AsmMatcherEmitter.cpp revision 0aed1e770149301af473ce05a83f73be01c06fe0
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "StringMatcher.h"
80#include "llvm/ADT/OwningPtr.h"
81#include "llvm/ADT/SmallVector.h"
82#include "llvm/ADT/STLExtras.h"
83#include "llvm/ADT/StringExtras.h"
84#include "llvm/Support/CommandLine.h"
85#include "llvm/Support/Debug.h"
86#include <list>
87#include <map>
88#include <set>
89using namespace llvm;
90
91static cl::opt<std::string>
92MatchPrefix("match-prefix", cl::init(""),
93            cl::desc("Only match instructions with the given prefix"));
94
95/// FlattenVariants - Flatten an .td file assembly string by selecting the
96/// variant at index \arg N.
97static std::string FlattenVariants(const std::string &AsmString,
98                                   unsigned N) {
99  StringRef Cur = AsmString;
100  std::string Res = "";
101
102  for (;;) {
103    // Find the start of the next variant string.
104    size_t VariantsStart = 0;
105    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
106      if (Cur[VariantsStart] == '{' &&
107          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
108                                  Cur[VariantsStart-1] != '\\')))
109        break;
110
111    // Add the prefix to the result.
112    Res += Cur.slice(0, VariantsStart);
113    if (VariantsStart == Cur.size())
114      break;
115
116    ++VariantsStart; // Skip the '{'.
117
118    // Scan to the end of the variants string.
119    size_t VariantsEnd = VariantsStart;
120    unsigned NestedBraces = 1;
121    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
122      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
123        if (--NestedBraces == 0)
124          break;
125      } else if (Cur[VariantsEnd] == '{')
126        ++NestedBraces;
127    }
128
129    // Select the Nth variant (or empty).
130    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
131    for (unsigned i = 0; i != N; ++i)
132      Selection = Selection.split('|').second;
133    Res += Selection.split('|').first;
134
135    assert(VariantsEnd != Cur.size() &&
136           "Unterminated variants in assembly string!");
137    Cur = Cur.substr(VariantsEnd + 1);
138  }
139
140  return Res;
141}
142
143/// TokenizeAsmString - Tokenize a simplified assembly string.
144static void TokenizeAsmString(StringRef AsmString,
145                              SmallVectorImpl<StringRef> &Tokens) {
146  unsigned Prev = 0;
147  bool InTok = true;
148  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
149    switch (AsmString[i]) {
150    case '[':
151    case ']':
152    case '*':
153    case '!':
154    case ' ':
155    case '\t':
156    case ',':
157      if (InTok) {
158        Tokens.push_back(AsmString.slice(Prev, i));
159        InTok = false;
160      }
161      if (!isspace(AsmString[i]) && AsmString[i] != ',')
162        Tokens.push_back(AsmString.substr(i, 1));
163      Prev = i + 1;
164      break;
165
166    case '\\':
167      if (InTok) {
168        Tokens.push_back(AsmString.slice(Prev, i));
169        InTok = false;
170      }
171      ++i;
172      assert(i != AsmString.size() && "Invalid quoted character");
173      Tokens.push_back(AsmString.substr(i, 1));
174      Prev = i + 1;
175      break;
176
177    case '$': {
178      // If this isn't "${", treat like a normal token.
179      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
180        if (InTok) {
181          Tokens.push_back(AsmString.slice(Prev, i));
182          InTok = false;
183        }
184        Prev = i;
185        break;
186      }
187
188      if (InTok) {
189        Tokens.push_back(AsmString.slice(Prev, i));
190        InTok = false;
191      }
192
193      StringRef::iterator End =
194        std::find(AsmString.begin() + i, AsmString.end(), '}');
195      assert(End != AsmString.end() && "Missing brace in operand reference!");
196      size_t EndPos = End - AsmString.begin();
197      Tokens.push_back(AsmString.slice(i, EndPos+1));
198      Prev = EndPos + 1;
199      i = EndPos;
200      break;
201    }
202
203    case '.':
204      if (InTok) {
205        Tokens.push_back(AsmString.slice(Prev, i));
206      }
207      Prev = i;
208      InTok = true;
209      break;
210
211    default:
212      InTok = true;
213    }
214  }
215  if (InTok && Prev != AsmString.size())
216    Tokens.push_back(AsmString.substr(Prev));
217}
218
219static bool IsAssemblerInstruction(StringRef Name,
220                                   const CodeGenInstruction &CGI,
221                                   const SmallVectorImpl<StringRef> &Tokens) {
222  // Ignore "codegen only" instructions.
223  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
224    return false;
225
226  // Ignore pseudo ops.
227  //
228  // FIXME: This is a hack; can we convert these instructions to set the
229  // "codegen only" bit instead?
230  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
231    if (Form->getValue()->getAsString() == "Pseudo")
232      return false;
233
234  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
235  //
236  // FIXME: This is a total hack.
237  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
238    return false;
239
240  // Ignore instructions with no .s string.
241  //
242  // FIXME: What are these?
243  if (CGI.AsmString.empty())
244    return false;
245
246  // FIXME: Hack; ignore any instructions with a newline in them.
247  if (std::find(CGI.AsmString.begin(),
248                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
249    return false;
250
251  // Ignore instructions with attributes, these are always fake instructions for
252  // simplifying codegen.
253  //
254  // FIXME: Is this true?
255  //
256  // Also, check for instructions which reference the operand multiple times;
257  // this implies a constraint we would not honor.
258  std::set<std::string> OperandNames;
259  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
260    if (Tokens[i][0] == '$' &&
261        std::find(Tokens[i].begin(),
262                  Tokens[i].end(), ':') != Tokens[i].end()) {
263      DEBUG({
264          errs() << "warning: '" << Name << "': "
265                 << "ignoring instruction; operand with attribute '"
266                 << Tokens[i] << "'\n";
267        });
268      return false;
269    }
270
271    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
272      DEBUG({
273          errs() << "warning: '" << Name << "': "
274                 << "ignoring instruction with tied operand '"
275                 << Tokens[i].str() << "'\n";
276        });
277      return false;
278    }
279  }
280
281  return true;
282}
283
284namespace {
285
286struct SubtargetFeatureInfo;
287
288/// ClassInfo - Helper class for storing the information about a particular
289/// class of operands which can be matched.
290struct ClassInfo {
291  enum ClassInfoKind {
292    /// Invalid kind, for use as a sentinel value.
293    Invalid = 0,
294
295    /// The class for a particular token.
296    Token,
297
298    /// The (first) register class, subsequent register classes are
299    /// RegisterClass0+1, and so on.
300    RegisterClass0,
301
302    /// The (first) user defined class, subsequent user defined classes are
303    /// UserClass0+1, and so on.
304    UserClass0 = 1<<16
305  };
306
307  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
308  /// N) for the Nth user defined class.
309  unsigned Kind;
310
311  /// SuperClasses - The super classes of this class. Note that for simplicities
312  /// sake user operands only record their immediate super class, while register
313  /// operands include all superclasses.
314  std::vector<ClassInfo*> SuperClasses;
315
316  /// Name - The full class name, suitable for use in an enum.
317  std::string Name;
318
319  /// ClassName - The unadorned generic name for this class (e.g., Token).
