AsmMatcherEmitter.cpp revision 4e0ae44b3a1b5f7157351764fd125c7c85959797
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific valeus in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "StringToOffsetTable.h"
101#include "llvm/ADT/OwningPtr.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/SmallPtrSet.h"
104#include "llvm/ADT/SmallVector.h"
105#include "llvm/ADT/STLExtras.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include "llvm/TableGen/StringMatcher.h"
113#include "llvm/TableGen/TableGenBackend.h"
114#include <cassert>
115#include <map>
116#include <set>
117using namespace llvm;
118
119static cl::opt<std::string>
120MatchPrefix("match-prefix", cl::init(""),
121            cl::desc("Only match instructions with the given prefix"));
122
123namespace {
124class AsmMatcherInfo;
125struct SubtargetFeatureInfo;
126
127class AsmMatcherEmitter {
128  RecordKeeper &Records;
129public:
130  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
131
132  void run(raw_ostream &o);
133};
134
135/// ClassInfo - Helper class for storing the information about a particular
136/// class of operands which can be matched.
137struct ClassInfo {
138  enum ClassInfoKind {
139    /// Invalid kind, for use as a sentinel value.
140    Invalid = 0,
141
142    /// The class for a particular token.
143    Token,
144
145    /// The (first) register class, subsequent register classes are
146    /// RegisterClass0+1, and so on.
147    RegisterClass0,
148
149    /// The (first) user defined class, subsequent user defined classes are
150    /// UserClass0+1, and so on.
151    UserClass0 = 1<<16
152  };
153
154  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
155  /// N) for the Nth user defined class.
156  unsigned Kind;
157
158  /// SuperClasses - The super classes of this class. Note that for simplicities
159  /// sake user operands only record their immediate super class, while register
160  /// operands include all superclasses.
161  std::vector<ClassInfo*> SuperClasses;
162
163  /// Name - The full class name, suitable for use in an enum.
164  std::string Name;
165
166  /// ClassName - The unadorned generic name for this class (e.g., Token).
167  std::string ClassName;
168
169  /// ValueName - The name of the value this class represents; for a token this
170  /// is the literal token string, for an operand it is the TableGen class (or
171  /// empty if this is a derived class).
172  std::string ValueName;
173
174  /// PredicateMethod - The name of the operand method to test whether the
175  /// operand matches this class; this is not valid for Token or register kinds.
176  std::string PredicateMethod;
177
178  /// RenderMethod - The name of the operand method to add this operand to an
179  /// MCInst; this is not valid for Token or register kinds.
180  std::string RenderMethod;
181
182  /// ParserMethod - The name of the operand method to do a target specific
183  /// parsing on the operand.
184  std::string ParserMethod;
185
186  /// For register classes, the records for all the registers in this class.
187  std::set<Record*> Registers;
188
189  /// For custom match classes, he diagnostic kind for when the predicate fails.
190  std::string DiagnosticType;
191public:
192  /// isRegisterClass() - Check if this is a register class.
193  bool isRegisterClass() const {
194    return Kind >= RegisterClass0 && Kind < UserClass0;
195  }
196
197  /// isUserClass() - Check if this is a user defined class.
198  bool isUserClass() const {
199    return Kind >= UserClass0;
200  }
201
202  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
203  /// are related if they are in the same class hierarchy.
204  bool isRelatedTo(const ClassInfo &RHS) const {
205    // Tokens are only related to tokens.
206    if (Kind == Token || RHS.Kind == Token)
207      return Kind == Token && RHS.Kind == Token;
208
209    // Registers classes are only related to registers classes, and only if
210    // their intersection is non-empty.
211    if (isRegisterClass() || RHS.isRegisterClass()) {
212      if (!isRegisterClass() || !RHS.isRegisterClass())
213        return false;
214
215      std::set<Record*> Tmp;
216      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
217      std::set_intersection(Registers.begin(), Registers.end(),
218                            RHS.Registers.begin(), RHS.Registers.end(),
219                            II);
220
221      return !Tmp.empty();
222    }
223
224    // Otherwise we have two users operands; they are related if they are in the
225    // same class hierarchy.
226    //
227    // FIXME: This is an oversimplification, they should only be related if they
228    // intersect, however we don't have that information.
229    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
230    const ClassInfo *Root = this;
231    while (!Root->SuperClasses.empty())
232      Root = Root->SuperClasses.front();
233
234    const ClassInfo *RHSRoot = &RHS;
235    while (!RHSRoot->SuperClasses.empty())
236      RHSRoot = RHSRoot->SuperClasses.front();
237
238    return Root == RHSRoot;
239  }
240
241  /// isSubsetOf - Test whether this class is a subset of \p RHS.
242  bool isSubsetOf(const ClassInfo &RHS) const {
243    // This is a subset of RHS if it is the same class...
244    if (this == &RHS)
245      return true;
246
247    // ... or if any of its super classes are a subset of RHS.
248    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
249           ie = SuperClasses.end(); it != ie; ++it)
250      if ((*it)->isSubsetOf(RHS))
251        return true;
252
253    return false;
254  }
255
256  /// operator< - Compare two classes.
257  bool operator<(const ClassInfo &RHS) const {
258    if (this == &RHS)
259      return false;
260
261    // Unrelated classes can be ordered by kind.
262    if (!isRelatedTo(RHS))
263      return Kind < RHS.Kind;
264
265    switch (Kind) {
266    case Invalid:
267      llvm_unreachable("Invalid kind!");
268
269    default:
270      // This class precedes the RHS if it is a proper subset of the RHS.
271      if (isSubsetOf(RHS))
272        return true;
273      if (RHS.isSubsetOf(*this))
274        return false;
275
276      // Otherwise, order by name to ensure we have a total ordering.
277      return ValueName < RHS.ValueName;
278    }
279  }
280};
281
282/// MatchableInfo - Helper class for storing the necessary information for an
283/// instruction or alias which is capable of being matched.
284struct MatchableInfo {
285  struct AsmOperand {
286    /// Token - This is the token that the operand came from.
287    StringRef Token;
288
289    /// The unique class instance this operand should match.
290    ClassInfo *Class;
291
292    /// The operand name this is, if anything.
293    StringRef SrcOpName;
294
295    /// The suboperand index within SrcOpName, or -1 for the entire operand.
296    int SubOpIdx;
297
298    /// Register record if this token is singleton register.
299    Record *SingletonReg;
300
301    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
302                                       SingletonReg(0) {}
303  };
304
305  /// ResOperand - This represents a single operand in the result instruction
306  /// generated by the match.  In cases (like addressing modes) where a single
307  /// assembler operand expands to multiple MCOperands, this represents the
308  /// single assembler operand, not the MCOperand.
309  struct ResOperand {
310    enum {
311      /// RenderAsmOperand - This represents an operand result that is
312      /// generated by calling the render method on the assembly operand.  The
313      /// corresponding AsmOperand is specified by AsmOperandNum.
314      RenderAsmOperand,
315
316      /// TiedOperand - This represents a result operand that is a duplicate of
317      /// a previous result operand.
318      TiedOperand,
319
320      /// ImmOperand - This represents an immediate value that is dumped into
321      /// the operand.
322      ImmOperand,
323
324      /// RegOperand - This represents a fixed register that is dumped in.
325      RegOperand
326    } Kind;
327
328    union {
329      /// This is the operand # in the AsmOperands list that this should be
330      /// copied from.
331      unsigned AsmOperandNum;
332
333      /// TiedOperandNum - This is the (earlier) result operand that should be
334      /// copied from.
335      unsigned TiedOperandNum;
336
337      /// ImmVal - This is the immediate value added to the instruction.
338      int64_t ImmVal;
339
340      /// Register - This is the register record.
341      Record *Register;
342    };
343
344    /// MINumOperands - The number of MCInst operands populated by this
345    /// operand.
346    unsigned MINumOperands;
347
348    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
349      ResOperand X;
350      X.Kind = RenderAsmOperand;
351      X.AsmOperandNum = AsmOpNum;
352      X.MINumOperands = NumOperands;
353      return X;
354    }
355
356    static ResOperand getTiedOp(unsigned TiedOperandNum) {
357      ResOperand X;
358      X.Kind = TiedOperand;
359      X.TiedOperandNum = TiedOperandNum;
360      X.MINumOperands = 1;
361      return X;
362    }
363
364    static ResOperand getImmOp(int64_t Val) {
365      ResOperand X;
366      X.Kind = ImmOperand;
367      X.ImmVal = Val;
368      X.MINumOperands = 1;
369      return X;
370    }
371
372    static ResOperand getRegOp(Record *Reg) {
373      ResOperand X;
374      X.Kind = RegOperand;
375      X.Register = Reg;
376      X.MINumOperands = 1;
377      return X;
378    }
379  };
380
381  /// AsmVariantID - Target's assembly syntax variant no.
382  int AsmVariantID;
383
384  /// TheDef - This is the definition of the instruction or InstAlias that this
385  /// matchable came from.
386  Record *const TheDef;
387
388  /// DefRec - This is the definition that it came from.
389  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
390
391  const CodeGenInstruction *getResultInst() const {
392    if (DefRec.is<const CodeGenInstruction*>())
393      return DefRec.get<const CodeGenInstruction*>();
394    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
395  }
396
397  /// ResOperands - This is the operand list that should be built for the result
398  /// MCInst.
399  SmallVector<ResOperand, 8> ResOperands;
400
401  /// AsmString - The assembly string for this instruction (with variants
402  /// removed), e.g. "movsx $src, $dst".
403  std::string AsmString;
404
405  /// Mnemonic - This is the first token of the matched instruction, its
406  /// mnemonic.
