Miscompilation.cpp revision 10ac377f7cbcf722ca9dd46865526f667213af74
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28#include "llvm/Config/config.h"   // for HAVE_LINK_R
29using namespace llvm;
30
31namespace llvm {
32  extern cl::list<std::string> InputArgv;
33}
34
35namespace {
36  static llvm::cl::opt<bool>
37    DisableLoopExtraction("disable-loop-extraction",
38        cl::desc("Don't extract loops when searching for miscompilations"),
39        cl::init(false));
40
41  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
42    BugDriver &BD;
43  public:
44    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
45
46    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
47                              std::vector<const PassInfo*> &Suffix);
48  };
49}
50
51/// TestResult - After passes have been split into a test group and a control
52/// group, see if they still break the program.
53///
54ReduceMiscompilingPasses::TestResult
55ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
56                                 std::vector<const PassInfo*> &Suffix) {
57  // First, run the program with just the Suffix passes.  If it is still broken
58  // with JUST the kept passes, discard the prefix passes.
59  std::cout << "Checking to see if '" << getPassesString(Suffix)
60            << "' compile correctly: ";
61
62  std::string BytecodeResult;
63  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
64    std::cerr << " Error running this sequence of passes"
65              << " on the input program!\n";
66    BD.setPassesToRun(Suffix);
67    BD.EmitProgressBytecode("pass-error",  false);
68    exit(BD.debugOptimizerCrash());
69  }
70
71  // Check to see if the finished program matches the reference output...
72  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
73    std::cout << " nope.\n";
74    if (Suffix.empty()) {
75      std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
76                << "no passes are run, nondeterministic program?\n";
77      exit(1);
78    }
79    return KeepSuffix;         // Miscompilation detected!
80  }
81  std::cout << " yup.\n";      // No miscompilation!
82
83  if (Prefix.empty()) return NoFailure;
84
85  // Next, see if the program is broken if we run the "prefix" passes first,
86  // then separately run the "kept" passes.
87  std::cout << "Checking to see if '" << getPassesString(Prefix)
88            << "' compile correctly: ";
89
90  // If it is not broken with the kept passes, it's possible that the prefix
91  // passes must be run before the kept passes to break it.  If the program
92  // WORKS after the prefix passes, but then fails if running the prefix AND
93  // kept passes, we can update our bytecode file to include the result of the
94  // prefix passes, then discard the prefix passes.
95  //
96  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
97    std::cerr << " Error running this sequence of passes"
98              << " on the input program!\n";
99    BD.setPassesToRun(Prefix);
100    BD.EmitProgressBytecode("pass-error",  false);
101    exit(BD.debugOptimizerCrash());
102  }
103
104  // If the prefix maintains the predicate by itself, only keep the prefix!
105  if (BD.diffProgram(BytecodeResult)) {
106    std::cout << " nope.\n";
107    sys::Path(BytecodeResult).eraseFromDisk();
108    return KeepPrefix;
109  }
110  std::cout << " yup.\n";      // No miscompilation!
111
112  // Ok, so now we know that the prefix passes work, try running the suffix
113  // passes on the result of the prefix passes.
114  //
115  Module *PrefixOutput = ParseInputFile(BytecodeResult);
116  if (PrefixOutput == 0) {
117    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
118              << BytecodeResult << "'!\n";
119    exit(1);
120  }
121  sys::Path(BytecodeResult).eraseFromDisk();  // No longer need the file on disk
122
123  // Don't check if there are no passes in the suffix.
124  if (Suffix.empty())
125    return NoFailure;
126
127  std::cout << "Checking to see if '" << getPassesString(Suffix)
128            << "' passes compile correctly after the '"
129            << getPassesString(Prefix) << "' passes: ";
130
131  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
132  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
133    std::cerr << " Error running this sequence of passes"
134              << " on the input program!\n";
135    BD.setPassesToRun(Suffix);
136    BD.EmitProgressBytecode("pass-error",  false);
137    exit(BD.debugOptimizerCrash());
138  }
139
140  // Run the result...
141  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
142    std::cout << " nope.\n";
143    delete OriginalInput;     // We pruned down the original input...
144    return KeepSuffix;
145  }
146
147  // Otherwise, we must not be running the bad pass anymore.
148  std::cout << " yup.\n";      // No miscompilation!
