SLPVectorizer.cpp revision 8e5b91849a39173b1ce1c15e0e279b94562204b5
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#define SV_NAME "slp-vectorizer"
19#define DEBUG_TYPE "SLP"
20
21#include "llvm/Transforms/Vectorize.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/Verifier.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46using namespace llvm;
47
48static cl::opt<int>
49    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50                     cl::desc("Only vectorize if you gain more than this "
51                              "number "));
52
53static cl::opt<bool>
54ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
55                   cl::desc("Attempt to vectorize horizontal reductions"));
56
57static cl::opt<bool> ShouldStartVectorizeHorAtStore(
58    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
59    cl::desc(
60        "Attempt to vectorize horizontal reductions feeding into a store"));
61
62namespace {
63
64static const unsigned MinVecRegSize = 128;
65
66static const unsigned RecursionMaxDepth = 12;
67
68/// A helper class for numbering instructions in multiple blocks.
69/// Numbers start at zero for each basic block.
70struct BlockNumbering {
71
72  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
73
74  BlockNumbering() : BB(0), Valid(false) {}
75
76  void numberInstructions() {
77    unsigned Loc = 0;
78    InstrIdx.clear();
79    InstrVec.clear();
80    // Number the instructions in the block.
81    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
82      InstrIdx[it] = Loc++;
83      InstrVec.push_back(it);
84      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
85    }
86    Valid = true;
87  }
88
89  int getIndex(Instruction *I) {
90    assert(I->getParent() == BB && "Invalid instruction");
91    if (!Valid)
92      numberInstructions();
93    assert(InstrIdx.count(I) && "Unknown instruction");
94    return InstrIdx[I];
95  }
96
97  Instruction *getInstruction(unsigned loc) {
98    if (!Valid)
99      numberInstructions();
100    assert(InstrVec.size() > loc && "Invalid Index");
101    return InstrVec[loc];
102  }
103
104  void forget() { Valid = false; }
105
106private:
107  /// The block we are numbering.
108  BasicBlock *BB;
109  /// Is the block numbered.
110  bool Valid;
111  /// Maps instructions to numbers and back.
112  SmallDenseMap<Instruction *, int> InstrIdx;
113  /// Maps integers to Instructions.
114  SmallVector<Instruction *, 32> InstrVec;
115};
116
117/// \returns the parent basic block if all of the instructions in \p VL
118/// are in the same block or null otherwise.
119static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121  if (!I0)
122    return 0;
123  BasicBlock *BB = I0->getParent();
124  for (int i = 1, e = VL.size(); i < e; i++) {
125    Instruction *I = dyn_cast<Instruction>(VL[i]);
126    if (!I)
127      return 0;
128
129    if (BB != I->getParent())
130      return 0;
131  }
132  return BB;
133}
134
135/// \returns True if all of the values in \p VL are constants.
136static bool allConstant(ArrayRef<Value *> VL) {
137  for (unsigned i = 0, e = VL.size(); i < e; ++i)
138    if (!isa<Constant>(VL[i]))
139      return false;
140  return true;
141}
142
143/// \returns True if all of the values in \p VL are identical.
144static bool isSplat(ArrayRef<Value *> VL) {
145  for (unsigned i = 1, e = VL.size(); i < e; ++i)
146    if (VL[i] != VL[0])
147      return false;
148  return true;
149}
150
151/// \returns The opcode if all of the Instructions in \p VL have the same
152/// opcode, or zero.
153static unsigned getSameOpcode(ArrayRef<Value *> VL) {
154  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
155  if (!I0)
156    return 0;
157  unsigned Opcode = I0->getOpcode();
158  for (int i = 1, e = VL.size(); i < e; i++) {
159    Instruction *I = dyn_cast<Instruction>(VL[i]);
160    if (!I || Opcode != I->getOpcode())
161      return 0;
162  }
163  return Opcode;
164}
165
166/// \returns The type that all of the values in \p VL have or null if there
167/// are different types.
168static Type* getSameType(ArrayRef<Value *> VL) {
169  Type *Ty = VL[0]->getType();
170  for (int i = 1, e = VL.size(); i < e; i++)
171    if (VL[i]->getType() != Ty)
172      return 0;
173
174  return Ty;
175}
176
177/// \returns True if the ExtractElement instructions in VL can be vectorized
178/// to use the original vector.
179static bool CanReuseExtract(ArrayRef<Value *> VL) {
180  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
181  // Check if all of the extracts come from the same vector and from the
182  // correct offset.
183  Value *VL0 = VL[0];
184  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
185  Value *Vec = E0->getOperand(0);
186
187  // We have to extract from the same vector type.
188  unsigned NElts = Vec->getType()->getVectorNumElements();
189
190  if (NElts != VL.size())
191    return false;
192
193  // Check that all of the indices extract from the correct offset.
194  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
195  if (!CI || CI->getZExtValue())
196    return false;
197
198  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
199    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
200    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
201
202    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
203      return false;
204  }
205
206  return true;
207}
208
209static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
210                                           SmallVectorImpl<Value *> &Left,
211                                           SmallVectorImpl<Value *> &Right) {
212
213  SmallVector<Value *, 16> OrigLeft, OrigRight;
214
215  bool AllSameOpcodeLeft = true;
216  bool AllSameOpcodeRight = true;
217  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
218    Instruction *I = cast<Instruction>(VL[i]);
219    Value *V0 = I->getOperand(0);
220    Value *V1 = I->getOperand(1);
221
222    OrigLeft.push_back(V0);
223    OrigRight.push_back(V1);
224
225    Instruction *I0 = dyn_cast<Instruction>(V0);
226    Instruction *I1 = dyn_cast<Instruction>(V1);
227
228    // Check whether all operands on one side have the same opcode. In this case
229    // we want to preserve the original order and not make things worse by
230    // reordering.
231    AllSameOpcodeLeft = I0;
232    AllSameOpcodeRight = I1;
233
234    if (i && AllSameOpcodeLeft) {
235      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
236        if(P0->getOpcode() != I0->getOpcode())
237          AllSameOpcodeLeft = false;
238      } else
239        AllSameOpcodeLeft = false;
240    }
241    if (i && AllSameOpcodeRight) {
242      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
243        if(P1->getOpcode() != I1->getOpcode())
244          AllSameOpcodeRight = false;
245      } else
246        AllSameOpcodeRight = false;
247    }
248
249    // Sort two opcodes. In the code below we try to preserve the ability to use
250    // broadcast of values instead of individual inserts.
251    // vl1 = load
252    // vl2 = phi
253    // vr1 = load
254    // vr2 = vr2
255    //    = vl1 x vr1
256    //    = vl2 x vr2
257    // If we just sorted according to opcode we would leave the first line in
258    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
259    //    = vl1 x vr1
260    //    = vr2 x vl2
261    // Because vr2 and vr1 are from the same load we loose the opportunity of a
262    // broadcast for the packed right side in the backend: we have [vr1, vl2]
263    // instead of [vr1, vr2=vr1].
264    if (I0 && I1) {
265       if(!i && I0->getOpcode() > I1->getOpcode()) {
266         Left.push_back(I1);
267         Right.push_back(I0);
268       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
269         // Try not to destroy a broad cast for no apparent benefit.
270         Left.push_back(I1);
271         Right.push_back(I0);
272       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
273         // Try preserve broadcasts.
274         Left.push_back(I1);
275         Right.push_back(I0);
276       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
277         // Try preserve broadcasts.
278         Left.push_back(I1);
279         Right.push_back(I0);
280       } else {
281         Left.push_back(I0);
282         Right.push_back(I1);
283       }
284       continue;
285    }
286    // One opcode, put the instruction on the right.
287    if (I0) {
288      Left.push_back(V1);
289      Right.push_back(I0);
290      continue;
291    }
292    Left.push_back(V0);
293    Right.push_back(V1);
294  }
295
296  bool LeftBroadcast = isSplat(Left);
297  bool RightBroadcast = isSplat(Right);
298
299  // Don't reorder if the operands where good to begin with.
300  if (!(LeftBroadcast || RightBroadcast) &&
301      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
302    Left = OrigLeft;
303    Right = OrigRight;
304  }
305}
306
307/// Bottom Up SLP Vectorizer.
308class BoUpSLP {
309public:
310  typedef SmallVector<Value *, 8> ValueList;
311  typedef SmallVector<Instruction *, 16> InstrList;
312  typedef SmallPtrSet<Value *, 16> ValueSet;
313  typedef SmallVector<StoreInst *, 8> StoreList;
314
315  BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
316          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
317          DominatorTree *Dt) :
318    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
319    Builder(Se->getContext()) {
320      // Setup the block numbering utility for all of the blocks in the
321      // function.
322      for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
323        BasicBlock *BB = it;
324        BlocksNumbers[BB] = BlockNumbering(BB);
325      }
326    }
327
328  /// \brief Vectorize the tree that starts with the elements in \p VL.
329  /// Returns the vectorized root.
330  Value *vectorizeTree();
331
332  /// \returns the vectorization cost of the subtree that starts at \p VL.
333  /// A negative number means that this is profitable.
334  int getTreeCost();
335
336  /// Construct a vectorizable tree that starts at \p Roots and is possibly
337  /// used by a reduction of \p RdxOps.
338  void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
339
340  /// Clear the internal data structures that are created by 'buildTree'.