320  std::string ClassName;
321
322  /// ValueName - The name of the value this class represents; for a token this
323  /// is the literal token string, for an operand it is the TableGen class (or
324  /// empty if this is a derived class).
325  std::string ValueName;
326
327  /// PredicateMethod - The name of the operand method to test whether the
328  /// operand matches this class; this is not valid for Token or register kinds.
329  std::string PredicateMethod;
330
331  /// RenderMethod - The name of the operand method to add this operand to an
332  /// MCInst; this is not valid for Token or register kinds.
333  std::string RenderMethod;
334
335  /// For register classes, the records for all the registers in this class.
336  std::set<Record*> Registers;
337
338public:
339  /// isRegisterClass() - Check if this is a register class.
340  bool isRegisterClass() const {
341    return Kind >= RegisterClass0 && Kind < UserClass0;
342  }
343
344  /// isUserClass() - Check if this is a user defined class.
345  bool isUserClass() const {
346    return Kind >= UserClass0;
347  }
348
349  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
350  /// are related if they are in the same class hierarchy.
351  bool isRelatedTo(const ClassInfo &RHS) const {
352    // Tokens are only related to tokens.
353    if (Kind == Token || RHS.Kind == Token)
354      return Kind == Token && RHS.Kind == Token;
355
356    // Registers classes are only related to registers classes, and only if
357    // their intersection is non-empty.
358    if (isRegisterClass() || RHS.isRegisterClass()) {
359      if (!isRegisterClass() || !RHS.isRegisterClass())
360        return false;
361
362      std::set<Record*> Tmp;
363      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
364      std::set_intersection(Registers.begin(), Registers.end(),
365                            RHS.Registers.begin(), RHS.Registers.end(),
366                            II);
367
368      return !Tmp.empty();
369    }
370
371    // Otherwise we have two users operands; they are related if they are in the
372    // same class hierarchy.
373    //
374    // FIXME: This is an oversimplification, they should only be related if they
375    // intersect, however we don't have that information.
376    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
377    const ClassInfo *Root = this;
378    while (!Root->SuperClasses.empty())
379      Root = Root->SuperClasses.front();
380
381    const ClassInfo *RHSRoot = &RHS;
382    while (!RHSRoot->SuperClasses.empty())
383      RHSRoot = RHSRoot->SuperClasses.front();
384
385    return Root == RHSRoot;
386  }
387
388  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
389  bool isSubsetOf(const ClassInfo &RHS) const {
390    // This is a subset of RHS if it is the same class...
391    if (this == &RHS)
392      return true;
393
394    // ... or if any of its super classes are a subset of RHS.
395    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
396           ie = SuperClasses.end(); it != ie; ++it)
397      if ((*it)->isSubsetOf(RHS))
398        return true;
399
400    return false;
401  }
402
403  /// operator< - Compare two classes.
404  bool operator<(const ClassInfo &RHS) const {
405    if (this == &RHS)
406      return false;
407
408    // Unrelated classes can be ordered by kind.
409    if (!isRelatedTo(RHS))
410      return Kind < RHS.Kind;
411
412    switch (Kind) {
413    case Invalid:
414      assert(0 && "Invalid kind!");
415    case Token:
416      // Tokens are comparable by value.
417      //
418      // FIXME: Compare by enum value.
419      return ValueName < RHS.ValueName;
420
421    default:
422      // This class preceeds the RHS if it is a proper subset of the RHS.
423      if (isSubsetOf(RHS))
424        return true;
425      if (RHS.isSubsetOf(*this))
426        return false;
427
428      // Otherwise, order by name to ensure we have a total ordering.
429      return ValueName < RHS.ValueName;
430    }
431  }
432};
433
434/// InstructionInfo - Helper class for storing the necessary information for an
435/// instruction which is capable of being matched.
436struct InstructionInfo {
437  struct Operand {
438    /// The unique class instance this operand should match.
439    ClassInfo *Class;
440
441    /// The original operand this corresponds to, if any.
442    const CodeGenInstruction::OperandInfo *OperandInfo;
443  };
444
445  /// InstrName - The target name for this instruction.
446  std::string InstrName;
447
448  /// Instr - The instruction this matches.
449  const CodeGenInstruction *Instr;
450
451  /// AsmString - The assembly string for this instruction (with variants
452  /// removed).
453  std::string AsmString;
454
455  /// Tokens - The tokenized assembly pattern that this instruction matches.
456  SmallVector<StringRef, 4> Tokens;
457
458  /// Operands - The operands that this instruction matches.
459  SmallVector<Operand, 4> Operands;
460
461  /// Predicates - The required subtarget features to match this instruction.
462  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
463
464  /// ConversionFnKind - The enum value which is passed to the generated
465  /// ConvertToMCInst to convert parsed operands into an MCInst for this
466  /// function.
467  std::string ConversionFnKind;
468
469  /// operator< - Compare two instructions.
470  bool operator<(const InstructionInfo &RHS) const {
471    // The primary comparator is the instruction mnemonic.
472    if (Tokens[0] != RHS.Tokens[0])
473      return Tokens[0] < RHS.Tokens[0];
474
475    if (Operands.size() != RHS.Operands.size())
476      return Operands.size() < RHS.Operands.size();
477
478    // Compare lexicographically by operand. The matcher validates that other
479    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
480    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
481      if (*Operands[i].Class < *RHS.Operands[i].Class)
482        return true;
483      if (*RHS.Operands[i].Class < *Operands[i].Class)
484        return false;
485    }
486
487    return false;
488  }
489
490  /// CouldMatchAmiguouslyWith - Check whether this instruction could
491  /// ambiguously match the same set of operands as \arg RHS (without being a
492  /// strictly superior match).
493  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
494    // The number of operands is unambiguous.
495    if (Operands.size() != RHS.Operands.size())
496      return false;
497
498    // Otherwise, make sure the ordering of the two instructions is unambiguous
499    // by checking that either (a) a token or operand kind discriminates them,
500    // or (b) the ordering among equivalent kinds is consistent.
501
502    // Tokens and operand kinds are unambiguous (assuming a correct target
503    // specific parser).
504    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
505      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
506          Operands[i].Class->Kind == ClassInfo::Token)
507        if (*Operands[i].Class < *RHS.Operands[i].Class ||
508            *RHS.Operands[i].Class < *Operands[i].Class)
509          return false;
510
511    // Otherwise, this operand could commute if all operands are equivalent, or
512    // there is a pair of operands that compare less than and a pair that
513    // compare greater than.
514    bool HasLT = false, HasGT = false;
515    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
516      if (*Operands[i].Class < *RHS.Operands[i].Class)
517        HasLT = true;
518      if (*RHS.Operands[i].Class < *Operands[i].Class)
519        HasGT = true;
520    }
521
522    return !(HasLT ^ HasGT);
523  }
524
525public:
526  void dump();
527};
528
529/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
530/// feature which participates in instruction matching.
531struct SubtargetFeatureInfo {
532  /// \brief The predicate record for this feature.
533  Record *TheDef;
534
535  /// \brief An unique index assigned to represent this feature.
536  unsigned Index;
537
538  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
539
540  /// \brief The name of the enumerated constant identifying this feature.
