Miscompilation.cpp revision 36ee07ff9d26a2c6ebf9faf9ba90923644db29c5
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/Verifier.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Linker.h"
26#include "Support/CommandLine.h"
27#include "Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32}
33
34namespace {
35  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
36    BugDriver &BD;
37  public:
38    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
39
40    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
41                              std::vector<const PassInfo*> &Suffix);
42  };
43}
44
45ReduceMiscompilingPasses::TestResult
46ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
47                                 std::vector<const PassInfo*> &Suffix) {
48  // First, run the program with just the Suffix passes.  If it is still broken
49  // with JUST the kept passes, discard the prefix passes.
50  std::cout << "Checking to see if '" << getPassesString(Suffix)
51            << "' compile correctly: ";
52
53  std::string BytecodeResult;
54  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
55    std::cerr << " Error running this sequence of passes"
56              << " on the input program!\n";
57    BD.setPassesToRun(Suffix);
58    BD.EmitProgressBytecode("pass-error",  false);
59    exit(BD.debugOptimizerCrash());
60  }
61
62  // Check to see if the finished program matches the reference output...
63  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
64    std::cout << "nope.\n";
65    return KeepSuffix;        // Miscompilation detected!
66  }
67  std::cout << "yup.\n";      // No miscompilation!
68
69  if (Prefix.empty()) return NoFailure;
70
71  // Next, see if the program is broken if we run the "prefix" passes first,
72  // then separately run the "kept" passes.
73  std::cout << "Checking to see if '" << getPassesString(Prefix)
74            << "' compile correctly: ";
75
76  // If it is not broken with the kept passes, it's possible that the prefix
77  // passes must be run before the kept passes to break it.  If the program
78  // WORKS after the prefix passes, but then fails if running the prefix AND
79  // kept passes, we can update our bytecode file to include the result of the
80  // prefix passes, then discard the prefix passes.
81  //
82  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
83    std::cerr << " Error running this sequence of passes"
84              << " on the input program!\n";
85    BD.setPassesToRun(Prefix);
86    BD.EmitProgressBytecode("pass-error",  false);
87    exit(BD.debugOptimizerCrash());
88  }
89
90  // If the prefix maintains the predicate by itself, only keep the prefix!
91  if (BD.diffProgram(BytecodeResult)) {
92    std::cout << "nope.\n";
93    removeFile(BytecodeResult);
94    return KeepPrefix;
95  }
96  std::cout << "yup.\n";      // No miscompilation!
97
98  // Ok, so now we know that the prefix passes work, try running the suffix
99  // passes on the result of the prefix passes.
100  //
101  Module *PrefixOutput = ParseInputFile(BytecodeResult);
102  if (PrefixOutput == 0) {
103    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
104              << BytecodeResult << "'!\n";
105    exit(1);
106  }
107  removeFile(BytecodeResult);  // No longer need the file on disk
108
109  std::cout << "Checking to see if '" << getPassesString(Suffix)
110            << "' passes compile correctly after the '"
111            << getPassesString(Prefix) << "' passes: ";
112
113  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
114  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
115    std::cerr << " Error running this sequence of passes"
116              << " on the input program!\n";
117    BD.setPassesToRun(Suffix);
118    BD.EmitProgressBytecode("pass-error",  false);
119    exit(BD.debugOptimizerCrash());
120  }
121
122  // Run the result...
123  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
124    std::cout << "nope.\n";
125    delete OriginalInput;     // We pruned down the original input...
126    return KeepSuffix;
127  }
128
129  // Otherwise, we must not be running the bad pass anymore.
130  std::cout << "yup.\n";      // No miscompilation!
131  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
132  return NoFailure;
133}
134
135namespace {
136  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
137    BugDriver &BD;
138    bool (*TestFn)(BugDriver &, Module *, Module *);
139  public:
140    ReduceMiscompilingFunctions(BugDriver &bd,
141                                bool (*F)(BugDriver &, Module *, Module *))
142      : BD(bd), TestFn(F) {}
143
144    virtual TestResult doTest(std::vector<Function*> &Prefix,
145                              std::vector<Function*> &Suffix) {
146      if (!Suffix.empty() && TestFuncs(Suffix))
147        return KeepSuffix;
148      if (!Prefix.empty() && TestFuncs(Prefix))
149        return KeepPrefix;
150      return NoFailure;
151    }
152
153    bool TestFuncs(const std::vector<Function*> &Prefix);
154  };
155}
156
157/// TestMergedProgram - Given two modules, link them together and run the
158/// program, checking to see if the program matches the diff.  If the diff
159/// matches, return false, otherwise return true.  If the DeleteInputs argument
160/// is set to true then this function deletes both input modules before it
161/// returns.
