AsmMatcherEmitter.cpp revision 1de88235781c45c0afc0c7500d65b59775196c4c
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "StringMatcher.h"
80#include "llvm/ADT/OwningPtr.h"
81#include "llvm/ADT/SmallPtrSet.h"
82#include "llvm/ADT/SmallVector.h"
83#include "llvm/ADT/STLExtras.h"
84#include "llvm/ADT/StringExtras.h"
85#include "llvm/Support/CommandLine.h"
86#include "llvm/Support/Debug.h"
87#include <list>
88#include <map>
89#include <set>
90using namespace llvm;
91
92static cl::opt<std::string>
93MatchPrefix("match-prefix", cl::init(""),
94            cl::desc("Only match instructions with the given prefix"));
95
96/// TokenizeAsmString - Tokenize a simplified assembly string.
97static void TokenizeAsmString(StringRef AsmString,
98                              SmallVectorImpl<StringRef> &Tokens) {
99  unsigned Prev = 0;
100  bool InTok = true;
101  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
102    switch (AsmString[i]) {
103    case '[':
104    case ']':
105    case '*':
106    case '!':
107    case ' ':
108    case '\t':
109    case ',':
110      if (InTok) {
111        Tokens.push_back(AsmString.slice(Prev, i));
112        InTok = false;
113      }
114      if (!isspace(AsmString[i]) && AsmString[i] != ',')
115        Tokens.push_back(AsmString.substr(i, 1));
116      Prev = i + 1;
117      break;
118
119    case '\\':
120      if (InTok) {
121        Tokens.push_back(AsmString.slice(Prev, i));
122        InTok = false;
123      }
124      ++i;
125      assert(i != AsmString.size() && "Invalid quoted character");
126      Tokens.push_back(AsmString.substr(i, 1));
127      Prev = i + 1;
128      break;
129
130    case '$': {
131      // If this isn't "${", treat like a normal token.
132      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
133        if (InTok) {
134          Tokens.push_back(AsmString.slice(Prev, i));
135          InTok = false;
136        }
137        Prev = i;
138        break;
139      }
140
141      if (InTok) {
142        Tokens.push_back(AsmString.slice(Prev, i));
143        InTok = false;
144      }
145
146      StringRef::iterator End =
147        std::find(AsmString.begin() + i, AsmString.end(), '}');
148      assert(End != AsmString.end() && "Missing brace in operand reference!");
149      size_t EndPos = End - AsmString.begin();
150      Tokens.push_back(AsmString.slice(i, EndPos+1));
151      Prev = EndPos + 1;
152      i = EndPos;
153      break;
154    }
155
156    case '.':
157      if (InTok) {
158        Tokens.push_back(AsmString.slice(Prev, i));
159      }
160      Prev = i;
161      InTok = true;
162      break;
163
164    default:
165      InTok = true;
166    }
167  }
168  if (InTok && Prev != AsmString.size())
169    Tokens.push_back(AsmString.substr(Prev));
170}
171
172static bool IsAssemblerInstruction(StringRef Name,
173                                   const CodeGenInstruction &CGI,
174                                   const SmallVectorImpl<StringRef> &Tokens) {
175  // Ignore "codegen only" instructions.
176  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
177    return false;
178
179  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
180  //
181  // FIXME: This is a total hack.
182  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
183    return false;
184
185  // Reject instructions with no .s string.
186  if (CGI.AsmString.empty()) {
187    PrintError(CGI.TheDef->getLoc(),
188               "instruction with empty asm string");
189    throw std::string("ERROR: Invalid instruction for asm matcher");
190  }
191
192  // Reject any instructions with a newline in them, they should be marked
193  // isCodeGenOnly if they are pseudo instructions.
194  if (CGI.AsmString.find('\n') != std::string::npos) {
195    PrintError(CGI.TheDef->getLoc(),
196               "multiline instruction is not valid for the asmparser, "
197               "mark it isCodeGenOnly");
198    throw std::string("ERROR: Invalid instruction");
199  }
200
201  // Reject instructions with attributes, these aren't something we can handle,
202  // the target should be refactored to use operands instead of modifiers.
203  //
204  // Also, check for instructions which reference the operand multiple times;
205  // this implies a constraint we would not honor.
206  std::set<std::string> OperandNames;
207  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
208    if (Tokens[i][0] == '$' &&
209        Tokens[i].find(':') != StringRef::npos) {
210      PrintError(CGI.TheDef->getLoc(),
211                 "instruction with operand modifier '" + Tokens[i].str() +
212                 "' not supported by asm matcher.  Mark isCodeGenOnly!");
213      throw std::string("ERROR: Invalid instruction");
214    }
215
216    // FIXME: Should reject these.  The ARM backend hits this with $lane in a
217    // bunch of instructions.  It is unclear what the right answer is for this.
218    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
219      DEBUG({
220        errs() << "warning: '" << Name << "': "
221               << "ignoring instruction with tied operand '"
222               << Tokens[i].str() << "'\n";
223      });
224      return false;
225    }
226  }
227
228  return true;
229}
230
231namespace {
232  class AsmMatcherInfo;
233struct SubtargetFeatureInfo;
234
235/// ClassInfo - Helper class for storing the information about a particular
236/// class of operands which can be matched.
237struct ClassInfo {
238  enum ClassInfoKind {
239    /// Invalid kind, for use as a sentinel value.
240    Invalid = 0,
241
242    /// The class for a particular token.
243    Token,
244
245    /// The (first) register class, subsequent register classes are
246    /// RegisterClass0+1, and so on.
247    RegisterClass0,
248
249    /// The (first) user defined class, subsequent user defined classes are
250    /// UserClass0+1, and so on.
251    UserClass0 = 1<<16
252  };
253
254  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
255  /// N) for the Nth user defined class.
256  unsigned Kind;
257
258  /// SuperClasses - The super classes of this class. Note that for simplicities
259  /// sake user operands only record their immediate super class, while register
260  /// operands include all superclasses.
261  std::vector<ClassInfo*> SuperClasses;
262
263  /// Name - The full class name, suitable for use in an enum.
264  std::string Name;
265
266  /// ClassName - The unadorned generic name for this class (e.g., Token).
267  std::string ClassName;
268
269  /// ValueName - The name of the value this class represents; for a token this
270  /// is the literal token string, for an operand it is the TableGen class (or
271  /// empty if this is a derived class).
272  std::string ValueName;
273
274  /// PredicateMethod - The name of the operand method to test whether the
275  /// operand matches this class; this is not valid for Token or register kinds.
276  std::string PredicateMethod;
277
278  /// RenderMethod - The name of the operand method to add this operand to an
279  /// MCInst; this is not valid for Token or register kinds.
280  std::string RenderMethod;
281
282  /// For register classes, the records for all the registers in this class.
283  std::set<Record*> Registers;
284
285public:
286  /// isRegisterClass() - Check if this is a register class.
287  bool isRegisterClass() const {
288    return Kind >= RegisterClass0 && Kind < UserClass0;
289  }
290
291  /// isUserClass() - Check if this is a user defined class.