541  std::string getEnumName() const {
542    return "Feature_" + TheDef->getName();
543  }
544};
545
546class AsmMatcherInfo {
547public:
548  /// The tablegen AsmParser record.
549  Record *AsmParser;
550
551  /// The AsmParser "CommentDelimiter" value.
552  std::string CommentDelimiter;
553
554  /// The AsmParser "RegisterPrefix" value.
555  std::string RegisterPrefix;
556
557  /// The classes which are needed for matching.
558  std::vector<ClassInfo*> Classes;
559
560  /// The information on the instruction to match.
561  std::vector<InstructionInfo*> Instructions;
562
563  /// Map of Register records to their class information.
564  std::map<Record*, ClassInfo*> RegisterClasses;
565
566  /// Map of Predicate records to their subtarget information.
567  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
568
569private:
570  /// Map of token to class information which has already been constructed.
571  std::map<std::string, ClassInfo*> TokenClasses;
572
573  /// Map of RegisterClass records to their class information.
574  std::map<Record*, ClassInfo*> RegisterClassClasses;
575
576  /// Map of AsmOperandClass records to their class information.
577  std::map<Record*, ClassInfo*> AsmOperandClasses;
578
579private:
580  /// getTokenClass - Lookup or create the class for the given token.
581  ClassInfo *getTokenClass(StringRef Token);
582
583  /// getOperandClass - Lookup or create the class for the given operand.
584  ClassInfo *getOperandClass(StringRef Token,
585                             const CodeGenInstruction::OperandInfo &OI);
586
587  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
588  /// given operand.
589  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
590    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
591    return SubtargetFeatures[Def];
592  }
593
594  /// BuildRegisterClasses - Build the ClassInfo* instances for register
595  /// classes.
596  void BuildRegisterClasses(CodeGenTarget &Target,
597                            std::set<std::string> &SingletonRegisterNames);
598
599  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
600  /// operand classes.
601  void BuildOperandClasses(CodeGenTarget &Target);
602
603public:
604  AsmMatcherInfo(Record *_AsmParser);
605
606  /// BuildInfo - Construct the various tables used during matching.
607  void BuildInfo(CodeGenTarget &Target);
608};
609
610}
611
612void InstructionInfo::dump() {
613  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
614         << ", tokens:[";
615  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
616    errs() << Tokens[i];
617    if (i + 1 != e)
618      errs() << ", ";
619  }
620  errs() << "]\n";
621
622  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
623    Operand &Op = Operands[i];
624    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
625    if (Op.Class->Kind == ClassInfo::Token) {
626      errs() << '\"' << Tokens[i] << "\"\n";
627      continue;
628    }
629
630    if (!Op.OperandInfo) {
631      errs() << "(singleton register)\n";
632      continue;
633    }
634
635    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
636    errs() << OI.Name << " " << OI.Rec->getName()
637           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
638  }
639}
640
641static std::string getEnumNameForToken(StringRef Str) {
642  std::string Res;
643
644  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
645    switch (*it) {
646    case '*': Res += "_STAR_"; break;
647    case '%': Res += "_PCT_"; break;
648    case ':': Res += "_COLON_"; break;
649
650    default:
651      if (isalnum(*it))  {
652        Res += *it;
653      } else {
654        Res += "_" + utostr((unsigned) *it) + "_";
655      }
656    }
657  }
658
659  return Res;
660}
661
662/// getRegisterRecord - Get the register record for \arg name, or 0.
663static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
664  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
665    const CodeGenRegister &Reg = Target.getRegisters()[i];
666    if (Name == Reg.TheDef->getValueAsString("AsmName"))
667      return Reg.TheDef;
668  }
669
670  return 0;
671}
672
673ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
674  ClassInfo *&Entry = TokenClasses[Token];
675
676  if (!Entry) {
677    Entry = new ClassInfo();
678    Entry->Kind = ClassInfo::Token;
679    Entry->ClassName = "Token";
680    Entry->Name = "MCK_" + getEnumNameForToken(Token);
681    Entry->ValueName = Token;
682    Entry->PredicateMethod = "<invalid>";
683    Entry->RenderMethod = "<invalid>";
684    Classes.push_back(Entry);
685  }
686
687  return Entry;
688}
689
690ClassInfo *
691AsmMatcherInfo::getOperandClass(StringRef Token,
692                                const CodeGenInstruction::OperandInfo &OI) {
693  if (OI.Rec->isSubClassOf("RegisterClass")) {
694    ClassInfo *CI = RegisterClassClasses[OI.Rec];
695
696    if (!CI) {
697      PrintError(OI.Rec->getLoc(), "register class has no class info!");
698      throw std::string("ERROR: Missing register class!");
699    }
700
701    return CI;
702  }
703
704  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
705  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
706  ClassInfo *CI = AsmOperandClasses[MatchClass];
707
708  if (!CI) {
709    PrintError(OI.Rec->getLoc(), "operand has no match class!");
710    throw std::string("ERROR: Missing match class!");
711  }
712
713  return CI;
714}
715
716void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
717                                          std::set<std::string>
718                                            &SingletonRegisterNames) {
719  std::vector<CodeGenRegisterClass> RegisterClasses;
720  std::vector<CodeGenRegister> Registers;
721
722  RegisterClasses = Target.getRegisterClasses();
723  Registers = Target.getRegisters();
724
725  // The register sets used for matching.
726  std::set< std::set<Record*> > RegisterSets;
727
728  // Gather the defined sets.
729  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
730         ie = RegisterClasses.end(); it != ie; ++it)
731    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
732                                          it->Elements.end()));
733
734  // Add any required singleton sets.
735  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
736         ie = SingletonRegisterNames.end(); it != ie; ++it)
737    if (Record *Rec = getRegisterRecord(Target, *it))
738      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
739
740  // Introduce derived sets where necessary (when a register does not determine
741  // a unique register set class), and build the mapping of registers to the set
742  // they should classify to.
743  std::map<Record*, std::set<Record*> > RegisterMap;
744  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
745         ie = Registers.end(); it != ie; ++it) {
746    CodeGenRegister &CGR = *it;
747    // Compute the intersection of all sets containing this register.
748    std::set<Record*> ContainingSet;
749
750    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
751           ie = RegisterSets.end(); it != ie; ++it) {
752      if (!it->count(CGR.TheDef))
753        continue;
754
755      if (ContainingSet.empty()) {
756        ContainingSet = *it;
757      } else {
758        std::set<Record*> Tmp;
759        std::swap(Tmp, ContainingSet);
760        std::insert_iterator< std::set<Record*> > II(ContainingSet,
761                                                     ContainingSet.begin());
762        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
763                              II);
764      }
765    }
766
767    if (!ContainingSet.empty()) {
768      RegisterSets.insert(ContainingSet);
769      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
770    }
771  }
772
773  // Construct the register classes.
774  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
775  unsigned Index = 0;
776  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
777         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
778    ClassInfo *CI = new ClassInfo();
779    CI->Kind = ClassInfo::RegisterClass0 + Index;
780    CI->ClassName = "Reg" + utostr(Index);
781    CI->Name = "MCK_Reg" + utostr(Index);
782    CI->ValueName = "";
783    CI->PredicateMethod = ""; // unused
784    CI->RenderMethod = "addRegOperands";
785    CI->Registers = *it;
786    Classes.push_back(CI);
787    RegisterSetClasses.insert(std::make_pair(*it, CI));
788  }
789
790  // Find the superclasses; we could compute only the subgroup lattice edges,
791  // but there isn't really a point.