149  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
150  return NoFailure;
151}
152
153namespace {
154  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
155    BugDriver &BD;
156    bool (*TestFn)(BugDriver &, Module *, Module *);
157  public:
158    ReduceMiscompilingFunctions(BugDriver &bd,
159                                bool (*F)(BugDriver &, Module *, Module *))
160      : BD(bd), TestFn(F) {}
161
162    virtual TestResult doTest(std::vector<Function*> &Prefix,
163                              std::vector<Function*> &Suffix) {
164      if (!Suffix.empty() && TestFuncs(Suffix))
165        return KeepSuffix;
166      if (!Prefix.empty() && TestFuncs(Prefix))
167        return KeepPrefix;
168      return NoFailure;
169    }
170
171    bool TestFuncs(const std::vector<Function*> &Prefix);
172  };
173}
174
175/// TestMergedProgram - Given two modules, link them together and run the
176/// program, checking to see if the program matches the diff.  If the diff
177/// matches, return false, otherwise return true.  If the DeleteInputs argument
178/// is set to true then this function deletes both input modules before it
179/// returns.
180///
181static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
182                              bool DeleteInputs) {
183  // Link the two portions of the program back to together.
184  std::string ErrorMsg;
185  if (!DeleteInputs) {
186    M1 = CloneModule(M1);
187    M2 = CloneModule(M2);
188  }
189  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
190    std::cerr << BD.getToolName() << ": Error linking modules together:"
191              << ErrorMsg << '\n';
192    exit(1);
193  }
194  delete M2;   // We are done with this module.
195
196  Module *OldProgram = BD.swapProgramIn(M1);
197
198  // Execute the program.  If it does not match the expected output, we must
199  // return true.
200  bool Broken = BD.diffProgram();
201
202  // Delete the linked module & restore the original
203  BD.swapProgramIn(OldProgram);
204  delete M1;
205  return Broken;
206}
207
208/// TestFuncs - split functions in a Module into two groups: those that are
209/// under consideration for miscompilation vs. those that are not, and test
210/// accordingly. Each group of functions becomes a separate Module.
211///
212bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
213  // Test to see if the function is misoptimized if we ONLY run it on the
214  // functions listed in Funcs.
215  std::cout << "Checking to see if the program is misoptimized when "
216            << (Funcs.size()==1 ? "this function is" : "these functions are")
217            << " run through the pass"
218            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
219  PrintFunctionList(Funcs);
220  std::cout << '\n';
221
222  // Split the module into the two halves of the program we want.
223  Module *ToNotOptimize = CloneModule(BD.getProgram());
224  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
225
226  // Run the predicate, not that the predicate will delete both input modules.
227  return TestFn(BD, ToOptimize, ToNotOptimize);
228}
229
230/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
231/// modifying predominantly internal symbols rather than external ones.
232///
233static void DisambiguateGlobalSymbols(Module *M) {
234  // Try not to cause collisions by minimizing chances of renaming an
235  // already-external symbol, so take in external globals and functions as-is.
236  // The code should work correctly without disambiguation (assuming the same
237  // mangler is used by the two code generators), but having symbols with the
238  // same name causes warnings to be emitted by the code generator.
239  Mangler Mang(*M);
240  // Agree with the CBE on symbol naming
241  Mang.markCharUnacceptable('.');
242  Mang.setPreserveAsmNames(true);
243  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
244       I != E; ++I)
245    I->setName(Mang.getValueName(I));
246  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
247    I->setName(Mang.getValueName(I));
248}
249
250/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
251/// check to see if we can extract the loops in the region without obscuring the
252/// bug.  If so, it reduces the amount of code identified.
253///
254static bool ExtractLoops(BugDriver &BD,
255                         bool (*TestFn)(BugDriver &, Module *, Module *),
256                         std::vector<Function*> &MiscompiledFunctions) {
257  bool MadeChange = false;
258  while (1) {
259    if (BugpointIsInterrupted) return MadeChange;
260
261    Module *ToNotOptimize = CloneModule(BD.getProgram());
262    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
263                                                   MiscompiledFunctions);
264    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
265    if (!ToOptimizeLoopExtracted) {
266      // If the loop extractor crashed or if there were no extractible loops,
267      // then this chapter of our odyssey is over with.
