SLPVectorizer.cpp revision 7f6926930f48234484167e9ecce90f627a030702
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#define SV_NAME "slp-vectorizer"
19#define DEBUG_TYPE "SLP"
20
21#include "llvm/Transforms/Vectorize.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/Verifier.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46using namespace llvm;
47
48static cl::opt<int>
49    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50                     cl::desc("Only vectorize if you gain more than this "
51                              "number "));
52
53static cl::opt<bool>
54ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
55                   cl::desc("Attempt to vectorize horizontal reductions"));
56
57static cl::opt<bool> ShouldStartVectorizeHorAtStore(
58    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
59    cl::desc(
60        "Attempt to vectorize horizontal reductions feeding into a store"));
61
62namespace {
63
64static const unsigned MinVecRegSize = 128;
65
66static const unsigned RecursionMaxDepth = 12;
67
68/// A helper class for numbering instructions in multiple blocks.
69/// Numbers start at zero for each basic block.
70struct BlockNumbering {
71
72  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
73
74  BlockNumbering() : BB(0), Valid(false) {}
75
76  void numberInstructions() {
77    unsigned Loc = 0;
78    InstrIdx.clear();
79    InstrVec.clear();
80    // Number the instructions in the block.
81    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
82      InstrIdx[it] = Loc++;
83      InstrVec.push_back(it);
84      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
85    }
86    Valid = true;
87  }
88
89  int getIndex(Instruction *I) {
90    assert(I->getParent() == BB && "Invalid instruction");
91    if (!Valid)
92      numberInstructions();
93    assert(InstrIdx.count(I) && "Unknown instruction");
94    return InstrIdx[I];
95  }
96
97  Instruction *getInstruction(unsigned loc) {
98    if (!Valid)
99      numberInstructions();
100    assert(InstrVec.size() > loc && "Invalid Index");
101    return InstrVec[loc];
102  }
103
104  void forget() { Valid = false; }
105
106private:
107  /// The block we are numbering.
108  BasicBlock *BB;
109  /// Is the block numbered.
110  bool Valid;
111  /// Maps instructions to numbers and back.
112  SmallDenseMap<Instruction *, int> InstrIdx;
113  /// Maps integers to Instructions.
114  SmallVector<Instruction *, 32> InstrVec;
115};
116
117/// \returns the parent basic block if all of the instructions in \p VL
118/// are in the same block or null otherwise.
119static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121  if (!I0)
122    return 0;
123  BasicBlock *BB = I0->getParent();
124  for (int i = 1, e = VL.size(); i < e; i++) {
125    Instruction *I = dyn_cast<Instruction>(VL[i]);
126    if (!I)
127      return 0;
128
129    if (BB != I->getParent())
130      return 0;
131  }
132  return BB;
133}
134
135/// \returns True if all of the values in \p VL are constants.
136static bool allConstant(ArrayRef<Value *> VL) {
137  for (unsigned i = 0, e = VL.size(); i < e; ++i)
138    if (!isa<Constant>(VL[i]))
139      return false;
140  return true;
141}
142
143/// \returns True if all of the values in \p VL are identical.
144static bool isSplat(ArrayRef<Value *> VL) {
145  for (unsigned i = 1, e = VL.size(); i < e; ++i)
146    if (VL[i] != VL[0])
147      return false;
148  return true;
149}
150
151/// \returns The opcode if all of the Instructions in \p VL have the same
152/// opcode, or zero.
153static unsigned getSameOpcode(ArrayRef<Value *> VL) {
154  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
155  if (!I0)
156    return 0;
157  unsigned Opcode = I0->getOpcode();
158  for (int i = 1, e = VL.size(); i < e; i++) {
159    Instruction *I = dyn_cast<Instruction>(VL[i]);
160    if (!I || Opcode != I->getOpcode())
161      return 0;
162  }
163  return Opcode;
164}
165
166/// \returns \p I after propagating metadata from \p VL.
167static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
168  Instruction *I0 = cast<Instruction>(VL[0]);
169  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
170  I0->getAllMetadataOtherThanDebugLoc(Metadata);
171
172  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
173    unsigned Kind = Metadata[i].first;
174    MDNode *MD = Metadata[i].second;
175
176    for (int i = 1, e = VL.size(); MD && i != e; i++) {
177      Instruction *I = cast<Instruction>(VL[i]);
178      MDNode *IMD = I->getMetadata(Kind);
179
180      switch (Kind) {
181      default:
182        MD = 0; // Remove unknown metadata
183        break;
184      case LLVMContext::MD_tbaa:
185        MD = MDNode::getMostGenericTBAA(MD, IMD);
186        break;
187      case LLVMContext::MD_fpmath:
188        MD = MDNode::getMostGenericFPMath(MD, IMD);
189        break;
190      }
191    }
192    I->setMetadata(Kind, MD);
193  }
194  return I;
195}
196
197/// \returns The type that all of the values in \p VL have or null if there
198/// are different types.
199static Type* getSameType(ArrayRef<Value *> VL) {
200  Type *Ty = VL[0]->getType();
201  for (int i = 1, e = VL.size(); i < e; i++)
202    if (VL[i]->getType() != Ty)
203      return 0;
204
205  return Ty;
206}
207
208/// \returns True if the ExtractElement instructions in VL can be vectorized
209/// to use the original vector.
210static bool CanReuseExtract(ArrayRef<Value *> VL) {
211  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
212  // Check if all of the extracts come from the same vector and from the
213  // correct offset.
214  Value *VL0 = VL[0];
215  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
216  Value *Vec = E0->getOperand(0);
217
218  // We have to extract from the same vector type.
219  unsigned NElts = Vec->getType()->getVectorNumElements();
220
221  if (NElts != VL.size())
222    return false;
223
224  // Check that all of the indices extract from the correct offset.
225  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
226  if (!CI || CI->getZExtValue())
227    return false;
228
229  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
230    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
231    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
232
233    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
234      return false;
235  }
236
237  return true;
238}
239
240static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
241                                           SmallVectorImpl<Value *> &Left,
242                                           SmallVectorImpl<Value *> &Right) {
243
244  SmallVector<Value *, 16> OrigLeft, OrigRight;
245
246  bool AllSameOpcodeLeft = true;
247  bool AllSameOpcodeRight = true;
248  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
249    Instruction *I = cast<Instruction>(VL[i]);
250    Value *V0 = I->getOperand(0);
251    Value *V1 = I->getOperand(1);
252
253    OrigLeft.push_back(V0);
254    OrigRight.push_back(V1);
255
256    Instruction *I0 = dyn_cast<Instruction>(V0);
257    Instruction *I1 = dyn_cast<Instruction>(V1);
258
259    // Check whether all operands on one side have the same opcode. In this case
260    // we want to preserve the original order and not make things worse by
261    // reordering.
262    AllSameOpcodeLeft = I0;
263    AllSameOpcodeRight = I1;
264
265    if (i && AllSameOpcodeLeft) {
266      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
267        if(P0->getOpcode() != I0->getOpcode())
268          AllSameOpcodeLeft = false;
269      } else
270        AllSameOpcodeLeft = false;
271    }
272    if (i && AllSameOpcodeRight) {
273      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
274        if(P1->getOpcode() != I1->getOpcode())
275          AllSameOpcodeRight = false;
276      } else
277        AllSameOpcodeRight = false;
278    }
279
280    // Sort two opcodes. In the code below we try to preserve the ability to use
281    // broadcast of values instead of individual inserts.
282    // vl1 = load
283    // vl2 = phi
284    // vr1 = load
285    // vr2 = vr2
286    //    = vl1 x vr1
287    //    = vl2 x vr2
288    // If we just sorted according to opcode we would leave the first line in
289    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
290    //    = vl1 x vr1
291    //    = vr2 x vl2
292    // Because vr2 and vr1 are from the same load we loose the opportunity of a
293    // broadcast for the packed right side in the backend: we have [vr1, vl2]
294    // instead of [vr1, vr2=vr1].
295    if (I0 && I1) {
296       if(!i && I0->getOpcode() > I1->getOpcode()) {
297         Left.push_back(I1);
298         Right.push_back(I0);
299       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
300         // Try not to destroy a broad cast for no apparent benefit.
301         Left.push_back(I1);
302         Right.push_back(I0);
303       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
304         // Try preserve broadcasts.
305         Left.push_back(I1);
306         Right.push_back(I0);
307       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
308         // Try preserve broadcasts.
309         Left.push_back(I1);
310         Right.push_back(I0);
311       } else {
312         Left.push_back(I0);
313         Right.push_back(I1);
314       }
315       continue;
316    }
317    // One opcode, put the instruction on the right.
318    if (I0) {
319      Left.push_back(V1);
320      Right.push_back(I0);
321      continue;
322    }
323    Left.push_back(V0);
324    Right.push_back(V1);
325  }
326
327  bool LeftBroadcast = isSplat(Left);
328  bool RightBroadcast = isSplat(Right);
329
330  // Don't reorder if the operands where good to begin with.
331  if (!(LeftBroadcast || RightBroadcast) &&
332      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
333    Left = OrigLeft;
334    Right = OrigRight;
335  }
336}
337
338/// Bottom Up SLP Vectorizer.
339class BoUpSLP {
340public:
341  typedef SmallVector<Value *, 8> ValueList;
342  typedef SmallVector<Instruction *, 16> InstrList;
343  typedef SmallPtrSet<Value *, 16> ValueSet;
344  typedef SmallVector<StoreInst *, 8> StoreList;
345
346  BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
347          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
348          DominatorTree *Dt) :
349    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
350    Builder(Se->getContext()) {
351      // Setup the block numbering utility for all of the blocks in the
352      // function.
