Miscompilation.cpp revision 90c18c5c69d9c451e5fdca1e4b4b95e8ed13291a
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32}
33
34namespace {
35  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
36    BugDriver &BD;
37  public:
38    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
39
40    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
41                              std::vector<const PassInfo*> &Suffix);
42  };
43}
44
45/// TestResult - After passes have been split into a test group and a control
46/// group, see if they still break the program.
47///
48ReduceMiscompilingPasses::TestResult
49ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
50                                 std::vector<const PassInfo*> &Suffix) {
51  // First, run the program with just the Suffix passes.  If it is still broken
52  // with JUST the kept passes, discard the prefix passes.
53  std::cout << "Checking to see if '" << getPassesString(Suffix)
54            << "' compile correctly: ";
55
56  std::string BytecodeResult;
57  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
58    std::cerr << " Error running this sequence of passes"
59              << " on the input program!\n";
60    BD.setPassesToRun(Suffix);
61    BD.EmitProgressBytecode("pass-error",  false);
62    exit(BD.debugOptimizerCrash());
63  }
64
65  // Check to see if the finished program matches the reference output...
66  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
67    std::cout << " nope.\n";
68    return KeepSuffix;         // Miscompilation detected!
69  }
70  std::cout << " yup.\n";      // No miscompilation!
71
72  if (Prefix.empty()) return NoFailure;
73
74  // Next, see if the program is broken if we run the "prefix" passes first,
75  // then separately run the "kept" passes.
76  std::cout << "Checking to see if '" << getPassesString(Prefix)
77            << "' compile correctly: ";
78
79  // If it is not broken with the kept passes, it's possible that the prefix
80  // passes must be run before the kept passes to break it.  If the program
81  // WORKS after the prefix passes, but then fails if running the prefix AND
82  // kept passes, we can update our bytecode file to include the result of the
83  // prefix passes, then discard the prefix passes.
84  //
85  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
86    std::cerr << " Error running this sequence of passes"
87              << " on the input program!\n";
88    BD.setPassesToRun(Prefix);
89    BD.EmitProgressBytecode("pass-error",  false);
90    exit(BD.debugOptimizerCrash());
91  }
92
93  // If the prefix maintains the predicate by itself, only keep the prefix!
94  if (BD.diffProgram(BytecodeResult)) {
95    std::cout << " nope.\n";
96    removeFile(BytecodeResult);
97    return KeepPrefix;
98  }
99  std::cout << " yup.\n";      // No miscompilation!
100
101  // Ok, so now we know that the prefix passes work, try running the suffix
102  // passes on the result of the prefix passes.
103  //
104  Module *PrefixOutput = ParseInputFile(BytecodeResult);
105  if (PrefixOutput == 0) {
106    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
107              << BytecodeResult << "'!\n";
108    exit(1);
109  }
110  removeFile(BytecodeResult);  // No longer need the file on disk
111
112  // Don't check if there are no passes in the suffix.
113  if (Suffix.empty())
114    return NoFailure;
115
116  std::cout << "Checking to see if '" << getPassesString(Suffix)
117            << "' passes compile correctly after the '"
118            << getPassesString(Prefix) << "' passes: ";
119
120  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
121  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
122    std::cerr << " Error running this sequence of passes"
123              << " on the input program!\n";
124    BD.setPassesToRun(Suffix);
125    BD.EmitProgressBytecode("pass-error",  false);
126    exit(BD.debugOptimizerCrash());
127  }
128
129  // Run the result...
130  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
131    std::cout << " nope.\n";
132    delete OriginalInput;     // We pruned down the original input...
133    return KeepSuffix;
134  }
135
136  // Otherwise, we must not be running the bad pass anymore.
137  std::cout << " yup.\n";      // No miscompilation!
138  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
139  return NoFailure;
140}
141
142namespace {
143  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
144    BugDriver &BD;
145    bool (*TestFn)(BugDriver &, Module *, Module *);
146  public:
147    ReduceMiscompilingFunctions(BugDriver &bd,
148                                bool (*F)(BugDriver &, Module *, Module *))
149      : BD(bd), TestFn(F) {}
150
151    virtual TestResult doTest(std::vector<Function*> &Prefix,
152                              std::vector<Function*> &Suffix) {
153      if (!Suffix.empty() && TestFuncs(Suffix))
154        return KeepSuffix;
155      if (!Prefix.empty() && TestFuncs(Prefix))
156        return KeepPrefix;
157      return NoFailure;
158    }
159
160    bool TestFuncs(const std::vector<Function*> &Prefix);
161  };
162}
163
164/// TestMergedProgram - Given two modules, link them together and run the
165/// program, checking to see if the program matches the diff.  If the diff
166/// matches, return false, otherwise return true.  If the DeleteInputs argument
167/// is set to true then this function deletes both input modules before it
168/// returns.