792  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
793         ie = RegisterSets.end(); it != ie; ++it) {
794    ClassInfo *CI = RegisterSetClasses[*it];
795    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
796           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
797      if (*it != *it2 &&
798          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
799        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
800  }
801
802  // Name the register classes which correspond to a user defined RegisterClass.
803  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
804         ie = RegisterClasses.end(); it != ie; ++it) {
805    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
806                                                         it->Elements.end())];
807    if (CI->ValueName.empty()) {
808      CI->ClassName = it->getName();
809      CI->Name = "MCK_" + it->getName();
810      CI->ValueName = it->getName();
811    } else
812      CI->ValueName = CI->ValueName + "," + it->getName();
813
814    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
815  }
816
817  // Populate the map for individual registers.
818  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
819         ie = RegisterMap.end(); it != ie; ++it)
820    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
821
822  // Name the register classes which correspond to singleton registers.
823  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
824         ie = SingletonRegisterNames.end(); it != ie; ++it) {
825    if (Record *Rec = getRegisterRecord(Target, *it)) {
826      ClassInfo *CI = this->RegisterClasses[Rec];
827      assert(CI && "Missing singleton register class info!");
828
829      if (CI->ValueName.empty()) {
830        CI->ClassName = Rec->getName();
831        CI->Name = "MCK_" + Rec->getName();
832        CI->ValueName = Rec->getName();
833      } else
834        CI->ValueName = CI->ValueName + "," + Rec->getName();
835    }
836  }
837}
838
839void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
840  std::vector<Record*> AsmOperands;
841  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
842
843  // Pre-populate AsmOperandClasses map.
844  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
845         ie = AsmOperands.end(); it != ie; ++it)
846    AsmOperandClasses[*it] = new ClassInfo();
847
848  unsigned Index = 0;
849  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
850         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
851    ClassInfo *CI = AsmOperandClasses[*it];
852    CI->Kind = ClassInfo::UserClass0 + Index;
853
854    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
855    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
856      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
857      if (!DI) {
858        PrintError((*it)->getLoc(), "Invalid super class reference!");
859        continue;
860      }
861
862      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
863      if (!SC)
864        PrintError((*it)->getLoc(), "Invalid super class reference!");
865      else
866        CI->SuperClasses.push_back(SC);
867    }
868    CI->ClassName = (*it)->getValueAsString("Name");
869    CI->Name = "MCK_" + CI->ClassName;
870    CI->ValueName = (*it)->getName();
871
872    // Get or construct the predicate method name.
873    Init *PMName = (*it)->getValueInit("PredicateMethod");
874    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
875      CI->PredicateMethod = SI->getValue();
876    } else {
877      assert(dynamic_cast<UnsetInit*>(PMName) &&
878             "Unexpected PredicateMethod field!");
879      CI->PredicateMethod = "is" + CI->ClassName;
880    }
881
882    // Get or construct the render method name.
883    Init *RMName = (*it)->getValueInit("RenderMethod");
884    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
885      CI->RenderMethod = SI->getValue();
886    } else {
887      assert(dynamic_cast<UnsetInit*>(RMName) &&
888             "Unexpected RenderMethod field!");
889      CI->RenderMethod = "add" + CI->ClassName + "Operands";
890    }
891
892    AsmOperandClasses[*it] = CI;
893    Classes.push_back(CI);
894  }
895}
896
897AsmMatcherInfo::AsmMatcherInfo(Record *asmParser)
898  : AsmParser(asmParser),
899    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
900    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
901{
902}
903
904void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
905  // Parse the instructions; we need to do this first so that we can gather the
906  // singleton register classes.
907  std::set<std::string> SingletonRegisterNames;
908
909  const std::vector<const CodeGenInstruction*> &InstrList =
910    Target.getInstructionsByEnumValue();
911
912
913  // Build information about all of the AssemblerPredicates.
914  std::vector<Record*> AllPredicates =
915    Records.getAllDerivedDefinitions("Predicate");
916  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
917    Record *Pred = AllPredicates[i];
918    // Ignore predicates that are not intended for the assembler.
919    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
920      continue;
921
922    if (Pred->getName().empty()) {
923      PrintError(Pred->getLoc(), "Predicate has no name!");
924      throw std::string("ERROR: Predicate defs must be named");
925    }
926
927    unsigned FeatureNo = SubtargetFeatures.size();
928    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
929    assert(FeatureNo < 32 && "Too many subtarget features!");
930  }
931
932  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
933    const CodeGenInstruction &CGI = *InstrList[i];
934
935    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
936      continue;
937
938    OwningPtr<InstructionInfo> II(new InstructionInfo());
939
940    II->InstrName = CGI.TheDef->getName();
941    II->Instr = &CGI;
942    II->AsmString = FlattenVariants(CGI.AsmString, 0);
943
944    // Remove comments from the asm string.
945    if (!CommentDelimiter.empty()) {
946      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
947      if (Idx != StringRef::npos)
948        II->AsmString = II->AsmString.substr(0, Idx);
949    }
950
951    TokenizeAsmString(II->AsmString, II->Tokens);
952
953    // Ignore instructions which shouldn't be matched.
954    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
955      continue;
956
957    // Collect singleton registers, if used.
958    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
959      if (!II->Tokens[i].startswith(RegisterPrefix))
960        continue;
961
962      StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
963      Record *Rec = getRegisterRecord(Target, RegName);
964
965      if (!Rec) {
966        // If there is no register prefix (i.e. "%" in "%eax"), then this may
967        // be some random non-register token, just ignore it.
968        if (RegisterPrefix.empty())
969          continue;
970
971        std::string Err = "unable to find register for '" + RegName.str() +
972          "' (which matches register prefix)";
973        throw TGError(CGI.TheDef->getLoc(), Err);
974      }
975
976      SingletonRegisterNames.insert(RegName);
977    }
978
979    // Compute the require features.
980    std::vector<Record*> Predicates =
981      CGI.TheDef->getValueAsListOfDefs("Predicates");
982    for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
983      Record *Pred = Predicates[i];
984      // Ignore predicates that are not intended for the assembler.
985      if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
986        continue;
987
988      II->RequiredFeatures.push_back(getSubtargetFeature(Pred));
989    }
990
991    Instructions.push_back(II.take());
992  }
993
994  // Build info for the register classes.
995  BuildRegisterClasses(Target, SingletonRegisterNames);
996
997  // Build info for the user defined assembly operand classes.
998  BuildOperandClasses(Target);
999
1000  // Build the instruction information.
1001  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
1002         ie = Instructions.end(); it != ie; ++it) {
1003    InstructionInfo *II = *it;
1004
1005    // The first token of the instruction is the mnemonic, which must be a
1006    // simple string.
1007    assert(!II->Tokens.empty() && "Instruction has no tokens?");
1008    StringRef Mnemonic = II->Tokens[0];
1009    assert(Mnemonic[0] != '$' &&
1010           (RegisterPrefix.empty() || !Mnemonic.startswith(RegisterPrefix)));
1011
1012    // Parse the tokens after the mnemonic.