407  StringRef Mnemonic;
408
409  /// AsmOperands - The textual operands that this instruction matches,
410  /// annotated with a class and where in the OperandList they were defined.
411  /// This directly corresponds to the tokenized AsmString after the mnemonic is
412  /// removed.
413  SmallVector<AsmOperand, 8> AsmOperands;
414
415  /// Predicates - The required subtarget features to match this instruction.
416  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
417
418  /// ConversionFnKind - The enum value which is passed to the generated
419  /// convertToMCInst to convert parsed operands into an MCInst for this
420  /// function.
421  std::string ConversionFnKind;
422
423  MatchableInfo(const CodeGenInstruction &CGI)
424    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
425      AsmString(CGI.AsmString) {
426  }
427
428  MatchableInfo(const CodeGenInstAlias *Alias)
429    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
430      AsmString(Alias->AsmString) {
431  }
432
433  // Two-operand aliases clone from the main matchable, but mark the second
434  // operand as a tied operand of the first for purposes of the assembler.
435  void formTwoOperandAlias(StringRef Constraint);
436
437  void initialize(const AsmMatcherInfo &Info,
438                  SmallPtrSet<Record*, 16> &SingletonRegisters,
439                  int AsmVariantNo, std::string &RegisterPrefix);
440
441  /// validate - Return true if this matchable is a valid thing to match against
442  /// and perform a bunch of validity checking.
443  bool validate(StringRef CommentDelimiter, bool Hack) const;
444
445  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
446  /// if present, from specified token.
447  void
448  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
449                                        std::string &RegisterPrefix);
450
451  /// findAsmOperand - Find the AsmOperand with the specified name and
452  /// suboperand index.
453  int findAsmOperand(StringRef N, int SubOpIdx) const {
454    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
455      if (N == AsmOperands[i].SrcOpName &&
456          SubOpIdx == AsmOperands[i].SubOpIdx)
457        return i;
458    return -1;
459  }
460
461  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
462  /// This does not check the suboperand index.
463  int findAsmOperandNamed(StringRef N) const {
464    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
465      if (N == AsmOperands[i].SrcOpName)
466        return i;
467    return -1;
468  }
469
470  void buildInstructionResultOperands();
471  void buildAliasResultOperands();
472
473  /// operator< - Compare two matchables.
474  bool operator<(const MatchableInfo &RHS) const {
475    // The primary comparator is the instruction mnemonic.
476    if (Mnemonic != RHS.Mnemonic)
477      return Mnemonic < RHS.Mnemonic;
478
479    if (AsmOperands.size() != RHS.AsmOperands.size())
480      return AsmOperands.size() < RHS.AsmOperands.size();
481
482    // Compare lexicographically by operand. The matcher validates that other
483    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
484    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
485      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
486        return true;
487      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
488        return false;
489    }
490
491    // Give matches that require more features higher precedence. This is useful
492    // because we cannot define AssemblerPredicates with the negation of
493    // processor features. For example, ARM v6 "nop" may be either a HINT or
494    // MOV. With v6, we want to match HINT. The assembler has no way to
495    // predicate MOV under "NoV6", but HINT will always match first because it
496    // requires V6 while MOV does not.
497    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
498      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
499
500    return false;
501  }
502
503  /// couldMatchAmbiguouslyWith - Check whether this matchable could
504  /// ambiguously match the same set of operands as \p RHS (without being a
505  /// strictly superior match).
506  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
507    // The primary comparator is the instruction mnemonic.
508    if (Mnemonic != RHS.Mnemonic)
509      return false;
510
511    // The number of operands is unambiguous.
512    if (AsmOperands.size() != RHS.AsmOperands.size())
513      return false;
514
515    // Otherwise, make sure the ordering of the two instructions is unambiguous
516    // by checking that either (a) a token or operand kind discriminates them,
517    // or (b) the ordering among equivalent kinds is consistent.
518
519    // Tokens and operand kinds are unambiguous (assuming a correct target
520    // specific parser).
521    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
522      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
523          AsmOperands[i].Class->Kind == ClassInfo::Token)
524        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
525            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
526          return false;
527
528    // Otherwise, this operand could commute if all operands are equivalent, or
529    // there is a pair of operands that compare less than and a pair that
530    // compare greater than.
531    bool HasLT = false, HasGT = false;
532    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
533      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
534        HasLT = true;
535      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
536        HasGT = true;
537    }
538
539    return !(HasLT ^ HasGT);
540  }
541
542  void dump();
543
544private:
545  void tokenizeAsmString(const AsmMatcherInfo &Info);
546};
547
548/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
549/// feature which participates in instruction matching.
550struct SubtargetFeatureInfo {
551  /// \brief The predicate record for this feature.
552  Record *TheDef;
553
554  /// \brief An unique index assigned to represent this feature.
555  unsigned Index;
556
557  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
558
559  /// \brief The name of the enumerated constant identifying this feature.
560  std::string getEnumName() const {
561    return "Feature_" + TheDef->getName();
562  }
563};
564
565struct OperandMatchEntry {
566  unsigned OperandMask;
567  MatchableInfo* MI;
568  ClassInfo *CI;
569
570  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
571                                  unsigned opMask) {
572    OperandMatchEntry X;
573    X.OperandMask = opMask;
574    X.CI = ci;
575    X.MI = mi;
576    return X;
577  }
578};
579
580
581class AsmMatcherInfo {
582public:
583  /// Tracked Records
584  RecordKeeper &Records;
585
586  /// The tablegen AsmParser record.
587  Record *AsmParser;
588
589  /// Target - The target information.
590  CodeGenTarget &Target;
591
592  /// The classes which are needed for matching.
593  std::vector<ClassInfo*> Classes;
594
595  /// The information on the matchables to match.
596  std::vector<MatchableInfo*> Matchables;
597
598  /// Info for custom matching operands by user defined methods.
599  std::vector<OperandMatchEntry> OperandMatchInfo;
600
601  /// Map of Register records to their class information.
602  std::map<Record*, ClassInfo*> RegisterClasses;
603
604  /// Map of Predicate records to their subtarget information.
605  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
606
607  /// Map of AsmOperandClass records to their class information.
608  std::map<Record*, ClassInfo*> AsmOperandClasses;
609
610private:
611  /// Map of token to class information which has already been constructed.
612  std::map<std::string, ClassInfo*> TokenClasses;
613
614  /// Map of RegisterClass records to their class information.
615  std::map<Record*, ClassInfo*> RegisterClassClasses;
616
617private:
618  /// getTokenClass - Lookup or create the class for the given token.
619  ClassInfo *getTokenClass(StringRef Token);
620
621  /// getOperandClass - Lookup or create the class for the given operand.
622  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
623                             int SubOpIdx);
624  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
625
626  /// buildRegisterClasses - Build the ClassInfo* instances for register
627  /// classes.
628  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
629
630  /// buildOperandClasses - Build the ClassInfo* instances for user defined
631  /// operand classes.
632  void buildOperandClasses();
633
634  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
635                                        unsigned AsmOpIdx);
636  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
637                                  MatchableInfo::AsmOperand &Op);
638
639public:
640  AsmMatcherInfo(Record *AsmParser,
641                 CodeGenTarget &Target,
642                 RecordKeeper &Records);
643
644  /// buildInfo - Construct the various tables used during matching.
645  void buildInfo();
646
647  /// buildOperandMatchInfo - Build the necessary information to handle user
648  /// defined operand parsing methods.
649  void buildOperandMatchInfo();
650
651  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
652  /// given operand.
653  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
654    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
655    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
656      SubtargetFeatures.find(Def);
657    return I == SubtargetFeatures.end() ? 0 : I->second;
658  }
659
660  RecordKeeper &getRecords() const {
661    return Records;
662  }
663};
664
665} // End anonymous namespace
666
667void MatchableInfo::dump() {
668  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
669
670  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
671    AsmOperand &Op = AsmOperands[i];
672    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
673    errs() << '\"' << Op.Token << "\"\n";
674  }
675}
676
677static std::pair<StringRef, StringRef>
678parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
679  // Split via the '='.
680  std::pair<StringRef, StringRef> Ops = S.split('=');
681  if (Ops.second == "")
682    throw TGError(Loc, "missing '=' in two-operand alias constraint");
683  // Trim whitespace and the leading '$' on the operand names.
684  size_t start = Ops.first.find_first_of('$');
685  if (start == std::string::npos)
686    throw TGError(Loc, "expected '$' prefix on asm operand name");
687  Ops.first = Ops.first.slice(start + 1, std::string::npos);
688  size_t end = Ops.first.find_last_of(" \t");
689  Ops.first = Ops.first.slice(0, end);
690  // Now the second operand.
691  start = Ops.second.find_first_of('$');
692  if (start == std::string::npos)
693    throw TGError(Loc, "expected '$' prefix on asm operand name");
694  Ops.second = Ops.second.slice(start + 1, std::string::npos);
695  end = Ops.second.find_last_of(" \t");
696  Ops.first = Ops.first.slice(0, end);
697  return Ops;
698}
699
700void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
701  // Figure out which operands are aliased and mark them as tied.
702  std::pair<StringRef, StringRef> Ops =
703    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
704
705  // Find the AsmOperands that refer to the operands we're aliasing.
706  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
707  int DstAsmOperand = findAsmOperandNamed(Ops.second);
708  if (SrcAsmOperand == -1)
709    throw TGError(TheDef->getLoc(),
710                  "unknown source two-operand alias operand '" +
711                  Ops.first.str() + "'.");
712  if (DstAsmOperand == -1)
713    throw TGError(TheDef->getLoc(),
714                  "unknown destination two-operand alias operand '" +
715                  Ops.second.str() + "'.");
716
717  // Find the ResOperand that refers to the operand we're aliasing away
718  // and update it to refer to the combined operand instead.