169///
170static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
171                              bool DeleteInputs) {
172  // Link the two portions of the program back to together.
173  std::string ErrorMsg;
174  if (!DeleteInputs) {
175    M1 = CloneModule(M1);
176    M2 = CloneModule(M2);
177  }
178  if (LinkModules(M1, M2, &ErrorMsg)) {
179    std::cerr << BD.getToolName() << ": Error linking modules together:"
180              << ErrorMsg << '\n';
181    exit(1);
182  }
183  delete M2;   // We are done with this module.
184
185  Module *OldProgram = BD.swapProgramIn(M1);
186
187  // Execute the program.  If it does not match the expected output, we must
188  // return true.
189  bool Broken = BD.diffProgram();
190
191  // Delete the linked module & restore the original
192  BD.swapProgramIn(OldProgram);
193  delete M1;
194  return Broken;
195}
196
197/// TestFuncs - split functions in a Module into two groups: those that are
198/// under consideration for miscompilation vs. those that are not, and test
199/// accordingly. Each group of functions becomes a separate Module.
200///
201bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
202  // Test to see if the function is misoptimized if we ONLY run it on the
203  // functions listed in Funcs.
204  std::cout << "Checking to see if the program is misoptimized when "
205            << (Funcs.size()==1 ? "this function is" : "these functions are")
206            << " run through the pass"
207            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
208  PrintFunctionList(Funcs);
209  std::cout << '\n';
210
211  // Split the module into the two halves of the program we want.
212  Module *ToNotOptimize = CloneModule(BD.getProgram());
213  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
214
215  // Run the predicate, not that the predicate will delete both input modules.
216  return TestFn(BD, ToOptimize, ToNotOptimize);
217}
218
219/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
220/// modifying predominantly internal symbols rather than external ones.
221///
222static void DisambiguateGlobalSymbols(Module *M) {
223  // Try not to cause collisions by minimizing chances of renaming an
224  // already-external symbol, so take in external globals and functions as-is.
225  // The code should work correctly without disambiguation (assuming the same
226  // mangler is used by the two code generators), but having symbols with the
227  // same name causes warnings to be emitted by the code generator.
228  Mangler Mang(*M);
229  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
230    I->setName(Mang.getValueName(I));
231  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
232    I->setName(Mang.getValueName(I));
233}
234
235/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
236/// check to see if we can extract the loops in the region without obscuring the
237/// bug.  If so, it reduces the amount of code identified.
238///
239static bool ExtractLoops(BugDriver &BD,
240                         bool (*TestFn)(BugDriver &, Module *, Module *),
241                         std::vector<Function*> &MiscompiledFunctions) {
242  bool MadeChange = false;
243  while (1) {
244    Module *ToNotOptimize = CloneModule(BD.getProgram());
245    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
246                                                   MiscompiledFunctions);
247    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
248    if (!ToOptimizeLoopExtracted) {
249      // If the loop extractor crashed or if there were no extractible loops,
250      // then this chapter of our odyssey is over with.
251      delete ToNotOptimize;
252      delete ToOptimize;
253      return MadeChange;
254    }
255
256    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
257    delete ToOptimize;
258
259    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
260    // particular, we're not going to assume that the loop extractor works, so
261    // we're going to test the newly loop extracted program to make sure nothing
262    // has broken.  If something broke, then we'll inform the user and stop
263    // extraction.
264    AbstractInterpreter *AI = BD.switchToCBE();
265    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
266      BD.switchToInterpreter(AI);
267
268      // Merged program doesn't work anymore!
269      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
270                << " Please report a bug!\n";
271      std::cerr << "      Continuing on with un-loop-extracted version.\n";
272      delete ToNotOptimize;
273      delete ToOptimizeLoopExtracted;
274      return MadeChange;
275    }
276    BD.switchToInterpreter(AI);
277
278    std::cout << "  Testing after loop extraction:\n";
279    // Clone modules, the tester function will free them.
280    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
281    Module *TNOBackup  = CloneModule(ToNotOptimize);
282    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
283      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
284      // If the program is not still broken, then loop extraction did something
285      // that masked the error.  Stop loop extraction now.