162static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
163                              bool DeleteInputs) {
164  // Link the two portions of the program back to together.
165  std::string ErrorMsg;
166  if (!DeleteInputs) M1 = CloneModule(M1);
167  if (LinkModules(M1, M2, &ErrorMsg)) {
168    std::cerr << BD.getToolName() << ": Error linking modules together:"
169              << ErrorMsg << "\n";
170    exit(1);
171  }
172  if (DeleteInputs) delete M2;  // We are done with this module...
173
174  Module *OldProgram = BD.swapProgramIn(M1);
175
176  // Execute the program.  If it does not match the expected output, we must
177  // return true.
178  bool Broken = BD.diffProgram();
179
180  // Delete the linked module & restore the original
181  BD.swapProgramIn(OldProgram);
182  delete M1;
183  return Broken;
184}
185
186bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
187  // Test to see if the function is misoptimized if we ONLY run it on the
188  // functions listed in Funcs.
189  std::cout << "Checking to see if the program is misoptimized when "
190            << (Funcs.size()==1 ? "this function is" : "these functions are")
191            << " run through the pass"
192            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
193  PrintFunctionList(Funcs);
194  std::cout << "\n";
195
196  // Split the module into the two halves of the program we want.
197  Module *ToNotOptimize = CloneModule(BD.getProgram());
198  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
199
200  // Run the predicate, not that the predicate will delete both input modules.
201  return TestFn(BD, ToOptimize, ToNotOptimize);
202}
203
204static void DisambiguateGlobalSymbols(Module *M) {
205  // Try not to cause collisions by minimizing chances of renaming an
206  // already-external symbol, so take in external globals and functions as-is.
207  // The code should work correctly without disambiguation (assuming the same
208  // mangler is used by the two code generators), but having symbols with the
209  // same name causes warnings to be emitted by the code generator.
210  Mangler Mang(*M);
211  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
212    I->setName(Mang.getValueName(I));
213  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
214    I->setName(Mang.getValueName(I));
215}
216
217/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
218/// check to see if we can extract the loops in the region without obscuring the
219/// bug.  If so, it reduces the amount of code identified.
220static bool ExtractLoops(BugDriver &BD,
221                         bool (*TestFn)(BugDriver &, Module *, Module *),
222                         std::vector<Function*> &MiscompiledFunctions) {
223  bool MadeChange = false;
224  while (1) {
225    Module *ToNotOptimize = CloneModule(BD.getProgram());
226    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
227                                                   MiscompiledFunctions);
228    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
229    if (!ToOptimizeLoopExtracted) {
230      // If the loop extractor crashed or if there were no extractible loops,
231      // then this chapter of our odyssey is over with.
232      delete ToNotOptimize;
233      delete ToOptimize;
234      return MadeChange;
235    }
236
237    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
238    delete ToOptimize;
239
240    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
241    // particular, we're not going to assume that the loop extractor works, so
242    // we're going to test the newly loop extracted program to make sure nothing
243    // has broken.  If something broke, then we'll inform the user and stop
244    // extraction.
245    AbstractInterpreter *AI = BD.switchToCBE();
246    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
247      BD.switchToInterpreter(AI);
248
249      // Merged program doesn't work anymore!
250      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
251                << " Please report a bug!\n";
252      std::cerr << "      Continuing on with un-loop-extracted version.\n";
253      delete ToNotOptimize;
254      delete ToOptimizeLoopExtracted;
255      return MadeChange;
256    }
257    BD.switchToInterpreter(AI);
258
259    std::cout << "  Testing after loop extraction:\n";
260    // Clone modules, the tester function will free them.