719  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
720    ResOperand &Op = ResOperands[i];
721    if (Op.Kind == ResOperand::RenderAsmOperand &&
722        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
723      Op.AsmOperandNum = DstAsmOperand;
724      break;
725    }
726  }
727  // Remove the AsmOperand for the alias operand.
728  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
729  // Adjust the ResOperand references to any AsmOperands that followed
730  // the one we just deleted.
731  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
732    ResOperand &Op = ResOperands[i];
733    switch(Op.Kind) {
734    default:
735      // Nothing to do for operands that don't reference AsmOperands.
736      break;
737    case ResOperand::RenderAsmOperand:
738      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
739        --Op.AsmOperandNum;
740      break;
741    case ResOperand::TiedOperand:
742      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
743        --Op.TiedOperandNum;
744      break;
745    }
746  }
747}
748
749void MatchableInfo::initialize(const AsmMatcherInfo &Info,
750                               SmallPtrSet<Record*, 16> &SingletonRegisters,
751                               int AsmVariantNo, std::string &RegisterPrefix) {
752  AsmVariantID = AsmVariantNo;
753  AsmString =
754    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
755
756  tokenizeAsmString(Info);
757
758  // Compute the require features.
759  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
760  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
761    if (SubtargetFeatureInfo *Feature =
762        Info.getSubtargetFeature(Predicates[i]))
763      RequiredFeatures.push_back(Feature);
764
765  // Collect singleton registers, if used.
766  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
767    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
768    if (Record *Reg = AsmOperands[i].SingletonReg)
769      SingletonRegisters.insert(Reg);
770  }
771}
772
773/// tokenizeAsmString - Tokenize a simplified assembly string.
774void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
775  StringRef String = AsmString;
776  unsigned Prev = 0;
777  bool InTok = true;
778  for (unsigned i = 0, e = String.size(); i != e; ++i) {
779    switch (String[i]) {
780    case '[':
781    case ']':
782    case '*':
783    case '!':
784    case ' ':
785    case '\t':
786    case ',':
787      if (InTok) {
788        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
789        InTok = false;
790      }
791      if (!isspace(String[i]) && String[i] != ',')
792        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
793      Prev = i + 1;
794      break;
795
796    case '\\':
797      if (InTok) {
798        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
799        InTok = false;
800      }
801      ++i;
802      assert(i != String.size() && "Invalid quoted character");
803      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
804      Prev = i + 1;
805      break;
806
807    case '$': {
808      if (InTok) {
809        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
810        InTok = false;
811      }
812
813      // If this isn't "${", treat like a normal token.
814      if (i + 1 == String.size() || String[i + 1] != '{') {
815        Prev = i;
816        break;
817      }
818
819      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
820      assert(End != String.end() && "Missing brace in operand reference!");
821      size_t EndPos = End - String.begin();
822      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
823      Prev = EndPos + 1;
824      i = EndPos;
825      break;
826    }
827
828    case '.':
829      if (InTok)
830        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
831      Prev = i;
832      InTok = true;
833      break;
834
835    default:
836      InTok = true;
837    }
838  }
839  if (InTok && Prev != String.size())
840    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
841
842  // The first token of the instruction is the mnemonic, which must be a
843  // simple string, not a $foo variable or a singleton register.
844  if (AsmOperands.empty())
845    throw TGError(TheDef->getLoc(),
846                  "Instruction '" + TheDef->getName() + "' has no tokens");
847  Mnemonic = AsmOperands[0].Token;
848  if (Mnemonic.empty())
849    throw TGError(TheDef->getLoc(),
850                  "Missing instruction mnemonic");
851  // FIXME : Check and raise an error if it is a register.
852  if (Mnemonic[0] == '$')
853    throw TGError(TheDef->getLoc(),
854                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
855
856  // Remove the first operand, it is tracked in the mnemonic field.
857  AsmOperands.erase(AsmOperands.begin());
858}
859
860bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
861  // Reject matchables with no .s string.
862  if (AsmString.empty())
863    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
864
865  // Reject any matchables with a newline in them, they should be marked
866  // isCodeGenOnly if they are pseudo instructions.
867  if (AsmString.find('\n') != std::string::npos)
868    throw TGError(TheDef->getLoc(),
869                  "multiline instruction is not valid for the asmparser, "
870                  "mark it isCodeGenOnly");
871
872  // Remove comments from the asm string.  We know that the asmstring only
873  // has one line.
874  if (!CommentDelimiter.empty() &&
875      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
876    throw TGError(TheDef->getLoc(),
877                  "asmstring for instruction has comment character in it, "
878                  "mark it isCodeGenOnly");
879
880  // Reject matchables with operand modifiers, these aren't something we can
881  // handle, the target should be refactored to use operands instead of
882  // modifiers.
883  //
884  // Also, check for instructions which reference the operand multiple times;
885  // this implies a constraint we would not honor.
886  std::set<std::string> OperandNames;
887  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
888    StringRef Tok = AsmOperands[i].Token;
889    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
890      throw TGError(TheDef->getLoc(),
891                    "matchable with operand modifier '" + Tok.str() +
892                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
893
894    // Verify that any operand is only mentioned once.
895    // We reject aliases and ignore instructions for now.
896    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
897      if (!Hack)
898        throw TGError(TheDef->getLoc(),
899                      "ERROR: matchable with tied operand '" + Tok.str() +
900                      "' can never be matched!");
901      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
902      // bunch of instructions.  It is unclear what the right answer is.
903      DEBUG({
904        errs() << "warning: '" << TheDef->getName() << "': "
905               << "ignoring instruction with tied operand '"
906               << Tok.str() << "'\n";
907      });
908      return false;
909    }
910  }
911
912  return true;
913}
914
915/// extractSingletonRegisterForAsmOperand - Extract singleton register,
916/// if present, from specified token.
917void MatchableInfo::
918extractSingletonRegisterForAsmOperand(unsigned OperandNo,
919                                      const AsmMatcherInfo &Info,
920                                      std::string &RegisterPrefix) {
921  StringRef Tok = AsmOperands[OperandNo].Token;
922  if (RegisterPrefix.empty()) {
923    std::string LoweredTok = Tok.lower();
924    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
925      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
926    return;
927  }
928
929  if (!Tok.startswith(RegisterPrefix))
930    return;
931
932  StringRef RegName = Tok.substr(RegisterPrefix.size());
933  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
934    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
935
936  // If there is no register prefix (i.e. "%" in "%eax"), then this may
937  // be some random non-register token, just ignore it.
938  return;
939}
940
941static std::string getEnumNameForToken(StringRef Str) {
942  std::string Res;
943
944  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
945    switch (*it) {
946    case '*': Res += "_STAR_"; break;
947    case '%': Res += "_PCT_"; break;
948    case ':': Res += "_COLON_"; break;
949    case '!': Res += "_EXCLAIM_"; break;
950    case '.': Res += "_DOT_"; break;
951    default:
952      if (isalnum(*it))
953        Res += *it;
954      else
955        Res += "_" + utostr((unsigned) *it) + "_";
956    }
957  }
958
959  return Res;
960}
961
962ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
963  ClassInfo *&Entry = TokenClasses[Token];
964
965  if (!Entry) {
966    Entry = new ClassInfo();
967    Entry->Kind = ClassInfo::Token;
968    Entry->ClassName = "Token";
969    Entry->Name = "MCK_" + getEnumNameForToken(Token);
970    Entry->ValueName = Token;
971    Entry->PredicateMethod = "<invalid>";
972    Entry->RenderMethod = "<invalid>";
973    Entry->ParserMethod = "";
974    Entry->DiagnosticType = "";
975    Classes.push_back(Entry);
976  }
977
978  return Entry;
979}
980
981ClassInfo *
982AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
983                                int SubOpIdx) {
984  Record *Rec = OI.Rec;
985  if (SubOpIdx != -1)
986    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
987  return getOperandClass(Rec, SubOpIdx);
988}
989
990ClassInfo *
991AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
992  if (Rec->isSubClassOf("RegisterOperand")) {
993    // RegisterOperand may have an associated ParserMatchClass. If it does,
994    // use it, else just fall back to the underlying register class.
995    const RecordVal *R = Rec->getValue("ParserMatchClass");
996    if (R == 0 || R->getValue() == 0)
997      throw "Record `" + Rec->getName() +
998        "' does not have a ParserMatchClass!\n";
999
1000    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
1001      Record *MatchClass = DI->getDef();
1002      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1003        return CI;
1004    }
1005
1006    // No custom match class. Just use the register class.
1007    Record *ClassRec = Rec->getValueAsDef("RegClass");
1008    if (!ClassRec)
1009      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1010                    "' has no associated register class!\n");
1011    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1012      return CI;
1013    throw TGError(Rec->getLoc(), "register class has no class info!");
1014  }
1015
1016
1017  if (Rec->isSubClassOf("RegisterClass")) {
1018    if (ClassInfo *CI = RegisterClassClasses[Rec])
1019      return CI;
1020    throw TGError(Rec->getLoc(), "register class has no class info!");
1021  }
1022
1023  if (!Rec->isSubClassOf("Operand"))
1024    throw TGError(Rec->getLoc(), "Operand `" + Rec->getName() +
1025                  "' does not derive from class Operand!\n");
1026  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1027  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1028    return CI;
1029
1030  throw TGError(Rec->getLoc(), "operand has no match class!");
1031}
1032
1033void AsmMatcherInfo::
1034buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
1035  const std::vector<CodeGenRegister*> &Registers =
1036    Target.getRegBank().getRegisters();
1037  ArrayRef<CodeGenRegisterClass*> RegClassList =
1038    Target.getRegBank().getRegClasses();
1039
1040  // The register sets used for matching.