286      delete TOLEBackup;
287      delete TNOBackup;
288      return MadeChange;
289    }
290    ToOptimizeLoopExtracted = TOLEBackup;
291    ToNotOptimize = TNOBackup;
292
293    std::cout << "*** Loop extraction successful!\n";
294
295    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
296    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
297           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
298      MisCompFunctions.push_back(std::make_pair(I->getName(),
299                                                I->getFunctionType()));
300
301    // Okay, great!  Now we know that we extracted a loop and that loop
302    // extraction both didn't break the program, and didn't mask the problem.
303    // Replace the current program with the loop extracted version, and try to
304    // extract another loop.
305    std::string ErrorMsg;
306    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
307      std::cerr << BD.getToolName() << ": Error linking modules together:"
308                << ErrorMsg << '\n';
309      exit(1);
310    }
311    delete ToOptimizeLoopExtracted;
312
313    // All of the Function*'s in the MiscompiledFunctions list are in the old
314    // module.  Update this list to include all of the functions in the
315    // optimized and loop extracted module.
316    MiscompiledFunctions.clear();
317    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
318      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first,
319                                                  MisCompFunctions[i].second);
320      assert(NewF && "Function not found??");
321      MiscompiledFunctions.push_back(NewF);
322    }
323
324    BD.setNewProgram(ToNotOptimize);
325    MadeChange = true;
326  }
327}
328
329namespace {
330  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
331    BugDriver &BD;
332    bool (*TestFn)(BugDriver &, Module *, Module *);
333    std::vector<Function*> FunctionsBeingTested;
334  public:
335    ReduceMiscompiledBlocks(BugDriver &bd,
336                            bool (*F)(BugDriver &, Module *, Module *),
337                            const std::vector<Function*> &Fns)
338      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
339
340    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
341                              std::vector<BasicBlock*> &Suffix) {
342      if (!Suffix.empty() && TestFuncs(Suffix))
343        return KeepSuffix;
344      if (TestFuncs(Prefix))
345        return KeepPrefix;
346      return NoFailure;
347    }
348
349    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
350  };
351}
352
353/// TestFuncs - Extract all blocks for the miscompiled functions except for the
354/// specified blocks.  If the problem still exists, return true.
355///
356bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
357  // Test to see if the function is misoptimized if we ONLY run it on the
358  // functions listed in Funcs.
359  std::cout << "Checking to see if the program is misoptimized when all ";
360  if (!BBs.empty()) {
361    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
362    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
363      std::cout << BBs[i]->getName() << " ";
364    if (BBs.size() > 10) std::cout << "...";
365  } else {
366    std::cout << "blocks are extracted.";
367  }
368  std::cout << '\n';
369
370  // Split the module into the two halves of the program we want.
371  Module *ToNotOptimize = CloneModule(BD.getProgram());
372  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
373                                                 FunctionsBeingTested);
374
375  // Try the extraction.  If it doesn't work, then the block extractor crashed
376  // or something, in which case bugpoint can't chase down this possibility.
377  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
378    delete ToOptimize;
379    // Run the predicate, not that the predicate will delete both input modules.
380    return TestFn(BD, New, ToNotOptimize);
381  }
382  delete ToOptimize;
383  delete ToNotOptimize;
384  return false;
385}
386
387
388/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
389/// extract as many basic blocks from the region as possible without obscuring
390/// the bug.
391///
392static bool ExtractBlocks(BugDriver &BD,
393                          bool (*TestFn)(BugDriver &, Module *, Module *),
394                          std::vector<Function*> &MiscompiledFunctions) {
395  std::vector<BasicBlock*> Blocks;
396  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
397    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
398           E = MiscompiledFunctions[i]->end(); I != E; ++I)
399      Blocks.push_back(I);
400
401  // Use the list reducer to identify blocks that can be extracted without
402  // obscuring the bug.  The Blocks list will end up containing blocks that must
403  // be retained from the original program.
404  unsigned OldSize = Blocks.size();
405
406  // Check to see if all blocks are extractible first.
407  if (ReduceMiscompiledBlocks(BD, TestFn,
408                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
409    Blocks.clear();
410  } else {
411    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
412    if (Blocks.size() == OldSize)
413      return false;
414  }
415
416  Module *ProgClone = CloneModule(BD.getProgram());
417  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
418                                                MiscompiledFunctions);
419  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
420  if (Extracted == 0) {
421    // Wierd, extraction should have worked.