261    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
262    Module *TNOBackup  = CloneModule(ToNotOptimize);
263    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
264      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
265      // If the program is not still broken, then loop extraction did something
266      // that masked the error.  Stop loop extraction now.
267      delete TOLEBackup;
268      delete TNOBackup;
269      return MadeChange;
270    }
271    ToOptimizeLoopExtracted = TOLEBackup;
272    ToNotOptimize = TNOBackup;
273
274    std::cout << "*** Loop extraction successful!\n";
275
276    // Okay, great!  Now we know that we extracted a loop and that loop
277    // extraction both didn't break the program, and didn't mask the problem.
278    // Replace the current program with the loop extracted version, and try to
279    // extract another loop.
280    std::string ErrorMsg;
281    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
282      std::cerr << BD.getToolName() << ": Error linking modules together:"
283                << ErrorMsg << "\n";
284      exit(1);
285    }
286
287    // All of the Function*'s in the MiscompiledFunctions list are in the old
288    // module.  Update this list to include all of the functions in the
289    // optimized and loop extracted module.
290    MiscompiledFunctions.clear();
291    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
292           E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
293      if (!I->isExternal()) {
294        Function *NewF = ToNotOptimize->getFunction(I->getName(),
295                                                    I->getFunctionType());
296        assert(NewF && "Function not found??");
297        MiscompiledFunctions.push_back(NewF);
298      }
299    }
300    delete ToOptimizeLoopExtracted;
301
302    BD.setNewProgram(ToNotOptimize);
303    MadeChange = true;
304  }
305}
306
307/// DebugAMiscompilation - This is a generic driver to narrow down
308/// miscompilations, either in an optimization or a code generator.
309static std::vector<Function*>
310DebugAMiscompilation(BugDriver &BD,
311                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
312  // Okay, now that we have reduced the list of passes which are causing the
313  // failure, see if we can pin down which functions are being
314  // miscompiled... first build a list of all of the non-external functions in
315  // the program.
316  std::vector<Function*> MiscompiledFunctions;
317  Module *Prog = BD.getProgram();
318  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
319    if (!I->isExternal())
320      MiscompiledFunctions.push_back(I);
321
322  // Do the reduction...
323  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
324
325  std::cout << "\n*** The following function"
326            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
327            << " being miscompiled: ";
328  PrintFunctionList(MiscompiledFunctions);
329  std::cout << "\n";
330
331  // See if we can rip any loops out of the miscompiled functions and still
332  // trigger the problem.
333  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
334    // Okay, we extracted some loops and the problem still appears.  See if we
335    // can eliminate some of the created functions from being candidates.
336
337    // Loop extraction can introduce functions with the same name (foo_code).
338    // Make sure to disambiguate the symbols so that when the program is split
339    // apart that we can link it back together again.
340    DisambiguateGlobalSymbols(BD.getProgram());
341
342    // Do the reduction...
343    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
344
345    std::cout << "\n*** The following function"
346              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
347              << " being miscompiled: ";
348    PrintFunctionList(MiscompiledFunctions);
349    std::cout << "\n";
350  }
351
352  return MiscompiledFunctions;
353}
354
355/// TestOptimizer - This is the predicate function used to check to see if the
356/// "Test" portion of the program is misoptimized.  If so, return true.  In any
357/// case, both module arguments are deleted.
358static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
359  // Run the optimization passes on ToOptimize, producing a transformed version
360  // of the functions being tested.
361  std::cout << "  Optimizing functions being tested: ";
362  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
363                                     /*AutoDebugCrashes*/true);
364  std::cout << "done.\n";
365  delete Test;
366
367  std::cout << "  Checking to see if the merged program executes correctly: ";
368  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
369  std::cout << (Broken ? " nope.\n" : " yup.\n");
370  return Broken;
371}
372
373
374/// debugMiscompilation - This method is used when the passes selected are not
375/// crashing, but the generated output is semantically different from the
376/// input.
377///
378bool BugDriver::debugMiscompilation() {
379  // Make sure something was miscompiled...