292  bool isUserClass() const {
293    return Kind >= UserClass0;
294  }
295
296  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
297  /// are related if they are in the same class hierarchy.
298  bool isRelatedTo(const ClassInfo &RHS) const {
299    // Tokens are only related to tokens.
300    if (Kind == Token || RHS.Kind == Token)
301      return Kind == Token && RHS.Kind == Token;
302
303    // Registers classes are only related to registers classes, and only if
304    // their intersection is non-empty.
305    if (isRegisterClass() || RHS.isRegisterClass()) {
306      if (!isRegisterClass() || !RHS.isRegisterClass())
307        return false;
308
309      std::set<Record*> Tmp;
310      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
311      std::set_intersection(Registers.begin(), Registers.end(),
312                            RHS.Registers.begin(), RHS.Registers.end(),
313                            II);
314
315      return !Tmp.empty();
316    }
317
318    // Otherwise we have two users operands; they are related if they are in the
319    // same class hierarchy.
320    //
321    // FIXME: This is an oversimplification, they should only be related if they
322    // intersect, however we don't have that information.
323    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
324    const ClassInfo *Root = this;
325    while (!Root->SuperClasses.empty())
326      Root = Root->SuperClasses.front();
327
328    const ClassInfo *RHSRoot = &RHS;
329    while (!RHSRoot->SuperClasses.empty())
330      RHSRoot = RHSRoot->SuperClasses.front();
331
332    return Root == RHSRoot;
333  }
334
335  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
336  bool isSubsetOf(const ClassInfo &RHS) const {
337    // This is a subset of RHS if it is the same class...
338    if (this == &RHS)
339      return true;
340
341    // ... or if any of its super classes are a subset of RHS.
342    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
343           ie = SuperClasses.end(); it != ie; ++it)
344      if ((*it)->isSubsetOf(RHS))
345        return true;
346
347    return false;
348  }
349
350  /// operator< - Compare two classes.
351  bool operator<(const ClassInfo &RHS) const {
352    if (this == &RHS)
353      return false;
354
355    // Unrelated classes can be ordered by kind.
356    if (!isRelatedTo(RHS))
357      return Kind < RHS.Kind;
358
359    switch (Kind) {
360    case Invalid:
361      assert(0 && "Invalid kind!");
362    case Token:
363      // Tokens are comparable by value.
364      //
365      // FIXME: Compare by enum value.
366      return ValueName < RHS.ValueName;
367
368    default:
369      // This class preceeds the RHS if it is a proper subset of the RHS.
370      if (isSubsetOf(RHS))
371        return true;
372      if (RHS.isSubsetOf(*this))
373        return false;
374
375      // Otherwise, order by name to ensure we have a total ordering.
376      return ValueName < RHS.ValueName;
377    }
378  }
379};
380
381/// InstructionInfo - Helper class for storing the necessary information for an
382/// instruction which is capable of being matched.
383struct InstructionInfo {
384  struct Operand {
385    /// The unique class instance this operand should match.
386    ClassInfo *Class;
387
388    /// The original operand this corresponds to, if any.
389    const CodeGenInstruction::OperandInfo *OperandInfo;
390  };
391
392  /// InstrName - The target name for this instruction.
393  std::string InstrName;
394
395  /// Instr - The instruction this matches.
396  const CodeGenInstruction *Instr;
397
398  /// AsmString - The assembly string for this instruction (with variants
399  /// removed).
400  std::string AsmString;
401
402  /// Tokens - The tokenized assembly pattern that this instruction matches.
403  SmallVector<StringRef, 4> Tokens;
404
405  /// Operands - The operands that this instruction matches.
406  SmallVector<Operand, 4> Operands;
407
408  /// Predicates - The required subtarget features to match this instruction.
409  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
410
411  /// ConversionFnKind - The enum value which is passed to the generated
412  /// ConvertToMCInst to convert parsed operands into an MCInst for this
413  /// function.
414  std::string ConversionFnKind;
415
416  /// getSingletonRegisterForToken - If the specified token is a singleton
417  /// register, return the Record for it, otherwise return null.
418  Record *getSingletonRegisterForToken(unsigned i,
419                                       const AsmMatcherInfo &Info) const;
420
421  /// operator< - Compare two instructions.
422  bool operator<(const InstructionInfo &RHS) const {
423    // The primary comparator is the instruction mnemonic.
424    if (Tokens[0] != RHS.Tokens[0])
425      return Tokens[0] < RHS.Tokens[0];
426
427    if (Operands.size() != RHS.Operands.size())
428      return Operands.size() < RHS.Operands.size();
429
430    // Compare lexicographically by operand. The matcher validates that other
431    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
432    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
433      if (*Operands[i].Class < *RHS.Operands[i].Class)
434        return true;
435      if (*RHS.Operands[i].Class < *Operands[i].Class)
436        return false;
437    }
438
439    return false;
440  }
441
442  /// CouldMatchAmiguouslyWith - Check whether this instruction could
443  /// ambiguously match the same set of operands as \arg RHS (without being a
444  /// strictly superior match).
445  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
446    // The number of operands is unambiguous.
447    if (Operands.size() != RHS.Operands.size())
448      return false;
449
450    // Otherwise, make sure the ordering of the two instructions is unambiguous
451    // by checking that either (a) a token or operand kind discriminates them,
452    // or (b) the ordering among equivalent kinds is consistent.
453
454    // Tokens and operand kinds are unambiguous (assuming a correct target
455    // specific parser).
456    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
457      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
458          Operands[i].Class->Kind == ClassInfo::Token)
459        if (*Operands[i].Class < *RHS.Operands[i].Class ||
460            *RHS.Operands[i].Class < *Operands[i].Class)
461          return false;
462
463    // Otherwise, this operand could commute if all operands are equivalent, or
464    // there is a pair of operands that compare less than and a pair that
465    // compare greater than.
466    bool HasLT = false, HasGT = false;
467    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
468      if (*Operands[i].Class < *RHS.Operands[i].Class)
469        HasLT = true;
470      if (*RHS.Operands[i].Class < *Operands[i].Class)
471        HasGT = true;
472    }
473
474    return !(HasLT ^ HasGT);
475  }
476
477  void dump();
478};
479
480/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
481/// feature which participates in instruction matching.
482struct SubtargetFeatureInfo {
483  /// \brief The predicate record for this feature.
484  Record *TheDef;
485
486  /// \brief An unique index assigned to represent this feature.
487  unsigned Index;
488
489  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
490
491  /// \brief The name of the enumerated constant identifying this feature.
492  std::string getEnumName() const {
493    return "Feature_" + TheDef->getName();
494  }
495};
496
497class AsmMatcherInfo {
498public:
499  /// The tablegen AsmParser record.
500  Record *AsmParser;
501
502  /// Target - The target information.
503  CodeGenTarget &Target;
504
505  /// The AsmParser "CommentDelimiter" value.
506  std::string CommentDelimiter;
507
508  /// The AsmParser "RegisterPrefix" value.
509  std::string RegisterPrefix;
510
511  /// The classes which are needed for matching.
512  std::vector<ClassInfo*> Classes;
513
514  /// The information on the instruction to match.