341  void deleteTree() {
342    RdxOps = 0;
343    VectorizableTree.clear();
344    ScalarToTreeEntry.clear();
345    MustGather.clear();
346    ExternalUses.clear();
347    MemBarrierIgnoreList.clear();
348  }
349
350  /// \returns true if the memory operations A and B are consecutive.
351  bool isConsecutiveAccess(Value *A, Value *B);
352
353  /// \brief Perform LICM and CSE on the newly generated gather sequences.
354  void optimizeGatherSequence();
355private:
356  struct TreeEntry;
357
358  /// \returns the cost of the vectorizable entry.
359  int getEntryCost(TreeEntry *E);
360
361  /// This is the recursive part of buildTree.
362  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
363
364  /// Vectorize a single entry in the tree.
365  Value *vectorizeTree(TreeEntry *E);
366
367  /// Vectorize a single entry in the tree, starting in \p VL.
368  Value *vectorizeTree(ArrayRef<Value *> VL);
369
370  /// \returns the pointer to the vectorized value if \p VL is already
371  /// vectorized, or NULL. They may happen in cycles.
372  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
373
374  /// \brief Take the pointer operand from the Load/Store instruction.
375  /// \returns NULL if this is not a valid Load/Store instruction.
376  static Value *getPointerOperand(Value *I);
377
378  /// \brief Take the address space operand from the Load/Store instruction.
379  /// \returns -1 if this is not a valid Load/Store instruction.
380  static unsigned getAddressSpaceOperand(Value *I);
381
382  /// \returns the scalarization cost for this type. Scalarization in this
383  /// context means the creation of vectors from a group of scalars.
384  int getGatherCost(Type *Ty);
385
386  /// \returns the scalarization cost for this list of values. Assuming that
387  /// this subtree gets vectorized, we may need to extract the values from the
388  /// roots. This method calculates the cost of extracting the values.
389  int getGatherCost(ArrayRef<Value *> VL);
390
391  /// \returns the AA location that is being access by the instruction.
392  AliasAnalysis::Location getLocation(Instruction *I);
393
394  /// \brief Checks if it is possible to sink an instruction from
395  /// \p Src to \p Dst.
396  /// \returns the pointer to the barrier instruction if we can't sink.
397  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
398
399  /// \returns the index of the last instruction in the BB from \p VL.
400  int getLastIndex(ArrayRef<Value *> VL);
401
402  /// \returns the Instruction in the bundle \p VL.
403  Instruction *getLastInstruction(ArrayRef<Value *> VL);
404
405  /// \brief Set the Builder insert point to one after the last instruction in
406  /// the bundle
407  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
408
409  /// \returns a vector from a collection of scalars in \p VL.
410  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
411
412  /// \returns whether the VectorizableTree is fully vectoriable and will
413  /// be beneficial even the tree height is tiny.
414  bool isFullyVectorizableTinyTree();
415
416  struct TreeEntry {
417    TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
418    NeedToGather(0) {}
419
420    /// \returns true if the scalars in VL are equal to this entry.
421    bool isSame(ArrayRef<Value *> VL) const {
422      assert(VL.size() == Scalars.size() && "Invalid size");
423      return std::equal(VL.begin(), VL.end(), Scalars.begin());
424    }
425
426    /// A vector of scalars.
427    ValueList Scalars;
428
429    /// The Scalars are vectorized into this value. It is initialized to Null.
430    Value *VectorizedValue;
431
432    /// The index in the basic block of the last scalar.
433    int LastScalarIndex;
434
435    /// Do we need to gather this sequence ?
436    bool NeedToGather;
437  };
438
439  /// Create a new VectorizableTree entry.
440  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
441    VectorizableTree.push_back(TreeEntry());
442    int idx = VectorizableTree.size() - 1;
443    TreeEntry *Last = &VectorizableTree[idx];
444    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
445    Last->NeedToGather = !Vectorized;
446    if (Vectorized) {
447      Last->LastScalarIndex = getLastIndex(VL);
448      for (int i = 0, e = VL.size(); i != e; ++i) {
449        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
450        ScalarToTreeEntry[VL[i]] = idx;
451      }
452    } else {
453      Last->LastScalarIndex = 0;
454      MustGather.insert(VL.begin(), VL.end());
455    }
456    return Last;
457  }
458
459  /// -- Vectorization State --
460  /// Holds all of the tree entries.
461  std::vector<TreeEntry> VectorizableTree;
462
463  /// Maps a specific scalar to its tree entry.
464  SmallDenseMap<Value*, int> ScalarToTreeEntry;
465
466  /// A list of scalars that we found that we need to keep as scalars.
467  ValueSet MustGather;
468
469  /// This POD struct describes one external user in the vectorized tree.
470  struct ExternalUser {
471    ExternalUser (Value *S, llvm::User *U, int L) :
472      Scalar(S), User(U), Lane(L){};
473    // Which scalar in our function.
474    Value *Scalar;
475    // Which user that uses the scalar.
476    llvm::User *User;
477    // Which lane does the scalar belong to.
478    int Lane;
479  };
480  typedef SmallVector<ExternalUser, 16> UserList;
481
482  /// A list of values that need to extracted out of the tree.
483  /// This list holds pairs of (Internal Scalar : External User).
484  UserList ExternalUses;
485
486  /// A list of instructions to ignore while sinking
487  /// memory instructions. This map must be reset between runs of getCost.
488  ValueSet MemBarrierIgnoreList;
489
490  /// Holds all of the instructions that we gathered.
491  SetVector<Instruction *> GatherSeq;
492
493  /// Numbers instructions in different blocks.
494  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
495
496  /// Reduction operators.
497  ValueSet *RdxOps;
498
499  // Analysis and block reference.
500  Function *F;
501  ScalarEvolution *SE;
502  DataLayout *DL;
503  TargetTransformInfo *TTI;
504  AliasAnalysis *AA;
505  LoopInfo *LI;
506  DominatorTree *DT;
507  /// Instruction builder to construct the vectorized tree.
508  IRBuilder<> Builder;
509};
510
511void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
512  deleteTree();
513  RdxOps = Rdx;
514  if (!getSameType(Roots))
515    return;
516  buildTree_rec(Roots, 0);
517
518  // Collect the values that we need to extract from the tree.
519  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
520    TreeEntry *Entry = &VectorizableTree[EIdx];
521
522    // For each lane:
523    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
524      Value *Scalar = Entry->Scalars[Lane];
525
526      // No need to handle users of gathered values.
527      if (Entry->NeedToGather)
528        continue;
529
530      for (Value::use_iterator User = Scalar->use_begin(),
531           UE = Scalar->use_end(); User != UE; ++User) {
532        DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
533
534        bool Gathered = MustGather.count(*User);
535
536        // Skip in-tree scalars that become vectors.
537        if (ScalarToTreeEntry.count(*User) && !Gathered) {
538          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
539                **User << ".\n");
540          int Idx = ScalarToTreeEntry[*User]; (void) Idx;
541          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
542          continue;
543        }
544        Instruction *UserInst = dyn_cast<Instruction>(*User);
545        if (!UserInst)
546          continue;
547
548        // Ignore uses that are part of the reduction.
549        if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
550          continue;
551
552        DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
553              Lane << " from " << *Scalar << ".\n");
554        ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
555      }
556    }
557  }
558}
559
560
561void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
562  bool SameTy = getSameType(VL); (void)SameTy;
563  assert(SameTy && "Invalid types!");
564
565  if (Depth == RecursionMaxDepth) {
566    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
567    newTreeEntry(VL, false);
568    return;
569  }
570
571  // Don't handle vectors.
572  if (VL[0]->getType()->isVectorTy()) {
573    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
574    newTreeEntry(VL, false);
575    return;
576  }
577
578  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
579    if (SI->getValueOperand()->getType()->isVectorTy()) {
580      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
581      newTreeEntry(VL, false);
582      return;
583    }
584
585  // If all of the operands are identical or constant we have a simple solution.
586  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
587      !getSameOpcode(VL)) {
588    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
589    newTreeEntry(VL, false);
590    return;
591  }
592
593  // We now know that this is a vector of instructions of the same type from
594  // the same block.
595
596  // Check if this is a duplicate of another entry.
597  if (ScalarToTreeEntry.count(VL[0])) {
598    int Idx = ScalarToTreeEntry[VL[0]];
599    TreeEntry *E = &VectorizableTree[Idx];
600    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
601      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
602      if (E->Scalars[i] != VL[i]) {
603        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
604        newTreeEntry(VL, false);
605        return;
606      }
607    }
608    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
609    return;
610  }
611
612  // Check that none of the instructions in the bundle are already in the tree.
613  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
614    if (ScalarToTreeEntry.count(VL[i])) {
615      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
616            ") is already in tree.\n");
617      newTreeEntry(VL, false);
618      return;
619    }
620  }
621
622  // If any of the scalars appears in the table OR it is marked as a value that
623  // needs to stat scalar then we need to gather the scalars.
624  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
625    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
626      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
627      newTreeEntry(VL, false);
628      return;
629    }
630  }
631
632  // Check that all of the users of the scalars that we want to vectorize are
633  // schedulable.
634  Instruction *VL0 = cast<Instruction>(VL[0]);
635  int MyLastIndex = getLastIndex(VL);
636  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
637
638  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
639    Instruction *Scalar = cast<Instruction>(VL[i]);
640    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
641    for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
642         U != UE; ++U) {
643      DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
644      Instruction *User = dyn_cast<Instruction>(*U);
645      if (!User) {
646        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
647        newTreeEntry(VL, false);
648        return;
649      }
650
651      // We don't care if the user is in a different basic block.