1041  std::set< std::set<Record*> > RegisterSets;
1042
1043  // Gather the defined sets.
1044  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
1045       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
1046    RegisterSets.insert(std::set<Record*>(
1047        (*it)->getOrder().begin(), (*it)->getOrder().end()));
1048
1049  // Add any required singleton sets.
1050  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1051       ie = SingletonRegisters.end(); it != ie; ++it) {
1052    Record *Rec = *it;
1053    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
1054  }
1055
1056  // Introduce derived sets where necessary (when a register does not determine
1057  // a unique register set class), and build the mapping of registers to the set
1058  // they should classify to.
1059  std::map<Record*, std::set<Record*> > RegisterMap;
1060  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
1061         ie = Registers.end(); it != ie; ++it) {
1062    const CodeGenRegister &CGR = **it;
1063    // Compute the intersection of all sets containing this register.
1064    std::set<Record*> ContainingSet;
1065
1066    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1067           ie = RegisterSets.end(); it != ie; ++it) {
1068      if (!it->count(CGR.TheDef))
1069        continue;
1070
1071      if (ContainingSet.empty()) {
1072        ContainingSet = *it;
1073        continue;
1074      }
1075
1076      std::set<Record*> Tmp;
1077      std::swap(Tmp, ContainingSet);
1078      std::insert_iterator< std::set<Record*> > II(ContainingSet,
1079                                                   ContainingSet.begin());
1080      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
1081    }
1082
1083    if (!ContainingSet.empty()) {
1084      RegisterSets.insert(ContainingSet);
1085      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1086    }
1087  }
1088
1089  // Construct the register classes.
1090  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
1091  unsigned Index = 0;
1092  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1093         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
1094    ClassInfo *CI = new ClassInfo();
1095    CI->Kind = ClassInfo::RegisterClass0 + Index;
1096    CI->ClassName = "Reg" + utostr(Index);
1097    CI->Name = "MCK_Reg" + utostr(Index);
1098    CI->ValueName = "";
1099    CI->PredicateMethod = ""; // unused
1100    CI->RenderMethod = "addRegOperands";
1101    CI->Registers = *it;
1102    // FIXME: diagnostic type.
1103    CI->DiagnosticType = "";
1104    Classes.push_back(CI);
1105    RegisterSetClasses.insert(std::make_pair(*it, CI));
1106  }
1107
1108  // Find the superclasses; we could compute only the subgroup lattice edges,
1109  // but there isn't really a point.
1110  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1111         ie = RegisterSets.end(); it != ie; ++it) {
1112    ClassInfo *CI = RegisterSetClasses[*it];
1113    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1114           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1115      if (*it != *it2 &&
1116          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1117        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1118  }
1119
1120  // Name the register classes which correspond to a user defined RegisterClass.
1121  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1122       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1123    const CodeGenRegisterClass &RC = **it;
1124    // Def will be NULL for non-user defined register classes.
1125    Record *Def = RC.getDef();
1126    if (!Def)
1127      continue;
1128    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1129                                                         RC.getOrder().end())];
1130    if (CI->ValueName.empty()) {
1131      CI->ClassName = RC.getName();
1132      CI->Name = "MCK_" + RC.getName();
1133      CI->ValueName = RC.getName();
1134    } else
1135      CI->ValueName = CI->ValueName + "," + RC.getName();
1136
1137    RegisterClassClasses.insert(std::make_pair(Def, CI));
1138  }
1139
1140  // Populate the map for individual registers.
1141  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1142         ie = RegisterMap.end(); it != ie; ++it)
1143    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1144
1145  // Name the register classes which correspond to singleton registers.
1146  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1147         ie = SingletonRegisters.end(); it != ie; ++it) {
1148    Record *Rec = *it;
1149    ClassInfo *CI = RegisterClasses[Rec];
1150    assert(CI && "Missing singleton register class info!");
1151
1152    if (CI->ValueName.empty()) {
1153      CI->ClassName = Rec->getName();
1154      CI->Name = "MCK_" + Rec->getName();
1155      CI->ValueName = Rec->getName();
1156    } else
1157      CI->ValueName = CI->ValueName + "," + Rec->getName();
1158  }
1159}
1160
1161void AsmMatcherInfo::buildOperandClasses() {
1162  std::vector<Record*> AsmOperands =
1163    Records.getAllDerivedDefinitions("AsmOperandClass");
1164
1165  // Pre-populate AsmOperandClasses map.
1166  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1167         ie = AsmOperands.end(); it != ie; ++it)
1168    AsmOperandClasses[*it] = new ClassInfo();
1169
1170  unsigned Index = 0;
1171  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1172         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1173    ClassInfo *CI = AsmOperandClasses[*it];
1174    CI->Kind = ClassInfo::UserClass0 + Index;
1175
1176    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1177    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1178      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1179      if (!DI) {
1180        PrintError((*it)->getLoc(), "Invalid super class reference!");
1181        continue;
1182      }
1183
1184      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1185      if (!SC)
1186        PrintError((*it)->getLoc(), "Invalid super class reference!");
1187      else
1188        CI->SuperClasses.push_back(SC);
1189    }
1190    CI->ClassName = (*it)->getValueAsString("Name");
1191    CI->Name = "MCK_" + CI->ClassName;
1192    CI->ValueName = (*it)->getName();
1193
1194    // Get or construct the predicate method name.
1195    Init *PMName = (*it)->getValueInit("PredicateMethod");
1196    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1197      CI->PredicateMethod = SI->getValue();
1198    } else {
1199      assert(dynamic_cast<UnsetInit*>(PMName) &&
1200             "Unexpected PredicateMethod field!");
1201      CI->PredicateMethod = "is" + CI->ClassName;
1202    }
1203
1204    // Get or construct the render method name.
1205    Init *RMName = (*it)->getValueInit("RenderMethod");
1206    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1207      CI->RenderMethod = SI->getValue();
1208    } else {
1209      assert(dynamic_cast<UnsetInit*>(RMName) &&
1210             "Unexpected RenderMethod field!");
1211      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1212    }
1213
1214    // Get the parse method name or leave it as empty.
1215    Init *PRMName = (*it)->getValueInit("ParserMethod");
1216    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1217      CI->ParserMethod = SI->getValue();
1218
1219    // Get the diagnostic type or leave it as empty.
1220    // Get the parse method name or leave it as empty.
1221    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
1222    if (StringInit *SI = dynamic_cast<StringInit*>(DiagnosticType))
1223      CI->DiagnosticType = SI->getValue();
1224
1225    AsmOperandClasses[*it] = CI;
1226    Classes.push_back(CI);
1227  }
1228}
1229
1230AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1231                               CodeGenTarget &target,
1232                               RecordKeeper &records)
1233  : Records(records), AsmParser(asmParser), Target(target) {
1234}
1235
1236/// buildOperandMatchInfo - Build the necessary information to handle user
1237/// defined operand parsing methods.
1238void AsmMatcherInfo::buildOperandMatchInfo() {
1239
1240  /// Map containing a mask with all operands indices that can be found for
1241  /// that class inside a instruction.
1242  std::map<ClassInfo*, unsigned> OpClassMask;
1243
1244  for (std::vector<MatchableInfo*>::const_iterator it =
1245       Matchables.begin(), ie = Matchables.end();
1246       it != ie; ++it) {
1247    MatchableInfo &II = **it;
1248    OpClassMask.clear();
1249
1250    // Keep track of all operands of this instructions which belong to the
1251    // same class.
1252    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1253      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1254      if (Op.Class->ParserMethod.empty())
1255        continue;
1256      unsigned &OperandMask = OpClassMask[Op.Class];
1257      OperandMask |= (1 << i);
1258    }
1259
1260    // Generate operand match info for each mnemonic/operand class pair.
1261    for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1262         iie = OpClassMask.end(); iit != iie; ++iit) {
1263      unsigned OpMask = iit->second;
1264      ClassInfo *CI = iit->first;
1265      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
1266    }
1267  }
1268}
1269
1270void AsmMatcherInfo::buildInfo() {
1271  // Build information about all of the AssemblerPredicates.
1272  std::vector<Record*> AllPredicates =
1273    Records.getAllDerivedDefinitions("Predicate");
1274  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1275    Record *Pred = AllPredicates[i];
1276    // Ignore predicates that are not intended for the assembler.
1277    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1278      continue;
1279
1280    if (Pred->getName().empty())
1281      throw TGError(Pred->getLoc(), "Predicate has no name!");
1282
1283    unsigned FeatureNo = SubtargetFeatures.size();
1284    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1285    assert(FeatureNo < 32 && "Too many subtarget features!");
1286  }
1287
1288  // Parse the instructions; we need to do this first so that we can gather the
1289  // singleton register classes.
1290  SmallPtrSet<Record*, 16> SingletonRegisters;
1291  unsigned VariantCount = Target.getAsmParserVariantCount();
1292  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1293    Record *AsmVariant = Target.getAsmParserVariant(VC);
1294    std::string CommentDelimiter =
1295      AsmVariant->getValueAsString("CommentDelimiter");
1296    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1297    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1298
1299    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1300           E = Target.inst_end(); I != E; ++I) {
1301      const CodeGenInstruction &CGI = **I;
1302
1303      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1304      // filter the set of instructions we consider.