515  std::vector<InstructionInfo*> Instructions;
516
517  /// Map of Register records to their class information.
518  std::map<Record*, ClassInfo*> RegisterClasses;
519
520  /// Map of Predicate records to their subtarget information.
521  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
522
523private:
524  /// Map of token to class information which has already been constructed.
525  std::map<std::string, ClassInfo*> TokenClasses;
526
527  /// Map of RegisterClass records to their class information.
528  std::map<Record*, ClassInfo*> RegisterClassClasses;
529
530  /// Map of AsmOperandClass records to their class information.
531  std::map<Record*, ClassInfo*> AsmOperandClasses;
532
533private:
534  /// getTokenClass - Lookup or create the class for the given token.
535  ClassInfo *getTokenClass(StringRef Token);
536
537  /// getOperandClass - Lookup or create the class for the given operand.
538  ClassInfo *getOperandClass(StringRef Token,
539                             const CodeGenInstruction::OperandInfo &OI);
540
541  /// BuildRegisterClasses - Build the ClassInfo* instances for register
542  /// classes.
543  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
544
545  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
546  /// operand classes.
547  void BuildOperandClasses();
548
549public:
550  AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target);
551
552  /// BuildInfo - Construct the various tables used during matching.
553  void BuildInfo();
554
555  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
556  /// given operand.
557  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
558    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
559    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
560      SubtargetFeatures.find(Def);
561    return I == SubtargetFeatures.end() ? 0 : I->second;
562  }
563};
564
565}
566
567void InstructionInfo::dump() {
568  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
569         << ", tokens:[";
570  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
571    errs() << Tokens[i];
572    if (i + 1 != e)
573      errs() << ", ";
574  }
575  errs() << "]\n";
576
577  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
578    Operand &Op = Operands[i];
579    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
580    if (Op.Class->Kind == ClassInfo::Token) {
581      errs() << '\"' << Tokens[i] << "\"\n";
582      continue;
583    }
584
585    if (!Op.OperandInfo) {
586      errs() << "(singleton register)\n";
587      continue;
588    }
589
590    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
591    errs() << OI.Name << " " << OI.Rec->getName()
592           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
593  }
594}
595
596/// getRegisterRecord - Get the register record for \arg name, or 0.
597static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
598  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
599    const CodeGenRegister &Reg = Target.getRegisters()[i];
600    if (Name == Reg.TheDef->getValueAsString("AsmName"))
601      return Reg.TheDef;
602  }
603
604  return 0;
605}
606
607/// getSingletonRegisterForToken - If the specified token is a singleton
608/// register, return the register name, otherwise return a null StringRef.
609Record *InstructionInfo::
610getSingletonRegisterForToken(unsigned i, const AsmMatcherInfo &Info) const {
611  StringRef Tok = Tokens[i];
612  if (!Tok.startswith(Info.RegisterPrefix))
613    return 0;
614
615  StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
616  if (Record *Rec = getRegisterRecord(Info.Target, RegName))
617    return Rec;
618
619  // If there is no register prefix (i.e. "%" in "%eax"), then this may
620  // be some random non-register token, just ignore it.
621  if (Info.RegisterPrefix.empty())
622    return 0;
623
624  std::string Err = "unable to find register for '" + RegName.str() +
625  "' (which matches register prefix)";
626  throw TGError(Instr->TheDef->getLoc(), Err);
627}
628
629
630static std::string getEnumNameForToken(StringRef Str) {
631  std::string Res;
632
633  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
634    switch (*it) {
635    case '*': Res += "_STAR_"; break;
636    case '%': Res += "_PCT_"; break;
637    case ':': Res += "_COLON_"; break;
638    default:
639      if (isalnum(*it))
640        Res += *it;
641      else
642        Res += "_" + utostr((unsigned) *it) + "_";
643    }
644  }
645
646  return Res;
647}
648
649ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
650  ClassInfo *&Entry = TokenClasses[Token];
651
652  if (!Entry) {
653    Entry = new ClassInfo();
654    Entry->Kind = ClassInfo::Token;
655    Entry->ClassName = "Token";
656    Entry->Name = "MCK_" + getEnumNameForToken(Token);
657    Entry->ValueName = Token;
658    Entry->PredicateMethod = "<invalid>";
659    Entry->RenderMethod = "<invalid>";
660    Classes.push_back(Entry);
661  }
662
663  return Entry;
664}
665
666ClassInfo *
667AsmMatcherInfo::getOperandClass(StringRef Token,
668                                const CodeGenInstruction::OperandInfo &OI) {
669  if (OI.Rec->isSubClassOf("RegisterClass")) {
670    ClassInfo *CI = RegisterClassClasses[OI.Rec];
671
672    if (!CI) {
673      PrintError(OI.Rec->getLoc(), "register class has no class info!");
674      throw std::string("ERROR: Missing register class!");
675    }
676
677    return CI;
678  }
679
680  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
681  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
682  ClassInfo *CI = AsmOperandClasses[MatchClass];
683
684  if (!CI) {
685    PrintError(OI.Rec->getLoc(), "operand has no match class!");
686    throw std::string("ERROR: Missing match class!");
687  }
688
689  return CI;
690}
691
692void AsmMatcherInfo::
693BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
694  std::vector<CodeGenRegisterClass> RegisterClasses;
695  std::vector<CodeGenRegister> Registers;
696
697  RegisterClasses = Target.getRegisterClasses();
698  Registers = Target.getRegisters();
699
700  // The register sets used for matching.
701  std::set< std::set<Record*> > RegisterSets;
702
703  // Gather the defined sets.
704  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
705         ie = RegisterClasses.end(); it != ie; ++it)
706    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
707                                          it->Elements.end()));
708
709  // Add any required singleton sets.
710  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
711       ie = SingletonRegisters.end(); it != ie; ++it) {
712    Record *Rec = *it;
713    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
714  }
715
716  // Introduce derived sets where necessary (when a register does not determine
717  // a unique register set class), and build the mapping of registers to the set
718  // they should classify to.
719  std::map<Record*, std::set<Record*> > RegisterMap;
720  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
721         ie = Registers.end(); it != ie; ++it) {
722    CodeGenRegister &CGR = *it;
723    // Compute the intersection of all sets containing this register.
724    std::set<Record*> ContainingSet;
725
726    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
727           ie = RegisterSets.end(); it != ie; ++it) {
728      if (!it->count(CGR.TheDef))
729        continue;
730
731      if (ContainingSet.empty()) {
732        ContainingSet = *it;
733      } else {
734        std::set<Record*> Tmp;
735        std::swap(Tmp, ContainingSet);
736        std::insert_iterator< std::set<Record*> > II(ContainingSet,
737                                                     ContainingSet.begin());
738        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
739                              II);
740      }
741    }
742
743    if (!ContainingSet.empty()) {
744      RegisterSets.insert(ContainingSet);
745      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
746    }
747  }
748
749  // Construct the register classes.