422    std::cerr << "Nondeterministic problem extracting blocks??\n";
423    delete ProgClone;
424    delete ToExtract;
425    return false;
426  }
427
428  // Otherwise, block extraction succeeded.  Link the two program fragments back
429  // together.
430  delete ToExtract;
431
432  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
433  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
434       I != E; ++I)
435    MisCompFunctions.push_back(std::make_pair(I->getName(),
436                                              I->getFunctionType()));
437
438  std::string ErrorMsg;
439  if (LinkModules(ProgClone, Extracted, &ErrorMsg)) {
440    std::cerr << BD.getToolName() << ": Error linking modules together:"
441              << ErrorMsg << '\n';
442    exit(1);
443  }
444  delete Extracted;
445
446  // Set the new program and delete the old one.
447  BD.setNewProgram(ProgClone);
448
449  // Update the list of miscompiled functions.
450  MiscompiledFunctions.clear();
451
452  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
453    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first,
454                                            MisCompFunctions[i].second);
455    assert(NewF && "Function not found??");
456    MiscompiledFunctions.push_back(NewF);
457  }
458
459  return true;
460}
461
462
463/// DebugAMiscompilation - This is a generic driver to narrow down
464/// miscompilations, either in an optimization or a code generator.
465///
466static std::vector<Function*>
467DebugAMiscompilation(BugDriver &BD,
468                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
469  // Okay, now that we have reduced the list of passes which are causing the
470  // failure, see if we can pin down which functions are being
471  // miscompiled... first build a list of all of the non-external functions in
472  // the program.
473  std::vector<Function*> MiscompiledFunctions;
474  Module *Prog = BD.getProgram();
475  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
476    if (!I->isExternal())
477      MiscompiledFunctions.push_back(I);
478
479  // Do the reduction...
480  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
481
482  std::cout << "\n*** The following function"
483            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
484            << " being miscompiled: ";
485  PrintFunctionList(MiscompiledFunctions);
486  std::cout << '\n';
487
488  // See if we can rip any loops out of the miscompiled functions and still
489  // trigger the problem.
490  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
491    // Okay, we extracted some loops and the problem still appears.  See if we
492    // can eliminate some of the created functions from being candidates.
493
494    // Loop extraction can introduce functions with the same name (foo_code).
495    // Make sure to disambiguate the symbols so that when the program is split
496    // apart that we can link it back together again.
497    DisambiguateGlobalSymbols(BD.getProgram());
498
499    // Do the reduction...
500    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
501
502    std::cout << "\n*** The following function"
503              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
504              << " being miscompiled: ";
505    PrintFunctionList(MiscompiledFunctions);
506    std::cout << '\n';
507  }
508
509  if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
510    // Okay, we extracted some blocks and the problem still appears.  See if we
511    // can eliminate some of the created functions from being candidates.
512
513    // Block extraction can introduce functions with the same name (foo_code).
514    // Make sure to disambiguate the symbols so that when the program is split
515    // apart that we can link it back together again.
516    DisambiguateGlobalSymbols(BD.getProgram());
517
518    // Do the reduction...
519    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
520
521    std::cout << "\n*** The following function"
522              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
523              << " being miscompiled: ";
524    PrintFunctionList(MiscompiledFunctions);
525    std::cout << '\n';
526  }
527
528  return MiscompiledFunctions;
529}
530
531/// TestOptimizer - This is the predicate function used to check to see if the
532/// "Test" portion of the program is misoptimized.  If so, return true.  In any
533/// case, both module arguments are deleted.
534///
535static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
536  // Run the optimization passes on ToOptimize, producing a transformed version
537  // of the functions being tested.
538  std::cout << "  Optimizing functions being tested: ";
539  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
540                                     /*AutoDebugCrashes*/true);
541  std::cout << "done.\n";
542  delete Test;
543
544  std::cout << "  Checking to see if the merged program executes correctly: ";
545  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
546  std::cout << (Broken ? " nope.\n" : " yup.\n");
547  return Broken;
548}
549
550
551/// debugMiscompilation - This method is used when the passes selected are not
552/// crashing, but the generated output is semantically different from the
553/// input.
554///
555bool BugDriver::debugMiscompilation() {
556  // Make sure something was miscompiled...
557  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
558    std::cerr << "*** Optimized program matches reference output!  No problem "
559	      << "detected...\nbugpoint can't help you with your problem!\n";
560    return false;
561  }
562
563  std::cout << "\n*** Found miscompiling pass"
564            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
565            << getPassesString(getPassesToRun()) << '\n';
566  EmitProgressBytecode("passinput");
567
568  std::vector<Function*> MiscompiledFunctions =
569    DebugAMiscompilation(*this, TestOptimizer);
570
571  // Output a bunch of bytecode files for the user...