380  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
381    std::cerr << "*** Optimized program matches reference output!  No problem "
382	      << "detected...\nbugpoint can't help you with your problem!\n";
383    return false;
384  }
385
386  std::cout << "\n*** Found miscompiling pass"
387            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
388            << getPassesString(getPassesToRun()) << "\n";
389  EmitProgressBytecode("passinput");
390
391  std::vector<Function*> MiscompiledFunctions =
392    DebugAMiscompilation(*this, TestOptimizer);
393
394  // Output a bunch of bytecode files for the user...
395  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
396  Module *ToNotOptimize = CloneModule(getProgram());
397  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
398                                                 MiscompiledFunctions);
399
400  std::cout << "  Non-optimized portion: ";
401  ToNotOptimize = swapProgramIn(ToNotOptimize);
402  EmitProgressBytecode("tonotoptimize", true);
403  setNewProgram(ToNotOptimize);   // Delete hacked module.
404
405  std::cout << "  Portion that is input to optimizer: ";
406  ToOptimize = swapProgramIn(ToOptimize);
407  EmitProgressBytecode("tooptimize");
408  setNewProgram(ToOptimize);      // Delete hacked module.
409
410  return false;
411}
412
413/// CleanupAndPrepareModules - Get the specified modules ready for code
414/// generator testing.
415static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
416                                     Module *Safe) {
417  // Clean up the modules, removing extra cruft that we don't need anymore...
418  Test = BD.performFinalCleanups(Test);
419
420  // If we are executing the JIT, we have several nasty issues to take care of.
421  if (!BD.isExecutingJIT()) return;
422
423  // First, if the main function is in the Safe module, we must add a stub to
424  // the Test module to call into it.  Thus, we create a new function `main'
425  // which just calls the old one.
426  if (Function *oldMain = Safe->getNamedFunction("main"))
427    if (!oldMain->isExternal()) {
428      // Rename it
429      oldMain->setName("llvm_bugpoint_old_main");
430      // Create a NEW `main' function with same type in the test module.
431      Function *newMain = new Function(oldMain->getFunctionType(),
432                                       GlobalValue::ExternalLinkage,
433                                       "main", Test);
434      // Create an `oldmain' prototype in the test module, which will
435      // corresponds to the real main function in the same module.
436      Function *oldMainProto = new Function(oldMain->getFunctionType(),
437                                            GlobalValue::ExternalLinkage,
438                                            oldMain->getName(), Test);
439      // Set up and remember the argument list for the main function.
440      std::vector<Value*> args;
441      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
442             OI = oldMain->abegin(); I != E; ++I, ++OI) {
443        I->setName(OI->getName());    // Copy argument names from oldMain
444        args.push_back(I);
445      }
446
447      // Call the old main function and return its result
448      BasicBlock *BB = new BasicBlock("entry", newMain);
449      CallInst *call = new CallInst(oldMainProto, args);
450      BB->getInstList().push_back(call);
451
452      // If the type of old function wasn't void, return value of call
453      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
454    }
455
456  // The second nasty issue we must deal with in the JIT is that the Safe
457  // module cannot directly reference any functions defined in the test
458  // module.  Instead, we use a JIT API call to dynamically resolve the
459  // symbol.
460
461  // Add the resolver to the Safe module.
462  // Prototype: void *getPointerToNamedFunction(const char* Name)
463  Function *resolverFunc =
464    Safe->getOrInsertFunction("getPointerToNamedFunction",
465                              PointerType::get(Type::SByteTy),
466                              PointerType::get(Type::SByteTy), 0);
467
468  // Use the function we just added to get addresses of functions we need.
469  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F){
470    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
471        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
472      Function *TestFn =Test->getFunction(F->getName(), F->getFunctionType());
473
474      // Don't forward functions which are external in the test module too.
475      if (TestFn && !TestFn->isExternal()) {
476        // 1. Add a string constant with its name to the global file
477        Constant *InitArray = ConstantArray::get(F->getName());
478        GlobalVariable *funcName =
479          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
480                             GlobalValue::InternalLinkage, InitArray,
481                             F->getName() + "_name", Safe);
482
483        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
484        // sbyte* so it matches the signature of the resolver function.
