continue;
3060
3061    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
3062          << it->second.size() << ".\n");
3063
3064    // Process the stores in chunks of 16.
3065    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
3066      unsigned Len = std::min<unsigned>(CE - CI, 16);
3067      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
3068      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
3069    }
3070  }
3071  return Changed;
3072}
3073
3074} // end anonymous namespace
3075
3076char SLPVectorizer::ID = 0;
3077static const char lv_name[] = "SLP Vectorizer";
3078INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
3079INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3080INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3081INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3082INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3083INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
3084
3085namespace llvm {
3086Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
3087}
3088