572  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
573  Module *ToNotOptimize = CloneModule(getProgram());
574  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
575                                                 MiscompiledFunctions);
576
577  std::cout << "  Non-optimized portion: ";
578  ToNotOptimize = swapProgramIn(ToNotOptimize);
579  EmitProgressBytecode("tonotoptimize", true);
580  setNewProgram(ToNotOptimize);   // Delete hacked module.
581
582  std::cout << "  Portion that is input to optimizer: ";
583  ToOptimize = swapProgramIn(ToOptimize);
584  EmitProgressBytecode("tooptimize");
585  setNewProgram(ToOptimize);      // Delete hacked module.
586
587  return false;
588}
589
590/// CleanupAndPrepareModules - Get the specified modules ready for code
591/// generator testing.
592///
593static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
594                                     Module *Safe) {
595  // Clean up the modules, removing extra cruft that we don't need anymore...
596  Test = BD.performFinalCleanups(Test);
597
598  // If we are executing the JIT, we have several nasty issues to take care of.
599  if (!BD.isExecutingJIT()) return;
600
601  // First, if the main function is in the Safe module, we must add a stub to
602  // the Test module to call into it.  Thus, we create a new function `main'
603  // which just calls the old one.
604  if (Function *oldMain = Safe->getNamedFunction("main"))
605    if (!oldMain->isExternal()) {
606      // Rename it
607      oldMain->setName("llvm_bugpoint_old_main");
608      // Create a NEW `main' function with same type in the test module.
609      Function *newMain = new Function(oldMain->getFunctionType(),
610                                       GlobalValue::ExternalLinkage,
611                                       "main", Test);
612      // Create an `oldmain' prototype in the test module, which will
613      // corresponds to the real main function in the same module.
614      Function *oldMainProto = new Function(oldMain->getFunctionType(),
615                                            GlobalValue::ExternalLinkage,
616                                            oldMain->getName(), Test);
617      // Set up and remember the argument list for the main function.
618      std::vector<Value*> args;
619      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
620             OI = oldMain->abegin(); I != E; ++I, ++OI) {
621        I->setName(OI->getName());    // Copy argument names from oldMain
622        args.push_back(I);
623      }
624
625      // Call the old main function and return its result
626      BasicBlock *BB = new BasicBlock("entry", newMain);
627      CallInst *call = new CallInst(oldMainProto, args);
628      BB->getInstList().push_back(call);
629
630      // If the type of old function wasn't void, return value of call
631      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
632    }
633
634  // The second nasty issue we must deal with in the JIT is that the Safe
635  // module cannot directly reference any functions defined in the test
636  // module.  Instead, we use a JIT API call to dynamically resolve the
637  // symbol.
638
639  // Add the resolver to the Safe module.
640  // Prototype: void *getPointerToNamedFunction(const char* Name)
641  Function *resolverFunc =
642    Safe->getOrInsertFunction("getPointerToNamedFunction",
643                              PointerType::get(Type::SByteTy),
644                              PointerType::get(Type::SByteTy), 0);
645
646  // Use the function we just added to get addresses of functions we need.
647  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
648    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
649        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
650      Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType());
651
652      // Don't forward functions which are external in the test module too.
653      if (TestFn && !TestFn->isExternal()) {
654        // 1. Add a string constant with its name to the global file
655        Constant *InitArray = ConstantArray::get(F->getName());
656        GlobalVariable *funcName =
657          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
658                             GlobalValue::InternalLinkage, InitArray,
659                             F->getName() + "_name", Safe);
660
661        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
662        // sbyte* so it matches the signature of the resolver function.
663
664        // GetElementPtr *funcName, ulong 0, ulong 0
665        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
666        Value *GEP =
667          ConstantExpr::getGetElementPtr(funcName, GEPargs);
668        std::vector<Value*> ResolverArgs;
669        ResolverArgs.push_back(GEP);
670
671        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
672        // function that dynamically resolves the calls to F via our JIT API
673        if (F->use_begin() != F->use_end()) {
674          // Construct a new stub function that will re-route calls to F
675          const FunctionType *FuncTy = F->getFunctionType();
676          Function *FuncWrapper = new Function(FuncTy,
677                                               GlobalValue::InternalLinkage,
678                                               F->getName() + "_wrapper",
679                                               F->getParent());
680          BasicBlock *Header = new BasicBlock("header", FuncWrapper);
681
682          // Resolve the call to function F via the JIT API:
683          //
684          // call resolver(GetElementPtr...)