750  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
751  unsigned Index = 0;
752  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
753         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
754    ClassInfo *CI = new ClassInfo();
755    CI->Kind = ClassInfo::RegisterClass0 + Index;
756    CI->ClassName = "Reg" + utostr(Index);
757    CI->Name = "MCK_Reg" + utostr(Index);
758    CI->ValueName = "";
759    CI->PredicateMethod = ""; // unused
760    CI->RenderMethod = "addRegOperands";
761    CI->Registers = *it;
762    Classes.push_back(CI);
763    RegisterSetClasses.insert(std::make_pair(*it, CI));
764  }
765
766  // Find the superclasses; we could compute only the subgroup lattice edges,
767  // but there isn't really a point.
768  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
769         ie = RegisterSets.end(); it != ie; ++it) {
770    ClassInfo *CI = RegisterSetClasses[*it];
771    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
772           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
773      if (*it != *it2 &&
774          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
775        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
776  }
777
778  // Name the register classes which correspond to a user defined RegisterClass.
779  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
780         ie = RegisterClasses.end(); it != ie; ++it) {
781    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
782                                                         it->Elements.end())];
783    if (CI->ValueName.empty()) {
784      CI->ClassName = it->getName();
785      CI->Name = "MCK_" + it->getName();
786      CI->ValueName = it->getName();
787    } else
788      CI->ValueName = CI->ValueName + "," + it->getName();
789
790    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
791  }
792
793  // Populate the map for individual registers.
794  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
795         ie = RegisterMap.end(); it != ie; ++it)
796    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
797
798  // Name the register classes which correspond to singleton registers.
799  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
800         ie = SingletonRegisters.end(); it != ie; ++it) {
801    Record *Rec = *it;
802    ClassInfo *CI = this->RegisterClasses[Rec];
803    assert(CI && "Missing singleton register class info!");
804
805    if (CI->ValueName.empty()) {
806      CI->ClassName = Rec->getName();
807      CI->Name = "MCK_" + Rec->getName();
808      CI->ValueName = Rec->getName();
809    } else
810      CI->ValueName = CI->ValueName + "," + Rec->getName();
811  }
812}
813
814void AsmMatcherInfo::BuildOperandClasses() {
815  std::vector<Record*> AsmOperands;
816  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
817
818  // Pre-populate AsmOperandClasses map.
819  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
820         ie = AsmOperands.end(); it != ie; ++it)
821    AsmOperandClasses[*it] = new ClassInfo();
822
823  unsigned Index = 0;
824  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
825         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
826    ClassInfo *CI = AsmOperandClasses[*it];
827    CI->Kind = ClassInfo::UserClass0 + Index;
828
829    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
830    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
831      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
832      if (!DI) {
833        PrintError((*it)->getLoc(), "Invalid super class reference!");
834        continue;
835      }
836
837      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
838      if (!SC)
839        PrintError((*it)->getLoc(), "Invalid super class reference!");
840      else
841        CI->SuperClasses.push_back(SC);
842    }
843    CI->ClassName = (*it)->getValueAsString("Name");
844    CI->Name = "MCK_" + CI->ClassName;
845    CI->ValueName = (*it)->getName();
846
847    // Get or construct the predicate method name.
848    Init *PMName = (*it)->getValueInit("PredicateMethod");
849    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
850      CI->PredicateMethod = SI->getValue();
851    } else {
852      assert(dynamic_cast<UnsetInit*>(PMName) &&
853             "Unexpected PredicateMethod field!");
854      CI->PredicateMethod = "is" + CI->ClassName;
855    }
856
857    // Get or construct the render method name.
858    Init *RMName = (*it)->getValueInit("RenderMethod");
859    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
860      CI->RenderMethod = SI->getValue();
861    } else {
862      assert(dynamic_cast<UnsetInit*>(RMName) &&
863             "Unexpected RenderMethod field!");
864      CI->RenderMethod = "add" + CI->ClassName + "Operands";
865    }
866
867    AsmOperandClasses[*it] = CI;
868    Classes.push_back(CI);
869  }
870}
871
872AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target)
873  : AsmParser(asmParser), Target(target),
874    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
875    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
876{
877}
878
879void AsmMatcherInfo::BuildInfo() {
880  // Build information about all of the AssemblerPredicates.
881  std::vector<Record*> AllPredicates =
882    Records.getAllDerivedDefinitions("Predicate");
883  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
884    Record *Pred = AllPredicates[i];
885    // Ignore predicates that are not intended for the assembler.
886    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
887      continue;
888
889    if (Pred->getName().empty()) {
890      PrintError(Pred->getLoc(), "Predicate has no name!");
891      throw std::string("ERROR: Predicate defs must be named");
892    }
893
894    unsigned FeatureNo = SubtargetFeatures.size();
895    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
896    assert(FeatureNo < 32 && "Too many subtarget features!");
897  }
898
899  // Parse the instructions; we need to do this first so that we can gather the
900  // singleton register classes.
901  SmallPtrSet<Record*, 16> SingletonRegisters;
902  for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
903       E = Target.inst_end(); I != E; ++I) {
904    const CodeGenInstruction &CGI = **I;
905
906    // If the tblgen -match-prefix option is specified (for tblgen hackers),
907    // filter the set of instructions we consider.
908    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
909      continue;
910
911    OwningPtr<InstructionInfo> II(new InstructionInfo());
912
913    II->InstrName = CGI.TheDef->getName();
914    II->Instr = &CGI;
915    // TODO: Eventually support asmparser for Variant != 0.
916    II->AsmString = CGI.FlattenAsmStringVariants(CGI.AsmString, 0);
917
918    // Remove comments from the asm string.  We know that the asmstring only
919    // has one line.
920    if (!CommentDelimiter.empty()) {
921      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
922      if (Idx != StringRef::npos)
923        II->AsmString = II->AsmString.substr(0, Idx);
924    }
925
926    TokenizeAsmString(II->AsmString, II->Tokens);
927
928    // Ignore instructions which shouldn't be matched and diagnose invalid
929    // instruction definitions with an error.
930    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
931      continue;
932
933    // Collect singleton registers, if used.
934    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
935      if (Record *Reg = II->getSingletonRegisterForToken(i, *this))
936        SingletonRegisters.insert(Reg);
937    }
938
939    // Compute the require features.
940    std::vector<Record*> Predicates =
941      CGI.TheDef->getValueAsListOfDefs("Predicates");
942    for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
943      if (SubtargetFeatureInfo *Feature = getSubtargetFeature(Predicates[i]))
944        II->RequiredFeatures.push_back(Feature);
945
946    Instructions.push_back(II.take());
947  }
948
949  // Build info for the register classes.
950  BuildRegisterClasses(SingletonRegisters);
951
952  // Build info for the user defined assembly operand classes.
953  BuildOperandClasses();
954
955  // Build the instruction information.
956  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
957         ie = Instructions.end(); it != ie; ++it) {
958    InstructionInfo *II = *it;
959
960    // The first token of the instruction is the mnemonic, which must be a
961    // simple string, not a $foo variable or a singleton register.
962    assert(!II->Tokens.empty() && "Instruction has no tokens?");
963    StringRef Mnemonic = II->Tokens[0];
964    if (Mnemonic[0] == '$' || II->getSingletonRegisterForToken(0, *this))
965      throw TGError(II->Instr->TheDef->getLoc(),
966                    "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
967
968    // Parse the tokens after the mnemonic.