1013    for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
1014      StringRef Token = II->Tokens[i];
1015
1016      // Check for singleton registers.
1017      if (Token.startswith(RegisterPrefix)) {
1018        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
1019        if (Record *RegRecord = getRegisterRecord(Target, RegName)) {
1020          InstructionInfo::Operand Op;
1021          Op.Class = RegisterClasses[RegRecord];
1022          Op.OperandInfo = 0;
1023          assert(Op.Class && Op.Class->Registers.size() == 1 &&
1024                 "Unexpected class for singleton register");
1025          II->Operands.push_back(Op);
1026          continue;
1027        }
1028
1029        if (!RegisterPrefix.empty()) {
1030          std::string Err = "unable to find register for '" + RegName.str() +
1031                  "' (which matches register prefix)";
1032          throw TGError(II->Instr->TheDef->getLoc(), Err);
1033        }
1034      }
1035
1036      // Check for simple tokens.
1037      if (Token[0] != '$') {
1038        InstructionInfo::Operand Op;
1039        Op.Class = getTokenClass(Token);
1040        Op.OperandInfo = 0;
1041        II->Operands.push_back(Op);
1042        continue;
1043      }
1044
1045      // Otherwise this is an operand reference.
1046      StringRef OperandName;
1047      if (Token[1] == '{')
1048        OperandName = Token.substr(2, Token.size() - 3);
1049      else
1050        OperandName = Token.substr(1);
1051
1052      // Map this token to an operand. FIXME: Move elsewhere.
1053      unsigned Idx;
1054      try {
1055        Idx = II->Instr->getOperandNamed(OperandName);
1056      } catch(...) {
1057        throw std::string("error: unable to find operand: '" +
1058                          OperandName.str() + "'");
1059      }
1060
1061      // FIXME: This is annoying, the named operand may be tied (e.g.,
1062      // XCHG8rm). What we want is the untied operand, which we now have to
1063      // grovel for. Only worry about this for single entry operands, we have to
1064      // clean this up anyway.
1065      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
1066      if (OI->Constraints[0].isTied()) {
1067        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
1068
1069        // The tied operand index is an MIOperand index, find the operand that
1070        // contains it.
1071        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
1072          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
1073            OI = &II->Instr->OperandList[i];
1074            break;
1075          }
1076        }
1077
1078        assert(OI && "Unable to find tied operand target!");
1079      }
1080
1081      InstructionInfo::Operand Op;
1082      Op.Class = getOperandClass(Token, *OI);
1083      Op.OperandInfo = OI;
1084      II->Operands.push_back(Op);
1085    }
1086  }
1087
1088  // Reorder classes so that classes preceed super classes.
1089  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1090}
1091
1092static std::pair<unsigned, unsigned> *
1093GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
1094                      unsigned Index) {
1095  for (unsigned i = 0, e = List.size(); i != e; ++i)
1096    if (Index == List[i].first)
1097      return &List[i];
1098
1099  return 0;
1100}
1101
1102static void EmitConvertToMCInst(CodeGenTarget &Target,
1103                                std::vector<InstructionInfo*> &Infos,
1104                                raw_ostream &OS) {
1105  // Write the convert function to a separate stream, so we can drop it after
1106  // the enum.
1107  std::string ConvertFnBody;
1108  raw_string_ostream CvtOS(ConvertFnBody);
1109
1110  // Function we have already generated.
1111  std::set<std::string> GeneratedFns;
1112
1113  // Start the unified conversion function.
1114
1115  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1116        << "unsigned Opcode,\n"
1117        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1118        << "> &Operands) {\n";
1119  CvtOS << "  Inst.setOpcode(Opcode);\n";
1120  CvtOS << "  switch (Kind) {\n";
1121  CvtOS << "  default:\n";
1122
1123  // Start the enum, which we will generate inline.
1124
1125  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1126  OS << "enum ConversionKind {\n";
1127
1128  // TargetOperandClass - This is the target's operand class, like X86Operand.
1129  std::string TargetOperandClass = Target.getName() + "Operand";
1130
1131  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1132         ie = Infos.end(); it != ie; ++it) {
1133    InstructionInfo &II = **it;
1134
1135    // Order the (class) operands by the order to convert them into an MCInst.
1136    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1137    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1138      InstructionInfo::Operand &Op = II.Operands[i];
1139      if (Op.OperandInfo)
1140        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1141    }
1142
1143    // Find any tied operands.
1144    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1145    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1146      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1147      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1148        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1149        if (CI.isTied())
1150          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1151                                                CI.getTiedOperand()));
1152      }
1153    }
1154
1155    std::sort(MIOperandList.begin(), MIOperandList.end());
1156
1157    // Compute the total number of operands.
1158    unsigned NumMIOperands = 0;
1159    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1160      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1161      NumMIOperands = std::max(NumMIOperands,
1162                               OI.MIOperandNo + OI.MINumOperands);
1163    }
1164
1165    // Build the conversion function signature.
1166    std::string Signature = "Convert";
1167    unsigned CurIndex = 0;
1168    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1169      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1170      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1171             "Duplicate match for instruction operand!");
1172
1173      // Skip operands which weren't matched by anything, this occurs when the
1174      // .td file encodes "implicit" operands as explicit ones.
1175      //
1176      // FIXME: This should be removed from the MCInst structure.
1177      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1178        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1179                                                                   CurIndex);
1180        if (!Tie)
1181          Signature += "__Imp";
1182        else
1183          Signature += "__Tie" + utostr(Tie->second);
1184      }
1185
1186      Signature += "__";
1187
1188      // Registers are always converted the same, don't duplicate the conversion
1189      // function based on them.
1190      //
1191      // FIXME: We could generalize this based on the render method, if it
1192      // mattered.
1193      if (Op.Class->isRegisterClass())
1194        Signature += "Reg";
1195      else
1196        Signature += Op.Class->ClassName;
1197      Signature += utostr(Op.OperandInfo->MINumOperands);
1198      Signature += "_" + utostr(MIOperandList[i].second);
1199
1200      CurIndex += Op.OperandInfo->MINumOperands;
1201    }
1202
1203    // Add any trailing implicit operands.
1204    for (; CurIndex != NumMIOperands; ++CurIndex) {
1205      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1206                                                                 CurIndex);
1207      if (!Tie)
1208        Signature += "__Imp";
1209      else
1210        Signature += "__Tie" + utostr(Tie->second);
1211    }
1212
1213    II.ConversionFnKind = Signature;
1214
1215    // Check if we have already generated this signature.
1216    if (!GeneratedFns.insert(Signature).second)
1217      continue;
1218
1219    // If not, emit it now.
1220
1221    // Add to the enum list.
1222    OS << "  " << Signature << ",\n";
1223
1224    // And to the convert function.
1225    CvtOS << "  case " << Signature << ":\n";
1226    CurIndex = 0;
1227    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1228      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1229
1230      // Add the implicit operands.
1231      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1232        // See if this is a tied operand.
1233        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1234                                                                   CurIndex);
1235
1236        if (!Tie) {
1237          // If not, this is some implicit operand. Just assume it is a register
1238          // for now.
1239          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1240        } else {
1241          // Copy the tied operand.