268      delete ToNotOptimize;
269      delete ToOptimize;
270      return MadeChange;
271    }
272
273    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
274
275    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
276    // particular, we're not going to assume that the loop extractor works, so
277    // we're going to test the newly loop extracted program to make sure nothing
278    // has broken.  If something broke, then we'll inform the user and stop
279    // extraction.
280    AbstractInterpreter *AI = BD.switchToCBE();
281    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
282      BD.switchToInterpreter(AI);
283
284      // Merged program doesn't work anymore!
285      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
286                << " Please report a bug!\n";
287      std::cerr << "      Continuing on with un-loop-extracted version.\n";
288
289      BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
290      BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
291      BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
292                            ToOptimizeLoopExtracted);
293
294      std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
295      delete ToOptimize;
296      delete ToNotOptimize;
297      delete ToOptimizeLoopExtracted;
298      return MadeChange;
299    }
300    delete ToOptimize;
301    BD.switchToInterpreter(AI);
302
303    std::cout << "  Testing after loop extraction:\n";
304    // Clone modules, the tester function will free them.
305    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
306    Module *TNOBackup  = CloneModule(ToNotOptimize);
307    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
308      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
309      // If the program is not still broken, then loop extraction did something
310      // that masked the error.  Stop loop extraction now.
311      delete TOLEBackup;
312      delete TNOBackup;
313      return MadeChange;
314    }
315    ToOptimizeLoopExtracted = TOLEBackup;
316    ToNotOptimize = TNOBackup;
317
318    std::cout << "*** Loop extraction successful!\n";
319
320    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
321    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
322           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
323      if (!I->isDeclaration())
324        MisCompFunctions.push_back(std::make_pair(I->getName(),
325                                                  I->getFunctionType()));
326
327    // Okay, great!  Now we know that we extracted a loop and that loop
328    // extraction both didn't break the program, and didn't mask the problem.
329    // Replace the current program with the loop extracted version, and try to
330    // extract another loop.
331    std::string ErrorMsg;
332    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
333      std::cerr << BD.getToolName() << ": Error linking modules together:"
334                << ErrorMsg << '\n';
335      exit(1);
336    }
337    delete ToOptimizeLoopExtracted;
338
339    // All of the Function*'s in the MiscompiledFunctions list are in the old
340    // module.  Update this list to include all of the functions in the
341    // optimized and loop extracted module.
342    MiscompiledFunctions.clear();
343    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
344      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
345
346      assert(NewF && "Function not found??");
347      assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
348             "found wrong function type?");
349      MiscompiledFunctions.push_back(NewF);
350    }
351
352    BD.setNewProgram(ToNotOptimize);
353    MadeChange = true;
354  }
355}
356
357namespace {
358  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
359    BugDriver &BD;
360    bool (*TestFn)(BugDriver &, Module *, Module *);
361    std::vector<Function*> FunctionsBeingTested;
362  public:
363    ReduceMiscompiledBlocks(BugDriver &bd,
364                            bool (*F)(BugDriver &, Module *, Module *),
365                            const std::vector<Function*> &Fns)
366      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
367
368    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
369                              std::vector<BasicBlock*> &Suffix) {
370      if (!Suffix.empty() && TestFuncs(Suffix))
371        return KeepSuffix;
372      if (TestFuncs(Prefix))
373        return KeepPrefix;
374      return NoFailure;
375    }
376
377    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
378  };
379}
380
381/// TestFuncs - Extract all blocks for the miscompiled functions except for the
382/// specified blocks.  If the problem still exists, return true.
383///
384bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
385  // Test to see if the function is misoptimized if we ONLY run it on the
386  // functions listed in Funcs.
387  std::cout << "Checking to see if the program is misoptimized when all ";
388  if (!BBs.empty()) {
389    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
390    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
391      std::cout << BBs[i]->getName() << " ";
392    if (BBs.size() > 10) std::cout << "...";
393  } else {
394    std::cout << "blocks are extracted.";
395  }
396  std::cout << '\n';
397
398  // Split the module into the two halves of the program we want.
399  Module *ToNotOptimize = CloneModule(BD.getProgram());
400  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
401                                                 FunctionsBeingTested);
402
403  // Try the extraction.  If it doesn't work, then the block extractor crashed
404  // or something, in which case bugpoint can't chase down this possibility.
405  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
406    delete ToOptimize;
407    // Run the predicate, not that the predicate will delete both input modules.