969    for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
970      StringRef Token = II->Tokens[i];
971
972      // Check for singleton registers.
973      if (Record *RegRecord = II->getSingletonRegisterForToken(i, *this)) {
974        InstructionInfo::Operand Op;
975        Op.Class = RegisterClasses[RegRecord];
976        Op.OperandInfo = 0;
977        assert(Op.Class && Op.Class->Registers.size() == 1 &&
978               "Unexpected class for singleton register");
979        II->Operands.push_back(Op);
980        continue;
981      }
982
983      // Check for simple tokens.
984      if (Token[0] != '$') {
985        InstructionInfo::Operand Op;
986        Op.Class = getTokenClass(Token);
987        Op.OperandInfo = 0;
988        II->Operands.push_back(Op);
989        continue;
990      }
991
992      // Otherwise this is an operand reference.
993      StringRef OperandName;
994      if (Token[1] == '{')
995        OperandName = Token.substr(2, Token.size() - 3);
996      else
997        OperandName = Token.substr(1);
998
999      // Map this token to an operand. FIXME: Move elsewhere.
1000      unsigned Idx;
1001      try {
1002        Idx = II->Instr->getOperandNamed(OperandName);
1003      } catch(...) {
1004        throw std::string("error: unable to find operand: '" +
1005                          OperandName.str() + "'");
1006      }
1007
1008      // FIXME: This is annoying, the named operand may be tied (e.g.,
1009      // XCHG8rm). What we want is the untied operand, which we now have to
1010      // grovel for. Only worry about this for single entry operands, we have to
1011      // clean this up anyway.
1012      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
1013      if (OI->Constraints[0].isTied()) {
1014        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
1015
1016        // The tied operand index is an MIOperand index, find the operand that
1017        // contains it.
1018        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
1019          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
1020            OI = &II->Instr->OperandList[i];
1021            break;
1022          }
1023        }
1024
1025        assert(OI && "Unable to find tied operand target!");
1026      }
1027
1028      InstructionInfo::Operand Op;
1029      Op.Class = getOperandClass(Token, *OI);
1030      Op.OperandInfo = OI;
1031      II->Operands.push_back(Op);
1032    }
1033  }
1034
1035  // Reorder classes so that classes preceed super classes.
1036  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1037}
1038
1039static std::pair<unsigned, unsigned> *
1040GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
1041                      unsigned Index) {
1042  for (unsigned i = 0, e = List.size(); i != e; ++i)
1043    if (Index == List[i].first)
1044      return &List[i];
1045
1046  return 0;
1047}
1048
1049static void EmitConvertToMCInst(CodeGenTarget &Target,
1050                                std::vector<InstructionInfo*> &Infos,
1051                                raw_ostream &OS) {
1052  // Write the convert function to a separate stream, so we can drop it after
1053  // the enum.
1054  std::string ConvertFnBody;
1055  raw_string_ostream CvtOS(ConvertFnBody);
1056
1057  // Function we have already generated.
1058  std::set<std::string> GeneratedFns;
1059
1060  // Start the unified conversion function.
1061
1062  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1063        << "unsigned Opcode,\n"
1064        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1065        << "> &Operands) {\n";
1066  CvtOS << "  Inst.setOpcode(Opcode);\n";
1067  CvtOS << "  switch (Kind) {\n";
1068  CvtOS << "  default:\n";
1069
1070  // Start the enum, which we will generate inline.
1071
1072  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1073  OS << "enum ConversionKind {\n";
1074
1075  // TargetOperandClass - This is the target's operand class, like X86Operand.
1076  std::string TargetOperandClass = Target.getName() + "Operand";
1077
1078  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1079         ie = Infos.end(); it != ie; ++it) {
1080    InstructionInfo &II = **it;
1081
1082    // Order the (class) operands by the order to convert them into an MCInst.
1083    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1084    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1085      InstructionInfo::Operand &Op = II.Operands[i];
1086      if (Op.OperandInfo)
1087        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1088    }
1089
1090    // Find any tied operands.
1091    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1092    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1093      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1094      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1095        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1096        if (CI.isTied())
1097          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1098                                                CI.getTiedOperand()));
1099      }
1100    }
1101
1102    std::sort(MIOperandList.begin(), MIOperandList.end());
1103
1104    // Compute the total number of operands.
1105    unsigned NumMIOperands = 0;
1106    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1107      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1108      NumMIOperands = std::max(NumMIOperands,
1109                               OI.MIOperandNo + OI.MINumOperands);
1110    }
1111
1112    // Build the conversion function signature.
1113    std::string Signature = "Convert";
1114    unsigned CurIndex = 0;
1115    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1116      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1117      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1118             "Duplicate match for instruction operand!");
1119
1120      // Skip operands which weren't matched by anything, this occurs when the
1121      // .td file encodes "implicit" operands as explicit ones.
1122      //
1123      // FIXME: This should be removed from the MCInst structure.
1124      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1125        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1126                                                                   CurIndex);
1127        if (!Tie)
1128          Signature += "__Imp";
1129        else
1130          Signature += "__Tie" + utostr(Tie->second);
1131      }
1132
1133      Signature += "__";
1134
1135      // Registers are always converted the same, don't duplicate the conversion
1136      // function based on them.
1137      //
1138      // FIXME: We could generalize this based on the render method, if it
1139      // mattered.
1140      if (Op.Class->isRegisterClass())
1141        Signature += "Reg";
1142      else
1143        Signature += Op.Class->ClassName;
1144      Signature += utostr(Op.OperandInfo->MINumOperands);
1145      Signature += "_" + utostr(MIOperandList[i].second);
1146
1147      CurIndex += Op.OperandInfo->MINumOperands;
1148    }
1149
1150    // Add any trailing implicit operands.
1151    for (; CurIndex != NumMIOperands; ++CurIndex) {
1152      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1153                                                                 CurIndex);
1154      if (!Tie)
1155        Signature += "__Imp";
1156      else
1157        Signature += "__Tie" + utostr(Tie->second);
1158    }
1159
1160    II.ConversionFnKind = Signature;
1161
1162    // Check if we have already generated this signature.
1163    if (!GeneratedFns.insert(Signature).second)
1164      continue;
1165
1166    // If not, emit it now.
1167
1168    // Add to the enum list.
1169    OS << "  " << Signature << ",\n";
1170
1171    // And to the convert function.
1172    CvtOS << "  case " << Signature << ":\n";
1173    CurIndex = 0;
1174    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1175      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1176
1177      // Add the implicit operands.
1178      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1179        // See if this is a tied operand.
1180        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1181                                                                   CurIndex);
1182
1183        if (!Tie) {
1184          // If not, this is some implicit operand. Just assume it is a register
1185          // for now.
1186          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1187        } else {
1188          // Copy the tied operand.
1189          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1190          CvtOS << "    Inst.addOperand(Inst.getOperand("
1191                << Tie->second << "));\n";
1192        }
1193      }
1194
1195      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1196         << MIOperandList[i].second
1197         << "+1])->" << Op.Class->RenderMethod
1198         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1199      CurIndex += Op.OperandInfo->MINumOperands;
1200    }
1201
1202    // And add trailing implicit operands.