685          CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
686                                           "resolver");
687          Header->getInstList().push_back(resolve);
688          // cast the result from the resolver to correctly-typed function
689          CastInst *castResolver =
690            new CastInst(resolve, PointerType::get(F->getFunctionType()),
691                         "resolverCast");
692          Header->getInstList().push_back(castResolver);
693
694          // Save the argument list
695          std::vector<Value*> Args;
696          for (Function::aiterator i = FuncWrapper->abegin(),
697                 e = FuncWrapper->aend(); i != e; ++i)
698            Args.push_back(i);
699
700          // Pass on the arguments to the real function, return its result
701          if (F->getReturnType() == Type::VoidTy) {
702            CallInst *Call = new CallInst(castResolver, Args);
703            Header->getInstList().push_back(Call);
704            ReturnInst *Ret = new ReturnInst();
705            Header->getInstList().push_back(Ret);
706          } else {
707            CallInst *Call = new CallInst(castResolver, Args, "redir");
708            Header->getInstList().push_back(Call);
709            ReturnInst *Ret = new ReturnInst(Call);
710            Header->getInstList().push_back(Ret);
711          }
712
713          // Use the wrapper function instead of the old function
714          F->replaceAllUsesWith(FuncWrapper);
715        }
716      }
717    }
718  }
719
720  if (verifyModule(*Test) || verifyModule(*Safe)) {
721    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
722    abort();
723  }
724}
725
726
727
728/// TestCodeGenerator - This is the predicate function used to check to see if
729/// the "Test" portion of the program is miscompiled by the code generator under
730/// test.  If so, return true.  In any case, both module arguments are deleted.
731///
732static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
733  CleanupAndPrepareModules(BD, Test, Safe);
734
735  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
736  if (BD.writeProgramToFile(TestModuleBC, Test)) {
737    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
738    exit(1);
739  }
740  delete Test;
741
742  // Make the shared library
743  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
744
745  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
746    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
747    exit(1);
748  }
749  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
750  delete Safe;
751
752  // Run the code generator on the `Test' code, loading the shared library.
753  // The function returns whether or not the new output differs from reference.
754  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
755
756  if (Result)
757    std::cerr << ": still failing!\n";
758  else
759    std::cerr << ": didn't fail.\n";
760  removeFile(TestModuleBC);
761  removeFile(SafeModuleBC);
762  removeFile(SharedObject);
763
764  return Result;
765}
766
767
768/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
769///
770bool BugDriver::debugCodeGenerator() {
771  if ((void*)cbe == (void*)Interpreter) {
772    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
773    std::cout << "\n*** The C backend cannot match the reference diff, but it "
774              << "is used as the 'known good'\n    code generator, so I can't"
775              << " debug it.  Perhaps you have a front-end problem?\n    As a"
776              << " sanity check, I left the result of executing the program "
777              << "with the C backend\n    in this file for you: '"
778              << Result << "'.\n";
779    return true;
780  }
781
782  DisambiguateGlobalSymbols(Program);
783
784  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
785
786  // Split the module into the two halves of the program we want.
787  Module *ToNotCodeGen = CloneModule(getProgram());
788  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
789
790  // Condition the modules
791  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
792
793  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
794  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
795    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
796    exit(1);
797  }
798  delete ToCodeGen;
799
800  // Make the shared library
801  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
802  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
803    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
804    exit(1);
805  }
806  std::string SharedObject = compileSharedObject(SafeModuleBC);
807  delete ToNotCodeGen;
808
809  std::cout << "You can reproduce the problem with the command line: \n";
810  if (isExecutingJIT()) {
811    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
812  } else {
813    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
814    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
815              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
816    std::cout << "  " << TestModuleBC << ".exe";
817  }
818  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
819    std::cout << " " << InputArgv[i];
820  std::cout << '\n';
821  std::cout << "The shared object was created with:\n  llc -march=c "
822            << SafeModuleBC << " -o temporary.c\n"
823            << "  gcc -xc temporary.c -O2 -o " << SharedObject
824#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
825            << " -G"            // Compile a shared library, `-G' for Sparc
826#else
827            << " -shared"       // `-shared' for Linux/X86, maybe others
828#endif
829            << " -fno-strict-aliasing\n";
830
831  return false;
832}
833