408    return TestFn(BD, New, ToNotOptimize);
409  }
410  delete ToOptimize;
411  delete ToNotOptimize;
412  return false;
413}
414
415
416/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
417/// extract as many basic blocks from the region as possible without obscuring
418/// the bug.
419///
420static bool ExtractBlocks(BugDriver &BD,
421                          bool (*TestFn)(BugDriver &, Module *, Module *),
422                          std::vector<Function*> &MiscompiledFunctions) {
423  if (BugpointIsInterrupted) return false;
424
425  std::vector<BasicBlock*> Blocks;
426  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
427    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
428           E = MiscompiledFunctions[i]->end(); I != E; ++I)
429      Blocks.push_back(I);
430
431  // Use the list reducer to identify blocks that can be extracted without
432  // obscuring the bug.  The Blocks list will end up containing blocks that must
433  // be retained from the original program.
434  unsigned OldSize = Blocks.size();
435
436  // Check to see if all blocks are extractible first.
437  if (ReduceMiscompiledBlocks(BD, TestFn,
438                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
439    Blocks.clear();
440  } else {
441    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
442    if (Blocks.size() == OldSize)
443      return false;
444  }
445
446  Module *ProgClone = CloneModule(BD.getProgram());
447  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
448                                                MiscompiledFunctions);
449  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
450  if (Extracted == 0) {
451    // Weird, extraction should have worked.
452    std::cerr << "Nondeterministic problem extracting blocks??\n";
453    delete ProgClone;
454    delete ToExtract;
455    return false;
456  }
457
458  // Otherwise, block extraction succeeded.  Link the two program fragments back
459  // together.
460  delete ToExtract;
461
462  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
463  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
464       I != E; ++I)
465    if (!I->isDeclaration())
466      MisCompFunctions.push_back(std::make_pair(I->getName(),
467                                                I->getFunctionType()));
468
469  std::string ErrorMsg;
470  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
471    std::cerr << BD.getToolName() << ": Error linking modules together:"
472              << ErrorMsg << '\n';
473    exit(1);
474  }
475  delete Extracted;
476
477  // Set the new program and delete the old one.
478  BD.setNewProgram(ProgClone);
479
480  // Update the list of miscompiled functions.
481  MiscompiledFunctions.clear();
482
483  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
484    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
485    assert(NewF && "Function not found??");
486    assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
487           "Function has wrong type??");
488    MiscompiledFunctions.push_back(NewF);
489  }
490
491  return true;
492}
493
494
495/// DebugAMiscompilation - This is a generic driver to narrow down
496/// miscompilations, either in an optimization or a code generator.
497///
498static std::vector<Function*>
499DebugAMiscompilation(BugDriver &BD,
500                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
501  // Okay, now that we have reduced the list of passes which are causing the
502  // failure, see if we can pin down which functions are being
503  // miscompiled... first build a list of all of the non-external functions in
504  // the program.
505  std::vector<Function*> MiscompiledFunctions;
506  Module *Prog = BD.getProgram();
507  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
508    if (!I->isDeclaration())
509      MiscompiledFunctions.push_back(I);
510
511  // Do the reduction...
512  if (!BugpointIsInterrupted)
513    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
514
515  std::cout << "\n*** The following function"
516            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
517            << " being miscompiled: ";
518  PrintFunctionList(MiscompiledFunctions);
519  std::cout << '\n';
520
521  // See if we can rip any loops out of the miscompiled functions and still
522  // trigger the problem.
523
524  if (!BugpointIsInterrupted && !DisableLoopExtraction &&
525      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
526    // Okay, we extracted some loops and the problem still appears.  See if we
527    // can eliminate some of the created functions from being candidates.
528
529    // Loop extraction can introduce functions with the same name (foo_code).
530    // Make sure to disambiguate the symbols so that when the program is split
531    // apart that we can link it back together again.
532    DisambiguateGlobalSymbols(BD.getProgram());
533
534    // Do the reduction...
535    if (!BugpointIsInterrupted)
536      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
537
538    std::cout << "\n*** The following function"
539              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
540              << " being miscompiled: ";
541    PrintFunctionList(MiscompiledFunctions);
542    std::cout << '\n';
543  }
544
545  if (!BugpointIsInterrupted &&
546      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
547    // Okay, we extracted some blocks and the problem still appears.  See if we
548    // can eliminate some of the created functions from being candidates.