1305      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1306        continue;
1307
1308      // Ignore "codegen only" instructions.
1309      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1310        continue;
1311
1312      // Validate the operand list to ensure we can handle this instruction.
1313      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1314        const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1315
1316        // Validate tied operands.
1317        if (OI.getTiedRegister() != -1) {
1318          // If we have a tied operand that consists of multiple MCOperands,
1319          // reject it.  We reject aliases and ignore instructions for now.
1320          if (OI.MINumOperands != 1) {
1321            // FIXME: Should reject these.  The ARM backend hits this with $lane
1322            // in a bunch of instructions. The right answer is unclear.
1323            DEBUG({
1324                errs() << "warning: '" << CGI.TheDef->getName() << "': "
1325                     << "ignoring instruction with multi-operand tied operand '"
1326                     << OI.Name << "'\n";
1327              });
1328            continue;
1329          }
1330        }
1331      }
1332
1333      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1334
1335      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1336
1337      // Ignore instructions which shouldn't be matched and diagnose invalid
1338      // instruction definitions with an error.
1339      if (!II->validate(CommentDelimiter, true))
1340        continue;
1341
1342      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1343      //
1344      // FIXME: This is a total hack.
1345      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1346          StringRef(II->TheDef->getName()).endswith("_Int"))
1347        continue;
1348
1349      Matchables.push_back(II.take());
1350    }
1351
1352    // Parse all of the InstAlias definitions and stick them in the list of
1353    // matchables.
1354    std::vector<Record*> AllInstAliases =
1355      Records.getAllDerivedDefinitions("InstAlias");
1356    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1357      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1358
1359      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1360      // filter the set of instruction aliases we consider, based on the target
1361      // instruction.
1362      if (!StringRef(Alias->ResultInst->TheDef->getName())
1363            .startswith( MatchPrefix))
1364        continue;
1365
1366      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1367
1368      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1369
1370      // Validate the alias definitions.
1371      II->validate(CommentDelimiter, false);
1372
1373      Matchables.push_back(II.take());
1374    }
1375  }
1376
1377  // Build info for the register classes.
1378  buildRegisterClasses(SingletonRegisters);
1379
1380  // Build info for the user defined assembly operand classes.
1381  buildOperandClasses();
1382
1383  // Build the information about matchables, now that we have fully formed
1384  // classes.
1385  std::vector<MatchableInfo*> NewMatchables;
1386  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1387         ie = Matchables.end(); it != ie; ++it) {
1388    MatchableInfo *II = *it;
1389
1390    // Parse the tokens after the mnemonic.
1391    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1392    // don't precompute the loop bound.
1393    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1394      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1395      StringRef Token = Op.Token;
1396
1397      // Check for singleton registers.
1398      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1399        Op.Class = RegisterClasses[RegRecord];
1400        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1401               "Unexpected class for singleton register");
1402        continue;
1403      }
1404
1405      // Check for simple tokens.
1406      if (Token[0] != '$') {
1407        Op.Class = getTokenClass(Token);
1408        continue;
1409      }
1410
1411      if (Token.size() > 1 && isdigit(Token[1])) {
1412        Op.Class = getTokenClass(Token);
1413        continue;
1414      }
1415
1416      // Otherwise this is an operand reference.
1417      StringRef OperandName;
1418      if (Token[1] == '{')
1419        OperandName = Token.substr(2, Token.size() - 3);
1420      else
1421        OperandName = Token.substr(1);
1422
1423      if (II->DefRec.is<const CodeGenInstruction*>())
1424        buildInstructionOperandReference(II, OperandName, i);
1425      else
1426        buildAliasOperandReference(II, OperandName, Op);
1427    }
1428
1429    if (II->DefRec.is<const CodeGenInstruction*>()) {
1430      II->buildInstructionResultOperands();
1431      // If the instruction has a two-operand alias, build up the
1432      // matchable here. We'll add them in bulk at the end to avoid
1433      // confusing this loop.
1434      std::string Constraint =
1435        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1436      if (Constraint != "") {
1437        // Start by making a copy of the original matchable.
1438        OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
1439
1440        // Adjust it to be a two-operand alias.
1441        AliasII->formTwoOperandAlias(Constraint);
1442
1443        // Add the alias to the matchables list.
1444        NewMatchables.push_back(AliasII.take());
1445      }
1446    } else
1447      II->buildAliasResultOperands();
1448  }
1449  if (!NewMatchables.empty())
1450    Matchables.insert(Matchables.end(), NewMatchables.begin(),
1451                      NewMatchables.end());
1452
1453  // Process token alias definitions and set up the associated superclass
1454  // information.
1455  std::vector<Record*> AllTokenAliases =
1456    Records.getAllDerivedDefinitions("TokenAlias");
1457  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1458    Record *Rec = AllTokenAliases[i];
1459    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1460    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1461    if (FromClass == ToClass)
1462      throw TGError(Rec->getLoc(),
1463                    "error: Destination value identical to source value.");
1464    FromClass->SuperClasses.push_back(ToClass);
1465  }
1466
1467  // Reorder classes so that classes precede super classes.
1468  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1469}
1470
1471/// buildInstructionOperandReference - The specified operand is a reference to a
1472/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1473void AsmMatcherInfo::
1474buildInstructionOperandReference(MatchableInfo *II,
1475                                 StringRef OperandName,
1476                                 unsigned AsmOpIdx) {
1477  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1478  const CGIOperandList &Operands = CGI.Operands;
1479  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1480
1481  // Map this token to an operand.
1482  unsigned Idx;
1483  if (!Operands.hasOperandNamed(OperandName, Idx))
1484    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1485                  OperandName.str() + "'");
1486
1487  // If the instruction operand has multiple suboperands, but the parser
1488  // match class for the asm operand is still the default "ImmAsmOperand",
1489  // then handle each suboperand separately.
1490  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1491    Record *Rec = Operands[Idx].Rec;
1492    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1493    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1494    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1495      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1496      StringRef Token = Op->Token; // save this in case Op gets moved
1497      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1498        MatchableInfo::AsmOperand NewAsmOp(Token);
1499        NewAsmOp.SubOpIdx = SI;
1500        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1501      }
1502      // Replace Op with first suboperand.
1503      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1504      Op->SubOpIdx = 0;
1505    }
1506  }
1507
1508  // Set up the operand class.
1509  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1510
1511  // If the named operand is tied, canonicalize it to the untied operand.
1512  // For example, something like:
1513  //   (outs GPR:$dst), (ins GPR:$src)
1514  // with an asmstring of
1515  //   "inc $src"
1516  // we want to canonicalize to:
1517  //   "inc $dst"
1518  // so that we know how to provide the $dst operand when filling in the result.
1519  int OITied = Operands[Idx].getTiedRegister();
1520  if (OITied != -1) {
1521    // The tied operand index is an MIOperand index, find the operand that
1522    // contains it.
1523    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1524    OperandName = Operands[Idx.first].Name;
1525    Op->SubOpIdx = Idx.second;
1526  }
1527
1528  Op->SrcOpName = OperandName;
1529}
1530
1531/// buildAliasOperandReference - When parsing an operand reference out of the
1532/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1533/// operand reference is by looking it up in the result pattern definition.
1534void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1535                                                StringRef OperandName,
1536                                                MatchableInfo::AsmOperand &Op) {
1537  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1538
1539  // Set up the operand class.
1540  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1541    if (CGA.ResultOperands[i].isRecord() &&
1542        CGA.ResultOperands[i].getName() == OperandName) {
1543      // It's safe to go with the first one we find, because CodeGenInstAlias
1544      // validates that all operands with the same name have the same record.
1545      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1546      // Use the match class from the Alias definition, not the
1547      // destination instruction, as we may have an immediate that's
1548      // being munged by the match class.
1549      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1550                                 Op.SubOpIdx);
1551      Op.SrcOpName = OperandName;
1552      return;
1553    }
1554
1555  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1556                OperandName.str() + "'");
1557}
1558
1559void MatchableInfo::buildInstructionResultOperands() {
1560  const CodeGenInstruction *ResultInst = getResultInst();
1561
1562  // Loop over all operands of the result instruction, determining how to
1563  // populate them.
1564  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1565    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1566
1567    // If this is a tied operand, just copy from the previously handled operand.
1568    int TiedOp = OpInfo.getTiedRegister();
1569    if (TiedOp != -1) {
1570      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1571      continue;
1572    }
1573
1574    // Find out what operand from the asmparser this MCInst operand comes from.
1575    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1576    if (OpInfo.Name.empty() || SrcOperand == -1)
1577      throw TGError(TheDef->getLoc(), "Instruction '" +
1578                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1579                    "' that doesn't appear in asm string!");
1580
1581    // Check if the one AsmOperand populates the entire operand.
1582    unsigned NumOperands = OpInfo.MINumOperands;
1583    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1584      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1585      continue;
1586    }
1587
1588    // Add a separate ResOperand for each suboperand.
1589    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1590      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1591             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1592             "unexpected AsmOperands for suboperands");
1593      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1594    }
1595  }
1596}
1597
1598void MatchableInfo::buildAliasResultOperands() {
1599  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1600  const CodeGenInstruction *ResultInst = getResultInst();
1601
1602  // Loop over all operands of the result instruction, determining how to
1603  // populate them.
1604  unsigned AliasOpNo = 0;
1605  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1606  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1607    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1608
1609    // If this is a tied operand, just copy from the previously handled operand.
1610    int TiedOp = OpInfo->getTiedRegister();
1611    if (TiedOp != -1) {
1612      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1613      continue;
1614    }
1615
1616    // Handle all the suboperands for this operand.