1242          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1243          CvtOS << "    Inst.addOperand(Inst.getOperand("
1244                << Tie->second << "));\n";
1245        }
1246      }
1247
1248      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1249         << MIOperandList[i].second
1250         << "+1])->" << Op.Class->RenderMethod
1251         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1252      CurIndex += Op.OperandInfo->MINumOperands;
1253    }
1254
1255    // And add trailing implicit operands.
1256    for (; CurIndex != NumMIOperands; ++CurIndex) {
1257      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1258                                                                 CurIndex);
1259
1260      if (!Tie) {
1261        // If not, this is some implicit operand. Just assume it is a register
1262        // for now.
1263        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1264      } else {
1265        // Copy the tied operand.
1266        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1267        CvtOS << "    Inst.addOperand(Inst.getOperand("
1268              << Tie->second << "));\n";
1269      }
1270    }
1271
1272    CvtOS << "    return;\n";
1273  }
1274
1275  // Finish the convert function.
1276
1277  CvtOS << "  }\n";
1278  CvtOS << "}\n\n";
1279
1280  // Finish the enum, and drop the convert function after it.
1281
1282  OS << "  NumConversionVariants\n";
1283  OS << "};\n\n";
1284
1285  OS << CvtOS.str();
1286}
1287
1288/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1289static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1290                                      std::vector<ClassInfo*> &Infos,
1291                                      raw_ostream &OS) {
1292  OS << "namespace {\n\n";
1293
1294  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1295     << "/// instruction matching.\n";
1296  OS << "enum MatchClassKind {\n";
1297  OS << "  InvalidMatchClass = 0,\n";
1298  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1299         ie = Infos.end(); it != ie; ++it) {
1300    ClassInfo &CI = **it;
1301    OS << "  " << CI.Name << ", // ";
1302    if (CI.Kind == ClassInfo::Token) {
1303      OS << "'" << CI.ValueName << "'\n";
1304    } else if (CI.isRegisterClass()) {
1305      if (!CI.ValueName.empty())
1306        OS << "register class '" << CI.ValueName << "'\n";
1307      else
1308        OS << "derived register class\n";
1309    } else {
1310      OS << "user defined class '" << CI.ValueName << "'\n";
1311    }
1312  }
1313  OS << "  NumMatchClassKinds\n";
1314  OS << "};\n\n";
1315
1316  OS << "}\n\n";
1317}
1318
1319/// EmitClassifyOperand - Emit the function to classify an operand.
1320static void EmitClassifyOperand(CodeGenTarget &Target,
1321                                AsmMatcherInfo &Info,
1322                                raw_ostream &OS) {
1323  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1324     << "  " << Target.getName() << "Operand &Operand = *("
1325     << Target.getName() << "Operand*)GOp;\n";
1326
1327  // Classify tokens.
1328  OS << "  if (Operand.isToken())\n";
1329  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1330
1331  // Classify registers.
1332  //
1333  // FIXME: Don't hardcode isReg, getReg.
1334  OS << "  if (Operand.isReg()) {\n";
1335  OS << "    switch (Operand.getReg()) {\n";
1336  OS << "    default: return InvalidMatchClass;\n";
1337  for (std::map<Record*, ClassInfo*>::iterator
1338         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1339       it != ie; ++it)
1340    OS << "    case " << Target.getName() << "::"
1341       << it->first->getName() << ": return " << it->second->Name << ";\n";
1342  OS << "    }\n";
1343  OS << "  }\n\n";
1344
1345  // Classify user defined operands.
1346  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1347         ie = Info.Classes.end(); it != ie; ++it) {
1348    ClassInfo &CI = **it;
1349
1350    if (!CI.isUserClass())
1351      continue;
1352
1353    OS << "  // '" << CI.ClassName << "' class";
1354    if (!CI.SuperClasses.empty()) {
1355      OS << ", subclass of ";
1356      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1357        if (i) OS << ", ";
1358        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1359        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1360      }
1361    }
1362    OS << "\n";
1363
1364    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1365
1366    // Validate subclass relationships.
1367    if (!CI.SuperClasses.empty()) {
1368      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1369        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1370           << "() && \"Invalid class relationship!\");\n";
1371    }
1372
1373    OS << "    return " << CI.Name << ";\n";
1374    OS << "  }\n\n";
1375  }
1376  OS << "  return InvalidMatchClass;\n";
1377  OS << "}\n\n";
1378}
1379
1380/// EmitIsSubclass - Emit the subclass predicate function.
1381static void EmitIsSubclass(CodeGenTarget &Target,
1382                           std::vector<ClassInfo*> &Infos,
1383                           raw_ostream &OS) {
1384  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1385  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1386  OS << "  if (A == B)\n";
1387  OS << "    return true;\n\n";
1388
1389  OS << "  switch (A) {\n";
1390  OS << "  default:\n";
1391  OS << "    return false;\n";
1392  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1393         ie = Infos.end(); it != ie; ++it) {
1394    ClassInfo &A = **it;
1395
1396    if (A.Kind != ClassInfo::Token) {
1397      std::vector<StringRef> SuperClasses;
1398      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1399             ie = Infos.end(); it != ie; ++it) {
1400        ClassInfo &B = **it;
1401
1402        if (&A != &B && A.isSubsetOf(B))
1403          SuperClasses.push_back(B.Name);
1404      }
1405
1406      if (SuperClasses.empty())
1407        continue;
1408
1409      OS << "\n  case " << A.Name << ":\n";
1410
1411      if (SuperClasses.size() == 1) {
1412        OS << "    return B == " << SuperClasses.back() << ";\n";
1413        continue;
1414      }
1415
1416      OS << "    switch (B) {\n";
1417      OS << "    default: return false;\n";
1418      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1419        OS << "    case " << SuperClasses[i] << ": return true;\n";
1420      OS << "    }\n";
1421    }
1422  }
1423  OS << "  }\n";
1424  OS << "}\n\n";
1425}
1426
1427
1428
1429/// EmitMatchTokenString - Emit the function to match a token string to the
1430/// appropriate match class value.
1431static void EmitMatchTokenString(CodeGenTarget &Target,
1432                                 std::vector<ClassInfo*> &Infos,
1433                                 raw_ostream &OS) {
1434  // Construct the match list.
1435  std::vector<StringMatcher::StringPair> Matches;
1436  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1437         ie = Infos.end(); it != ie; ++it) {
1438    ClassInfo &CI = **it;
1439
1440    if (CI.Kind == ClassInfo::Token)
1441      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1442                                                  "return " + CI.Name + ";"));
1443  }
1444
1445  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1446
1447  StringMatcher("Name", Matches, OS).Emit();
1448
1449  OS << "  return InvalidMatchClass;\n";
1450  OS << "}\n\n";
1451}
1452
1453/// EmitMatchRegisterName - Emit the function to match a string to the target
1454/// specific register enum.
1455static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1456                                  raw_ostream &OS) {
1457  // Construct the match list.
1458  std::vector<StringMatcher::StringPair> Matches;
1459  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1460    const CodeGenRegister &Reg = Target.getRegisters()[i];
1461    if (Reg.TheDef->getValueAsString("AsmName").empty())
1462      continue;
1463
1464    Matches.push_back(StringMatcher::StringPair(
1465                                        Reg.TheDef->getValueAsString("AsmName"),
1466                                        "return " + utostr(i + 1) + ";"));
1467  }
1468
1469  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1470
1471  StringMatcher("Name", Matches, OS).Emit();
1472
1473  OS << "  return 0;\n";
1474  OS << "}\n\n";
1475}
1476
1477/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1478/// definitions.