652      BasicBlock *UserBlock = User->getParent();
653      if (UserBlock != BB) {
654        DEBUG(dbgs() << "SLP: User from a different basic block "
655              << *User << ". \n");
656        continue;
657      }
658
659      // If this is a PHINode within this basic block then we can place the
660      // extract wherever we want.
661      if (isa<PHINode>(*User)) {
662        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
663        continue;
664      }
665
666      // Check if this is a safe in-tree user.
667      if (ScalarToTreeEntry.count(User)) {
668        int Idx = ScalarToTreeEntry[User];
669        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
670        if (VecLocation <= MyLastIndex) {
671          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
672          newTreeEntry(VL, false);
673          return;
674        }
675        DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
676              VecLocation << " vector value (" << *Scalar << ") at #"
677              << MyLastIndex << ".\n");
678        continue;
679      }
680
681      // This user is part of the reduction.
682      if (RdxOps && RdxOps->count(User))
683        continue;
684
685      // Make sure that we can schedule this unknown user.
686      BlockNumbering &BN = BlocksNumbers[BB];
687      int UserIndex = BN.getIndex(User);
688      if (UserIndex < MyLastIndex) {
689
690        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
691              << *User << ". \n");
692        newTreeEntry(VL, false);
693        return;
694      }
695    }
696  }
697
698  // Check that every instructions appears once in this bundle.
699  for (unsigned i = 0, e = VL.size(); i < e; ++i)
700    for (unsigned j = i+1; j < e; ++j)
701      if (VL[i] == VL[j]) {
702        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
703        newTreeEntry(VL, false);
704        return;
705      }
706
707  // Check that instructions in this bundle don't reference other instructions.
708  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
709  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
710    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
711         U != UE; ++U) {
712      for (unsigned j = 0; j < e; ++j) {
713        if (i != j && *U == VL[j]) {
714          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
715          newTreeEntry(VL, false);
716          return;
717        }
718      }
719    }
720  }
721
722  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
723
724  unsigned Opcode = getSameOpcode(VL);
725
726  // Check if it is safe to sink the loads or the stores.
727  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
728    Instruction *Last = getLastInstruction(VL);
729
730    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
731      if (VL[i] == Last)
732        continue;
733      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
734      if (Barrier) {
735        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
736              << "\n because of " << *Barrier << ".  Gathering.\n");
737        newTreeEntry(VL, false);
738        return;
739      }
740    }
741  }
742
743  switch (Opcode) {
744    case Instruction::PHI: {
745      PHINode *PH = dyn_cast<PHINode>(VL0);
746
747      // Check for terminator values (e.g. invoke).
748      for (unsigned j = 0; j < VL.size(); ++j)
749        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
750          TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
751          if (Term) {
752            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
753            newTreeEntry(VL, false);
754            return;
755          }
756        }
757
758      newTreeEntry(VL, true);
759      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
760
761      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
762        ValueList Operands;
763        // Prepare the operand vector.
764        for (unsigned j = 0; j < VL.size(); ++j)
765          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
766
767        buildTree_rec(Operands, Depth + 1);
768      }
769      return;
770    }
771    case Instruction::ExtractElement: {
772      bool Reuse = CanReuseExtract(VL);
773      if (Reuse) {
774        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
775      }
776      newTreeEntry(VL, Reuse);
777      return;
778    }
779    case Instruction::Load: {
780      // Check if the loads are consecutive or of we need to swizzle them.
781      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
782        LoadInst *L = cast<LoadInst>(VL[i]);
783        if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
784          newTreeEntry(VL, false);
785          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
786          return;
787        }
788      }
789      newTreeEntry(VL, true);
790      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
791      return;
792    }
793    case Instruction::ZExt:
794    case Instruction::SExt:
795    case Instruction::FPToUI:
796    case Instruction::FPToSI:
797    case Instruction::FPExt:
798    case Instruction::PtrToInt:
799    case Instruction::IntToPtr:
800    case Instruction::SIToFP:
801    case Instruction::UIToFP:
802    case Instruction::Trunc:
803    case Instruction::FPTrunc:
804    case Instruction::BitCast: {
805      Type *SrcTy = VL0->getOperand(0)->getType();
806      for (unsigned i = 0; i < VL.size(); ++i) {
807        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
808        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
809          newTreeEntry(VL, false);
810          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
811          return;
812        }
813      }
814      newTreeEntry(VL, true);
815      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
816
817      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
818        ValueList Operands;
819        // Prepare the operand vector.
820        for (unsigned j = 0; j < VL.size(); ++j)
821          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
822
823        buildTree_rec(Operands, Depth+1);
824      }
825      return;
826    }
827    case Instruction::ICmp:
828    case Instruction::FCmp: {
829      // Check that all of the compares have the same predicate.
830      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
831      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
832      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
833        CmpInst *Cmp = cast<CmpInst>(VL[i]);
834        if (Cmp->getPredicate() != P0 ||
835            Cmp->getOperand(0)->getType() != ComparedTy) {
836          newTreeEntry(VL, false);
837          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
838          return;
839        }
840      }
841
842      newTreeEntry(VL, true);
843      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
844
845      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
846        ValueList Operands;
847        // Prepare the operand vector.
848        for (unsigned j = 0; j < VL.size(); ++j)
849          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
850
851        buildTree_rec(Operands, Depth+1);
852      }
853      return;
854    }
855    case Instruction::Select:
856    case Instruction::Add:
857    case Instruction::FAdd:
858    case Instruction::Sub:
859    case Instruction::FSub:
860    case Instruction::Mul:
861    case Instruction::FMul:
862    case Instruction::UDiv:
863    case Instruction::SDiv:
864    case Instruction::FDiv:
865    case Instruction::URem:
866    case Instruction::SRem:
867    case Instruction::FRem:
868    case Instruction::Shl:
869    case Instruction::LShr:
870    case Instruction::AShr:
871    case Instruction::And:
872    case Instruction::Or:
873    case Instruction::Xor: {
874      newTreeEntry(VL, true);
875      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
876
877      // Sort operands of the instructions so that each side is more likely to
878      // have the same opcode.
879      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
880        ValueList Left, Right;
881        reorderInputsAccordingToOpcode(VL, Left, Right);
882        buildTree_rec(Left, Depth + 1);
883        buildTree_rec(Right, Depth + 1);
884        return;
885      }
886
887      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
888        ValueList Operands;
889        // Prepare the operand vector.
890        for (unsigned j = 0; j < VL.size(); ++j)
891          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
892
893        buildTree_rec(Operands, Depth+1);
894      }
895      return;
896    }
897    case Instruction::Store: {
898      // Check if the stores are consecutive or of we need to swizzle them.
899      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
900        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
901          newTreeEntry(VL, false);
902          DEBUG(dbgs() << "SLP: Non consecutive store.\n");
903          return;
904        }
905
906      newTreeEntry(VL, true);
907      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
908
909      ValueList Operands;
910      for (unsigned j = 0; j < VL.size(); ++j)
911        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
912
913      // We can ignore these values because we are sinking them down.
914      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
915      buildTree_rec(Operands, Depth + 1);
916      return;
917    }
918    default:
919      newTreeEntry(VL, false);
920      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
921      return;
922  }
923}
924
925int BoUpSLP::getEntryCost(TreeEntry *E) {
926  ArrayRef<Value*> VL = E->Scalars;
927
928  Type *ScalarTy = VL[0]->getType();
929  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
930    ScalarTy = SI->getValueOperand()->getType();
931  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
932
933  if (E->NeedToGather) {
934    if (allConstant(VL))
935      return 0;
936    if (isSplat(VL)) {
937      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
938    }
939    return getGatherCost(E->Scalars);
940  }
941
942  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
943         "Invalid VL");
944  Instruction *VL0 = cast<Instruction>(VL[0]);
945  unsigned Opcode = VL0->getOpcode();
946  switch (Opcode) {
947    case Instruction::PHI: {
948      return 0;
949    }
950    case Instruction::ExtractElement: {
951      if (CanReuseExtract(VL))
952        return 0;
953      return getGatherCost(VecTy);
954    }
955    case Instruction::ZExt:
956    case Instruction::SExt:
957    case Instruction::FPToUI:
958    case Instruction::FPToSI:
959    case Instruction::FPExt:
960    case Instruction::PtrToInt:
961    case Instruction::IntToPtr:
962    case Instruction::SIToFP:
963    case Instruction::UIToFP:
964    case Instruction::Trunc:
965    case Instruction::FPTrunc:
966    case Instruction::BitCast: {
967      Type *SrcTy = VL0->getOperand(0)->getType();
968
969      // Calculate the cost of this instruction.
970      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
971                                                         VL0->getType(), SrcTy);
972
973      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
974      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
975      return VecCost - ScalarCost;
976    }
977    case Instruction::FCmp:
978    case Instruction::ICmp:
979    case Instruction::Select:
980    case Instruction::Add:
981    case Instruction::FAdd:
982    case Instruction::Sub:
983    case Instruction::FSub:
984    case Instruction::Mul:
985    case Instruction::FMul:
986    case Instruction::UDiv:
987    case Instruction::SDiv:
988    case Instruction::FDiv:
989    case Instruction::URem:
990    case Instruction::SRem:
991    case Instruction::FRem:
992    case Instruction::Shl:
993    case Instruction::LShr:
994    case Instruction::AShr:
995    case Instruction::And:
996    case Instruction::Or:
997    case Instruction::Xor: {
998      // Calculate the cost of this instruction.