1203    for (; CurIndex != NumMIOperands; ++CurIndex) {
1204      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1205                                                                 CurIndex);
1206
1207      if (!Tie) {
1208        // If not, this is some implicit operand. Just assume it is a register
1209        // for now.
1210        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1211      } else {
1212        // Copy the tied operand.
1213        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1214        CvtOS << "    Inst.addOperand(Inst.getOperand("
1215              << Tie->second << "));\n";
1216      }
1217    }
1218
1219    CvtOS << "    return;\n";
1220  }
1221
1222  // Finish the convert function.
1223
1224  CvtOS << "  }\n";
1225  CvtOS << "}\n\n";
1226
1227  // Finish the enum, and drop the convert function after it.
1228
1229  OS << "  NumConversionVariants\n";
1230  OS << "};\n\n";
1231
1232  OS << CvtOS.str();
1233}
1234
1235/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1236static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1237                                      std::vector<ClassInfo*> &Infos,
1238                                      raw_ostream &OS) {
1239  OS << "namespace {\n\n";
1240
1241  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1242     << "/// instruction matching.\n";
1243  OS << "enum MatchClassKind {\n";
1244  OS << "  InvalidMatchClass = 0,\n";
1245  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1246         ie = Infos.end(); it != ie; ++it) {
1247    ClassInfo &CI = **it;
1248    OS << "  " << CI.Name << ", // ";
1249    if (CI.Kind == ClassInfo::Token) {
1250      OS << "'" << CI.ValueName << "'\n";
1251    } else if (CI.isRegisterClass()) {
1252      if (!CI.ValueName.empty())
1253        OS << "register class '" << CI.ValueName << "'\n";
1254      else
1255        OS << "derived register class\n";
1256    } else {
1257      OS << "user defined class '" << CI.ValueName << "'\n";
1258    }
1259  }
1260  OS << "  NumMatchClassKinds\n";
1261  OS << "};\n\n";
1262
1263  OS << "}\n\n";
1264}
1265
1266/// EmitClassifyOperand - Emit the function to classify an operand.
1267static void EmitClassifyOperand(AsmMatcherInfo &Info,
1268                                raw_ostream &OS) {
1269  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1270     << "  " << Info.Target.getName() << "Operand &Operand = *("
1271     << Info.Target.getName() << "Operand*)GOp;\n";
1272
1273  // Classify tokens.
1274  OS << "  if (Operand.isToken())\n";
1275  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1276
1277  // Classify registers.
1278  //
1279  // FIXME: Don't hardcode isReg, getReg.
1280  OS << "  if (Operand.isReg()) {\n";
1281  OS << "    switch (Operand.getReg()) {\n";
1282  OS << "    default: return InvalidMatchClass;\n";
1283  for (std::map<Record*, ClassInfo*>::iterator
1284         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1285       it != ie; ++it)
1286    OS << "    case " << Info.Target.getName() << "::"
1287       << it->first->getName() << ": return " << it->second->Name << ";\n";
1288  OS << "    }\n";
1289  OS << "  }\n\n";
1290
1291  // Classify user defined operands.
1292  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1293         ie = Info.Classes.end(); it != ie; ++it) {
1294    ClassInfo &CI = **it;
1295
1296    if (!CI.isUserClass())
1297      continue;
1298
1299    OS << "  // '" << CI.ClassName << "' class";
1300    if (!CI.SuperClasses.empty()) {
1301      OS << ", subclass of ";
1302      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1303        if (i) OS << ", ";
1304        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1305        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1306      }
1307    }
1308    OS << "\n";
1309
1310    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1311
1312    // Validate subclass relationships.
1313    if (!CI.SuperClasses.empty()) {
1314      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1315        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1316           << "() && \"Invalid class relationship!\");\n";
1317    }
1318
1319    OS << "    return " << CI.Name << ";\n";
1320    OS << "  }\n\n";
1321  }
1322  OS << "  return InvalidMatchClass;\n";
1323  OS << "}\n\n";
1324}
1325
1326/// EmitIsSubclass - Emit the subclass predicate function.
1327static void EmitIsSubclass(CodeGenTarget &Target,
1328                           std::vector<ClassInfo*> &Infos,
1329                           raw_ostream &OS) {
1330  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1331  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1332  OS << "  if (A == B)\n";
1333  OS << "    return true;\n\n";
1334
1335  OS << "  switch (A) {\n";
1336  OS << "  default:\n";
1337  OS << "    return false;\n";
1338  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1339         ie = Infos.end(); it != ie; ++it) {
1340    ClassInfo &A = **it;
1341
1342    if (A.Kind != ClassInfo::Token) {
1343      std::vector<StringRef> SuperClasses;
1344      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1345             ie = Infos.end(); it != ie; ++it) {
1346        ClassInfo &B = **it;
1347
1348        if (&A != &B && A.isSubsetOf(B))
1349          SuperClasses.push_back(B.Name);
1350      }
1351
1352      if (SuperClasses.empty())
1353        continue;
1354
1355      OS << "\n  case " << A.Name << ":\n";
1356
1357      if (SuperClasses.size() == 1) {
1358        OS << "    return B == " << SuperClasses.back() << ";\n";
1359        continue;
1360      }
1361
1362      OS << "    switch (B) {\n";
1363      OS << "    default: return false;\n";
1364      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1365        OS << "    case " << SuperClasses[i] << ": return true;\n";
1366      OS << "    }\n";
1367    }
1368  }
1369  OS << "  }\n";
1370  OS << "}\n\n";
1371}
1372
1373
1374
1375/// EmitMatchTokenString - Emit the function to match a token string to the
1376/// appropriate match class value.
1377static void EmitMatchTokenString(CodeGenTarget &Target,
1378                                 std::vector<ClassInfo*> &Infos,
1379                                 raw_ostream &OS) {
1380  // Construct the match list.
1381  std::vector<StringMatcher::StringPair> Matches;
1382  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1383         ie = Infos.end(); it != ie; ++it) {
1384    ClassInfo &CI = **it;
1385
1386    if (CI.Kind == ClassInfo::Token)
1387      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1388                                                  "return " + CI.Name + ";"));
1389  }
1390
1391  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1392
1393  StringMatcher("Name", Matches, OS).Emit();
1394
1395  OS << "  return InvalidMatchClass;\n";
1396  OS << "}\n\n";
1397}
1398
1399/// EmitMatchRegisterName - Emit the function to match a string to the target
1400/// specific register enum.
1401static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1402                                  raw_ostream &OS) {
1403  // Construct the match list.
1404  std::vector<StringMatcher::StringPair> Matches;
1405  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1406    const CodeGenRegister &Reg = Target.getRegisters()[i];
1407    if (Reg.TheDef->getValueAsString("AsmName").empty())
1408      continue;
1409
1410    Matches.push_back(StringMatcher::StringPair(
1411                                        Reg.TheDef->getValueAsString("AsmName"),
1412                                        "return " + utostr(i + 1) + ";"));
1413  }
1414
1415  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1416
1417  StringMatcher("Name", Matches, OS).Emit();
1418
1419  OS << "  return 0;\n";
1420  OS << "}\n\n";
1421}
1422
1423/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1424/// definitions.