353      for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
354        BasicBlock *BB = it;
355        BlocksNumbers[BB] = BlockNumbering(BB);
356      }
357    }
358
359  /// \brief Vectorize the tree that starts with the elements in \p VL.
360  /// Returns the vectorized root.
361  Value *vectorizeTree();
362
363  /// \returns the vectorization cost of the subtree that starts at \p VL.
364  /// A negative number means that this is profitable.
365  int getTreeCost();
366
367  /// Construct a vectorizable tree that starts at \p Roots and is possibly
368  /// used by a reduction of \p RdxOps.
369  void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
370
371  /// Clear the internal data structures that are created by 'buildTree'.
372  void deleteTree() {
373    RdxOps = 0;
374    VectorizableTree.clear();
375    ScalarToTreeEntry.clear();
376    MustGather.clear();
377    ExternalUses.clear();
378    MemBarrierIgnoreList.clear();
379  }
380
381  /// \returns true if the memory operations A and B are consecutive.
382  bool isConsecutiveAccess(Value *A, Value *B);
383
384  /// \brief Perform LICM and CSE on the newly generated gather sequences.
385  void optimizeGatherSequence();
386private:
387  struct TreeEntry;
388
389  /// \returns the cost of the vectorizable entry.
390  int getEntryCost(TreeEntry *E);
391
392  /// This is the recursive part of buildTree.
393  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
394
395  /// Vectorize a single entry in the tree.
396  Value *vectorizeTree(TreeEntry *E);
397
398  /// Vectorize a single entry in the tree, starting in \p VL.
399  Value *vectorizeTree(ArrayRef<Value *> VL);
400
401  /// \returns the pointer to the vectorized value if \p VL is already
402  /// vectorized, or NULL. They may happen in cycles.
403  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
404
405  /// \brief Take the pointer operand from the Load/Store instruction.
406  /// \returns NULL if this is not a valid Load/Store instruction.
407  static Value *getPointerOperand(Value *I);
408
409  /// \brief Take the address space operand from the Load/Store instruction.
410  /// \returns -1 if this is not a valid Load/Store instruction.
411  static unsigned getAddressSpaceOperand(Value *I);
412
413  /// \returns the scalarization cost for this type. Scalarization in this
414  /// context means the creation of vectors from a group of scalars.
415  int getGatherCost(Type *Ty);
416
417  /// \returns the scalarization cost for this list of values. Assuming that
418  /// this subtree gets vectorized, we may need to extract the values from the
419  /// roots. This method calculates the cost of extracting the values.
420  int getGatherCost(ArrayRef<Value *> VL);
421
422  /// \returns the AA location that is being access by the instruction.
423  AliasAnalysis::Location getLocation(Instruction *I);
424
425  /// \brief Checks if it is possible to sink an instruction from
426  /// \p Src to \p Dst.
427  /// \returns the pointer to the barrier instruction if we can't sink.
428  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
429
430  /// \returns the index of the last instruction in the BB from \p VL.
431  int getLastIndex(ArrayRef<Value *> VL);
432
433  /// \returns the Instruction in the bundle \p VL.
434  Instruction *getLastInstruction(ArrayRef<Value *> VL);
435
436  /// \brief Set the Builder insert point to one after the last instruction in
437  /// the bundle
438  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
439
440  /// \returns a vector from a collection of scalars in \p VL.
441  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
442
443  /// \returns whether the VectorizableTree is fully vectoriable and will
444  /// be beneficial even the tree height is tiny.
445  bool isFullyVectorizableTinyTree();
446
447  struct TreeEntry {
448    TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
449    NeedToGather(0) {}
450
451    /// \returns true if the scalars in VL are equal to this entry.
452    bool isSame(ArrayRef<Value *> VL) const {
453      assert(VL.size() == Scalars.size() && "Invalid size");
454      return std::equal(VL.begin(), VL.end(), Scalars.begin());
455    }
456
457    /// A vector of scalars.
458    ValueList Scalars;
459
460    /// The Scalars are vectorized into this value. It is initialized to Null.
461    Value *VectorizedValue;
462
463    /// The index in the basic block of the last scalar.
464    int LastScalarIndex;
465
466    /// Do we need to gather this sequence ?
467    bool NeedToGather;
468  };
469
470  /// Create a new VectorizableTree entry.
471  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
472    VectorizableTree.push_back(TreeEntry());
473    int idx = VectorizableTree.size() - 1;
474    TreeEntry *Last = &VectorizableTree[idx];
475    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
476    Last->NeedToGather = !Vectorized;
477    if (Vectorized) {
478      Last->LastScalarIndex = getLastIndex(VL);
479      for (int i = 0, e = VL.size(); i != e; ++i) {
480        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
481        ScalarToTreeEntry[VL[i]] = idx;
482      }
483    } else {
484      Last->LastScalarIndex = 0;
485      MustGather.insert(VL.begin(), VL.end());
486    }
487    return Last;
488  }
489
490  /// -- Vectorization State --
491  /// Holds all of the tree entries.
492  std::vector<TreeEntry> VectorizableTree;
493
494  /// Maps a specific scalar to its tree entry.
495  SmallDenseMap<Value*, int> ScalarToTreeEntry;
496
497  /// A list of scalars that we found that we need to keep as scalars.
498  ValueSet MustGather;
499
500  /// This POD struct describes one external user in the vectorized tree.
501  struct ExternalUser {
502    ExternalUser (Value *S, llvm::User *U, int L) :
503      Scalar(S), User(U), Lane(L){};
504    // Which scalar in our function.
505    Value *Scalar;
506    // Which user that uses the scalar.
507    llvm::User *User;
508    // Which lane does the scalar belong to.
509    int Lane;
510  };
511  typedef SmallVector<ExternalUser, 16> UserList;
512
513  /// A list of values that need to extracted out of the tree.
514  /// This list holds pairs of (Internal Scalar : External User).
515  UserList ExternalUses;
516
517  /// A list of instructions to ignore while sinking
518  /// memory instructions. This map must be reset between runs of getCost.
519  ValueSet MemBarrierIgnoreList;
520
521  /// Holds all of the instructions that we gathered.
522  SetVector<Instruction *> GatherSeq;
523  /// A list of blocks that we are going to CSE.
524  SmallSet<BasicBlock *, 8> CSEBlocks;
525
526  /// Numbers instructions in different blocks.
527  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
528
529  /// Reduction operators.
530  ValueSet *RdxOps;
531
532  // Analysis and block reference.
533  Function *F;
534  ScalarEvolution *SE;
535  DataLayout *DL;
536  TargetTransformInfo *TTI;
537  AliasAnalysis *AA;
538  LoopInfo *LI;
539  DominatorTree *DT;
540  /// Instruction builder to construct the vectorized tree.
541  IRBuilder<> Builder;
542};
543
544void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
545  deleteTree();
546  RdxOps = Rdx;
547  if (!getSameType(Roots))
548    return;
549  buildTree_rec(Roots, 0);
550
551  // Collect the values that we need to extract from the tree.
552  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
553    TreeEntry *Entry = &VectorizableTree[EIdx];
554
555    // For each lane:
556    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
557      Value *Scalar = Entry->Scalars[Lane];
558
559      // No need to handle users of gathered values.
560      if (Entry->NeedToGather)
561        continue;
562
563      for (Value::use_iterator User = Scalar->use_begin(),
564           UE = Scalar->use_end(); User != UE; ++User) {
565        DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
566
567        // Skip in-tree scalars that become vectors.
568        if (ScalarToTreeEntry.count(*User)) {
569          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
570                **User << ".\n");
571          int Idx = ScalarToTreeEntry[*User]; (void) Idx;
572          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
573          continue;
574        }
575        Instruction *UserInst = dyn_cast<Instruction>(*User);
576        if (!UserInst)
577          continue;
578
579        // Ignore uses that are part of the reduction.
580        if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
581          continue;
582
583        DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
584              Lane << " from " << *Scalar << ".\n");
585        ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
586      }
587    }
588  }
589}
590
591
592void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
593  bool SameTy = getSameType(VL); (void)SameTy;
594  assert(SameTy && "Invalid types!");
595
596  if (Depth == RecursionMaxDepth) {
597    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
598    newTreeEntry(VL, false);
599    return;
600  }
601
602  // Don't handle vectors.
603  if (VL[0]->getType()->isVectorTy()) {
604    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
605    newTreeEntry(VL, false);
606    return;
607  }
608
609  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
610    if (SI->getValueOperand()->getType()->isVectorTy()) {
611      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
612      newTreeEntry(VL, false);
613      return;
614    }
615
616  // If all of the operands are identical or constant we have a simple solution.
617  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
618      !getSameOpcode(VL)) {
619    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
620    newTreeEntry(VL, false);
621    return;
622  }
623
624  // We now know that this is a vector of instructions of the same type from
625  // the same block.
626
627  // Check if this is a duplicate of another entry.
628  if (ScalarToTreeEntry.count(VL[0])) {
629    int Idx = ScalarToTreeEntry[VL[0]];
630    TreeEntry *E = &VectorizableTree[Idx];
631    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
632      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
633      if (E->Scalars[i] != VL[i]) {
634        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
635        newTreeEntry(VL, false);
636        return;
637      }
638    }
639    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
640    return;
641  }
642
643  // Check that none of the instructions in the bundle are already in the tree.
644  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
645    if (ScalarToTreeEntry.count(VL[i])) {
646      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
647            ") is already in tree.\n");
648      newTreeEntry(VL, false);
649      return;
650    }
651  }
652
653  // If any of the scalars appears in the table OR it is marked as a value that
654  // needs to stat scalar then we need to gather the scalars.
655  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
656    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
657      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
658      newTreeEntry(VL, false);
659      return;
660    }
661  }
662
663  // Check that all of the users of the scalars that we want to vectorize are
664  // schedulable.