999      int ScalarCost = 0;
1000      int VecCost = 0;
1001      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1002          Opcode == Instruction::Select) {
1003        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1004        ScalarCost = VecTy->getNumElements() *
1005        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1006        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1007      } else {
1008        // Certain instructions can be cheaper to vectorize if they have a
1009        // constant second vector operand.
1010        TargetTransformInfo::OperandValueKind Op1VK =
1011            TargetTransformInfo::OK_AnyValue;
1012        TargetTransformInfo::OperandValueKind Op2VK =
1013            TargetTransformInfo::OK_UniformConstantValue;
1014
1015        // Check whether all second operands are constant.
1016        for (unsigned i = 0; i < VL.size(); ++i)
1017          if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
1018            Op2VK = TargetTransformInfo::OK_AnyValue;
1019            break;
1020          }
1021
1022        ScalarCost =
1023            VecTy->getNumElements() *
1024            TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1025        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1026      }
1027      return VecCost - ScalarCost;
1028    }
1029    case Instruction::Load: {
1030      // Cost of wide load - cost of scalar loads.
1031      int ScalarLdCost = VecTy->getNumElements() *
1032      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1033      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1034      return VecLdCost - ScalarLdCost;
1035    }
1036    case Instruction::Store: {
1037      // We know that we can merge the stores. Calculate the cost.
1038      int ScalarStCost = VecTy->getNumElements() *
1039      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1040      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1041      return VecStCost - ScalarStCost;
1042    }
1043    default:
1044      llvm_unreachable("Unknown instruction");
1045  }
1046}
1047
1048bool BoUpSLP::isFullyVectorizableTinyTree() {
1049  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1050        VectorizableTree.size() << " is fully vectorizable .\n");
1051
1052  // We only handle trees of height 2.
1053  if (VectorizableTree.size() != 2)
1054    return false;
1055
1056  // Gathering cost would be too much for tiny trees.
1057  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1058    return false;
1059
1060  return true;
1061}
1062
1063int BoUpSLP::getTreeCost() {
1064  int Cost = 0;
1065  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1066        VectorizableTree.size() << ".\n");
1067
1068  // We only vectorize tiny trees if it is fully vectorizable.
1069  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1070    if (!VectorizableTree.size()) {
1071      assert(!ExternalUses.size() && "We should not have any external users");
1072    }
1073    return INT_MAX;
1074  }
1075
1076  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1077
1078  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1079    int C = getEntryCost(&VectorizableTree[i]);
1080    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1081          << *VectorizableTree[i].Scalars[0] << " .\n");
1082    Cost += C;
1083  }
1084
1085  int ExtractCost = 0;
1086  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1087       I != E; ++I) {
1088
1089    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1090    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1091                                           I->Lane);
1092  }
1093
1094
1095  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1096  return  Cost + ExtractCost;
1097}
1098
1099int BoUpSLP::getGatherCost(Type *Ty) {
1100  int Cost = 0;
1101  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1102    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1103  return Cost;
1104}
1105
1106int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1107  // Find the type of the operands in VL.
1108  Type *ScalarTy = VL[0]->getType();
1109  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1110    ScalarTy = SI->getValueOperand()->getType();
1111  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1112  // Find the cost of inserting/extracting values from the vector.
1113  return getGatherCost(VecTy);
1114}
1115
1116AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1117  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1118    return AA->getLocation(SI);
1119  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1120    return AA->getLocation(LI);
1121  return AliasAnalysis::Location();
1122}
1123
1124Value *BoUpSLP::getPointerOperand(Value *I) {
1125  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1126    return LI->getPointerOperand();
1127  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1128    return SI->getPointerOperand();
1129  return 0;
1130}
1131
1132unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1133  if (LoadInst *L = dyn_cast<LoadInst>(I))
1134    return L->getPointerAddressSpace();
1135  if (StoreInst *S = dyn_cast<StoreInst>(I))
1136    return S->getPointerAddressSpace();
1137  return -1;
1138}
1139
1140bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1141  Value *PtrA = getPointerOperand(A);
1142  Value *PtrB = getPointerOperand(B);
1143  unsigned ASA = getAddressSpaceOperand(A);
1144  unsigned ASB = getAddressSpaceOperand(B);
1145
1146  // Check that the address spaces match and that the pointers are valid.
1147  if (!PtrA || !PtrB || (ASA != ASB))
1148    return false;
1149
1150  // Make sure that A and B are different pointers of the same type.
1151  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1152    return false;
1153
1154  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1155  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1156  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1157
1158  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1159  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1160  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1161
1162  APInt OffsetDelta = OffsetB - OffsetA;
1163
1164  // Check if they are based on the same pointer. That makes the offsets
1165  // sufficient.
1166  if (PtrA == PtrB)
1167    return OffsetDelta == Size;
1168
1169  // Compute the necessary base pointer delta to have the necessary final delta
1170  // equal to the size.
1171  APInt BaseDelta = Size - OffsetDelta;
1172
1173  // Otherwise compute the distance with SCEV between the base pointers.
1174  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1175  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1176  const SCEV *C = SE->getConstant(BaseDelta);
1177  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1178  return X == PtrSCEVB;
1179}
1180
1181Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1182  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1183  BasicBlock::iterator I = Src, E = Dst;
1184  /// Scan all of the instruction from SRC to DST and check if
1185  /// the source may alias.
1186  for (++I; I != E; ++I) {
1187    // Ignore store instructions that are marked as 'ignore'.
1188    if (MemBarrierIgnoreList.count(I))
1189      continue;
1190    if (Src->mayWriteToMemory()) /* Write */ {
1191      if (!I->mayReadOrWriteMemory())
1192        continue;
1193    } else /* Read */ {
1194      if (!I->mayWriteToMemory())
1195        continue;
1196    }
1197    AliasAnalysis::Location A = getLocation(&*I);
1198    AliasAnalysis::Location B = getLocation(Src);
1199
1200    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1201      return I;
1202  }
1203  return 0;
1204}
1205
1206int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1207  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1208  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1209  BlockNumbering &BN = BlocksNumbers[BB];
1210
1211  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1212  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1213    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1214  return MaxIdx;
1215}
1216
1217Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1218  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1219  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1220  BlockNumbering &BN = BlocksNumbers[BB];
1221
1222  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1223  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1224    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1225  Instruction *I = BN.getInstruction(MaxIdx);
1226  assert(I && "bad location");
1227  return I;
1228}
1229
1230void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1231  Instruction *VL0 = cast<Instruction>(VL[0]);
1232  Instruction *LastInst = getLastInstruction(VL);
1233  BasicBlock::iterator NextInst = LastInst;
1234  ++NextInst;
1235  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1236  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1237}
1238
1239Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1240  Value *Vec = UndefValue::get(Ty);
1241  // Generate the 'InsertElement' instruction.
1242  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1243    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1244    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1245      GatherSeq.insert(Insrt);
1246
1247      // Add to our 'need-to-extract' list.
1248      if (ScalarToTreeEntry.count(VL[i])) {
1249        int Idx = ScalarToTreeEntry[VL[i]];
1250        TreeEntry *E = &VectorizableTree[Idx];
1251        // Find which lane we need to extract.
1252        int FoundLane = -1;
1253        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1254          // Is this the lane of the scalar that we are looking for ?
1255          if (E->Scalars[Lane] == VL[i]) {
1256            FoundLane = Lane;
1257            break;
1258          }
1259        }
1260        assert(FoundLane >= 0 && "Could not find the correct lane");
1261        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1262      }
1263    }
1264  }
1265
1266  return Vec;
1267}
1268
1269Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1270  SmallDenseMap<Value*, int>::const_iterator Entry
1271    = ScalarToTreeEntry.find(VL[0]);
1272  if (Entry != ScalarToTreeEntry.end()) {
1273    int Idx = Entry->second;
1274    const TreeEntry *En = &VectorizableTree[Idx];
1275    if (En->isSame(VL) && En->VectorizedValue)
1276      return En->VectorizedValue;
1277  }
1278  return 0;
1279}
1280
1281Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1282  if (ScalarToTreeEntry.count(VL[0])) {
1283    int Idx = ScalarToTreeEntry[VL[0]];
1284    TreeEntry *E = &VectorizableTree[Idx];
1285    if (E->isSame(VL))
1286      return vectorizeTree(E);
1287  }
1288
1289  Type *ScalarTy = VL[0]->getType();
1290  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1291    ScalarTy = SI->getValueOperand()->getType();
1292  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1293
1294  return Gather(VL, VecTy);
1295}
1296
1297Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1298  IRBuilder<>::InsertPointGuard Guard(Builder);
1299
1300  if (E->VectorizedValue) {
1301    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1302    return E->VectorizedValue;
1303  }
1304
1305  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1306  Type *ScalarTy = VL0->getType();
1307  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1308    ScalarTy = SI->getValueOperand()->getType();
1309  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1310
1311  if (E->NeedToGather) {
1312    setInsertPointAfterBundle(E->Scalars);
1313    return Gather(E->Scalars, VecTy);
1314  }
1315
1316  unsigned Opcode = VL0->getOpcode();
1317  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1318
1319  switch (Opcode) {
1320    case Instruction::PHI: {
1321      PHINode *PH = dyn_cast<PHINode>(VL0);
1322      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1323      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1324      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1325      E->VectorizedValue = NewPhi;
1326
1327      // PHINodes may have multiple entries from the same block. We want to
1328      // visit every block once.