549
550    // Block extraction can introduce functions with the same name (foo_code).
551    // Make sure to disambiguate the symbols so that when the program is split
552    // apart that we can link it back together again.
553    DisambiguateGlobalSymbols(BD.getProgram());
554
555    // Do the reduction...
556    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
557
558    std::cout << "\n*** The following function"
559              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
560              << " being miscompiled: ";
561    PrintFunctionList(MiscompiledFunctions);
562    std::cout << '\n';
563  }
564
565  return MiscompiledFunctions;
566}
567
568/// TestOptimizer - This is the predicate function used to check to see if the
569/// "Test" portion of the program is misoptimized.  If so, return true.  In any
570/// case, both module arguments are deleted.
571///
572static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
573  // Run the optimization passes on ToOptimize, producing a transformed version
574  // of the functions being tested.
575  std::cout << "  Optimizing functions being tested: ";
576  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
577                                     /*AutoDebugCrashes*/true);
578  std::cout << "done.\n";
579  delete Test;
580
581  std::cout << "  Checking to see if the merged program executes correctly: ";
582  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
583  std::cout << (Broken ? " nope.\n" : " yup.\n");
584  return Broken;
585}
586
587
588/// debugMiscompilation - This method is used when the passes selected are not
589/// crashing, but the generated output is semantically different from the
590/// input.
591///
592bool BugDriver::debugMiscompilation() {
593  // Make sure something was miscompiled...
594  if (!BugpointIsInterrupted)
595    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
596      std::cerr << "*** Optimized program matches reference output!  No problem"
597                << " detected...\nbugpoint can't help you with your problem!\n";
598      return false;
599    }
600
601  std::cout << "\n*** Found miscompiling pass"
602            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
603            << getPassesString(getPassesToRun()) << '\n';
604  EmitProgressBytecode("passinput");
605
606  std::vector<Function*> MiscompiledFunctions =
607    DebugAMiscompilation(*this, TestOptimizer);
608
609  // Output a bunch of bytecode files for the user...
610  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
611  Module *ToNotOptimize = CloneModule(getProgram());
612  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
613                                                 MiscompiledFunctions);
614
615  std::cout << "  Non-optimized portion: ";
616  ToNotOptimize = swapProgramIn(ToNotOptimize);
617  EmitProgressBytecode("tonotoptimize", true);
618  setNewProgram(ToNotOptimize);   // Delete hacked module.
619
620  std::cout << "  Portion that is input to optimizer: ";
621  ToOptimize = swapProgramIn(ToOptimize);
622  EmitProgressBytecode("tooptimize");
623  setNewProgram(ToOptimize);      // Delete hacked module.
624
625  return false;
626}
627
628/// CleanupAndPrepareModules - Get the specified modules ready for code
629/// generator testing.
630///
631static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
632                                     Module *Safe) {
633  // Clean up the modules, removing extra cruft that we don't need anymore...
634  Test = BD.performFinalCleanups(Test);
635
636  // If we are executing the JIT, we have several nasty issues to take care of.
637  if (!BD.isExecutingJIT()) return;
638
639  // First, if the main function is in the Safe module, we must add a stub to
640  // the Test module to call into it.  Thus, we create a new function `main'
641  // which just calls the old one.
642  if (Function *oldMain = Safe->getFunction("main"))
643    if (!oldMain->isDeclaration()) {
644      // Rename it
645      oldMain->setName("llvm_bugpoint_old_main");
646      // Create a NEW `main' function with same type in the test module.
647      Function *newMain = new Function(oldMain->getFunctionType(),
648                                       GlobalValue::ExternalLinkage,
649                                       "main", Test);
650      // Create an `oldmain' prototype in the test module, which will
651      // corresponds to the real main function in the same module.
652      Function *oldMainProto = new Function(oldMain->getFunctionType(),
653                                            GlobalValue::ExternalLinkage,
654                                            oldMain->getName(), Test);
655      // Set up and remember the argument list for the main function.