665  Instruction *VL0 = cast<Instruction>(VL[0]);
666  int MyLastIndex = getLastIndex(VL);
667  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
668
669  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
670    Instruction *Scalar = cast<Instruction>(VL[i]);
671    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
672    for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
673         U != UE; ++U) {
674      DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
675      Instruction *User = dyn_cast<Instruction>(*U);
676      if (!User) {
677        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
678        newTreeEntry(VL, false);
679        return;
680      }
681
682      // We don't care if the user is in a different basic block.
683      BasicBlock *UserBlock = User->getParent();
684      if (UserBlock != BB) {
685        DEBUG(dbgs() << "SLP: User from a different basic block "
686              << *User << ". \n");
687        continue;
688      }
689
690      // If this is a PHINode within this basic block then we can place the
691      // extract wherever we want.
692      if (isa<PHINode>(*User)) {
693        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
694        continue;
695      }
696
697      // Check if this is a safe in-tree user.
698      if (ScalarToTreeEntry.count(User)) {
699        int Idx = ScalarToTreeEntry[User];
700        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
701        if (VecLocation <= MyLastIndex) {
702          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
703          newTreeEntry(VL, false);
704          return;
705        }
706        DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
707              VecLocation << " vector value (" << *Scalar << ") at #"
708              << MyLastIndex << ".\n");
709        continue;
710      }
711
712      // This user is part of the reduction.
713      if (RdxOps && RdxOps->count(User))
714        continue;
715
716      // Make sure that we can schedule this unknown user.
717      BlockNumbering &BN = BlocksNumbers[BB];
718      int UserIndex = BN.getIndex(User);
719      if (UserIndex < MyLastIndex) {
720
721        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
722              << *User << ". \n");
723        newTreeEntry(VL, false);
724        return;
725      }
726    }
727  }
728
729  // Check that every instructions appears once in this bundle.
730  for (unsigned i = 0, e = VL.size(); i < e; ++i)
731    for (unsigned j = i+1; j < e; ++j)
732      if (VL[i] == VL[j]) {
733        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
734        newTreeEntry(VL, false);
735        return;
736      }
737
738  // Check that instructions in this bundle don't reference other instructions.
739  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
740  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
741    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
742         U != UE; ++U) {
743      for (unsigned j = 0; j < e; ++j) {
744        if (i != j && *U == VL[j]) {
745          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
746          newTreeEntry(VL, false);
747          return;
748        }
749      }
750    }
751  }
752
753  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
754
755  unsigned Opcode = getSameOpcode(VL);
756
757  // Check if it is safe to sink the loads or the stores.
758  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
759    Instruction *Last = getLastInstruction(VL);
760
761    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
762      if (VL[i] == Last)
763        continue;
764      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
765      if (Barrier) {
766        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
767              << "\n because of " << *Barrier << ".  Gathering.\n");
768        newTreeEntry(VL, false);
769        return;
770      }
771    }
772  }
773
774  switch (Opcode) {
775    case Instruction::PHI: {
776      PHINode *PH = dyn_cast<PHINode>(VL0);
777
778      // Check for terminator values (e.g. invoke).
779      for (unsigned j = 0; j < VL.size(); ++j)
780        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
781          TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
782          if (Term) {
783            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
784            newTreeEntry(VL, false);
785            return;
786          }
787        }
788
789      newTreeEntry(VL, true);
790      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
791
792      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
793        ValueList Operands;
794        // Prepare the operand vector.
795        for (unsigned j = 0; j < VL.size(); ++j)
796          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
797
798        buildTree_rec(Operands, Depth + 1);
799      }
800      return;
801    }
802    case Instruction::ExtractElement: {
803      bool Reuse = CanReuseExtract(VL);
804      if (Reuse) {
805        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
806      }
807      newTreeEntry(VL, Reuse);
808      return;
809    }
810    case Instruction::Load: {
811      // Check if the loads are consecutive or of we need to swizzle them.
812      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
813        LoadInst *L = cast<LoadInst>(VL[i]);
814        if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
815          newTreeEntry(VL, false);
816          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
817          return;
818        }
819      }
820      newTreeEntry(VL, true);
821      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
822      return;
823    }
824    case Instruction::ZExt:
825    case Instruction::SExt:
826    case Instruction::FPToUI:
827    case Instruction::FPToSI:
828    case Instruction::FPExt:
829    case Instruction::PtrToInt:
830    case Instruction::IntToPtr:
831    case Instruction::SIToFP:
832    case Instruction::UIToFP:
833    case Instruction::Trunc:
834    case Instruction::FPTrunc:
835    case Instruction::BitCast: {
836      Type *SrcTy = VL0->getOperand(0)->getType();
837      for (unsigned i = 0; i < VL.size(); ++i) {
838        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
839        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
840          newTreeEntry(VL, false);
841          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
842          return;
843        }
844      }
845      newTreeEntry(VL, true);
846      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
847
848      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
849        ValueList Operands;
850        // Prepare the operand vector.
851        for (unsigned j = 0; j < VL.size(); ++j)
852          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
853
854        buildTree_rec(Operands, Depth+1);
855      }
856      return;
857    }
858    case Instruction::ICmp:
859    case Instruction::FCmp: {
860      // Check that all of the compares have the same predicate.
861      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
862      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
863      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
864        CmpInst *Cmp = cast<CmpInst>(VL[i]);
865        if (Cmp->getPredicate() != P0 ||
866            Cmp->getOperand(0)->getType() != ComparedTy) {
867          newTreeEntry(VL, false);
868          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
869          return;
870        }
871      }
872
873      newTreeEntry(VL, true);
874      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
875
876      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
877        ValueList Operands;
878        // Prepare the operand vector.
879        for (unsigned j = 0; j < VL.size(); ++j)
880          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
881
882        buildTree_rec(Operands, Depth+1);
883      }
884      return;
885    }
886    case Instruction::Select:
887    case Instruction::Add:
888    case Instruction::FAdd:
889    case Instruction::Sub:
890    case Instruction::FSub:
891    case Instruction::Mul:
892    case Instruction::FMul:
893    case Instruction::UDiv:
894    case Instruction::SDiv:
895    case Instruction::FDiv:
896    case Instruction::URem:
897    case Instruction::SRem:
898    case Instruction::FRem:
899    case Instruction::Shl:
900    case Instruction::LShr:
901    case Instruction::AShr:
902    case Instruction::And:
903    case Instruction::Or:
904    case Instruction::Xor: {
905      newTreeEntry(VL, true);
906      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
907
908      // Sort operands of the instructions so that each side is more likely to
909      // have the same opcode.
910      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
911        ValueList Left, Right;
912        reorderInputsAccordingToOpcode(VL, Left, Right);
913        buildTree_rec(Left, Depth + 1);
914        buildTree_rec(Right, Depth + 1);
915        return;
916      }
917
918      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
919        ValueList Operands;
920        // Prepare the operand vector.
921        for (unsigned j = 0; j < VL.size(); ++j)
922          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
923
924        buildTree_rec(Operands, Depth+1);
925      }
926      return;
927    }
928    case Instruction::Store: {
929      // Check if the stores are consecutive or of we need to swizzle them.
930      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
931        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
932          newTreeEntry(VL, false);
933          DEBUG(dbgs() << "SLP: Non consecutive store.\n");
934          return;
935        }
936
937      newTreeEntry(VL, true);
938      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
939
940      ValueList Operands;
941      for (unsigned j = 0; j < VL.size(); ++j)
942        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
943
944      // We can ignore these values because we are sinking them down.
945      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
946      buildTree_rec(Operands, Depth + 1);
947      return;
948    }
949    default:
950      newTreeEntry(VL, false);
951      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
952      return;
953  }
954}
955
956int BoUpSLP::getEntryCost(TreeEntry *E) {
957  ArrayRef<Value*> VL = E->Scalars;
958
959  Type *ScalarTy = VL[0]->getType();
960  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
961    ScalarTy = SI->getValueOperand()->getType();
962  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
963
964  if (E->NeedToGather) {
965    if (allConstant(VL))
966      return 0;
967    if (isSplat(VL)) {
968      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
969    }
970    return getGatherCost(E->Scalars);
971  }
972
973  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
974         "Invalid VL");
975  Instruction *VL0 = cast<Instruction>(VL[0]);
976  unsigned Opcode = VL0->getOpcode();
977  switch (Opcode) {
978    case Instruction::PHI: {
979      return 0;
980    }
981    case Instruction::ExtractElement: {
982      if (CanReuseExtract(VL))
983        return 0;
984      return getGatherCost(VecTy);
985    }
986    case Instruction::ZExt:
987    case Instruction::SExt:
988    case Instruction::FPToUI:
989    case Instruction::FPToSI:
990    case Instruction::FPExt:
991    case Instruction::PtrToInt:
992    case Instruction::IntToPtr:
993    case Instruction::SIToFP:
994    case Instruction::UIToFP:
995    case Instruction::Trunc:
996    case Instruction::FPTrunc:
997    case Instruction::BitCast: {
998      Type *SrcTy = VL0->getOperand(0)->getType();
999
1000      // Calculate the cost of this instruction.
1001      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1002                                                         VL0->getType(), SrcTy);
1003
1004      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1005      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1006      return VecCost - ScalarCost;
1007    }
1008    case Instruction::FCmp:
1009    case Instruction::ICmp:
1010    case Instruction::Select:
1011    case Instruction::Add:
1012    case Instruction::FAdd:
1013    case Instruction::Sub:
1014    case Instruction::FSub:
1015    case Instruction::Mul:
1016    case Instruction::FMul:
1017    case Instruction::UDiv:
1018    case Instruction::SDiv:
1019    case Instruction::FDiv:
1020    case Instruction::URem:
1021    case Instruction::SRem:
1022    case Instruction::FRem:
1023    case Instruction::Shl:
1024    case Instruction::LShr:
1025    case Instruction::AShr:
1026    case Instruction::And:
1027    case Instruction::Or:
1028    case Instruction::Xor: {
1029      // Calculate the cost of this instruction.