1329      SmallSet<BasicBlock*, 4> VisitedBBs;
1330
1331      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1332        ValueList Operands;
1333        BasicBlock *IBB = PH->getIncomingBlock(i);
1334
1335        if (!VisitedBBs.insert(IBB)) {
1336          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1337          continue;
1338        }
1339
1340        // Prepare the operand vector.
1341        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1342          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1343                             getIncomingValueForBlock(IBB));
1344
1345        Builder.SetInsertPoint(IBB->getTerminator());
1346        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1347        Value *Vec = vectorizeTree(Operands);
1348        NewPhi->addIncoming(Vec, IBB);
1349      }
1350
1351      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1352             "Invalid number of incoming values");
1353      return NewPhi;
1354    }
1355
1356    case Instruction::ExtractElement: {
1357      if (CanReuseExtract(E->Scalars)) {
1358        Value *V = VL0->getOperand(0);
1359        E->VectorizedValue = V;
1360        return V;
1361      }
1362      return Gather(E->Scalars, VecTy);
1363    }
1364    case Instruction::ZExt:
1365    case Instruction::SExt:
1366    case Instruction::FPToUI:
1367    case Instruction::FPToSI:
1368    case Instruction::FPExt:
1369    case Instruction::PtrToInt:
1370    case Instruction::IntToPtr:
1371    case Instruction::SIToFP:
1372    case Instruction::UIToFP:
1373    case Instruction::Trunc:
1374    case Instruction::FPTrunc:
1375    case Instruction::BitCast: {
1376      ValueList INVL;
1377      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1378        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1379
1380      setInsertPointAfterBundle(E->Scalars);
1381
1382      Value *InVec = vectorizeTree(INVL);
1383
1384      if (Value *V = alreadyVectorized(E->Scalars))
1385        return V;
1386
1387      CastInst *CI = dyn_cast<CastInst>(VL0);
1388      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1389      E->VectorizedValue = V;
1390      return V;
1391    }
1392    case Instruction::FCmp:
1393    case Instruction::ICmp: {
1394      ValueList LHSV, RHSV;
1395      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1396        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1397        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1398      }
1399
1400      setInsertPointAfterBundle(E->Scalars);
1401
1402      Value *L = vectorizeTree(LHSV);
1403      Value *R = vectorizeTree(RHSV);
1404
1405      if (Value *V = alreadyVectorized(E->Scalars))
1406        return V;
1407
1408      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1409      Value *V;
1410      if (Opcode == Instruction::FCmp)
1411        V = Builder.CreateFCmp(P0, L, R);
1412      else
1413        V = Builder.CreateICmp(P0, L, R);
1414
1415      E->VectorizedValue = V;
1416      return V;
1417    }
1418    case Instruction::Select: {
1419      ValueList TrueVec, FalseVec, CondVec;
1420      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1421        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1422        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1423        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1424      }
1425
1426      setInsertPointAfterBundle(E->Scalars);
1427
1428      Value *Cond = vectorizeTree(CondVec);
1429      Value *True = vectorizeTree(TrueVec);
1430      Value *False = vectorizeTree(FalseVec);
1431
1432      if (Value *V = alreadyVectorized(E->Scalars))
1433        return V;
1434
1435      Value *V = Builder.CreateSelect(Cond, True, False);
1436      E->VectorizedValue = V;
1437      return V;
1438    }
1439    case Instruction::Add:
1440    case Instruction::FAdd:
1441    case Instruction::Sub:
1442    case Instruction::FSub:
1443    case Instruction::Mul:
1444    case Instruction::FMul:
1445    case Instruction::UDiv:
1446    case Instruction::SDiv:
1447    case Instruction::FDiv:
1448    case Instruction::URem:
1449    case Instruction::SRem:
1450    case Instruction::FRem:
1451    case Instruction::Shl:
1452    case Instruction::LShr:
1453    case Instruction::AShr:
1454    case Instruction::And:
1455    case Instruction::Or:
1456    case Instruction::Xor: {
1457      ValueList LHSVL, RHSVL;
1458      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1459        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1460      else
1461        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1462          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1463          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1464        }
1465
1466      setInsertPointAfterBundle(E->Scalars);
1467
1468      Value *LHS = vectorizeTree(LHSVL);
1469      Value *RHS = vectorizeTree(RHSVL);
1470
1471      if (LHS == RHS && isa<Instruction>(LHS)) {
1472        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1473      }
1474
1475      if (Value *V = alreadyVectorized(E->Scalars))
1476        return V;
1477
1478      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1479      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1480      E->VectorizedValue = V;
1481      return V;
1482    }
1483    case Instruction::Load: {
1484      // Loads are inserted at the head of the tree because we don't want to
1485      // sink them all the way down past store instructions.
1486      setInsertPointAfterBundle(E->Scalars);
1487
1488      LoadInst *LI = cast<LoadInst>(VL0);
1489      unsigned AS = LI->getPointerAddressSpace();
1490
1491      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1492                                            VecTy->getPointerTo(AS));
1493      unsigned Alignment = LI->getAlignment();
1494      LI = Builder.CreateLoad(VecPtr);
1495      LI->setAlignment(Alignment);
1496      E->VectorizedValue = LI;
1497      return LI;
1498    }
1499    case Instruction::Store: {
1500      StoreInst *SI = cast<StoreInst>(VL0);
1501      unsigned Alignment = SI->getAlignment();
1502      unsigned AS = SI->getPointerAddressSpace();
1503
1504      ValueList ValueOp;
1505      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1506        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1507
1508      setInsertPointAfterBundle(E->Scalars);
1509
1510      Value *VecValue = vectorizeTree(ValueOp);
1511      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1512                                            VecTy->getPointerTo(AS));
1513      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1514      S->setAlignment(Alignment);
1515      E->VectorizedValue = S;
1516      return S;
1517    }
1518    default:
1519    llvm_unreachable("unknown inst");
1520  }
1521  return 0;
1522}
1523
1524Value *BoUpSLP::vectorizeTree() {
1525  Builder.SetInsertPoint(F->getEntryBlock().begin());
1526  vectorizeTree(&VectorizableTree[0]);
1527
1528  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1529
1530  // Extract all of the elements with the external uses.
1531  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1532       it != e; ++it) {
1533    Value *Scalar = it->Scalar;
1534    llvm::User *User = it->User;
1535
1536    // Skip users that we already RAUW. This happens when one instruction
1537    // has multiple uses of the same value.
1538    if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1539        Scalar->use_end())
1540      continue;
1541    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1542
1543    int Idx = ScalarToTreeEntry[Scalar];
1544    TreeEntry *E = &VectorizableTree[Idx];
1545    assert(!E->NeedToGather && "Extracting from a gather list");
1546
1547    Value *Vec = E->VectorizedValue;
1548    assert(Vec && "Can't find vectorizable value");
1549
1550    Value *Lane = Builder.getInt32(it->Lane);
1551    // Generate extracts for out-of-tree users.
1552    // Find the insertion point for the extractelement lane.
1553    if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1554      Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
1555      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1556      User->replaceUsesOfWith(Scalar, Ex);
1557    } else if (isa<Instruction>(Vec)){
1558      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1559        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1560          if (PH->getIncomingValue(i) == Scalar) {
1561            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1562            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1563            PH->setOperand(i, Ex);
1564          }
1565        }
1566      } else {
1567        Builder.SetInsertPoint(cast<Instruction>(User));
1568        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1569        User->replaceUsesOfWith(Scalar, Ex);
1570     }
1571    } else {
1572      Builder.SetInsertPoint(F->getEntryBlock().begin());
1573      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1574      User->replaceUsesOfWith(Scalar, Ex);
1575    }
1576
1577    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1578  }
1579
1580  // For each vectorized value:
1581  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1582    TreeEntry *Entry = &VectorizableTree[EIdx];
1583
1584    // For each lane:
1585    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1586      Value *Scalar = Entry->Scalars[Lane];
1587
1588      // No need to handle users of gathered values.
1589      if (Entry->NeedToGather)
1590        continue;
1591
1592      assert(Entry->VectorizedValue && "Can't find vectorizable value");
1593
1594      Type *Ty = Scalar->getType();
1595      if (!Ty->isVoidTy()) {
1596        for (Value::use_iterator User = Scalar->use_begin(),
1597             UE = Scalar->use_end(); User != UE; ++User) {
1598          DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1599          assert(!MustGather.count(*User) &&
1600                 "Replacing gathered value with undef");
1601
1602          assert((ScalarToTreeEntry.count(*User) ||
1603                  // It is legal to replace the reduction users by undef.
1604                  (RdxOps && RdxOps->count(*User))) &&
1605                 "Replacing out-of-tree value with undef");
1606        }
1607        Value *Undef = UndefValue::get(Ty);
1608        Scalar->replaceAllUsesWith(Undef);
1609      }
1610      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1611      cast<Instruction>(Scalar)->eraseFromParent();
1612    }
1613  }
1614
1615  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1616    BlocksNumbers[it].forget();
1617  }
1618  Builder.ClearInsertionPoint();
1619
1620  return VectorizableTree[0].VectorizedValue;
1621}
1622
1623class DTCmp {
1624  const DominatorTree *DT;
1625
1626public:
1627  DTCmp(const DominatorTree *DT) : DT(DT) {}
1628  bool operator()(const BasicBlock *A, const BasicBlock *B) const {
1629    return DT->properlyDominates(A, B);
1630  }
1631};
1632
1633void BoUpSLP::optimizeGatherSequence() {
1634  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1635        << " gather sequences instructions.\n");
1636  // Keep a list of visited BBs to run CSE on. It is typically small.