485
486        // GetElementPtr *funcName, ulong 0, ulong 0
487        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
488        Value *GEP =
489          ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
490                                         GEPargs);
491        std::vector<Value*> ResolverArgs;
492        ResolverArgs.push_back(GEP);
493
494        // 3. Replace all uses of `func' with calls to resolver by:
495        // (a) Iterating through the list of uses of this function
496        // (b) Insert a cast instruction in front of each use
497        // (c) Replace use of old call with new call
498
499        // Insert code at the beginning of the function
500        while (!F->use_empty())
501          if (Instruction *Inst = dyn_cast<Instruction>(F->use_back())) {
502            // call resolver(GetElementPtr...)
503            CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
504                                             "resolver", Inst);
505            // cast the result from the resolver to correctly-typed function
506            CastInst *castResolver =
507              new CastInst(resolve, PointerType::get(F->getFunctionType()),
508                           "resolverCast", Inst);
509            // actually use the resolved function
510            Inst->replaceUsesOfWith(F, castResolver);
511          } else {
512            // FIXME: need to take care of cases where a function is used by
513            // something other than an instruction; e.g., global variable
514            // initializers and constant expressions.
515            std::cerr << "UNSUPPORTED: Non-instruction is using an external "
516                      << "function, " << F->getName() << "().\n";
517            abort();
518          }
519      }
520    }
521  }
522
523  if (verifyModule(*Test) || verifyModule(*Safe)) {
524    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
525    abort();
526  }
527}
528
529
530
531/// TestCodeGenerator - This is the predicate function used to check to see if
532/// the "Test" portion of the program is miscompiled by the code generator under
533/// test.  If so, return true.  In any case, both module arguments are deleted.
534static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
535  CleanupAndPrepareModules(BD, Test, Safe);
536
537  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
538  if (BD.writeProgramToFile(TestModuleBC, Test)) {
539    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
540    exit(1);
541  }
542  delete Test;
543
544  // Make the shared library
545  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
546
547  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
548    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
549    exit(1);
550  }
551  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
552  delete Safe;
553
554  // Run the code generator on the `Test' code, loading the shared library.
555  // The function returns whether or not the new output differs from reference.
556  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
557
558  if (Result)
559    std::cerr << ": still failing!\n";
560  else
561    std::cerr << ": didn't fail.\n";
562  removeFile(TestModuleBC);
563  removeFile(SafeModuleBC);
564  removeFile(SharedObject);
565
566  return Result;
567}
568
569
570bool BugDriver::debugCodeGenerator() {
571  if ((void*)cbe == (void*)Interpreter) {
572    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
573    std::cout << "\n*** The C backend cannot match the reference diff, but it "
574              << "is used as the 'known good'\n    code generator, so I can't"
575              << " debug it.  Perhaps you have a front-end problem?\n    As a"
576              << " sanity check, I left the result of executing the program "
577              << "with the C backend\n    in this file for you: '"
578              << Result << "'.\n";
579    return true;
580  }
581
582  DisambiguateGlobalSymbols(Program);
583
584  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
585
586  // Split the module into the two halves of the program we want.
587  Module *ToNotCodeGen = CloneModule(getProgram());
588  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
589
590  // Condition the modules
591  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
592
593  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
594  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
595    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
596    exit(1);
597  }
598  delete ToCodeGen;
599
600  // Make the shared library
601  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
602  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
603    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
604    exit(1);
605  }
606  std::string SharedObject = compileSharedObject(SafeModuleBC);
607  delete ToNotCodeGen;
608
609  std::cout << "You can reproduce the problem with the command line: \n";
610  if (isExecutingJIT()) {
611    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
612  } else {
613    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
614    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
615              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
616    std::cout << "  " << TestModuleBC << ".exe";
617  }
618  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
619    std::cout << " " << InputArgv[i];
620  std::cout << "\n";
621  std::cout << "The shared object was created with:\n  llc -march=c "
622            << SafeModuleBC << " -o temporary.c\n"
623            << "  gcc -xc temporary.c -O2 -o " << SharedObject
624#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
625            << " -G"            // Compile a shared library, `-G' for Sparc
626#else
627            << " -shared"       // `-shared' for Linux/X86, maybe others
628#endif
629            << " -fno-strict-aliasing\n";
630
631  return false;
632}
633