1030      int ScalarCost = 0;
1031      int VecCost = 0;
1032      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1033          Opcode == Instruction::Select) {
1034        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1035        ScalarCost = VecTy->getNumElements() *
1036        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1037        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1038      } else {
1039        // Certain instructions can be cheaper to vectorize if they have a
1040        // constant second vector operand.
1041        TargetTransformInfo::OperandValueKind Op1VK =
1042            TargetTransformInfo::OK_AnyValue;
1043        TargetTransformInfo::OperandValueKind Op2VK =
1044            TargetTransformInfo::OK_UniformConstantValue;
1045
1046        // Check whether all second operands are constant.
1047        for (unsigned i = 0; i < VL.size(); ++i)
1048          if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
1049            Op2VK = TargetTransformInfo::OK_AnyValue;
1050            break;
1051          }
1052
1053        ScalarCost =
1054            VecTy->getNumElements() *
1055            TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1056        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1057      }
1058      return VecCost - ScalarCost;
1059    }
1060    case Instruction::Load: {
1061      // Cost of wide load - cost of scalar loads.
1062      int ScalarLdCost = VecTy->getNumElements() *
1063      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1064      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1065      return VecLdCost - ScalarLdCost;
1066    }
1067    case Instruction::Store: {
1068      // We know that we can merge the stores. Calculate the cost.
1069      int ScalarStCost = VecTy->getNumElements() *
1070      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1071      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1072      return VecStCost - ScalarStCost;
1073    }
1074    default:
1075      llvm_unreachable("Unknown instruction");
1076  }
1077}
1078
1079bool BoUpSLP::isFullyVectorizableTinyTree() {
1080  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1081        VectorizableTree.size() << " is fully vectorizable .\n");
1082
1083  // We only handle trees of height 2.
1084  if (VectorizableTree.size() != 2)
1085    return false;
1086
1087  // Gathering cost would be too much for tiny trees.
1088  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1089    return false;
1090
1091  return true;
1092}
1093
1094int BoUpSLP::getTreeCost() {
1095  int Cost = 0;
1096  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1097        VectorizableTree.size() << ".\n");
1098
1099  // We only vectorize tiny trees if it is fully vectorizable.
1100  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1101    if (!VectorizableTree.size()) {
1102      assert(!ExternalUses.size() && "We should not have any external users");
1103    }
1104    return INT_MAX;
1105  }
1106
1107  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1108
1109  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1110    int C = getEntryCost(&VectorizableTree[i]);
1111    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1112          << *VectorizableTree[i].Scalars[0] << " .\n");
1113    Cost += C;
1114  }
1115
1116  int ExtractCost = 0;
1117  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1118       I != E; ++I) {
1119
1120    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1121    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1122                                           I->Lane);
1123  }
1124
1125
1126  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1127  return  Cost + ExtractCost;
1128}
1129
1130int BoUpSLP::getGatherCost(Type *Ty) {
1131  int Cost = 0;
1132  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1133    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1134  return Cost;
1135}
1136
1137int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1138  // Find the type of the operands in VL.
1139  Type *ScalarTy = VL[0]->getType();
1140  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1141    ScalarTy = SI->getValueOperand()->getType();
1142  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1143  // Find the cost of inserting/extracting values from the vector.
1144  return getGatherCost(VecTy);
1145}
1146
1147AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1148  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1149    return AA->getLocation(SI);
1150  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1151    return AA->getLocation(LI);
1152  return AliasAnalysis::Location();
1153}
1154
1155Value *BoUpSLP::getPointerOperand(Value *I) {
1156  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1157    return LI->getPointerOperand();
1158  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1159    return SI->getPointerOperand();
1160  return 0;
1161}
1162
1163unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1164  if (LoadInst *L = dyn_cast<LoadInst>(I))
1165    return L->getPointerAddressSpace();
1166  if (StoreInst *S = dyn_cast<StoreInst>(I))
1167    return S->getPointerAddressSpace();
1168  return -1;
1169}
1170
1171bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1172  Value *PtrA = getPointerOperand(A);
1173  Value *PtrB = getPointerOperand(B);
1174  unsigned ASA = getAddressSpaceOperand(A);
1175  unsigned ASB = getAddressSpaceOperand(B);
1176
1177  // Check that the address spaces match and that the pointers are valid.
1178  if (!PtrA || !PtrB || (ASA != ASB))
1179    return false;
1180
1181  // Make sure that A and B are different pointers of the same type.
1182  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1183    return false;
1184
1185  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1186  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1187  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1188
1189  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1190  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1191  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1192
1193  APInt OffsetDelta = OffsetB - OffsetA;
1194
1195  // Check if they are based on the same pointer. That makes the offsets
1196  // sufficient.
1197  if (PtrA == PtrB)
1198    return OffsetDelta == Size;
1199
1200  // Compute the necessary base pointer delta to have the necessary final delta
1201  // equal to the size.
1202  APInt BaseDelta = Size - OffsetDelta;
1203
1204  // Otherwise compute the distance with SCEV between the base pointers.
1205  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1206  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1207  const SCEV *C = SE->getConstant(BaseDelta);
1208  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1209  return X == PtrSCEVB;
1210}
1211
1212Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1213  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1214  BasicBlock::iterator I = Src, E = Dst;
1215  /// Scan all of the instruction from SRC to DST and check if
1216  /// the source may alias.
1217  for (++I; I != E; ++I) {
1218    // Ignore store instructions that are marked as 'ignore'.
1219    if (MemBarrierIgnoreList.count(I))
1220      continue;
1221    if (Src->mayWriteToMemory()) /* Write */ {
1222      if (!I->mayReadOrWriteMemory())
1223        continue;
1224    } else /* Read */ {
1225      if (!I->mayWriteToMemory())
1226        continue;
1227    }
1228    AliasAnalysis::Location A = getLocation(&*I);
1229    AliasAnalysis::Location B = getLocation(Src);
1230
1231    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1232      return I;
1233  }
1234  return 0;
1235}
1236
1237int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1238  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1239  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1240  BlockNumbering &BN = BlocksNumbers[BB];
1241
1242  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1243  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1244    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1245  return MaxIdx;
1246}
1247
1248Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1249  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1250  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1251  BlockNumbering &BN = BlocksNumbers[BB];
1252
1253  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1254  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1255    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1256  Instruction *I = BN.getInstruction(MaxIdx);
1257  assert(I && "bad location");
1258  return I;
1259}
1260
1261void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1262  Instruction *VL0 = cast<Instruction>(VL[0]);
1263  Instruction *LastInst = getLastInstruction(VL);
1264  BasicBlock::iterator NextInst = LastInst;
1265  ++NextInst;
1266  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1267  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1268}
1269
1270Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1271  Value *Vec = UndefValue::get(Ty);
1272  // Generate the 'InsertElement' instruction.
1273  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1274    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1275    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1276      GatherSeq.insert(Insrt);
1277      CSEBlocks.insert(Insrt->getParent());
1278
1279      // Add to our 'need-to-extract' list.
1280      if (ScalarToTreeEntry.count(VL[i])) {
1281        int Idx = ScalarToTreeEntry[VL[i]];
1282        TreeEntry *E = &VectorizableTree[Idx];
1283        // Find which lane we need to extract.
1284        int FoundLane = -1;
1285        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1286          // Is this the lane of the scalar that we are looking for ?
1287          if (E->Scalars[Lane] == VL[i]) {
1288            FoundLane = Lane;
1289            break;
1290          }
1291        }
1292        assert(FoundLane >= 0 && "Could not find the correct lane");
1293        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1294      }
1295    }
1296  }
1297
1298  return Vec;
1299}
1300
1301Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1302  SmallDenseMap<Value*, int>::const_iterator Entry
1303    = ScalarToTreeEntry.find(VL[0]);
1304  if (Entry != ScalarToTreeEntry.end()) {
1305    int Idx = Entry->second;
1306    const TreeEntry *En = &VectorizableTree[Idx];
1307    if (En->isSame(VL) && En->VectorizedValue)
1308      return En->VectorizedValue;
1309  }
1310  return 0;
1311}
1312
1313Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1314  if (ScalarToTreeEntry.count(VL[0])) {
1315    int Idx = ScalarToTreeEntry[VL[0]];
1316    TreeEntry *E = &VectorizableTree[Idx];
1317    if (E->isSame(VL))
1318      return vectorizeTree(E);
1319  }
1320
1321  Type *ScalarTy = VL[0]->getType();
1322  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1323    ScalarTy = SI->getValueOperand()->getType();
1324  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1325
1326  return Gather(VL, VecTy);
1327}
1328
1329Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1330  IRBuilder<>::InsertPointGuard Guard(Builder);
1331
1332  if (E->VectorizedValue) {
1333    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1334    return E->VectorizedValue;
1335  }
1336
1337  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1338  Type *ScalarTy = VL0->getType();
1339  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1340    ScalarTy = SI->getValueOperand()->getType();
1341  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1342
1343  if (E->NeedToGather) {
1344    setInsertPointAfterBundle(E->Scalars);
1345    return Gather(E->Scalars, VecTy);
1346  }
1347
1348  unsigned Opcode = VL0->getOpcode();
1349  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1350
1351  switch (Opcode) {
1352    case Instruction::PHI: {
1353      PHINode *PH = dyn_cast<PHINode>(VL0);
1354      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1355      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1356      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1357      E->VectorizedValue = NewPhi;
1358
1359      // PHINodes may have multiple entries from the same block. We want to
1360      // visit every block once.