1617    const std::string &OpName = OpInfo->Name;
1618    for ( ; AliasOpNo <  LastOpNo &&
1619            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1620      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1621
1622      // Find out what operand from the asmparser that this MCInst operand
1623      // comes from.
1624      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1625      case CodeGenInstAlias::ResultOperand::K_Record: {
1626        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1627        int SrcOperand = findAsmOperand(Name, SubIdx);
1628        if (SrcOperand == -1)
1629          throw TGError(TheDef->getLoc(), "Instruction '" +
1630                        TheDef->getName() + "' has operand '" + OpName +
1631                        "' that doesn't appear in asm string!");
1632        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1633        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1634                                                        NumOperands));
1635        break;
1636      }
1637      case CodeGenInstAlias::ResultOperand::K_Imm: {
1638        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1639        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1640        break;
1641      }
1642      case CodeGenInstAlias::ResultOperand::K_Reg: {
1643        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1644        ResOperands.push_back(ResOperand::getRegOp(Reg));
1645        break;
1646      }
1647      }
1648    }
1649  }
1650}
1651
1652static unsigned getConverterOperandID(const std::string &Name,
1653                                      SetVector<std::string> &Table,
1654                                      bool &IsNew) {
1655  IsNew = Table.insert(Name);
1656
1657  unsigned ID = IsNew ? Table.size() - 1 :
1658    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1659
1660  assert(ID < Table.size());
1661
1662  return ID;
1663}
1664
1665
1666static void emitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1667                                std::vector<MatchableInfo*> &Infos,
1668                                raw_ostream &OS) {
1669  SetVector<std::string> OperandConversionKinds;
1670  SetVector<std::string> InstructionConversionKinds;
1671  std::vector<std::vector<uint8_t> > ConversionTable;
1672  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1673
1674  // TargetOperandClass - This is the target's operand class, like X86Operand.
1675  std::string TargetOperandClass = Target.getName() + "Operand";
1676
1677  // Write the convert function to a separate stream, so we can drop it after
1678  // the enum. We'll build up the conversion handlers for the individual
1679  // operand types opportunistically as we encounter them.
1680  std::string ConvertFnBody;
1681  raw_string_ostream CvtOS(ConvertFnBody);
1682  // Start the unified conversion function.
1683  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1684        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1685        << "unsigned Opcode,\n"
1686        << "                const SmallVectorImpl<MCParsedAsmOperand*"
1687        << "> &Operands) {\n"
1688        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1689        << "  uint8_t *Converter = ConversionTable[Kind];\n"
1690        << "  Inst.setOpcode(Opcode);\n"
1691        << "  for (uint8_t *p = Converter; *p; p+= 2) {\n"
1692        << "    switch (*p) {\n"
1693        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1694        << "    case CVT_Reg:\n"
1695        << "      static_cast<" << TargetOperandClass
1696        << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
1697        << "      break;\n"
1698        << "    case CVT_Tied:\n"
1699        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1700        << "      break;\n";
1701
1702  std::string OperandFnBody;
1703  raw_string_ostream OpOS(OperandFnBody);
1704  // Start the operand number lookup function.
1705  OpOS << "unsigned " << Target.getName() << ClassName << "::\n"
1706       << "getMCInstOperandNumImpl(unsigned Kind, MCInst &Inst,\n"
1707       << "                        const SmallVectorImpl<MCParsedAsmOperand*> "
1708       << "&Operands,\n                        unsigned OperandNum, unsigned "
1709       << "&NumMCOperands) {\n"
1710       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1711       << "  NumMCOperands = 0;\n"
1712       << "  unsigned MCOperandNum = 0;\n"
1713       << "  uint8_t *Converter = ConversionTable[Kind];\n"
1714       << "  for (uint8_t *p = Converter; *p; p+= 2) {\n"
1715       << "    if (*(p + 1) > OperandNum) continue;\n"
1716       << "    switch (*p) {\n"
1717       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1718       << "    case CVT_Reg:\n"
1719       << "      if (*(p + 1) == OperandNum) {\n"
1720       << "        NumMCOperands = 1;\n"
1721       << "        break;\n"
1722       << "      }\n"
1723       << "      ++MCOperandNum;\n"
1724       << "      break;\n"
1725       << "    case CVT_Tied:\n"
1726       << "      // FIXME: Tied operand calculation not supported.\n"
1727       << "      assert (0 && \"getMCInstOperandNumImpl() doesn't support tied operands, yet!\");\n"
1728       << "      break;\n";
1729
1730  // Pre-populate the operand conversion kinds with the standard always
1731  // available entries.
1732  OperandConversionKinds.insert("CVT_Done");
1733  OperandConversionKinds.insert("CVT_Reg");
1734  OperandConversionKinds.insert("CVT_Tied");
1735  enum { CVT_Done, CVT_Reg, CVT_Tied };
1736
1737  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1738         ie = Infos.end(); it != ie; ++it) {
1739    MatchableInfo &II = **it;
1740
1741    // Check if we have a custom match function.
1742    std::string AsmMatchConverter =
1743      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1744    if (!AsmMatchConverter.empty()) {
1745      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1746      II.ConversionFnKind = Signature;
1747
1748      // Check if we have already generated this signature.
1749      if (!InstructionConversionKinds.insert(Signature))
1750        continue;
1751
1752      // Remember this converter for the kind enum.
1753      unsigned KindID = OperandConversionKinds.size();
1754      OperandConversionKinds.insert("CVT_" + AsmMatchConverter);
1755
1756      // Add the converter row for this instruction.
1757      ConversionTable.push_back(std::vector<uint8_t>());
1758      ConversionTable.back().push_back(KindID);
1759      ConversionTable.back().push_back(CVT_Done);
1760
1761      // Add the handler to the conversion driver function.
1762      CvtOS << "    case CVT_" << AsmMatchConverter << ":\n"
1763            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1764            << "      break;\n";
1765
1766      // FIXME: Handle the operand number lookup for custom match functions.
1767      continue;
1768    }
1769
1770    // Build the conversion function signature.
1771    std::string Signature = "Convert";
1772
1773    std::vector<uint8_t> ConversionRow;
1774
1775    // Compute the convert enum and the case body.
1776    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
1777
1778    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1779      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1780
1781      // Generate code to populate each result operand.
1782      switch (OpInfo.Kind) {
1783      case MatchableInfo::ResOperand::RenderAsmOperand: {
1784        // This comes from something we parsed.
1785        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1786
1787        // Registers are always converted the same, don't duplicate the
1788        // conversion function based on them.
1789        Signature += "__";
1790        std::string Class;
1791        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1792        Signature += Class;
1793        Signature += utostr(OpInfo.MINumOperands);
1794        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1795
1796        // Add the conversion kind, if necessary, and get the associated ID
1797        // the index of its entry in the vector).
1798        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1799                                     Op.Class->RenderMethod);
1800
1801        bool IsNewConverter = false;
1802        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1803                                            IsNewConverter);
1804
1805        // Add the operand entry to the instruction kind conversion row.
1806        ConversionRow.push_back(ID);
1807        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1808
1809        if (!IsNewConverter)
1810          break;
1811
1812        // This is a new operand kind. Add a handler for it to the
1813        // converter driver.
1814        CvtOS << "    case " << Name << ":\n"
1815              << "      static_cast<" << TargetOperandClass
1816              << "*>(Operands[*(p + 1)])->"
1817              << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
1818              << ");\n"
1819              << "      break;\n";
1820
1821        // Add a handler for the operand number lookup.
1822        OpOS << "    case " << Name << ":\n"
1823             << "      if (*(p + 1) == OperandNum) {\n"
1824             << "        NumMCOperands = " << OpInfo.MINumOperands << ";\n"
1825             << "        break;\n"
1826             << "      }\n"
1827             << "      MCOperandNum += " << OpInfo.MINumOperands << ";\n"
1828             << "      break;\n";
1829        break;
1830      }
1831      case MatchableInfo::ResOperand::TiedOperand: {
1832        // If this operand is tied to a previous one, just copy the MCInst
1833        // operand from the earlier one.We can only tie single MCOperand values.
1834        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1835        unsigned TiedOp = OpInfo.TiedOperandNum;
1836        assert(i > TiedOp && "Tied operand precedes its target!");
1837        Signature += "__Tie" + utostr(TiedOp);
1838        ConversionRow.push_back(CVT_Tied);
1839        ConversionRow.push_back(TiedOp);
1840        // FIXME: Handle the operand number lookup for tied operands.
1841        break;
1842      }
1843      case MatchableInfo::ResOperand::ImmOperand: {
1844        int64_t Val = OpInfo.ImmVal;
1845        std::string Ty = "imm_" + itostr(Val);
1846        Signature += "__" + Ty;
1847
1848        std::string Name = "CVT_" + Ty;
1849        bool IsNewConverter = false;
1850        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1851                                            IsNewConverter);
1852        // Add the operand entry to the instruction kind conversion row.
1853        ConversionRow.push_back(ID);
1854        ConversionRow.push_back(0);
1855
1856        if (!IsNewConverter)
1857          break;
1858
1859        CvtOS << "    case " << Name << ":\n"
1860              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1861              << "      break;\n";
1862
1863        OpOS << "    case " << Name << ":\n"
1864             << "      if (*(p + 1) == OperandNum) {\n"
1865             << "        NumMCOperands = 1;\n"
1866             << "        break;\n"
1867             << "      }\n"
1868             << "      ++MCOperandNum;\n"
1869             << "      break;\n";
1870        break;
1871      }
1872      case MatchableInfo::ResOperand::RegOperand: {
1873        std::string Reg, Name;
1874        if (OpInfo.Register == 0) {
1875          Name = "reg0";
1876          Reg = "0";
1877        } else {
1878          Reg = getQualifiedName(OpInfo.Register);
1879          Name = "reg" + OpInfo.Register->getName();
1880        }
1881        Signature += "__" + Name;
1882        Name = "CVT_" + Name;
1883        bool IsNewConverter = false;
1884        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1885                                            IsNewConverter);
1886        // Add the operand entry to the instruction kind conversion row.