1479static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
1480                                                AsmMatcherInfo &Info,
1481                                                raw_ostream &OS) {
1482  OS << "// Flags for subtarget features that participate in "
1483     << "instruction matching.\n";
1484  OS << "enum SubtargetFeatureFlag {\n";
1485  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1486         it = Info.SubtargetFeatures.begin(),
1487         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1488    SubtargetFeatureInfo &SFI = *it->second;
1489    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1490  }
1491  OS << "  Feature_None = 0\n";
1492  OS << "};\n\n";
1493}
1494
1495/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1496/// available features given a subtarget.
1497static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
1498                                         AsmMatcherInfo &Info,
1499                                         raw_ostream &OS) {
1500  std::string ClassName =
1501    Info.AsmParser->getValueAsString("AsmParserClassName");
1502
1503  OS << "unsigned " << Target.getName() << ClassName << "::\n"
1504     << "ComputeAvailableFeatures(const " << Target.getName()
1505     << "Subtarget *Subtarget) const {\n";
1506  OS << "  unsigned Features = 0;\n";
1507  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1508         it = Info.SubtargetFeatures.begin(),
1509         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1510    SubtargetFeatureInfo &SFI = *it->second;
1511    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1512       << ")\n";
1513    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1514  }
1515  OS << "  return Features;\n";
1516  OS << "}\n\n";
1517}
1518
1519static std::string GetAliasRequiredFeatures(Record *R) {
1520  // FIXME: This is a total hack.
1521  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1522
1523  std::string Result;
1524  unsigned NumFeatures = 0;
1525  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1526    Record *Pred = ReqFeatures[i];
1527
1528    // Ignore predicates that are not intended for the assembler.
1529    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1530      continue;
1531
1532    if (NumFeatures)
1533      Result += '|';
1534
1535    Result += "Feature_" + Pred->getName();
1536    ++NumFeatures;
1537  }
1538
1539  if (NumFeatures > 1)
1540    Result = '(' + Result + ')';
1541  return Result;
1542}
1543
1544/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1545/// emit a function for them and return true, otherwise return false.
1546static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1547  std::vector<Record*> Aliases =
1548    Records.getAllDerivedDefinitions("MnemonicAlias");
1549  if (Aliases.empty()) return false;
1550
1551  OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1552        "unsigned Features) {\n";
1553
1554  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1555  // iteration order of the map is stable.
1556  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1557
1558  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1559    Record *R = Aliases[i];
1560    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1561  }
1562
1563  // Process each alias a "from" mnemonic at a time, building the code executed
1564  // by the string remapper.
1565  std::vector<StringMatcher::StringPair> Cases;
1566  for (std::map<std::string, std::vector<Record*> >::iterator
1567       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1568       I != E; ++I) {
1569    const std::vector<Record*> &ToVec = I->second;
1570
1571    // Loop through each alias and emit code that handles each case.  If there
1572    // are two instructions without predicates, emit an error.  If there is one,
1573    // emit it last.
1574    std::string MatchCode;
1575    int AliasWithNoPredicate = -1;
1576
1577    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1578      Record *R = ToVec[i];
1579      std::string FeatureMask = GetAliasRequiredFeatures(R);
1580
1581      // If this unconditionally matches, remember it for later and diagnose
1582      // duplicates.
1583      if (FeatureMask.empty()) {
1584        if (AliasWithNoPredicate != -1) {
1585          // We can't have two aliases from the same mnemonic with no predicate.
1586          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1587                     "two MnemonicAliases with the same 'from' mnemonic!");
1588          PrintError(R->getLoc(), "this is the other MnemonicAlias.");
1589          throw std::string("ERROR: Invalid MnemonicAlias definitions!");
1590        }
1591
1592        AliasWithNoPredicate = i;
1593        continue;
1594      }
1595
1596      if (!MatchCode.empty())
1597        MatchCode += "else ";
1598      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1599      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1600    }
1601
1602    if (AliasWithNoPredicate != -1) {
1603      Record *R = ToVec[AliasWithNoPredicate];
1604      if (!MatchCode.empty())
1605        MatchCode += "else\n  ";
1606      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1607    }
1608
1609    MatchCode += "return;";
1610
1611    Cases.push_back(std::make_pair(I->first, MatchCode));
1612  }
1613
1614
1615  StringMatcher("Mnemonic", Cases, OS).Emit();
1616  OS << "}\n";
1617
1618  return true;
1619}
1620
1621void AsmMatcherEmitter::run(raw_ostream &OS) {
1622  CodeGenTarget Target;
1623  Record *AsmParser = Target.getAsmParser();
1624  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1625
1626  // Compute the information on the instructions to match.
1627  AsmMatcherInfo Info(AsmParser);
1628  Info.BuildInfo(Target);
1629
1630  // Sort the instruction table using the partial order on classes. We use
1631  // stable_sort to ensure that ambiguous instructions are still
1632  // deterministically ordered.
1633  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1634                   less_ptr<InstructionInfo>());
1635
1636  DEBUG_WITH_TYPE("instruction_info", {
1637      for (std::vector<InstructionInfo*>::iterator
1638             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1639           it != ie; ++it)
1640        (*it)->dump();
1641    });
1642
1643  // Check for ambiguous instructions.
1644  DEBUG_WITH_TYPE("ambiguous_instrs", {
1645    unsigned NumAmbiguous = 0;
1646    for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1647      for (unsigned j = i + 1; j != e; ++j) {
1648        InstructionInfo &A = *Info.Instructions[i];
1649        InstructionInfo &B = *Info.Instructions[j];
1650
1651        if (A.CouldMatchAmiguouslyWith(B)) {
1652          errs() << "warning: ambiguous instruction match:\n";
1653          A.dump();
1654          errs() << "\nis incomparable with:\n";
1655          B.dump();
1656          errs() << "\n\n";
1657          ++NumAmbiguous;
1658        }
1659      }
1660    }
1661    if (NumAmbiguous)
1662      errs() << "warning: " << NumAmbiguous
1663             << " ambiguous instructions!\n";
1664  });
1665
1666  // Write the output.
1667
1668  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1669
1670  // Information for the class declaration.
1671  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1672  OS << "#undef GET_ASSEMBLER_HEADER\n";
1673  OS << "  // This should be included into the middle of the declaration of \n";
1674  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1675  OS << "  unsigned ComputeAvailableFeatures(const " <<
1676           Target.getName() << "Subtarget *Subtarget) const;\n";
1677  OS << "  enum MatchResultTy {\n";
1678  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
1679  OS << "    Match_MissingFeature\n";
1680  OS << "  };\n";
1681  OS << "  MatchResultTy MatchInstructionImpl(const "
1682     << "SmallVectorImpl<MCParsedAsmOperand*>"
1683     << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
1684  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1685
1686
1687
1688
1689  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1690  OS << "#undef GET_REGISTER_MATCHER\n\n";
1691
1692  // Emit the subtarget feature enumeration.
1693  EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);
1694
1695  // Emit the function to match a register name to number.