1361      SmallSet<BasicBlock*, 4> VisitedBBs;
1362
1363      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1364        ValueList Operands;
1365        BasicBlock *IBB = PH->getIncomingBlock(i);
1366
1367        if (!VisitedBBs.insert(IBB)) {
1368          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1369          continue;
1370        }
1371
1372        // Prepare the operand vector.
1373        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1374          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1375                             getIncomingValueForBlock(IBB));
1376
1377        Builder.SetInsertPoint(IBB->getTerminator());
1378        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1379        Value *Vec = vectorizeTree(Operands);
1380        NewPhi->addIncoming(Vec, IBB);
1381      }
1382
1383      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1384             "Invalid number of incoming values");
1385      return NewPhi;
1386    }
1387
1388    case Instruction::ExtractElement: {
1389      if (CanReuseExtract(E->Scalars)) {
1390        Value *V = VL0->getOperand(0);
1391        E->VectorizedValue = V;
1392        return V;
1393      }
1394      return Gather(E->Scalars, VecTy);
1395    }
1396    case Instruction::ZExt:
1397    case Instruction::SExt:
1398    case Instruction::FPToUI:
1399    case Instruction::FPToSI:
1400    case Instruction::FPExt:
1401    case Instruction::PtrToInt:
1402    case Instruction::IntToPtr:
1403    case Instruction::SIToFP:
1404    case Instruction::UIToFP:
1405    case Instruction::Trunc:
1406    case Instruction::FPTrunc:
1407    case Instruction::BitCast: {
1408      ValueList INVL;
1409      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1410        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1411
1412      setInsertPointAfterBundle(E->Scalars);
1413
1414      Value *InVec = vectorizeTree(INVL);
1415
1416      if (Value *V = alreadyVectorized(E->Scalars))
1417        return V;
1418
1419      CastInst *CI = dyn_cast<CastInst>(VL0);
1420      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1421      E->VectorizedValue = V;
1422      return V;
1423    }
1424    case Instruction::FCmp:
1425    case Instruction::ICmp: {
1426      ValueList LHSV, RHSV;
1427      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1428        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1429        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1430      }
1431
1432      setInsertPointAfterBundle(E->Scalars);
1433
1434      Value *L = vectorizeTree(LHSV);
1435      Value *R = vectorizeTree(RHSV);
1436
1437      if (Value *V = alreadyVectorized(E->Scalars))
1438        return V;
1439
1440      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1441      Value *V;
1442      if (Opcode == Instruction::FCmp)
1443        V = Builder.CreateFCmp(P0, L, R);
1444      else
1445        V = Builder.CreateICmp(P0, L, R);
1446
1447      E->VectorizedValue = V;
1448      return V;
1449    }
1450    case Instruction::Select: {
1451      ValueList TrueVec, FalseVec, CondVec;
1452      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1453        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1454        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1455        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1456      }
1457
1458      setInsertPointAfterBundle(E->Scalars);
1459
1460      Value *Cond = vectorizeTree(CondVec);
1461      Value *True = vectorizeTree(TrueVec);
1462      Value *False = vectorizeTree(FalseVec);
1463
1464      if (Value *V = alreadyVectorized(E->Scalars))
1465        return V;
1466
1467      Value *V = Builder.CreateSelect(Cond, True, False);
1468      E->VectorizedValue = V;
1469      return V;
1470    }
1471    case Instruction::Add:
1472    case Instruction::FAdd:
1473    case Instruction::Sub:
1474    case Instruction::FSub:
1475    case Instruction::Mul:
1476    case Instruction::FMul:
1477    case Instruction::UDiv:
1478    case Instruction::SDiv:
1479    case Instruction::FDiv:
1480    case Instruction::URem:
1481    case Instruction::SRem:
1482    case Instruction::FRem:
1483    case Instruction::Shl:
1484    case Instruction::LShr:
1485    case Instruction::AShr:
1486    case Instruction::And:
1487    case Instruction::Or:
1488    case Instruction::Xor: {
1489      ValueList LHSVL, RHSVL;
1490      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1491        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1492      else
1493        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1494          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1495          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1496        }
1497
1498      setInsertPointAfterBundle(E->Scalars);
1499
1500      Value *LHS = vectorizeTree(LHSVL);
1501      Value *RHS = vectorizeTree(RHSVL);
1502
1503      if (LHS == RHS && isa<Instruction>(LHS)) {
1504        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1505      }
1506
1507      if (Value *V = alreadyVectorized(E->Scalars))
1508        return V;
1509
1510      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1511      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1512      E->VectorizedValue = V;
1513
1514      if (Instruction *I = dyn_cast<Instruction>(V))
1515        return propagateMetadata(I, E->Scalars);
1516
1517      return V;
1518    }
1519    case Instruction::Load: {
1520      // Loads are inserted at the head of the tree because we don't want to
1521      // sink them all the way down past store instructions.
1522      setInsertPointAfterBundle(E->Scalars);
1523
1524      LoadInst *LI = cast<LoadInst>(VL0);
1525      unsigned AS = LI->getPointerAddressSpace();
1526
1527      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1528                                            VecTy->getPointerTo(AS));
1529      unsigned Alignment = LI->getAlignment();
1530      LI = Builder.CreateLoad(VecPtr);
1531      LI->setAlignment(Alignment);
1532      E->VectorizedValue = LI;
1533      return propagateMetadata(LI, E->Scalars);
1534    }
1535    case Instruction::Store: {
1536      StoreInst *SI = cast<StoreInst>(VL0);
1537      unsigned Alignment = SI->getAlignment();
1538      unsigned AS = SI->getPointerAddressSpace();
1539
1540      ValueList ValueOp;
1541      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1542        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1543
1544      setInsertPointAfterBundle(E->Scalars);
1545
1546      Value *VecValue = vectorizeTree(ValueOp);
1547      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1548                                            VecTy->getPointerTo(AS));
1549      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1550      S->setAlignment(Alignment);
1551      E->VectorizedValue = S;
1552      return propagateMetadata(S, E->Scalars);
1553    }
1554    default:
1555    llvm_unreachable("unknown inst");
1556  }
1557  return 0;
1558}
1559
1560Value *BoUpSLP::vectorizeTree() {
1561  Builder.SetInsertPoint(F->getEntryBlock().begin());
1562  vectorizeTree(&VectorizableTree[0]);
1563
1564  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1565
1566  // Extract all of the elements with the external uses.
1567  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1568       it != e; ++it) {
1569    Value *Scalar = it->Scalar;
1570    llvm::User *User = it->User;
1571
1572    // Skip users that we already RAUW. This happens when one instruction
1573    // has multiple uses of the same value.
1574    if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1575        Scalar->use_end())
1576      continue;
1577    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1578
1579    int Idx = ScalarToTreeEntry[Scalar];
1580    TreeEntry *E = &VectorizableTree[Idx];
1581    assert(!E->NeedToGather && "Extracting from a gather list");
1582
1583    Value *Vec = E->VectorizedValue;
1584    assert(Vec && "Can't find vectorizable value");
1585
1586    Value *Lane = Builder.getInt32(it->Lane);
1587    // Generate extracts for out-of-tree users.
1588    // Find the insertion point for the extractelement lane.
1589    if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1590      Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
1591      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1592      CSEBlocks.insert(PN->getParent());
1593      User->replaceUsesOfWith(Scalar, Ex);
1594    } else if (isa<Instruction>(Vec)){
1595      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1596        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1597          if (PH->getIncomingValue(i) == Scalar) {
1598            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1599            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1600            CSEBlocks.insert(PH->getIncomingBlock(i));
1601            PH->setOperand(i, Ex);
1602          }
1603        }
1604      } else {
1605        Builder.SetInsertPoint(cast<Instruction>(User));
1606        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1607        CSEBlocks.insert(cast<Instruction>(User)->getParent());
1608        User->replaceUsesOfWith(Scalar, Ex);
1609     }
1610    } else {
1611      Builder.SetInsertPoint(F->getEntryBlock().begin());
1612      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1613      CSEBlocks.insert(&F->getEntryBlock());
1614      User->replaceUsesOfWith(Scalar, Ex);
1615    }
1616
1617    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1618  }
1619
1620  // For each vectorized value:
1621  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1622    TreeEntry *Entry = &VectorizableTree[EIdx];
1623
1624    // For each lane:
1625    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1626      Value *Scalar = Entry->Scalars[Lane];
1627
1628      // No need to handle users of gathered values.
1629      if (Entry->NeedToGather)
1630        continue;
1631
1632      assert(Entry->VectorizedValue && "Can't find vectorizable value");
1633
1634      Type *Ty = Scalar->getType();
1635      if (!Ty->isVoidTy()) {
1636        for (Value::use_iterator User = Scalar->use_begin(),
1637             UE = Scalar->use_end(); User != UE; ++User) {
1638          DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1639
1640          assert((ScalarToTreeEntry.count(*User) ||
1641                  // It is legal to replace the reduction users by undef.
1642                  (RdxOps && RdxOps->count(*User))) &&
1643                 "Replacing out-of-tree value with undef");
1644        }
1645        Value *Undef = UndefValue::get(Ty);
1646        Scalar->replaceAllUsesWith(Undef);
1647      }
1648      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1649      cast<Instruction>(Scalar)->eraseFromParent();
1650    }
1651  }
1652
1653  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1654    BlocksNumbers[it].forget();
1655  }
1656  Builder.ClearInsertionPoint();
1657
1658  return VectorizableTree[0].VectorizedValue;
1659}
1660
1661class DTCmp {
1662  const DominatorTree *DT;
1663
1664public:
1665  DTCmp(const DominatorTree *DT) : DT(DT) {}
1666  bool operator()(const BasicBlock *A, const BasicBlock *B) const {
1667    return DT->properlyDominates(A, B);
1668  }
1669};
1670
1671void BoUpSLP::optimizeGatherSequence() {
1672  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1673        << " gather sequences instructions.\n");
1674  // LICM InsertElementInst sequences.