1425static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1426                                                raw_ostream &OS) {
1427  OS << "// Flags for subtarget features that participate in "
1428     << "instruction matching.\n";
1429  OS << "enum SubtargetFeatureFlag {\n";
1430  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1431         it = Info.SubtargetFeatures.begin(),
1432         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1433    SubtargetFeatureInfo &SFI = *it->second;
1434    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1435  }
1436  OS << "  Feature_None = 0\n";
1437  OS << "};\n\n";
1438}
1439
1440/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1441/// available features given a subtarget.
1442static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1443                                         raw_ostream &OS) {
1444  std::string ClassName =
1445    Info.AsmParser->getValueAsString("AsmParserClassName");
1446
1447  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1448     << "ComputeAvailableFeatures(const " << Info.Target.getName()
1449     << "Subtarget *Subtarget) const {\n";
1450  OS << "  unsigned Features = 0;\n";
1451  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1452         it = Info.SubtargetFeatures.begin(),
1453         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1454    SubtargetFeatureInfo &SFI = *it->second;
1455    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1456       << ")\n";
1457    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1458  }
1459  OS << "  return Features;\n";
1460  OS << "}\n\n";
1461}
1462
1463static std::string GetAliasRequiredFeatures(Record *R,
1464                                            const AsmMatcherInfo &Info) {
1465  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1466  std::string Result;
1467  unsigned NumFeatures = 0;
1468  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1469    if (SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i])) {
1470      if (NumFeatures)
1471        Result += '|';
1472
1473      Result += F->getEnumName();
1474      ++NumFeatures;
1475    }
1476  }
1477
1478  if (NumFeatures > 1)
1479    Result = '(' + Result + ')';
1480  return Result;
1481}
1482
1483/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1484/// emit a function for them and return true, otherwise return false.
1485static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1486  std::vector<Record*> Aliases =
1487    Records.getAllDerivedDefinitions("MnemonicAlias");
1488  if (Aliases.empty()) return false;
1489
1490  OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1491        "unsigned Features) {\n";
1492
1493  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1494  // iteration order of the map is stable.
1495  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1496
1497  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1498    Record *R = Aliases[i];
1499    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1500  }
1501
1502  // Process each alias a "from" mnemonic at a time, building the code executed
1503  // by the string remapper.
1504  std::vector<StringMatcher::StringPair> Cases;
1505  for (std::map<std::string, std::vector<Record*> >::iterator
1506       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1507       I != E; ++I) {
1508    const std::vector<Record*> &ToVec = I->second;
1509
1510    // Loop through each alias and emit code that handles each case.  If there
1511    // are two instructions without predicates, emit an error.  If there is one,
1512    // emit it last.
1513    std::string MatchCode;
1514    int AliasWithNoPredicate = -1;
1515
1516    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1517      Record *R = ToVec[i];
1518      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1519
1520      // If this unconditionally matches, remember it for later and diagnose
1521      // duplicates.
1522      if (FeatureMask.empty()) {
1523        if (AliasWithNoPredicate != -1) {
1524          // We can't have two aliases from the same mnemonic with no predicate.
1525          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1526                     "two MnemonicAliases with the same 'from' mnemonic!");
1527          PrintError(R->getLoc(), "this is the other MnemonicAlias.");
1528          throw std::string("ERROR: Invalid MnemonicAlias definitions!");
1529        }
1530
1531        AliasWithNoPredicate = i;
1532        continue;
1533      }
1534
1535      if (!MatchCode.empty())
1536        MatchCode += "else ";
1537      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1538      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1539    }
1540
1541    if (AliasWithNoPredicate != -1) {
1542      Record *R = ToVec[AliasWithNoPredicate];
1543      if (!MatchCode.empty())
1544        MatchCode += "else\n  ";
1545      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1546    }
1547
1548    MatchCode += "return;";
1549
1550    Cases.push_back(std::make_pair(I->first, MatchCode));
1551  }
1552
1553
1554  StringMatcher("Mnemonic", Cases, OS).Emit();
1555  OS << "}\n";
1556
1557  return true;
1558}
1559
1560void AsmMatcherEmitter::run(raw_ostream &OS) {
1561  CodeGenTarget Target;
1562  Record *AsmParser = Target.getAsmParser();
1563  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1564
1565  // Compute the information on the instructions to match.
1566  AsmMatcherInfo Info(AsmParser, Target);
1567  Info.BuildInfo();
1568
1569  // Sort the instruction table using the partial order on classes. We use
1570  // stable_sort to ensure that ambiguous instructions are still
1571  // deterministically ordered.
1572  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1573                   less_ptr<InstructionInfo>());
1574
1575  DEBUG_WITH_TYPE("instruction_info", {
1576      for (std::vector<InstructionInfo*>::iterator
1577             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1578           it != ie; ++it)
1579        (*it)->dump();
1580    });
1581
1582  // Check for ambiguous instructions.
1583  DEBUG_WITH_TYPE("ambiguous_instrs", {
1584    unsigned NumAmbiguous = 0;
1585    for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1586      for (unsigned j = i + 1; j != e; ++j) {
1587        InstructionInfo &A = *Info.Instructions[i];
1588        InstructionInfo &B = *Info.Instructions[j];
1589
1590        if (A.CouldMatchAmiguouslyWith(B)) {
1591          errs() << "warning: ambiguous instruction match:\n";
1592          A.dump();
1593          errs() << "\nis incomparable with:\n";
1594          B.dump();
1595          errs() << "\n\n";
1596          ++NumAmbiguous;
1597        }
1598      }
1599    }
1600    if (NumAmbiguous)
1601      errs() << "warning: " << NumAmbiguous
1602             << " ambiguous instructions!\n";
1603  });
1604
1605  // Write the output.
1606
1607  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1608
1609  // Information for the class declaration.
1610  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1611  OS << "#undef GET_ASSEMBLER_HEADER\n";
1612  OS << "  // This should be included into the middle of the declaration of \n";
1613  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1614  OS << "  unsigned ComputeAvailableFeatures(const " <<
1615           Target.getName() << "Subtarget *Subtarget) const;\n";
1616  OS << "  enum MatchResultTy {\n";
1617  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
1618  OS << "    Match_MissingFeature\n";
1619  OS << "  };\n";
1620  OS << "  MatchResultTy MatchInstructionImpl(const "
1621     << "SmallVectorImpl<MCParsedAsmOperand*>"
1622     << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
1623  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1624
1625
1626
1627
1628  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1629  OS << "#undef GET_REGISTER_MATCHER\n\n";
1630
1631  // Emit the subtarget feature enumeration.
1632  EmitSubtargetFeatureFlagEnumeration(Info, OS);
1633
1634  // Emit the function to match a register name to number.
1635  EmitMatchRegisterName(Target, AsmParser, OS);
1636
1637  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1638
1639
1640  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1641  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1642
1643  // Generate the function that remaps for mnemonic aliases.
