1; Test multiplication of two f64s, producing an f128 result.
2;
3; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
4
5declare double @foo()
6
7; Check register multiplication.  "mxdbr %f0, %f2" is not valid from LLVM's
8; point of view, because %f2 is the low register of the FP128 %f0.  Pass the
9; multiplier in %f4 instead.
10define void @f1(double %f1, double %dummy, double %f2, fp128 *%dst) {
11; CHECK-LABEL: f1:
12; CHECK: mxdbr %f0, %f4
13; CHECK: std %f0, 0(%r2)
14; CHECK: std %f2, 8(%r2)
15; CHECK: br %r14
16  %f1x = fpext double %f1 to fp128
17  %f2x = fpext double %f2 to fp128
18  %res = fmul fp128 %f1x, %f2x
19  store fp128 %res, fp128 *%dst
20  ret void
21}
22
23; Check the low end of the MXDB range.
24define void @f2(double %f1, double *%ptr, fp128 *%dst) {
25; CHECK-LABEL: f2:
26; CHECK: mxdb %f0, 0(%r2)
27; CHECK: std %f0, 0(%r3)
28; CHECK: std %f2, 8(%r3)
29; CHECK: br %r14
30  %f2 = load double *%ptr
31  %f1x = fpext double %f1 to fp128
32  %f2x = fpext double %f2 to fp128
33  %res = fmul fp128 %f1x, %f2x
34  store fp128 %res, fp128 *%dst
35  ret void
36}
37
38; Check the high end of the aligned MXDB range.
39define void @f3(double %f1, double *%base, fp128 *%dst) {
40; CHECK-LABEL: f3:
41; CHECK: mxdb %f0, 4088(%r2)
42; CHECK: std %f0, 0(%r3)
43; CHECK: std %f2, 8(%r3)
44; CHECK: br %r14
45  %ptr = getelementptr double *%base, i64 511
46  %f2 = load double *%ptr
47  %f1x = fpext double %f1 to fp128
48  %f2x = fpext double %f2 to fp128
49  %res = fmul fp128 %f1x, %f2x
50  store fp128 %res, fp128 *%dst
51  ret void
52}
53
54; Check the next doubleword up, which needs separate address logic.
55; Other sequences besides this one would be OK.
56define void @f4(double %f1, double *%base, fp128 *%dst) {
57; CHECK-LABEL: f4:
58; CHECK: aghi %r2, 4096
59; CHECK: mxdb %f0, 0(%r2)
60; CHECK: std %f0, 0(%r3)
61; CHECK: std %f2, 8(%r3)
62; CHECK: br %r14
63  %ptr = getelementptr double *%base, i64 512
64  %f2 = load double *%ptr
65  %f1x = fpext double %f1 to fp128
66  %f2x = fpext double %f2 to fp128
67  %res = fmul fp128 %f1x, %f2x
68  store fp128 %res, fp128 *%dst
69  ret void
70}
71
72; Check negative displacements, which also need separate address logic.
73define void @f5(double %f1, double *%base, fp128 *%dst) {
74; CHECK-LABEL: f5:
75; CHECK: aghi %r2, -8
76; CHECK: mxdb %f0, 0(%r2)
77; CHECK: std %f0, 0(%r3)
78; CHECK: std %f2, 8(%r3)
79; CHECK: br %r14
80  %ptr = getelementptr double *%base, i64 -1
81  %f2 = load double *%ptr
82  %f1x = fpext double %f1 to fp128
83  %f2x = fpext double %f2 to fp128
84  %res = fmul fp128 %f1x, %f2x
85  store fp128 %res, fp128 *%dst
86  ret void
87}
88
89; Check that MXDB allows indices.
90define void @f6(double %f1, double *%base, i64 %index, fp128 *%dst) {
91; CHECK-LABEL: f6:
92; CHECK: sllg %r1, %r3, 3
93; CHECK: mxdb %f0, 800(%r1,%r2)
94; CHECK: std %f0, 0(%r4)
95; CHECK: std %f2, 8(%r4)
96; CHECK: br %r14
97  %ptr1 = getelementptr double *%base, i64 %index
98  %ptr2 = getelementptr double *%ptr1, i64 100
99  %f2 = load double *%ptr2
100  %f1x = fpext double %f1 to fp128
101  %f2x = fpext double %f2 to fp128
102  %res = fmul fp128 %f1x, %f2x
103  store fp128 %res, fp128 *%dst
104  ret void
105}
106
107; Check that multiplications of spilled values can use MXDB rather than MXDBR.