1675  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1676       e = GatherSeq.end(); it != e; ++it) {
1677    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1678
1679    if (!Insert)
1680      continue;
1681
1682    // Check if this block is inside a loop.
1683    Loop *L = LI->getLoopFor(Insert->getParent());
1684    if (!L)
1685      continue;
1686
1687    // Check if it has a preheader.
1688    BasicBlock *PreHeader = L->getLoopPreheader();
1689    if (!PreHeader)
1690      continue;
1691
1692    // If the vector or the element that we insert into it are
1693    // instructions that are defined in this basic block then we can't
1694    // hoist this instruction.
1695    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1696    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1697    if (CurrVec && L->contains(CurrVec))
1698      continue;
1699    if (NewElem && L->contains(NewElem))
1700      continue;
1701
1702    // We can hoist this instruction. Move it to the pre-header.
1703    Insert->moveBefore(PreHeader->getTerminator());
1704  }
1705
1706  // Sort blocks by domination. This ensures we visit a block after all blocks
1707  // dominating it are visited.
1708  SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
1709  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
1710
1711  // Perform O(N^2) search over the gather sequences and merge identical
1712  // instructions. TODO: We can further optimize this scan if we split the
1713  // instructions into different buckets based on the insert lane.
1714  SmallVector<Instruction *, 16> Visited;
1715  for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1716                                               E = CSEWorkList.end();
1717       I != E; ++I) {
1718    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
1719           "Worklist not sorted properly!");
1720    BasicBlock *BB = *I;
1721    // For all instructions in blocks containing gather sequences:
1722    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1723      Instruction *In = it++;
1724      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
1725        continue;
1726
1727      // Check if we can replace this instruction with any of the
1728      // visited instructions.
1729      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1730                                                    ve = Visited.end();
1731           v != ve; ++v) {
1732        if (In->isIdenticalTo(*v) &&
1733            DT->dominates((*v)->getParent(), In->getParent())) {
1734          In->replaceAllUsesWith(*v);
1735          In->eraseFromParent();
1736          In = 0;
1737          break;
1738        }
1739      }
1740      if (In) {
1741        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1742        Visited.push_back(In);
1743      }
1744    }
1745  }
1746  CSEBlocks.clear();
1747  GatherSeq.clear();
1748}
1749
1750/// The SLPVectorizer Pass.
1751struct SLPVectorizer : public FunctionPass {
1752  typedef SmallVector<StoreInst *, 8> StoreList;
1753  typedef MapVector<Value *, StoreList> StoreListMap;
1754
1755  /// Pass identification, replacement for typeid
1756  static char ID;
1757
1758  explicit SLPVectorizer() : FunctionPass(ID) {
1759    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1760  }
1761
1762  ScalarEvolution *SE;
1763  DataLayout *DL;
1764  TargetTransformInfo *TTI;
1765  AliasAnalysis *AA;
1766  LoopInfo *LI;
1767  DominatorTree *DT;
1768
1769  virtual bool runOnFunction(Function &F) {
1770    SE = &getAnalysis<ScalarEvolution>();
1771    DL = getAnalysisIfAvailable<DataLayout>();
1772    TTI = &getAnalysis<TargetTransformInfo>();
1773    AA = &getAnalysis<AliasAnalysis>();
1774    LI = &getAnalysis<LoopInfo>();
1775    DT = &getAnalysis<DominatorTree>();
1776
1777    StoreRefs.clear();
1778    bool Changed = false;
1779
1780    // If the target claims to have no vector registers don't attempt
1781    // vectorization.
1782    if (!TTI->getNumberOfRegisters(true))
1783      return false;
1784
1785    // Must have DataLayout. We can't require it because some tests run w/o
1786    // triple.
1787    if (!DL)
1788      return false;
1789
1790    // Don't vectorize when the attribute NoImplicitFloat is used.
1791    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
1792      return false;
1793
1794    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1795
1796    // Use the bollom up slp vectorizer to construct chains that start with
1797    // he store instructions.
1798    BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1799
1800    // Scan the blocks in the function in post order.
1801    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1802         e = po_end(&F.getEntryBlock()); it != e; ++it) {
1803      BasicBlock *BB = *it;
1804
1805      // Vectorize trees that end at stores.
1806      if (unsigned count = collectStores(BB, R)) {
1807        (void)count;
1808        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1809        Changed |= vectorizeStoreChains(R);
1810      }
1811
1812      // Vectorize trees that end at reductions.
1813      Changed |= vectorizeChainsInBlock(BB, R);
1814    }
1815
1816    if (Changed) {
1817      R.optimizeGatherSequence();
1818      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1819      DEBUG(verifyFunction(F));
1820    }
1821    return Changed;
1822  }
1823
1824  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1825    FunctionPass::getAnalysisUsage(AU);
1826    AU.addRequired<ScalarEvolution>();
1827    AU.addRequired<AliasAnalysis>();
1828    AU.addRequired<TargetTransformInfo>();
1829    AU.addRequired<LoopInfo>();
1830    AU.addRequired<DominatorTree>();
1831    AU.addPreserved<LoopInfo>();
1832    AU.addPreserved<DominatorTree>();
1833    AU.setPreservesCFG();
1834  }
1835
1836private:
1837
1838  /// \brief Collect memory references and sort them according to their base
1839  /// object. We sort the stores to their base objects to reduce the cost of the
1840  /// quadratic search on the stores. TODO: We can further reduce this cost
1841  /// if we flush the chain creation every time we run into a memory barrier.
1842  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1843
1844  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1845  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1846
1847  /// \brief Try to vectorize a list of operands.
1848  /// \returns true if a value was vectorized.
1849  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1850
1851  /// \brief Try to vectorize a chain that may start at the operands of \V;
1852  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1853
1854  /// \brief Vectorize the stores that were collected in StoreRefs.
1855  bool vectorizeStoreChains(BoUpSLP &R);
1856
1857  /// \brief Scan the basic block and look for patterns that are likely to start
1858  /// a vectorization chain.
1859  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1860
1861  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1862                           BoUpSLP &R);
1863
1864  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1865                       BoUpSLP &R);
1866private:
1867  StoreListMap StoreRefs;
1868};
1869
1870/// \brief Check that the Values in the slice in VL array are still existant in
1871/// the WeakVH array.
1872/// Vectorization of part of the VL array may cause later values in the VL array
1873/// to become invalid. We track when this has happened in the WeakVH array.
1874static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
1875                               SmallVectorImpl<WeakVH> &VH,
1876                               unsigned SliceBegin,
1877                               unsigned SliceSize) {
1878  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
1879    if (VH[i] != VL[i])
1880      return true;
1881
1882  return false;
1883}
1884
1885bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1886                                          int CostThreshold, BoUpSLP &R) {
1887  unsigned ChainLen = Chain.size();
1888  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1889        << "\n");
1890  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1891  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1892  unsigned VF = MinVecRegSize / Sz;
1893
1894  if (!isPowerOf2_32(Sz) || VF < 2)
1895    return false;
1896
1897  // Keep track of values that were delete by vectorizing in the loop below.
1898  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
1899
1900  bool Changed = false;
1901  // Look for profitable vectorizable trees at all offsets, starting at zero.
1902  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1903    if (i + VF > e)
1904      break;
1905
1906    // Check that a previous iteration of this loop did not delete the Value.
1907    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
1908      continue;
1909
1910    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1911          << "\n");
1912    ArrayRef<Value *> Operands = Chain.slice(i, VF);
1913
1914    R.buildTree(Operands);
1915
1916    int Cost = R.getTreeCost();
1917
1918    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1919    if (Cost < CostThreshold) {
1920      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1921      R.vectorizeTree();
1922
1923      // Move to the next bundle.
1924      i += VF - 1;
1925      Changed = true;
1926    }
1927  }
1928
1929  return Changed;
1930}
1931
1932bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1933                                    int costThreshold, BoUpSLP &R) {
1934  SetVector<Value *> Heads, Tails;
1935  SmallDenseMap<Value *, Value *> ConsecutiveChain;
1936
1937  // We may run into multiple chains that merge into a single chain. We mark the
1938  // stores that we vectorized so that we don't visit the same store twice.
1939  BoUpSLP::ValueSet VectorizedStores;
1940  bool Changed = false;
1941
1942  // Do a quadratic search on all of the given stores and find
1943  // all of the pairs of stores that follow each other.
1944  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1945    for (unsigned j = 0; j < e; ++j) {
1946      if (i == j)
1947        continue;
1948
1949      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1950        Tails.insert(Stores[j]);
1951        Heads.insert(Stores[i]);
1952        ConsecutiveChain[Stores[i]] = Stores[j];
1953      }
1954    }
1955  }
1956
1957  // For stores that start but don't end a link in the chain:
1958  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1959       it != e; ++it) {
1960    if (Tails.count(*it))
1961      continue;
1962
1963    // We found a store instr that starts a chain. Now follow the chain and try
1964    // to vectorize it.
1965    BoUpSLP::ValueList Operands;
1966    Value *I = *it;
1967    // Collect the chain into a list.
1968    while (Tails.count(I) || Heads.count(I)) {
1969      if (VectorizedStores.count(I))
1970        break;
1971      Operands.push_back(I);
1972      // Move to the next value in the chain.
1973      I = ConsecutiveChain[I];
1974    }
1975
1976    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1977
1978    // Mark the vectorized stores so that we don't vectorize them again.