1637  SmallPtrSet<BasicBlock *, 4> VisitedBBs;
1638  SmallVector<BasicBlock *, 4> CSEWorkList;
1639  // LICM InsertElementInst sequences.
1640  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1641       e = GatherSeq.end(); it != e; ++it) {
1642    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1643
1644    if (!Insert)
1645      continue;
1646
1647    if (VisitedBBs.insert(Insert->getParent()))
1648      CSEWorkList.push_back(Insert->getParent());
1649
1650    // Check if this block is inside a loop.
1651    Loop *L = LI->getLoopFor(Insert->getParent());
1652    if (!L)
1653      continue;
1654
1655    // Check if it has a preheader.
1656    BasicBlock *PreHeader = L->getLoopPreheader();
1657    if (!PreHeader)
1658      continue;
1659
1660    // If the vector or the element that we insert into it are
1661    // instructions that are defined in this basic block then we can't
1662    // hoist this instruction.
1663    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1664    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1665    if (CurrVec && L->contains(CurrVec))
1666      continue;
1667    if (NewElem && L->contains(NewElem))
1668      continue;
1669
1670    // We can hoist this instruction. Move it to the pre-header.
1671    Insert->moveBefore(PreHeader->getTerminator());
1672  }
1673
1674  // Sort blocks by domination. This ensures we visit a block after all blocks
1675  // dominating it are visited.
1676  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
1677
1678  // Perform O(N^2) search over the gather sequences and merge identical
1679  // instructions. TODO: We can further optimize this scan if we split the
1680  // instructions into different buckets based on the insert lane.
1681  SmallVector<Instruction *, 16> Visited;
1682  for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1683                                               E = CSEWorkList.end();
1684       I != E; ++I) {
1685    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
1686           "Worklist not sorted properly!");
1687    BasicBlock *BB = *I;
1688    // For all instructions in blocks containing gather sequences:
1689    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1690      Instruction *In = it++;
1691      if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
1692          !GatherSeq.count(In))
1693        continue;
1694
1695      // Check if we can replace this instruction with any of the
1696      // visited instructions.
1697      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1698                                                    ve = Visited.end();
1699           v != ve; ++v) {
1700        if (In->isIdenticalTo(*v) &&
1701            DT->dominates((*v)->getParent(), In->getParent())) {
1702          In->replaceAllUsesWith(*v);
1703          In->eraseFromParent();
1704          In = 0;
1705          break;
1706        }
1707      }
1708      if (In) {
1709        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1710        Visited.push_back(In);
1711      }
1712    }
1713  }
1714}
1715
1716/// The SLPVectorizer Pass.
1717struct SLPVectorizer : public FunctionPass {
1718  typedef SmallVector<StoreInst *, 8> StoreList;
1719  typedef MapVector<Value *, StoreList> StoreListMap;
1720
1721  /// Pass identification, replacement for typeid
1722  static char ID;
1723
1724  explicit SLPVectorizer() : FunctionPass(ID) {
1725    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1726  }
1727
1728  ScalarEvolution *SE;
1729  DataLayout *DL;
1730  TargetTransformInfo *TTI;
1731  AliasAnalysis *AA;
1732  LoopInfo *LI;
1733  DominatorTree *DT;
1734
1735  virtual bool runOnFunction(Function &F) {
1736    SE = &getAnalysis<ScalarEvolution>();
1737    DL = getAnalysisIfAvailable<DataLayout>();
1738    TTI = &getAnalysis<TargetTransformInfo>();
1739    AA = &getAnalysis<AliasAnalysis>();
1740    LI = &getAnalysis<LoopInfo>();
1741    DT = &getAnalysis<DominatorTree>();
1742
1743    StoreRefs.clear();
1744    bool Changed = false;
1745
1746    // If the target claims to have no vector registers don't attempt
1747    // vectorization.
1748    if (!TTI->getNumberOfRegisters(true))
1749      return false;
1750
1751    // Must have DataLayout. We can't require it because some tests run w/o
1752    // triple.
1753    if (!DL)
1754      return false;
1755
1756    // Don't vectorize when the attribute NoImplicitFloat is used.
1757    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
1758      return false;
1759
1760    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1761
1762    // Use the bollom up slp vectorizer to construct chains that start with
1763    // he store instructions.
1764    BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1765
1766    // Scan the blocks in the function in post order.
1767    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1768         e = po_end(&F.getEntryBlock()); it != e; ++it) {
1769      BasicBlock *BB = *it;
1770
1771      // Vectorize trees that end at stores.
1772      if (unsigned count = collectStores(BB, R)) {
1773        (void)count;
1774        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1775        Changed |= vectorizeStoreChains(R);
1776      }
1777
1778      // Vectorize trees that end at reductions.
1779      Changed |= vectorizeChainsInBlock(BB, R);
1780    }
1781
1782    if (Changed) {
1783      R.optimizeGatherSequence();
1784      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1785      DEBUG(verifyFunction(F));
1786    }
1787    return Changed;
1788  }
1789
1790  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1791    FunctionPass::getAnalysisUsage(AU);
1792    AU.addRequired<ScalarEvolution>();
1793    AU.addRequired<AliasAnalysis>();
1794    AU.addRequired<TargetTransformInfo>();
1795    AU.addRequired<LoopInfo>();
1796    AU.addRequired<DominatorTree>();
1797    AU.addPreserved<LoopInfo>();
1798    AU.addPreserved<DominatorTree>();
1799    AU.setPreservesCFG();
1800  }
1801
1802private:
1803
1804  /// \brief Collect memory references and sort them according to their base
1805  /// object. We sort the stores to their base objects to reduce the cost of the
1806  /// quadratic search on the stores. TODO: We can further reduce this cost
1807  /// if we flush the chain creation every time we run into a memory barrier.
1808  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1809
1810  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1811  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1812
1813  /// \brief Try to vectorize a list of operands.
1814  /// \returns true if a value was vectorized.
1815  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1816
1817  /// \brief Try to vectorize a chain that may start at the operands of \V;
1818  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1819
1820  /// \brief Vectorize the stores that were collected in StoreRefs.
1821  bool vectorizeStoreChains(BoUpSLP &R);
1822
1823  /// \brief Scan the basic block and look for patterns that are likely to start
1824  /// a vectorization chain.
1825  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1826
1827  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1828                           BoUpSLP &R);
1829
1830  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1831                       BoUpSLP &R);
1832private:
1833  StoreListMap StoreRefs;
1834};
1835
1836bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1837                                          int CostThreshold, BoUpSLP &R) {
1838  unsigned ChainLen = Chain.size();
1839  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1840        << "\n");
1841  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1842  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1843  unsigned VF = MinVecRegSize / Sz;
1844
1845  if (!isPowerOf2_32(Sz) || VF < 2)
1846    return false;
1847
1848  bool Changed = false;
1849  // Look for profitable vectorizable trees at all offsets, starting at zero.
1850  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1851    if (i + VF > e)
1852      break;
1853    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1854          << "\n");
1855    ArrayRef<Value *> Operands = Chain.slice(i, VF);
1856
1857    R.buildTree(Operands);
1858
1859    int Cost = R.getTreeCost();
1860
1861    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1862    if (Cost < CostThreshold) {
1863      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1864      R.vectorizeTree();
1865
1866      // Move to the next bundle.
1867      i += VF - 1;
1868      Changed = true;
1869    }
1870  }
1871
1872  return Changed;
1873}
1874
1875bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1876                                    int costThreshold, BoUpSLP &R) {
1877  SetVector<Value *> Heads, Tails;
1878  SmallDenseMap<Value *, Value *> ConsecutiveChain;
1879
1880  // We may run into multiple chains that merge into a single chain. We mark the
1881  // stores that we vectorized so that we don't visit the same store twice.
1882  BoUpSLP::ValueSet VectorizedStores;
1883  bool Changed = false;
1884
1885  // Do a quadratic search on all of the given stores and find
1886  // all of the pairs of stores that follow each other.
1887  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1888    for (unsigned j = 0; j < e; ++j) {
1889      if (i == j)
1890        continue;
1891
1892      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1893        Tails.insert(Stores[j]);
1894        Heads.insert(Stores[i]);
1895        ConsecutiveChain[Stores[i]] = Stores[j];
1896      }
1897    }
1898  }
1899
1900  // For stores that start but don't end a link in the chain:
1901  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1902       it != e; ++it) {
1903    if (Tails.count(*it))
1904      continue;
1905
1906    // We found a store instr that starts a chain. Now follow the chain and try
1907    // to vectorize it.
1908    BoUpSLP::ValueList Operands;
1909    Value *I = *it;
1910    // Collect the chain into a list.
1911    while (Tails.count(I) || Heads.count(I)) {
1912      if (VectorizedStores.count(I))
1913        break;
1914      Operands.push_back(I);
1915      // Move to the next value in the chain.
1916      I = ConsecutiveChain[I];
1917    }
1918
1919    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1920
1921    // Mark the vectorized stores so that we don't vectorize them again.
1922    if (Vectorized)
1923      VectorizedStores.insert(Operands.begin(), Operands.end());
1924    Changed |= Vectorized;
1925  }
1926
1927  return Changed;
1928}
1929
1930
1931unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1932  unsigned count = 0;
1933  StoreRefs.clear();
1934  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1935    StoreInst *SI = dyn_cast<StoreInst>(it);
1936    if (!SI)
1937      continue;
1938
1939    // Don't touch volatile stores.