1696  EmitMatchRegisterName(Target, AsmParser, OS);
1697
1698  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1699
1700
1701  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1702  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1703
1704  // Generate the function that remaps for mnemonic aliases.
1705  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
1706
1707  // Generate the unified function to convert operands into an MCInst.
1708  EmitConvertToMCInst(Target, Info.Instructions, OS);
1709
1710  // Emit the enumeration for classes which participate in matching.
1711  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1712
1713  // Emit the routine to match token strings to their match class.
1714  EmitMatchTokenString(Target, Info.Classes, OS);
1715
1716  // Emit the routine to classify an operand.
1717  EmitClassifyOperand(Target, Info, OS);
1718
1719  // Emit the subclass predicate routine.
1720  EmitIsSubclass(Target, Info.Classes, OS);
1721
1722  // Emit the available features compute function.
1723  EmitComputeAvailableFeatures(Target, Info, OS);
1724
1725
1726  size_t MaxNumOperands = 0;
1727  for (std::vector<InstructionInfo*>::const_iterator it =
1728         Info.Instructions.begin(), ie = Info.Instructions.end();
1729       it != ie; ++it)
1730    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1731
1732
1733  // Emit the static match table; unused classes get initalized to 0 which is
1734  // guaranteed to be InvalidMatchClass.
1735  //
1736  // FIXME: We can reduce the size of this table very easily. First, we change
1737  // it so that store the kinds in separate bit-fields for each index, which
1738  // only needs to be the max width used for classes at that index (we also need
1739  // to reject based on this during classification). If we then make sure to
1740  // order the match kinds appropriately (putting mnemonics last), then we
1741  // should only end up using a few bits for each class, especially the ones
1742  // following the mnemonic.
1743  OS << "namespace {\n";
1744  OS << "  struct MatchEntry {\n";
1745  OS << "    unsigned Opcode;\n";
1746  OS << "    const char *Mnemonic;\n";
1747  OS << "    ConversionKind ConvertFn;\n";
1748  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1749  OS << "    unsigned RequiredFeatures;\n";
1750  OS << "  };\n\n";
1751
1752  OS << "// Predicate for searching for an opcode.\n";
1753  OS << "  struct LessOpcode {\n";
1754  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
1755  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
1756  OS << "    }\n";
1757  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
1758  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
1759  OS << "    }\n";
1760  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
1761  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1762  OS << "    }\n";
1763  OS << "  };\n";
1764
1765  OS << "} // end anonymous namespace.\n\n";
1766
1767  OS << "static const MatchEntry MatchTable["
1768     << Info.Instructions.size() << "] = {\n";
1769
1770  for (std::vector<InstructionInfo*>::const_iterator it =
1771       Info.Instructions.begin(), ie = Info.Instructions.end();
1772       it != ie; ++it) {
1773    InstructionInfo &II = **it;
1774
1775    OS << "  { " << Target.getName() << "::" << II.InstrName
1776    << ", \"" << II.Tokens[0] << "\""
1777    << ", " << II.ConversionFnKind << ", { ";
1778    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1779      InstructionInfo::Operand &Op = II.Operands[i];
1780
1781      if (i) OS << ", ";
1782      OS << Op.Class->Name;
1783    }
1784    OS << " }, ";
1785
1786    // Write the required features mask.
1787    if (!II.RequiredFeatures.empty()) {
1788      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1789        if (i) OS << "|";
1790        OS << II.RequiredFeatures[i]->getEnumName();
1791      }
1792    } else
1793      OS << "0";
1794
1795    OS << "},\n";
1796  }
1797
1798  OS << "};\n\n";
1799
1800  // Finally, build the match function.
1801  OS << Target.getName() << ClassName << "::MatchResultTy "
1802     << Target.getName() << ClassName << "::\n"
1803     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1804     << " &Operands,\n";
1805  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
1806
1807  // Emit code to get the available features.
1808  OS << "  // Get the current feature set.\n";
1809  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1810
1811  OS << "  // Get the instruction mnemonic, which is the first token.\n";
1812  OS << "  StringRef Mnemonic = ((" << Target.getName()
1813     << "Operand*)Operands[0])->getToken();\n\n";
1814
1815  if (HasMnemonicAliases) {
1816    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
1817    OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
1818  }
1819
1820  // Emit code to compute the class list for this operand vector.
1821  OS << "  // Eliminate obvious mismatches.\n";
1822  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
1823  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
1824  OS << "    return Match_InvalidOperand;\n";
1825  OS << "  }\n\n";
1826
1827  OS << "  // Compute the class list for this operand vector.\n";
1828  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1829  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
1830  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
1831
1832  OS << "    // Check for invalid operands before matching.\n";
1833  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
1834  OS << "      ErrorInfo = i;\n";
1835  OS << "      return Match_InvalidOperand;\n";
1836  OS << "    }\n";
1837  OS << "  }\n\n";
1838
1839  OS << "  // Mark unused classes.\n";
1840  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
1841     << "i != e; ++i)\n";
1842  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1843
1844  OS << "  // Some state to try to produce better error messages.\n";
1845  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
1846  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
1847  OS << "  // wrong for all instances of the instruction.\n";
1848  OS << "  ErrorInfo = ~0U;\n";
1849
1850  // Emit code to search the table.
1851  OS << "  // Search the table.\n";
1852  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1853  OS << "    std::equal_range(MatchTable, MatchTable+"
1854     << Info.Instructions.size() << ", Mnemonic, LessOpcode());\n\n";
1855
1856  OS << "  // Return a more specific error code if no mnemonics match.\n";
1857  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
1858  OS << "    return Match_MnemonicFail;\n\n";
1859
1860  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
1861     << "*ie = MnemonicRange.second;\n";
1862  OS << "       it != ie; ++it) {\n";
1863
1864  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
1865  OS << "    assert(Mnemonic == it->Mnemonic);\n";
1866
1867  // Emit check that the subclasses match.
1868  OS << "    bool OperandsValid = true;\n";
1869  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
1870  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
1871  OS << "        continue;\n";
1872  OS << "      // If this operand is broken for all of the instances of this\n";
1873  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
1874  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
1875  OS << "        ErrorInfo = i+1;\n";
1876  OS << "      else\n";
1877  OS << "        ErrorInfo = ~0U;";
1878  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
1879  OS << "      OperandsValid = false;\n";
1880  OS << "      break;\n";
1881  OS << "    }\n\n";
1882
1883  OS << "    if (!OperandsValid) continue;\n";
1884
1885  // Emit check that the required features are available.
1886  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
1887     << "!= it->RequiredFeatures) {\n";
1888  OS << "      HadMatchOtherThanFeatures = true;\n";
1889  OS << "      continue;\n";
1890  OS << "    }\n";
1891
1892  OS << "\n";
1893  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1894
1895  // Call the post-processing function, if used.
1896  std::string InsnCleanupFn =
1897    AsmParser->getValueAsString("AsmParserInstCleanup");
1898  if (!InsnCleanupFn.empty())
1899    OS << "    " << InsnCleanupFn << "(Inst);\n";
1900
1901  OS << "    return Match_Success;\n";
1902  OS << "  }\n\n";
1903
1904  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
1905  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
1906  OS << "  return Match_InvalidOperand;\n";
1907  OS << "}\n\n";
1908
1909  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
1910}
1911