1979    if (Vectorized)
1980      VectorizedStores.insert(Operands.begin(), Operands.end());
1981    Changed |= Vectorized;
1982  }
1983
1984  return Changed;
1985}
1986
1987
1988unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1989  unsigned count = 0;
1990  StoreRefs.clear();
1991  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1992    StoreInst *SI = dyn_cast<StoreInst>(it);
1993    if (!SI)
1994      continue;
1995
1996    // Don't touch volatile stores.
1997    if (!SI->isSimple())
1998      continue;
1999
2000    // Check that the pointer points to scalars.
2001    Type *Ty = SI->getValueOperand()->getType();
2002    if (Ty->isAggregateType() || Ty->isVectorTy())
2003      return 0;
2004
2005    // Find the base pointer.
2006    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2007
2008    // Save the store locations.
2009    StoreRefs[Ptr].push_back(SI);
2010    count++;
2011  }
2012  return count;
2013}
2014
2015bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2016  if (!A || !B)
2017    return false;
2018  Value *VL[] = { A, B };
2019  return tryToVectorizeList(VL, R);
2020}
2021
2022bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
2023  if (VL.size() < 2)
2024    return false;
2025
2026  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2027
2028  // Check that all of the parts are scalar instructions of the same type.
2029  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2030  if (!I0)
2031    return false;
2032
2033  unsigned Opcode0 = I0->getOpcode();
2034
2035  Type *Ty0 = I0->getType();
2036  unsigned Sz = DL->getTypeSizeInBits(Ty0);
2037  unsigned VF = MinVecRegSize / Sz;
2038
2039  for (int i = 0, e = VL.size(); i < e; ++i) {
2040    Type *Ty = VL[i]->getType();
2041    if (Ty->isAggregateType() || Ty->isVectorTy())
2042      return false;
2043    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2044    if (!Inst || Inst->getOpcode() != Opcode0)
2045      return false;
2046  }
2047
2048  bool Changed = false;
2049
2050  // Keep track of values that were delete by vectorizing in the loop below.
2051  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2052
2053  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2054    unsigned OpsWidth = 0;
2055
2056    if (i + VF > e)
2057      OpsWidth = e - i;
2058    else
2059      OpsWidth = VF;
2060
2061    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2062      break;
2063
2064    // Check that a previous iteration of this loop did not delete the Value.
2065    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2066      continue;
2067
2068    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2069                 << "\n");
2070    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2071
2072    R.buildTree(Ops);
2073    int Cost = R.getTreeCost();
2074
2075    if (Cost < -SLPCostThreshold) {
2076      DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
2077      R.vectorizeTree();
2078
2079      // Move to the next bundle.
2080      i += VF - 1;
2081      Changed = true;
2082    }
2083  }
2084
2085  return Changed;
2086}
2087
2088bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2089  if (!V)
2090    return false;
2091
2092  // Try to vectorize V.
2093  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2094    return true;
2095
2096  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2097  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2098  // Try to skip B.
2099  if (B && B->hasOneUse()) {
2100    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2101    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2102    if (tryToVectorizePair(A, B0, R)) {
2103      B->moveBefore(V);
2104      return true;
2105    }
2106    if (tryToVectorizePair(A, B1, R)) {
2107      B->moveBefore(V);
2108      return true;
2109    }
2110  }
2111
2112  // Try to skip A.
2113  if (A && A->hasOneUse()) {
2114    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2115    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2116    if (tryToVectorizePair(A0, B, R)) {
2117      A->moveBefore(V);
2118      return true;
2119    }
2120    if (tryToVectorizePair(A1, B, R)) {
2121      A->moveBefore(V);
2122      return true;
2123    }
2124  }
2125  return 0;
2126}
2127
2128/// \brief Generate a shuffle mask to be used in a reduction tree.
2129///
2130/// \param VecLen The length of the vector to be reduced.
2131/// \param NumEltsToRdx The number of elements that should be reduced in the
2132///        vector.
2133/// \param IsPairwise Whether the reduction is a pairwise or splitting
2134///        reduction. A pairwise reduction will generate a mask of
2135///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2136///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2137/// \param IsLeft True will generate a mask of even elements, odd otherwise.
2138static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2139                                   bool IsPairwise, bool IsLeft,
2140                                   IRBuilder<> &Builder) {
2141  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2142
2143  SmallVector<Constant *, 32> ShuffleMask(
2144      VecLen, UndefValue::get(Builder.getInt32Ty()));
2145
2146  if (IsPairwise)
2147    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2148    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2149      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2150  else
2151    // Move the upper half of the vector to the lower half.
2152    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2153      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2154
2155  return ConstantVector::get(ShuffleMask);
2156}
2157
2158
2159/// Model horizontal reductions.
2160///
2161/// A horizontal reduction is a tree of reduction operations (currently add and
2162/// fadd) that has operations that can be put into a vector as its leaf.
2163/// For example, this tree:
2164///
2165/// mul mul mul mul
2166///  \  /    \  /
2167///   +       +
2168///    \     /
2169///       +
2170/// This tree has "mul" as its reduced values and "+" as its reduction
2171/// operations. A reduction might be feeding into a store or a binary operation
2172/// feeding a phi.
2173///    ...
2174///    \  /
2175///     +
2176///     |
2177///  phi +=
2178///
2179///  Or:
2180///    ...
2181///    \  /
2182///     +
2183///     |
2184///   *p =
2185///
2186class HorizontalReduction {
2187  SmallPtrSet<Value *, 16> ReductionOps;
2188  SmallVector<Value *, 32> ReducedVals;
2189
2190  BinaryOperator *ReductionRoot;
2191  PHINode *ReductionPHI;
2192
2193  /// The opcode of the reduction.
2194  unsigned ReductionOpcode;
2195  /// The opcode of the values we perform a reduction on.
2196  unsigned ReducedValueOpcode;
2197  /// The width of one full horizontal reduction operation.
2198  unsigned ReduxWidth;
2199  /// Should we model this reduction as a pairwise reduction tree or a tree that
2200  /// splits the vector in halves and adds those halves.
2201  bool IsPairwiseReduction;
2202
2203public:
2204  HorizontalReduction()
2205    : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2206    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2207
2208  /// \brief Try to find a reduction tree.
2209  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2210                                 DataLayout *DL) {
2211    assert((!Phi ||
2212            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2213           "Thi phi needs to use the binary operator");
2214
2215    // We could have a initial reductions that is not an add.
2216    //  r *= v1 + v2 + v3 + v4
2217    // In such a case start looking for a tree rooted in the first '+'.
2218    if (Phi) {
2219      if (B->getOperand(0) == Phi) {
2220        Phi = 0;
2221        B = dyn_cast<BinaryOperator>(B->getOperand(1));
2222      } else if (B->getOperand(1) == Phi) {
2223        Phi = 0;
2224        B = dyn_cast<BinaryOperator>(B->getOperand(0));
2225      }
2226    }
2227
2228    if (!B)
2229      return false;
2230
2231    Type *Ty = B->getType();
2232    if (Ty->isVectorTy())
2233      return false;
2234
2235    ReductionOpcode = B->getOpcode();
2236    ReducedValueOpcode = 0;
2237    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2238    ReductionRoot = B;
2239    ReductionPHI = Phi;
2240
2241    if (ReduxWidth < 4)
2242      return false;
2243
2244    // We currently only support adds.
2245    if (ReductionOpcode != Instruction::Add &&
2246        ReductionOpcode != Instruction::FAdd)
2247      return false;
2248
2249    // Post order traverse the reduction tree starting at B. We only handle true
2250    // trees containing only binary operators.
2251    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2252    Stack.push_back(std::make_pair(B, 0));
2253    while (!Stack.empty()) {
2254      BinaryOperator *TreeN = Stack.back().first;
2255      unsigned EdgeToVist = Stack.back().second++;
2256      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2257
2258      // Only handle trees in the current basic block.
2259      if (TreeN->getParent() != B->getParent())
2260        return false;
2261
2262      // Each tree node needs to have one user except for the ultimate
2263      // reduction.
2264      if (!TreeN->hasOneUse() && TreeN != B)
2265        return false;
2266
2267      // Postorder vist.
2268      if (EdgeToVist == 2 || IsReducedValue) {
2269        if (IsReducedValue) {
2270          // Make sure that the opcodes of the operations that we are going to
2271          // reduce match.
2272          if (!ReducedValueOpcode)
2273            ReducedValueOpcode = TreeN->getOpcode();
2274          else if (ReducedValueOpcode != TreeN->getOpcode())
2275            return false;
2276          ReducedVals.push_back(TreeN);
2277        } else {
2278          // We need to be able to reassociate the adds.
2279          if (!TreeN->isAssociative())
2280            return false;
2281          ReductionOps.insert(TreeN);
2282        }
2283        // Retract.
2284        Stack.pop_back();
2285        continue;
2286      }
2287
2288      // Visit left or right.
2289      Value *NextV = TreeN->getOperand(EdgeToVist);
2290      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2291      if (Next)
2292        Stack.push_back(std::make_pair(Next, 0));
2293      else if (NextV != Phi)
2294        return false;
2295    }
2296    return true;
2297  }
2298
2299  /// \brief Attempt to vectorize the tree found by
2300  /// matchAssociativeReduction.
2301  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2302    if (ReducedVals.empty())
2303      return false;
2304
2305    unsigned NumReducedVals = ReducedVals.size();
2306    if (NumReducedVals < ReduxWidth)
2307      return false;
2308
2309    Value *VectorizedTree = 0;
2310    IRBuilder<> Builder(ReductionRoot);
2311    FastMathFlags Unsafe;
2312    Unsafe.setUnsafeAlgebra();
2313    Builder.SetFastMathFlags(Unsafe);
2314    unsigned i = 0;
2315
2316    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2317      ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2318      V.buildTree(ValsToReduce, &ReductionOps);
2319
2320      // Estimate cost.