1940    if (!SI->isSimple())
1941      continue;
1942
1943    // Check that the pointer points to scalars.
1944    Type *Ty = SI->getValueOperand()->getType();
1945    if (Ty->isAggregateType() || Ty->isVectorTy())
1946      return 0;
1947
1948    // Find the base pointer.
1949    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
1950
1951    // Save the store locations.
1952    StoreRefs[Ptr].push_back(SI);
1953    count++;
1954  }
1955  return count;
1956}
1957
1958bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
1959  if (!A || !B)
1960    return false;
1961  Value *VL[] = { A, B };
1962  return tryToVectorizeList(VL, R);
1963}
1964
1965bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
1966  if (VL.size() < 2)
1967    return false;
1968
1969  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
1970
1971  // Check that all of the parts are scalar instructions of the same type.
1972  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1973  if (!I0)
1974    return false;
1975
1976  unsigned Opcode0 = I0->getOpcode();
1977
1978  Type *Ty0 = I0->getType();
1979  unsigned Sz = DL->getTypeSizeInBits(Ty0);
1980  unsigned VF = MinVecRegSize / Sz;
1981
1982  for (int i = 0, e = VL.size(); i < e; ++i) {
1983    Type *Ty = VL[i]->getType();
1984    if (Ty->isAggregateType() || Ty->isVectorTy())
1985      return false;
1986    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
1987    if (!Inst || Inst->getOpcode() != Opcode0)
1988      return false;
1989  }
1990
1991  bool Changed = false;
1992
1993  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1994    unsigned OpsWidth = 0;
1995
1996    if (i + VF > e)
1997      OpsWidth = e - i;
1998    else
1999      OpsWidth = VF;
2000
2001    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2002      break;
2003
2004    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2005                 << "\n");
2006    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2007
2008    R.buildTree(Ops);
2009    int Cost = R.getTreeCost();
2010
2011    if (Cost < -SLPCostThreshold) {
2012      DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
2013      R.vectorizeTree();
2014
2015      // Move to the next bundle.
2016      i += VF - 1;
2017      Changed = true;
2018    }
2019  }
2020
2021  return Changed;
2022}
2023
2024bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2025  if (!V)
2026    return false;
2027
2028  // Try to vectorize V.
2029  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2030    return true;
2031
2032  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2033  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2034  // Try to skip B.
2035  if (B && B->hasOneUse()) {
2036    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2037    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2038    if (tryToVectorizePair(A, B0, R)) {
2039      B->moveBefore(V);
2040      return true;
2041    }
2042    if (tryToVectorizePair(A, B1, R)) {
2043      B->moveBefore(V);
2044      return true;
2045    }
2046  }
2047
2048  // Try to skip A.
2049  if (A && A->hasOneUse()) {
2050    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2051    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2052    if (tryToVectorizePair(A0, B, R)) {
2053      A->moveBefore(V);
2054      return true;
2055    }
2056    if (tryToVectorizePair(A1, B, R)) {
2057      A->moveBefore(V);
2058      return true;
2059    }
2060  }
2061  return 0;
2062}
2063
2064/// \brief Generate a shuffle mask to be used in a reduction tree.
2065///
2066/// \param VecLen The length of the vector to be reduced.
2067/// \param NumEltsToRdx The number of elements that should be reduced in the
2068///        vector.
2069/// \param IsPairwise Whether the reduction is a pairwise or splitting
2070///        reduction. A pairwise reduction will generate a mask of
2071///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2072///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2073/// \param IsLeft True will generate a mask of even elements, odd otherwise.
2074static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2075                                   bool IsPairwise, bool IsLeft,
2076                                   IRBuilder<> &Builder) {
2077  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2078
2079  SmallVector<Constant *, 32> ShuffleMask(
2080      VecLen, UndefValue::get(Builder.getInt32Ty()));
2081
2082  if (IsPairwise)
2083    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2084    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2085      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2086  else
2087    // Move the upper half of the vector to the lower half.
2088    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2089      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2090
2091  return ConstantVector::get(ShuffleMask);
2092}
2093
2094
2095/// Model horizontal reductions.
2096///
2097/// A horizontal reduction is a tree of reduction operations (currently add and
2098/// fadd) that has operations that can be put into a vector as its leaf.
2099/// For example, this tree:
2100///
2101/// mul mul mul mul
2102///  \  /    \  /
2103///   +       +
2104///    \     /
2105///       +
2106/// This tree has "mul" as its reduced values and "+" as its reduction
2107/// operations. A reduction might be feeding into a store or a binary operation
2108/// feeding a phi.
2109///    ...
2110///    \  /
2111///     +
2112///     |
2113///  phi +=
2114///
2115///  Or:
2116///    ...
2117///    \  /
2118///     +
2119///     |
2120///   *p =
2121///
2122class HorizontalReduction {
2123  SmallPtrSet<Value *, 16> ReductionOps;
2124  SmallVector<Value *, 32> ReducedVals;
2125
2126  BinaryOperator *ReductionRoot;
2127  PHINode *ReductionPHI;
2128
2129  /// The opcode of the reduction.
2130  unsigned ReductionOpcode;
2131  /// The opcode of the values we perform a reduction on.
2132  unsigned ReducedValueOpcode;
2133  /// The width of one full horizontal reduction operation.
2134  unsigned ReduxWidth;
2135  /// Should we model this reduction as a pairwise reduction tree or a tree that
2136  /// splits the vector in halves and adds those halves.
2137  bool IsPairwiseReduction;
2138
2139public:
2140  HorizontalReduction()
2141    : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2142    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2143
2144  /// \brief Try to find a reduction tree.
2145  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2146                                 DataLayout *DL) {
2147    assert((!Phi ||
2148            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2149           "Thi phi needs to use the binary operator");
2150
2151    // We could have a initial reductions that is not an add.
2152    //  r *= v1 + v2 + v3 + v4
2153    // In such a case start looking for a tree rooted in the first '+'.
2154    if (Phi) {
2155      if (B->getOperand(0) == Phi) {
2156        Phi = 0;
2157        B = dyn_cast<BinaryOperator>(B->getOperand(1));
2158      } else if (B->getOperand(1) == Phi) {
2159        Phi = 0;
2160        B = dyn_cast<BinaryOperator>(B->getOperand(0));
2161      }
2162    }
2163
2164    if (!B)
2165      return false;
2166
2167    Type *Ty = B->getType();
2168    if (Ty->isVectorTy())
2169      return false;
2170
2171    ReductionOpcode = B->getOpcode();
2172    ReducedValueOpcode = 0;
2173    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2174    ReductionRoot = B;
2175    ReductionPHI = Phi;
2176
2177    if (ReduxWidth < 4)
2178      return false;
2179
2180    // We currently only support adds.
2181    if (ReductionOpcode != Instruction::Add &&
2182        ReductionOpcode != Instruction::FAdd)
2183      return false;
2184
2185    // Post order traverse the reduction tree starting at B. We only handle true
2186    // trees containing only binary operators.
2187    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2188    Stack.push_back(std::make_pair(B, 0));
2189    while (!Stack.empty()) {
2190      BinaryOperator *TreeN = Stack.back().first;
2191      unsigned EdgeToVist = Stack.back().second++;
2192      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2193
2194      // Only handle trees in the current basic block.
2195      if (TreeN->getParent() != B->getParent())
2196        return false;
2197
2198      // Each tree node needs to have one user except for the ultimate
2199      // reduction.
2200      if (!TreeN->hasOneUse() && TreeN != B)
2201        return false;
2202
2203      // Postorder vist.
2204      if (EdgeToVist == 2 || IsReducedValue) {
2205        if (IsReducedValue) {
2206          // Make sure that the opcodes of the operations that we are going to
2207          // reduce match.
2208          if (!ReducedValueOpcode)
2209            ReducedValueOpcode = TreeN->getOpcode();
2210          else if (ReducedValueOpcode != TreeN->getOpcode())
2211            return false;
2212          ReducedVals.push_back(TreeN);
2213        } else {
2214          // We need to be able to reassociate the adds.
2215          if (!TreeN->isAssociative())
2216            return false;
2217          ReductionOps.insert(TreeN);
2218        }
2219        // Retract.
2220        Stack.pop_back();
2221        continue;
2222      }
2223
2224      // Visit left or right.
2225      Value *NextV = TreeN->getOperand(EdgeToVist);
2226      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2227      if (Next)
2228        Stack.push_back(std::make_pair(Next, 0));
2229      else if (NextV != Phi)
2230        return false;
2231    }
2232    return true;
2233  }
2234
2235  /// \brief Attempt to vectorize the tree found by
2236  /// matchAssociativeReduction.
2237  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2238    if (ReducedVals.empty())
2239      return false;
2240
2241    unsigned NumReducedVals = ReducedVals.size();
2242    if (NumReducedVals < ReduxWidth)
2243      return false;
2244
2245    Value *VectorizedTree = 0;
2246    IRBuilder<> Builder(ReductionRoot);
2247    FastMathFlags Unsafe;
2248    Unsafe.setUnsafeAlgebra();
2249    Builder.SetFastMathFlags(Unsafe);
2250    unsigned i = 0;
2251
2252    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2253      ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2254      V.buildTree(ValsToReduce, &ReductionOps);
2255
2256      // Estimate cost.