1644  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
1645
1646  // Generate the unified function to convert operands into an MCInst.
1647  EmitConvertToMCInst(Target, Info.Instructions, OS);
1648
1649  // Emit the enumeration for classes which participate in matching.
1650  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1651
1652  // Emit the routine to match token strings to their match class.
1653  EmitMatchTokenString(Target, Info.Classes, OS);
1654
1655  // Emit the routine to classify an operand.
1656  EmitClassifyOperand(Info, OS);
1657
1658  // Emit the subclass predicate routine.
1659  EmitIsSubclass(Target, Info.Classes, OS);
1660
1661  // Emit the available features compute function.
1662  EmitComputeAvailableFeatures(Info, OS);
1663
1664
1665  size_t MaxNumOperands = 0;
1666  for (std::vector<InstructionInfo*>::const_iterator it =
1667         Info.Instructions.begin(), ie = Info.Instructions.end();
1668       it != ie; ++it)
1669    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1670
1671
1672  // Emit the static match table; unused classes get initalized to 0 which is
1673  // guaranteed to be InvalidMatchClass.
1674  //
1675  // FIXME: We can reduce the size of this table very easily. First, we change
1676  // it so that store the kinds in separate bit-fields for each index, which
1677  // only needs to be the max width used for classes at that index (we also need
1678  // to reject based on this during classification). If we then make sure to
1679  // order the match kinds appropriately (putting mnemonics last), then we
1680  // should only end up using a few bits for each class, especially the ones
1681  // following the mnemonic.
1682  OS << "namespace {\n";
1683  OS << "  struct MatchEntry {\n";
1684  OS << "    unsigned Opcode;\n";
1685  OS << "    const char *Mnemonic;\n";
1686  OS << "    ConversionKind ConvertFn;\n";
1687  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1688  OS << "    unsigned RequiredFeatures;\n";
1689  OS << "  };\n\n";
1690
1691  OS << "// Predicate for searching for an opcode.\n";
1692  OS << "  struct LessOpcode {\n";
1693  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
1694  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
1695  OS << "    }\n";
1696  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
1697  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
1698  OS << "    }\n";
1699  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
1700  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1701  OS << "    }\n";
1702  OS << "  };\n";
1703
1704  OS << "} // end anonymous namespace.\n\n";
1705
1706  OS << "static const MatchEntry MatchTable["
1707     << Info.Instructions.size() << "] = {\n";
1708
1709  for (std::vector<InstructionInfo*>::const_iterator it =
1710       Info.Instructions.begin(), ie = Info.Instructions.end();
1711       it != ie; ++it) {
1712    InstructionInfo &II = **it;
1713
1714    OS << "  { " << Target.getName() << "::" << II.InstrName
1715    << ", \"" << II.Tokens[0] << "\""
1716    << ", " << II.ConversionFnKind << ", { ";
1717    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1718      InstructionInfo::Operand &Op = II.Operands[i];
1719
1720      if (i) OS << ", ";
1721      OS << Op.Class->Name;
1722    }
1723    OS << " }, ";
1724
1725    // Write the required features mask.
1726    if (!II.RequiredFeatures.empty()) {
1727      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1728        if (i) OS << "|";
1729        OS << II.RequiredFeatures[i]->getEnumName();
1730      }
1731    } else
1732      OS << "0";
1733
1734    OS << "},\n";
1735  }
1736
1737  OS << "};\n\n";
1738
1739  // Finally, build the match function.
1740  OS << Target.getName() << ClassName << "::MatchResultTy "
1741     << Target.getName() << ClassName << "::\n"
1742     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1743     << " &Operands,\n";
1744  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
1745
1746  // Emit code to get the available features.
1747  OS << "  // Get the current feature set.\n";
1748  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1749
1750  OS << "  // Get the instruction mnemonic, which is the first token.\n";
1751  OS << "  StringRef Mnemonic = ((" << Target.getName()
1752     << "Operand*)Operands[0])->getToken();\n\n";
1753
1754  if (HasMnemonicAliases) {
1755    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
1756    OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
1757  }
1758
1759  // Emit code to compute the class list for this operand vector.
1760  OS << "  // Eliminate obvious mismatches.\n";
1761  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
1762  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
1763  OS << "    return Match_InvalidOperand;\n";
1764  OS << "  }\n\n";
1765
1766  OS << "  // Compute the class list for this operand vector.\n";
1767  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1768  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
1769  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
1770
1771  OS << "    // Check for invalid operands before matching.\n";
1772  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
1773  OS << "      ErrorInfo = i;\n";
1774  OS << "      return Match_InvalidOperand;\n";
1775  OS << "    }\n";
1776  OS << "  }\n\n";
1777
1778  OS << "  // Mark unused classes.\n";
1779  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
1780     << "i != e; ++i)\n";
1781  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1782
1783  OS << "  // Some state to try to produce better error messages.\n";
1784  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
1785  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
1786  OS << "  // wrong for all instances of the instruction.\n";
1787  OS << "  ErrorInfo = ~0U;\n";
1788
1789  // Emit code to search the table.
1790  OS << "  // Search the table.\n";
1791  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1792  OS << "    std::equal_range(MatchTable, MatchTable+"
1793     << Info.Instructions.size() << ", Mnemonic, LessOpcode());\n\n";
1794
1795  OS << "  // Return a more specific error code if no mnemonics match.\n";
1796  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
1797  OS << "    return Match_MnemonicFail;\n\n";
1798
1799  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
1800     << "*ie = MnemonicRange.second;\n";
1801  OS << "       it != ie; ++it) {\n";
1802
1803  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
1804  OS << "    assert(Mnemonic == it->Mnemonic);\n";
1805
1806  // Emit check that the subclasses match.
1807  OS << "    bool OperandsValid = true;\n";
1808  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
1809  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
1810  OS << "        continue;\n";
1811  OS << "      // If this operand is broken for all of the instances of this\n";
1812  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
1813  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
1814  OS << "        ErrorInfo = i+1;\n";
1815  OS << "      else\n";
1816  OS << "        ErrorInfo = ~0U;";
1817  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
1818  OS << "      OperandsValid = false;\n";
1819  OS << "      break;\n";
1820  OS << "    }\n\n";
1821
1822  OS << "    if (!OperandsValid) continue;\n";
1823
1824  // Emit check that the required features are available.
1825  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
1826     << "!= it->RequiredFeatures) {\n";
1827  OS << "      HadMatchOtherThanFeatures = true;\n";
1828  OS << "      continue;\n";
1829  OS << "    }\n";
1830
1831  OS << "\n";
1832  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1833
1834  // Call the post-processing function, if used.
1835  std::string InsnCleanupFn =
1836    AsmParser->getValueAsString("AsmParserInstCleanup");
1837  if (!InsnCleanupFn.empty())
1838    OS << "    " << InsnCleanupFn << "(Inst);\n";
1839
1840  OS << "    return Match_Success;\n";
1841  OS << "  }\n\n";
1842
1843  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
1844  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
1845  OS << "  return Match_InvalidOperand;\n";
1846  OS << "}\n\n";
1847
1848  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
1849}
1850