108define double @f7(double *%ptr0) {
109; CHECK-LABEL: f7:
110; CHECK: brasl %r14, foo@PLT
111; CHECK: mxdb %f0, 160(%r15)
112; CHECK: br %r14
113  %ptr1 = getelementptr double *%ptr0, i64 2
114  %ptr2 = getelementptr double *%ptr0, i64 4
115  %ptr3 = getelementptr double *%ptr0, i64 6
116  %ptr4 = getelementptr double *%ptr0, i64 8
117  %ptr5 = getelementptr double *%ptr0, i64 10
118  %ptr6 = getelementptr double *%ptr0, i64 12
119  %ptr7 = getelementptr double *%ptr0, i64 14
120  %ptr8 = getelementptr double *%ptr0, i64 16
121  %ptr9 = getelementptr double *%ptr0, i64 18
122  %ptr10 = getelementptr double *%ptr0, i64 20
123
124  %val0 = load double *%ptr0
125  %val1 = load double *%ptr1
126  %val2 = load double *%ptr2
127  %val3 = load double *%ptr3
128  %val4 = load double *%ptr4
129  %val5 = load double *%ptr5
130  %val6 = load double *%ptr6
131  %val7 = load double *%ptr7
132  %val8 = load double *%ptr8
133  %val9 = load double *%ptr9
134  %val10 = load double *%ptr10
135
136  %frob0 = fadd double %val0, %val0
137  %frob1 = fadd double %val1, %val1
138  %frob2 = fadd double %val2, %val2
139  %frob3 = fadd double %val3, %val3
140  %frob4 = fadd double %val4, %val4
141  %frob5 = fadd double %val5, %val5
142  %frob6 = fadd double %val6, %val6
143  %frob7 = fadd double %val7, %val7
144  %frob8 = fadd double %val8, %val8
145  %frob9 = fadd double %val9, %val9
146  %frob10 = fadd double %val9, %val10
147
148  store double %frob0, double *%ptr0
149  store double %frob1, double *%ptr1
150  store double %frob2, double *%ptr2
151  store double %frob3, double *%ptr3
152  store double %frob4, double *%ptr4
153  store double %frob5, double *%ptr5
154  store double %frob6, double *%ptr6
155  store double %frob7, double *%ptr7
156  store double %frob8, double *%ptr8
157  store double %frob9, double *%ptr9
158  store double %frob10, double *%ptr10
159
160  %ret = call double @foo()
161
162  %accext0 = fpext double %ret to fp128
163  %ext0 = fpext double %frob0 to fp128
164  %mul0 = fmul fp128 %accext0, %ext0
165  %const0 = fpext double 1.01 to fp128
166  %extra0 = fmul fp128 %mul0, %const0
167  %trunc0 = fptrunc fp128 %extra0 to double
168
169  %accext1 = fpext double %trunc0 to fp128
170  %ext1 = fpext double %frob1 to fp128
171  %mul1 = fmul fp128 %accext1, %ext1
172  %const1 = fpext double 1.11 to fp128
173  %extra1 = fmul fp128 %mul1, %const1
174  %trunc1 = fptrunc fp128 %extra1 to double
175
176  %accext2 = fpext double %trunc1 to fp128
177  %ext2 = fpext double %frob2 to fp128
178  %mul2 = fmul fp128 %accext2, %ext2
179  %const2 = fpext double 1.21 to fp128
180  %extra2 = fmul fp128 %mul2, %const2
181  %trunc2 = fptrunc fp128 %extra2 to double
182
183  %accext3 = fpext double %trunc2 to fp128
184  %ext3 = fpext double %frob3 to fp128
185  %mul3 = fmul fp128 %accext3, %ext3
186  %const3 = fpext double 1.31 to fp128
187  %extra3 = fmul fp128 %mul3, %const3
188  %trunc3 = fptrunc fp128 %extra3 to double
189
190  %accext4 = fpext double %trunc3 to fp128
191  %ext4 = fpext double %frob4 to fp128
192  %mul4 = fmul fp128 %accext4, %ext4
193  %const4 = fpext double 1.41 to fp128
194  %extra4 = fmul fp128 %mul4, %const4
195  %trunc4 = fptrunc fp128 %extra4 to double
196
197  %accext5 = fpext double %trunc4 to fp128
198  %ext5 = fpext double %frob5 to fp128
199  %mul5 = fmul fp128 %accext5, %ext5
200  %const5 = fpext double 1.51 to fp128
201  %extra5 = fmul fp128 %mul5, %const5
202  %trunc5 = fptrunc fp128 %extra5 to double
203
204  %accext6 = fpext double %trunc5 to fp128
205  %ext6 = fpext double %frob6 to fp128
206  %mul6 = fmul fp128 %accext6, %ext6
207  %const6 = fpext double 1.61 to fp128
208  %extra6 = fmul fp128 %mul6, %const6
209  %trunc6 = fptrunc fp128 %extra6 to double
210
211  %accext7 = fpext double %trunc6 to fp128
212  %ext7 = fpext double %frob7 to fp128
213  %mul7 = fmul fp128 %accext7, %ext7
214  %const7 = fpext double 1.71 to fp128
215  %extra7 = fmul fp128 %mul7, %const7
216  %trunc7 = fptrunc fp128 %extra7 to double
217
218  %accext8 = fpext double %trunc7 to fp128
219  %ext8 = fpext double %frob8 to fp128
220  %mul8 = fmul fp128 %accext8, %ext8
221  %const8 = fpext double 1.81 to fp128
222  %extra8 = fmul fp128 %mul8, %const8
223  %trunc8 = fptrunc fp128 %extra8 to double
224
225  %accext9 = fpext double %trunc8 to fp128
226  %ext9 = fpext double %frob9 to fp128
227  %mul9 = fmul fp128 %accext9, %ext9
228  %const9 = fpext double 1.91 to fp128
229  %extra9 = fmul fp128 %mul9, %const9
230  %trunc9 = fptrunc fp128 %extra9 to double
231
232  ret double %trunc9
233}
234