2257      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2258      if (Cost >= -SLPCostThreshold)
2259        break;
2260
2261      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2262                   << ". (HorRdx)\n");
2263
2264      // Vectorize a tree.
2265      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2266      Value *VectorizedRoot = V.vectorizeTree();
2267
2268      // Emit a reduction.
2269      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2270      if (VectorizedTree) {
2271        Builder.SetCurrentDebugLocation(Loc);
2272        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2273                                     ReducedSubTree, "bin.rdx");
2274      } else
2275        VectorizedTree = ReducedSubTree;
2276    }
2277
2278    if (VectorizedTree) {
2279      // Finish the reduction.
2280      for (; i < NumReducedVals; ++i) {
2281        Builder.SetCurrentDebugLocation(
2282          cast<Instruction>(ReducedVals[i])->getDebugLoc());
2283        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2284                                     ReducedVals[i]);
2285      }
2286      // Update users.
2287      if (ReductionPHI) {
2288        assert(ReductionRoot != NULL && "Need a reduction operation");
2289        ReductionRoot->setOperand(0, VectorizedTree);
2290        ReductionRoot->setOperand(1, ReductionPHI);
2291      } else
2292        ReductionRoot->replaceAllUsesWith(VectorizedTree);
2293    }
2294    return VectorizedTree != 0;
2295  }
2296
2297private:
2298
2299  /// \brief Calcuate the cost of a reduction.
2300  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2301    Type *ScalarTy = FirstReducedVal->getType();
2302    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2303
2304    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2305    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2306
2307    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2308    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2309
2310    int ScalarReduxCost =
2311        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2312
2313    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2314                 << " for reduction that starts with " << *FirstReducedVal
2315                 << " (It is a "
2316                 << (IsPairwiseReduction ? "pairwise" : "splitting")
2317                 << " reduction)\n");
2318
2319    return VecReduxCost - ScalarReduxCost;
2320  }
2321
2322  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2323                            Value *R, const Twine &Name = "") {
2324    if (Opcode == Instruction::FAdd)
2325      return Builder.CreateFAdd(L, R, Name);
2326    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2327  }
2328
2329  /// \brief Emit a horizontal reduction of the vectorized value.
2330  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2331    assert(VectorizedValue && "Need to have a vectorized tree node");
2332    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2333    assert(isPowerOf2_32(ReduxWidth) &&
2334           "We only handle power-of-two reductions for now");
2335
2336    Value *TmpVec = ValToReduce;
2337    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2338      if (IsPairwiseReduction) {
2339        Value *LeftMask =
2340          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2341        Value *RightMask =
2342          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2343
2344        Value *LeftShuf = Builder.CreateShuffleVector(
2345          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2346        Value *RightShuf = Builder.CreateShuffleVector(
2347          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2348          "rdx.shuf.r");
2349        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2350                             "bin.rdx");
2351      } else {
2352        Value *UpperHalf =
2353          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2354        Value *Shuf = Builder.CreateShuffleVector(
2355          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2356        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2357      }
2358    }
2359
2360    // The result is in the first element of the vector.
2361    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2362  }
2363};
2364
2365/// \brief Recognize construction of vectors like
2366///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2367///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2368///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2369///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2370///
2371/// Returns true if it matches
2372///
2373static bool findBuildVector(InsertElementInst *IE,
2374                            SmallVectorImpl<Value *> &Ops) {
2375  if (!isa<UndefValue>(IE->getOperand(0)))
2376    return false;
2377
2378  while (true) {
2379    Ops.push_back(IE->getOperand(1));
2380
2381    if (IE->use_empty())
2382      return false;
2383
2384    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
2385    if (!NextUse)
2386      return true;
2387
2388    // If this isn't the final use, make sure the next insertelement is the only
2389    // use. It's OK if the final constructed vector is used multiple times
2390    if (!IE->hasOneUse())
2391      return false;
2392
2393    IE = NextUse;
2394  }
2395
2396  return false;
2397}
2398
2399static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2400  return V->getType() < V2->getType();
2401}
2402
2403bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2404  bool Changed = false;
2405  SmallVector<Value *, 4> Incoming;
2406  SmallSet<Value *, 16> VisitedInstrs;
2407
2408  bool HaveVectorizedPhiNodes = true;
2409  while (HaveVectorizedPhiNodes) {
2410    HaveVectorizedPhiNodes = false;
2411
2412    // Collect the incoming values from the PHIs.
2413    Incoming.clear();
2414    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2415         ++instr) {
2416      PHINode *P = dyn_cast<PHINode>(instr);
2417      if (!P)
2418        break;
2419
2420      if (!VisitedInstrs.count(P))
2421        Incoming.push_back(P);
2422    }
2423
2424    // Sort by type.
2425    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2426
2427    // Try to vectorize elements base on their type.
2428    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2429                                           E = Incoming.end();
2430         IncIt != E;) {
2431
2432      // Look for the next elements with the same type.
2433      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2434      while (SameTypeIt != E &&
2435             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2436        VisitedInstrs.insert(*SameTypeIt);
2437        ++SameTypeIt;
2438      }
2439
2440      // Try to vectorize them.
2441      unsigned NumElts = (SameTypeIt - IncIt);
2442      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2443      if (NumElts > 1 &&
2444          tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2445        // Success start over because instructions might have been changed.
2446        HaveVectorizedPhiNodes = true;
2447        Changed = true;
2448        break;
2449      }
2450
2451      // Start over at the next instruction of a differnt type (or the end).
2452      IncIt = SameTypeIt;
2453    }
2454  }
2455
2456  VisitedInstrs.clear();
2457
2458  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2459    // We may go through BB multiple times so skip the one we have checked.
2460    if (!VisitedInstrs.insert(it))
2461      continue;
2462
2463    if (isa<DbgInfoIntrinsic>(it))
2464      continue;
2465
2466    // Try to vectorize reductions that use PHINodes.
2467    if (PHINode *P = dyn_cast<PHINode>(it)) {
2468      // Check that the PHI is a reduction PHI.
2469      if (P->getNumIncomingValues() != 2)
2470        return Changed;
2471      Value *Rdx =
2472          (P->getIncomingBlock(0) == BB
2473               ? (P->getIncomingValue(0))
2474               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2475      // Check if this is a Binary Operator.
2476      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2477      if (!BI)
2478        continue;
2479
2480      // Try to match and vectorize a horizontal reduction.
2481      HorizontalReduction HorRdx;
2482      if (ShouldVectorizeHor &&
2483          HorRdx.matchAssociativeReduction(P, BI, DL) &&
2484          HorRdx.tryToReduce(R, TTI)) {
2485        Changed = true;
2486        it = BB->begin();
2487        e = BB->end();
2488        continue;
2489      }
2490
2491     Value *Inst = BI->getOperand(0);
2492      if (Inst == P)
2493        Inst = BI->getOperand(1);
2494
2495      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2496        // We would like to start over since some instructions are deleted
2497        // and the iterator may become invalid value.
2498        Changed = true;
2499        it = BB->begin();
2500        e = BB->end();
2501        continue;
2502      }
2503
2504      continue;
2505    }
2506
2507    // Try to vectorize horizontal reductions feeding into a store.
2508    if (ShouldStartVectorizeHorAtStore)
2509      if (StoreInst *SI = dyn_cast<StoreInst>(it))
2510        if (BinaryOperator *BinOp =
2511                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2512          HorizontalReduction HorRdx;
2513          if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2514                HorRdx.tryToReduce(R, TTI)) ||
2515               tryToVectorize(BinOp, R))) {
2516            Changed = true;
2517            it = BB->begin();
2518            e = BB->end();
2519            continue;
2520          }
2521        }
2522
2523    // Try to vectorize trees that start at compare instructions.
2524    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2525      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2526        Changed = true;
2527        // We would like to start over since some instructions are deleted
2528        // and the iterator may become invalid value.
2529        it = BB->begin();
2530        e = BB->end();
2531        continue;
2532      }
2533
2534      for (int i = 0; i < 2; ++i) {
2535         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2536            if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2537              Changed = true;
2538              // We would like to start over since some instructions are deleted
2539              // and the iterator may become invalid value.
2540              it = BB->begin();
2541              e = BB->end();
2542            }
2543         }
2544      }
2545      continue;
2546    }
2547
2548    // Try to vectorize trees that start at insertelement instructions.
2549    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2550      SmallVector<Value *, 8> Ops;
2551      if (!findBuildVector(IE, Ops))
2552        continue;
2553
2554      if (tryToVectorizeList(Ops, R)) {
2555        Changed = true;
2556        it = BB->begin();
2557        e = BB->end();
2558      }
2559
2560      continue;
2561    }
2562  }
2563
2564  return Changed;
2565}
2566
2567bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2568  bool Changed = false;
2569  // Attempt to sort and vectorize each of the store-groups.
2570  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2571       it != e; ++it) {
2572    if (it->second.size() < 2)
2573      continue;
2574
2575    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2576          << it->second.size() << ".\n");
2577
2578    // Process the stores in chunks of 16.
2579    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2580      unsigned Len = std::min<unsigned>(CE - CI, 16);
2581      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2582      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2583    }
2584  }
2585  return Changed;
2586}
2587
2588} // end anonymous namespace
2589
2590char SLPVectorizer::ID = 0;
2591static const char lv_name[] = "SLP Vectorizer";
2592INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2593INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2594INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
2595INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2596INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2597INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2598
2599namespace llvm {
2600Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2601}
2602