2321      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2322      if (Cost >= -SLPCostThreshold)
2323        break;
2324
2325      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2326                   << ". (HorRdx)\n");
2327
2328      // Vectorize a tree.
2329      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2330      Value *VectorizedRoot = V.vectorizeTree();
2331
2332      // Emit a reduction.
2333      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2334      if (VectorizedTree) {
2335        Builder.SetCurrentDebugLocation(Loc);
2336        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2337                                     ReducedSubTree, "bin.rdx");
2338      } else
2339        VectorizedTree = ReducedSubTree;
2340    }
2341
2342    if (VectorizedTree) {
2343      // Finish the reduction.
2344      for (; i < NumReducedVals; ++i) {
2345        Builder.SetCurrentDebugLocation(
2346          cast<Instruction>(ReducedVals[i])->getDebugLoc());
2347        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2348                                     ReducedVals[i]);
2349      }
2350      // Update users.
2351      if (ReductionPHI) {
2352        assert(ReductionRoot != NULL && "Need a reduction operation");
2353        ReductionRoot->setOperand(0, VectorizedTree);
2354        ReductionRoot->setOperand(1, ReductionPHI);
2355      } else
2356        ReductionRoot->replaceAllUsesWith(VectorizedTree);
2357    }
2358    return VectorizedTree != 0;
2359  }
2360
2361private:
2362
2363  /// \brief Calcuate the cost of a reduction.
2364  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2365    Type *ScalarTy = FirstReducedVal->getType();
2366    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2367
2368    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2369    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2370
2371    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2372    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2373
2374    int ScalarReduxCost =
2375        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2376
2377    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2378                 << " for reduction that starts with " << *FirstReducedVal
2379                 << " (It is a "
2380                 << (IsPairwiseReduction ? "pairwise" : "splitting")
2381                 << " reduction)\n");
2382
2383    return VecReduxCost - ScalarReduxCost;
2384  }
2385
2386  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2387                            Value *R, const Twine &Name = "") {
2388    if (Opcode == Instruction::FAdd)
2389      return Builder.CreateFAdd(L, R, Name);
2390    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2391  }
2392
2393  /// \brief Emit a horizontal reduction of the vectorized value.
2394  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2395    assert(VectorizedValue && "Need to have a vectorized tree node");
2396    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2397    assert(isPowerOf2_32(ReduxWidth) &&
2398           "We only handle power-of-two reductions for now");
2399
2400    Value *TmpVec = ValToReduce;
2401    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2402      if (IsPairwiseReduction) {
2403        Value *LeftMask =
2404          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2405        Value *RightMask =
2406          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2407
2408        Value *LeftShuf = Builder.CreateShuffleVector(
2409          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2410        Value *RightShuf = Builder.CreateShuffleVector(
2411          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2412          "rdx.shuf.r");
2413        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2414                             "bin.rdx");
2415      } else {
2416        Value *UpperHalf =
2417          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2418        Value *Shuf = Builder.CreateShuffleVector(
2419          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2420        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2421      }
2422    }
2423
2424    // The result is in the first element of the vector.
2425    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2426  }
2427};
2428
2429/// \brief Recognize construction of vectors like
2430///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2431///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2432///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2433///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2434///
2435/// Returns true if it matches
2436///
2437static bool findBuildVector(InsertElementInst *IE,
2438                            SmallVectorImpl<Value *> &Ops) {
2439  if (!isa<UndefValue>(IE->getOperand(0)))
2440    return false;
2441
2442  while (true) {
2443    Ops.push_back(IE->getOperand(1));
2444
2445    if (IE->use_empty())
2446      return false;
2447
2448    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
2449    if (!NextUse)
2450      return true;
2451
2452    // If this isn't the final use, make sure the next insertelement is the only
2453    // use. It's OK if the final constructed vector is used multiple times
2454    if (!IE->hasOneUse())
2455      return false;
2456
2457    IE = NextUse;
2458  }
2459
2460  return false;
2461}
2462
2463static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2464  return V->getType() < V2->getType();
2465}
2466
2467bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2468  bool Changed = false;
2469  SmallVector<Value *, 4> Incoming;
2470  SmallSet<Value *, 16> VisitedInstrs;
2471
2472  bool HaveVectorizedPhiNodes = true;
2473  while (HaveVectorizedPhiNodes) {
2474    HaveVectorizedPhiNodes = false;
2475
2476    // Collect the incoming values from the PHIs.
2477    Incoming.clear();
2478    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2479         ++instr) {
2480      PHINode *P = dyn_cast<PHINode>(instr);
2481      if (!P)
2482        break;
2483
2484      if (!VisitedInstrs.count(P))
2485        Incoming.push_back(P);
2486    }
2487
2488    // Sort by type.
2489    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2490
2491    // Try to vectorize elements base on their type.
2492    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2493                                           E = Incoming.end();
2494         IncIt != E;) {
2495
2496      // Look for the next elements with the same type.
2497      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2498      while (SameTypeIt != E &&
2499             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2500        VisitedInstrs.insert(*SameTypeIt);
2501        ++SameTypeIt;
2502      }
2503
2504      // Try to vectorize them.
2505      unsigned NumElts = (SameTypeIt - IncIt);
2506      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2507      if (NumElts > 1 &&
2508          tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2509        // Success start over because instructions might have been changed.
2510        HaveVectorizedPhiNodes = true;
2511        Changed = true;
2512        break;
2513      }
2514
2515      // Start over at the next instruction of a differnt type (or the end).
2516      IncIt = SameTypeIt;
2517    }
2518  }
2519
2520  VisitedInstrs.clear();
2521
2522  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2523    // We may go through BB multiple times so skip the one we have checked.
2524    if (!VisitedInstrs.insert(it))
2525      continue;
2526
2527    if (isa<DbgInfoIntrinsic>(it))
2528      continue;
2529
2530    // Try to vectorize reductions that use PHINodes.
2531    if (PHINode *P = dyn_cast<PHINode>(it)) {
2532      // Check that the PHI is a reduction PHI.
2533      if (P->getNumIncomingValues() != 2)
2534        return Changed;
2535      Value *Rdx =
2536          (P->getIncomingBlock(0) == BB
2537               ? (P->getIncomingValue(0))
2538               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2539      // Check if this is a Binary Operator.
2540      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2541      if (!BI)
2542        continue;
2543
2544      // Try to match and vectorize a horizontal reduction.
2545      HorizontalReduction HorRdx;
2546      if (ShouldVectorizeHor &&
2547          HorRdx.matchAssociativeReduction(P, BI, DL) &&
2548          HorRdx.tryToReduce(R, TTI)) {
2549        Changed = true;
2550        it = BB->begin();
2551        e = BB->end();
2552        continue;
2553      }
2554
2555     Value *Inst = BI->getOperand(0);
2556      if (Inst == P)
2557        Inst = BI->getOperand(1);
2558
2559      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2560        // We would like to start over since some instructions are deleted
2561        // and the iterator may become invalid value.
2562        Changed = true;
2563        it = BB->begin();
2564        e = BB->end();
2565        continue;
2566      }
2567
2568      continue;
2569    }
2570
2571    // Try to vectorize horizontal reductions feeding into a store.
2572    if (ShouldStartVectorizeHorAtStore)
2573      if (StoreInst *SI = dyn_cast<StoreInst>(it))
2574        if (BinaryOperator *BinOp =
2575                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2576          HorizontalReduction HorRdx;
2577          if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2578                HorRdx.tryToReduce(R, TTI)) ||
2579               tryToVectorize(BinOp, R))) {
2580            Changed = true;
2581            it = BB->begin();
2582            e = BB->end();
2583            continue;
2584          }
2585        }
2586
2587    // Try to vectorize trees that start at compare instructions.
2588    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2589      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2590        Changed = true;
2591        // We would like to start over since some instructions are deleted
2592        // and the iterator may become invalid value.
2593        it = BB->begin();
2594        e = BB->end();
2595        continue;
2596      }
2597
2598      for (int i = 0; i < 2; ++i) {
2599         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2600            if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2601              Changed = true;
2602              // We would like to start over since some instructions are deleted
2603              // and the iterator may become invalid value.
2604              it = BB->begin();
2605              e = BB->end();
2606            }
2607         }
2608      }
2609      continue;
2610    }
2611
2612    // Try to vectorize trees that start at insertelement instructions.
2613    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2614      SmallVector<Value *, 8> Ops;
2615      if (!findBuildVector(IE, Ops))
2616        continue;
2617
2618      if (tryToVectorizeList(Ops, R)) {
2619        Changed = true;
2620        it = BB->begin();
2621        e = BB->end();
2622      }
2623
2624      continue;
2625    }
2626  }
2627
2628  return Changed;
2629}
2630
2631bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2632  bool Changed = false;
2633  // Attempt to sort and vectorize each of the store-groups.
2634  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2635       it != e; ++it) {
2636    if (it->second.size() < 2)
2637      continue;
2638
2639    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2640          << it->second.size() << ".\n");
2641
2642    // Process the stores in chunks of 16.
2643    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2644      unsigned Len = std::min<unsigned>(CE - CI, 16);
2645      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2646      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2647    }
2648  }
2649  return Changed;
2650}
2651
2652} // end anonymous namespace
2653
2654char SLPVectorizer::ID = 0;
2655static const char lv_name[] = "SLP Vectorizer";
2656INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2657INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2658INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
2659INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2660INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2661INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2662
2663namespace llvm {
2664Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2665}
2666