1887        ConversionRow.push_back(ID);
1888        ConversionRow.push_back(0);
1889
1890        if (!IsNewConverter)
1891          break;
1892        CvtOS << "    case " << Name << ":\n"
1893              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1894              << "      break;\n";
1895
1896        OpOS << "    case " << Name << ":\n"
1897             << "      if (*(p + 1) == OperandNum) {\n"
1898             << "        NumMCOperands = 1;\n"
1899             << "        break;\n"
1900             << "      }\n"
1901             << "      ++MCOperandNum;\n"
1902             << "      break;\n";
1903      }
1904      }
1905    }
1906
1907    // If there were no operands, add to the signature to that effect
1908    if (Signature == "Convert")
1909      Signature += "_NoOperands";
1910
1911    II.ConversionFnKind = Signature;
1912
1913    // Save the signature. If we already have it, don't add a new row
1914    // to the table.
1915    if (!InstructionConversionKinds.insert(Signature))
1916      continue;
1917
1918    // Add the row to the table.
1919    ConversionTable.push_back(ConversionRow);
1920  }
1921
1922  // Finish up the converter driver function.
1923  CvtOS << "    }\n  }\n}\n\n";
1924
1925  // Finish up the operand number lookup function.
1926  OpOS << "    }\n  }\n  return MCOperandNum;\n}\n\n";
1927
1928  OS << "namespace {\n";
1929
1930  // Output the operand conversion kind enum.
1931  OS << "enum OperatorConversionKind {\n";
1932  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1933    OS << "  " << OperandConversionKinds[i] << ",\n";
1934  OS << "  CVT_NUM_CONVERTERS\n";
1935  OS << "};\n\n";
1936
1937  // Output the instruction conversion kind enum.
1938  OS << "enum InstructionConversionKind {\n";
1939  for (SetVector<std::string>::const_iterator
1940         i = InstructionConversionKinds.begin(),
1941         e = InstructionConversionKinds.end(); i != e; ++i)
1942    OS << "  " << *i << ",\n";
1943  OS << "  CVT_NUM_SIGNATURES\n";
1944  OS << "};\n\n";
1945
1946
1947  OS << "} // end anonymous namespace\n\n";
1948
1949  // Output the conversion table.
1950  OS << "static uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1951     << MaxRowLength << "] = {\n";
1952
1953  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1954    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1955    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1956    OS << "  { ";
1957    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1958      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1959         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1960    OS << "CVT_Done },\n";
1961  }
1962
1963  OS << "};\n\n";
1964
1965  // Spit out the conversion driver function.
1966  OS << CvtOS.str();
1967
1968  // Spit out the operand number lookup function.
1969  OS << OpOS.str();
1970}
1971
1972/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1973static void emitMatchClassEnumeration(CodeGenTarget &Target,
1974                                      std::vector<ClassInfo*> &Infos,
1975                                      raw_ostream &OS) {
1976  OS << "namespace {\n\n";
1977
1978  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1979     << "/// instruction matching.\n";
1980  OS << "enum MatchClassKind {\n";
1981  OS << "  InvalidMatchClass = 0,\n";
1982  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1983         ie = Infos.end(); it != ie; ++it) {
1984    ClassInfo &CI = **it;
1985    OS << "  " << CI.Name << ", // ";
1986    if (CI.Kind == ClassInfo::Token) {
1987      OS << "'" << CI.ValueName << "'\n";
1988    } else if (CI.isRegisterClass()) {
1989      if (!CI.ValueName.empty())
1990        OS << "register class '" << CI.ValueName << "'\n";
1991      else
1992        OS << "derived register class\n";
1993    } else {
1994      OS << "user defined class '" << CI.ValueName << "'\n";
1995    }
1996  }
1997  OS << "  NumMatchClassKinds\n";
1998  OS << "};\n\n";
1999
2000  OS << "}\n\n";
2001}
2002
2003/// emitValidateOperandClass - Emit the function to validate an operand class.
2004static void emitValidateOperandClass(AsmMatcherInfo &Info,
2005                                     raw_ostream &OS) {
2006  OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
2007     << "MatchClassKind Kind) {\n";
2008  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
2009     << Info.Target.getName() << "Operand*)GOp;\n";
2010
2011  // The InvalidMatchClass is not to match any operand.
2012  OS << "  if (Kind == InvalidMatchClass)\n";
2013  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2014
2015  // Check for Token operands first.
2016  // FIXME: Use a more specific diagnostic type.
2017  OS << "  if (Operand.isToken())\n";
2018  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2019     << "             MCTargetAsmParser::Match_Success :\n"
2020     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2021
2022  // Check the user classes. We don't care what order since we're only
2023  // actually matching against one of them.
2024  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
2025         ie = Info.Classes.end(); it != ie; ++it) {
2026    ClassInfo &CI = **it;
2027
2028    if (!CI.isUserClass())
2029      continue;
2030
2031    OS << "  // '" << CI.ClassName << "' class\n";
2032    OS << "  if (Kind == " << CI.Name << ") {\n";
2033    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2034    OS << "      return MCTargetAsmParser::Match_Success;\n";
2035    if (!CI.DiagnosticType.empty())
2036      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2037         << CI.DiagnosticType << ";\n";
2038    OS << "  }\n\n";
2039  }
2040
2041  // Check for register operands, including sub-classes.
2042  OS << "  if (Operand.isReg()) {\n";
2043  OS << "    MatchClassKind OpKind;\n";
2044  OS << "    switch (Operand.getReg()) {\n";
2045  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2046  for (std::map<Record*, ClassInfo*>::iterator
2047         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
2048       it != ie; ++it)
2049    OS << "    case " << Info.Target.getName() << "::"
2050       << it->first->getName() << ": OpKind = " << it->second->Name
2051       << "; break;\n";
2052  OS << "    }\n";
2053  OS << "    return isSubclass(OpKind, Kind) ? "
2054     << "MCTargetAsmParser::Match_Success :\n                             "
2055     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2056
2057  // Generic fallthrough match failure case for operands that don't have
2058  // specialized diagnostic types.
2059  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2060  OS << "}\n\n";
2061}
2062
2063/// emitIsSubclass - Emit the subclass predicate function.
2064static void emitIsSubclass(CodeGenTarget &Target,
2065                           std::vector<ClassInfo*> &Infos,
2066                           raw_ostream &OS) {
2067  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2068  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2069  OS << "  if (A == B)\n";
2070  OS << "    return true;\n\n";
2071
2072  OS << "  switch (A) {\n";
2073  OS << "  default:\n";
2074  OS << "    return false;\n";
2075  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2076         ie = Infos.end(); it != ie; ++it) {
2077    ClassInfo &A = **it;
2078
2079    std::vector<StringRef> SuperClasses;
2080    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2081         ie = Infos.end(); it != ie; ++it) {
2082      ClassInfo &B = **it;
2083
2084      if (&A != &B && A.isSubsetOf(B))
2085        SuperClasses.push_back(B.Name);
2086    }
2087
2088    if (SuperClasses.empty())
2089      continue;
2090
2091    OS << "\n  case " << A.Name << ":\n";
2092
2093    if (SuperClasses.size() == 1) {
2094      OS << "    return B == " << SuperClasses.back() << ";\n";
2095      continue;
2096    }
2097
2098    OS << "    switch (B) {\n";
2099    OS << "    default: return false;\n";
2100    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2101      OS << "    case " << SuperClasses[i] << ": return true;\n";
2102    OS << "    }\n";
2103  }
2104  OS << "  }\n";
2105  OS << "}\n\n";
2106}
2107
2108/// emitMatchTokenString - Emit the function to match a token string to the
2109/// appropriate match class value.
2110static void emitMatchTokenString(CodeGenTarget &Target,
2111                                 std::vector<ClassInfo*> &Infos,
2112                                 raw_ostream &OS) {
2113  // Construct the match list.
2114  std::vector<StringMatcher::StringPair> Matches;
2115  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2116         ie = Infos.end(); it != ie; ++it) {
2117    ClassInfo &CI = **it;
2118
2119    if (CI.Kind == ClassInfo::Token)
2120      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
2121                                                  "return " + CI.Name + ";"));
2122  }
2123
2124  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2125
2126  StringMatcher("Name", Matches, OS).Emit();
2127
2128  OS << "  return InvalidMatchClass;\n";
2129  OS << "}\n\n";
2130}
2131
2132/// emitMatchRegisterName - Emit the function to match a string to the target
2133/// specific register enum.
2134static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2135                                  raw_ostream &OS) {
2136  // Construct the match list.
2137  std::vector<StringMatcher::StringPair> Matches;
2138  const std::vector<CodeGenRegister*> &Regs =
2139    Target.getRegBank().getRegisters();
2140  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2141    const CodeGenRegister *Reg = Regs[i];
2142    if (Reg->TheDef->getValueAsString("AsmName").empty())
2143      continue;
2144
2145    Matches.push_back(StringMatcher::StringPair(
2146                                     Reg->TheDef->getValueAsString("AsmName"),
2147                                     "return " + utostr(Reg->EnumValue) + ";"));
2148  }
2149
2150  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2151
2152  StringMatcher("Name", Matches, OS).Emit();
2153
2154  OS << "  return 0;\n";
2155  OS << "}\n\n";
2156}
2157
2158/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2159/// definitions.