656      std::vector<Value*> args;
657      for (Function::arg_iterator
658             I = newMain->arg_begin(), E = newMain->arg_end(),
659             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
660        I->setName(OI->getName());    // Copy argument names from oldMain
661        args.push_back(I);
662      }
663
664      // Call the old main function and return its result
665      BasicBlock *BB = new BasicBlock("entry", newMain);
666      CallInst *call = new CallInst(oldMainProto, &args[0], args.size(),
667                                    "", BB);
668
669      // If the type of old function wasn't void, return value of call
670      new ReturnInst(call, BB);
671    }
672
673  // The second nasty issue we must deal with in the JIT is that the Safe
674  // module cannot directly reference any functions defined in the test
675  // module.  Instead, we use a JIT API call to dynamically resolve the
676  // symbol.
677
678  // Add the resolver to the Safe module.
679  // Prototype: void *getPointerToNamedFunction(const char* Name)
680  Constant *resolverFunc =
681    Safe->getOrInsertFunction("getPointerToNamedFunction",
682                              PointerType::get(Type::Int8Ty),
683                              PointerType::get(Type::Int8Ty), (Type *)0);
684
685  // Use the function we just added to get addresses of functions we need.
686  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
687    if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
688        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
689      Function *TestFn = Test->getFunction(F->getName());
690
691      // Don't forward functions which are external in the test module too.
692      if (TestFn && !TestFn->isDeclaration()) {
693        // 1. Add a string constant with its name to the global file
694        Constant *InitArray = ConstantArray::get(F->getName());
695        GlobalVariable *funcName =
696          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
697                             GlobalValue::InternalLinkage, InitArray,
698                             F->getName() + "_name", Safe);
699
700        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
701        // sbyte* so it matches the signature of the resolver function.
702
703        // GetElementPtr *funcName, ulong 0, ulong 0
704        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::Int32Ty));
705        Value *GEP =
706          ConstantExpr::getGetElementPtr(funcName, GEPargs);
707        std::vector<Value*> ResolverArgs;
708        ResolverArgs.push_back(GEP);
709
710        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
711        // function that dynamically resolves the calls to F via our JIT API
712        if (!F->use_empty()) {
713          // Create a new global to hold the cached function pointer.
714          Constant *NullPtr = ConstantPointerNull::get(F->getType());
715          GlobalVariable *Cache =
716            new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
717                               NullPtr,F->getName()+".fpcache", F->getParent());
718
719          // Construct a new stub function that will re-route calls to F
720          const FunctionType *FuncTy = F->getFunctionType();
721          Function *FuncWrapper = new Function(FuncTy,
722                                               GlobalValue::InternalLinkage,
723                                               F->getName() + "_wrapper",
724                                               F->getParent());
725          BasicBlock *EntryBB  = new BasicBlock("entry", FuncWrapper);
726          BasicBlock *DoCallBB = new BasicBlock("usecache", FuncWrapper);
727          BasicBlock *LookupBB = new BasicBlock("lookupfp", FuncWrapper);
728
729          // Check to see if we already looked up the value.
730          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
731          Value *IsNull = new ICmpInst(ICmpInst::ICMP_EQ, CachedVal,
732                                       NullPtr, "isNull", EntryBB);
733          new BranchInst(LookupBB, DoCallBB, IsNull, EntryBB);
734
735          // Resolve the call to function F via the JIT API:
736          //
737          // call resolver(GetElementPtr...)
738          CallInst *Resolver = new CallInst(resolverFunc, &ResolverArgs[0],
739                                            ResolverArgs.size(),
740                                            "resolver", LookupBB);
741          // cast the result from the resolver to correctly-typed function
742          CastInst *CastedResolver = new BitCastInst(Resolver,
743            PointerType::get(F->getFunctionType()), "resolverCast", LookupBB);
744
745          // Save the value in our cache.
746          new StoreInst(CastedResolver, Cache, LookupBB);
747          new BranchInst(DoCallBB, LookupBB);
748
749          PHINode *FuncPtr = new PHINode(NullPtr->getType(), "fp", DoCallBB);
750          FuncPtr->addIncoming(CastedResolver, LookupBB);
751          FuncPtr->addIncoming(CachedVal, EntryBB);
752
753          // Save the argument list.
754          std::vector<Value*> Args;
755          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
756                 e = FuncWrapper->arg_end(); i != e; ++i)
757            Args.push_back(i);
758
759          // Pass on the arguments to the real function, return its result
760          if (F->getReturnType() == Type::VoidTy) {
761            new CallInst(FuncPtr, &Args[0], Args.size(), "", DoCallBB);
762            new ReturnInst(DoCallBB);
763          } else {
764            CallInst *Call = new CallInst(FuncPtr, &Args[0], Args.size(),
765                                          "retval", DoCallBB);
766            new ReturnInst(Call, DoCallBB);
767          }
768
769          // Use the wrapper function instead of the old function
770          F->replaceAllUsesWith(FuncWrapper);
771        }
772      }
773    }
774  }
775
776  if (verifyModule(*Test) || verifyModule(*Safe)) {
777    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
778    abort();
779  }
780}
781
782
783
784/// TestCodeGenerator - This is the predicate function used to check to see if
785/// the "Test" portion of the program is miscompiled by the code generator under
786/// test.  If so, return true.  In any case, both module arguments are deleted.
787///
788static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
789  CleanupAndPrepareModules(BD, Test, Safe);
790
791  sys::Path TestModuleBC("bugpoint.test.bc");
792  std::string ErrMsg;
793  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
794    std::cerr << BD.getToolName() << "Error making unique filename: "
795              << ErrMsg << "\n";
796    exit(1);
797  }
798  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
799    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
800    exit(1);
801  }
802  delete Test;
803
804  // Make the shared library
805  sys::Path SafeModuleBC("bugpoint.safe.bc");
806  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
807    std::cerr << BD.getToolName() << "Error making unique filename: "
808              << ErrMsg << "\n";
809    exit(1);
810  }
811
812  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
813    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
814    exit(1);
815  }
816  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
817  delete Safe;
818
819  // Run the code generator on the `Test' code, loading the shared library.
820  // The function returns whether or not the new output differs from reference.
821  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
822
823  if (Result)
824    std::cerr << ": still failing!\n";
825  else
826    std::cerr << ": didn't fail.\n";
827  TestModuleBC.eraseFromDisk();
828  SafeModuleBC.eraseFromDisk();
829  sys::Path(SharedObject).eraseFromDisk();
830
831  return Result;
832}
833
834
835/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
836///
837bool BugDriver::debugCodeGenerator() {
838  if ((void*)cbe == (void*)Interpreter) {
839    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
840    std::cout << "\n*** The C backend cannot match the reference diff, but it "
841              << "is used as the 'known good'\n    code generator, so I can't"
842              << " debug it.  Perhaps you have a front-end problem?\n    As a"
843              << " sanity check, I left the result of executing the program "
844              << "with the C backend\n    in this file for you: '"
845              << Result << "'.\n";
846    return true;
847  }
848
849  DisambiguateGlobalSymbols(Program);
850
851  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
852
853  // Split the module into the two halves of the program we want.
854  Module *ToNotCodeGen = CloneModule(getProgram());
855  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
856
857  // Condition the modules
858  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
859
860  sys::Path TestModuleBC("bugpoint.test.bc");
861  std::string ErrMsg;
862  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
863    std::cerr << getToolName() << "Error making unique filename: "
864              << ErrMsg << "\n";
865    exit(1);
866  }
867
868  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
869    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
870    exit(1);
871  }
872  delete ToCodeGen;
873
874  // Make the shared library
875  sys::Path SafeModuleBC("bugpoint.safe.bc");
876  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
877    std::cerr << getToolName() << "Error making unique filename: "
878              << ErrMsg << "\n";
879    exit(1);
880  }
881
882  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
883    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
884    exit(1);
885  }
886  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
887  delete ToNotCodeGen;
888
889  std::cout << "You can reproduce the problem with the command line: \n";
890  if (isExecutingJIT()) {
891    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
892  } else {
893    std::cout << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
894    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
895              << ".s -o " << TestModuleBC << ".exe";
896#if defined (HAVE_LINK_R)
897    std::cout << " -Wl,-R.";
898#endif
899    std::cout << "\n";
900    std::cout << "  " << TestModuleBC << ".exe";
901  }
902  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
903    std::cout << " " << InputArgv[i];
904  std::cout << '\n';
905  std::cout << "The shared object was created with:\n  llc -march=c "
906            << SafeModuleBC << " -o temporary.c\n"
907            << "  gcc -xc temporary.c -O2 -o " << SharedObject
908#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
909            << " -G"            // Compile a shared library, `-G' for Sparc
910#else
911            << " -shared"       // `-shared' for Linux/X86, maybe others
912#endif
913            << " -fno-strict-aliasing\n";
914
915  return false;
916}
917