2160static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2161                                                raw_ostream &OS) {
2162  OS << "// Flags for subtarget features that participate in "
2163     << "instruction matching.\n";
2164  OS << "enum SubtargetFeatureFlag {\n";
2165  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2166         it = Info.SubtargetFeatures.begin(),
2167         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2168    SubtargetFeatureInfo &SFI = *it->second;
2169    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
2170  }
2171  OS << "  Feature_None = 0\n";
2172  OS << "};\n\n";
2173}
2174
2175/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2176static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2177  // Get the set of diagnostic types from all of the operand classes.
2178  std::set<StringRef> Types;
2179  for (std::map<Record*, ClassInfo*>::const_iterator
2180       I = Info.AsmOperandClasses.begin(),
2181       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2182    if (!I->second->DiagnosticType.empty())
2183      Types.insert(I->second->DiagnosticType);
2184  }
2185
2186  if (Types.empty()) return;
2187
2188  // Now emit the enum entries.
2189  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2190       I != E; ++I)
2191    OS << "  Match_" << *I << ",\n";
2192  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2193}
2194
2195/// emitGetSubtargetFeatureName - Emit the helper function to get the
2196/// user-level name for a subtarget feature.
2197static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2198  OS << "// User-level names for subtarget features that participate in\n"
2199     << "// instruction matching.\n"
2200     << "static const char *getSubtargetFeatureName(unsigned Val) {\n"
2201     << "  switch(Val) {\n";
2202  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2203         it = Info.SubtargetFeatures.begin(),
2204         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2205    SubtargetFeatureInfo &SFI = *it->second;
2206    // FIXME: Totally just a placeholder name to get the algorithm working.
2207    OS << "  case " << SFI.getEnumName() << ": return \""
2208       << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2209  }
2210  OS << "  default: return \"(unknown)\";\n";
2211  OS << "  }\n}\n\n";
2212}
2213
2214/// emitComputeAvailableFeatures - Emit the function to compute the list of
2215/// available features given a subtarget.
2216static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2217                                         raw_ostream &OS) {
2218  std::string ClassName =
2219    Info.AsmParser->getValueAsString("AsmParserClassName");
2220
2221  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
2222     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2223  OS << "  unsigned Features = 0;\n";
2224  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2225         it = Info.SubtargetFeatures.begin(),
2226         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2227    SubtargetFeatureInfo &SFI = *it->second;
2228
2229    OS << "  if (";
2230    std::string CondStorage =
2231      SFI.TheDef->getValueAsString("AssemblerCondString");
2232    StringRef Conds = CondStorage;
2233    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2234    bool First = true;
2235    do {
2236      if (!First)
2237        OS << " && ";
2238
2239      bool Neg = false;
2240      StringRef Cond = Comma.first;
2241      if (Cond[0] == '!') {
2242        Neg = true;
2243        Cond = Cond.substr(1);
2244      }
2245
2246      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2247      if (Neg)
2248        OS << " == 0";
2249      else
2250        OS << " != 0";
2251      OS << ")";
2252
2253      if (Comma.second.empty())
2254        break;
2255
2256      First = false;
2257      Comma = Comma.second.split(',');
2258    } while (true);
2259
2260    OS << ")\n";
2261    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2262  }
2263  OS << "  return Features;\n";
2264  OS << "}\n\n";
2265}
2266
2267static std::string GetAliasRequiredFeatures(Record *R,
2268                                            const AsmMatcherInfo &Info) {
2269  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2270  std::string Result;
2271  unsigned NumFeatures = 0;
2272  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2273    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2274
2275    if (F == 0)
2276      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2277                    "' is not marked as an AssemblerPredicate!");
2278
2279    if (NumFeatures)
2280      Result += '|';
2281
2282    Result += F->getEnumName();
2283    ++NumFeatures;
2284  }
2285
2286  if (NumFeatures > 1)
2287    Result = '(' + Result + ')';
2288  return Result;
2289}
2290
2291/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2292/// emit a function for them and return true, otherwise return false.
2293static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
2294  // Ignore aliases when match-prefix is set.
2295  if (!MatchPrefix.empty())
2296    return false;
2297
2298  std::vector<Record*> Aliases =
2299    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2300  if (Aliases.empty()) return false;
2301
2302  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2303        "unsigned Features) {\n";
2304
2305  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2306  // iteration order of the map is stable.
2307  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2308
2309  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2310    Record *R = Aliases[i];
2311    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2312  }
2313
2314  // Process each alias a "from" mnemonic at a time, building the code executed
2315  // by the string remapper.
2316  std::vector<StringMatcher::StringPair> Cases;
2317  for (std::map<std::string, std::vector<Record*> >::iterator
2318       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2319       I != E; ++I) {
2320    const std::vector<Record*> &ToVec = I->second;
2321
2322    // Loop through each alias and emit code that handles each case.  If there
2323    // are two instructions without predicates, emit an error.  If there is one,
2324    // emit it last.
2325    std::string MatchCode;
2326    int AliasWithNoPredicate = -1;
2327
2328    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2329      Record *R = ToVec[i];
2330      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2331
2332      // If this unconditionally matches, remember it for later and diagnose
2333      // duplicates.
2334      if (FeatureMask.empty()) {
2335        if (AliasWithNoPredicate != -1) {
2336          // We can't have two aliases from the same mnemonic with no predicate.
2337          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2338                     "two MnemonicAliases with the same 'from' mnemonic!");
2339          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
2340        }
2341
2342        AliasWithNoPredicate = i;
2343        continue;
2344      }
2345      if (R->getValueAsString("ToMnemonic") == I->first)
2346        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
2347
2348      if (!MatchCode.empty())
2349        MatchCode += "else ";
2350      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2351      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2352    }
2353
2354    if (AliasWithNoPredicate != -1) {
2355      Record *R = ToVec[AliasWithNoPredicate];
2356      if (!MatchCode.empty())
2357        MatchCode += "else\n  ";
2358      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2359    }
2360
2361    MatchCode += "return;";
2362
2363    Cases.push_back(std::make_pair(I->first, MatchCode));
2364  }
2365
2366  StringMatcher("Mnemonic", Cases, OS).Emit();
2367  OS << "}\n\n";
2368
2369  return true;
2370}
2371
2372static const char *getMinimalTypeForRange(uint64_t Range) {
2373  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2374  if (Range > 0xFFFF)
2375    return "uint32_t";
2376  if (Range > 0xFF)
2377    return "uint16_t";
2378  return "uint8_t";
2379}
2380
2381static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2382                              const AsmMatcherInfo &Info, StringRef ClassName) {
2383  // Emit the static custom operand parsing table;
2384  OS << "namespace {\n";
2385  OS << "  struct OperandMatchEntry {\n";
2386  OS << "    static const char *const MnemonicTable;\n";
2387  OS << "    uint32_t OperandMask;\n";
2388  OS << "    uint32_t Mnemonic;\n";
2389  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2390               << " RequiredFeatures;\n";
2391  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2392               << " Class;\n\n";
2393  OS << "    StringRef getMnemonic() const {\n";
2394  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2395  OS << "                       MnemonicTable[Mnemonic]);\n";
2396  OS << "    }\n";
2397  OS << "  };\n\n";
2398
2399  OS << "  // Predicate for searching for an opcode.\n";
2400  OS << "  struct LessOpcodeOperand {\n";
2401  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2402  OS << "      return LHS.getMnemonic()  < RHS;\n";
2403  OS << "    }\n";
2404  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2405  OS << "      return LHS < RHS.getMnemonic();\n";
2406  OS << "    }\n";
2407  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2408  OS << " const OperandMatchEntry &RHS) {\n";
2409  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2410  OS << "    }\n";
2411  OS << "  };\n";
2412
2413  OS << "} // end anonymous namespace.\n\n";
2414
2415  StringToOffsetTable StringTable;
2416
2417  OS << "static const OperandMatchEntry OperandMatchTable["
2418     << Info.OperandMatchInfo.size() << "] = {\n";
2419
2420  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2421  for (std::vector<OperandMatchEntry>::const_iterator it =
2422       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2423       it != ie; ++it) {
2424    const OperandMatchEntry &OMI = *it;
2425    const MatchableInfo &II = *OMI.MI;
2426
2427    OS << "  { " << OMI.OperandMask;
2428
2429    OS << " /* ";
2430    bool printComma = false;
2431    for (int i = 0, e = 31; i !=e; ++i)
2432      if (OMI.OperandMask & (1 << i)) {
2433        if (printComma)
2434          OS << ", ";
2435        OS << i;
2436        printComma = true;
2437      }
2438    OS << " */";
2439
2440    // Store a pascal-style length byte in the mnemonic.
2441    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2442    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2443       << " /* " << II.Mnemonic << " */, ";
2444
2445    // Write the required features mask.
2446    if (!II.RequiredFeatures.empty()) {
2447      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2448        if (i) OS << "|";
2449        OS << II.RequiredFeatures[i]->getEnumName();
2450      }
2451    } else
2452      OS << "0";
2453
2454    OS << ", " << OMI.CI->Name;
2455
2456    OS << " },\n";
2457  }
2458  OS << "};\n\n";
2459
2460  OS << "const char *const OperandMatchEntry::MnemonicTable =\n";
2461  StringTable.EmitString(OS);
2462  OS << ";\n\n";
2463
2464  // Emit the operand class switch to call the correct custom parser for
2465  // the found operand class.
2466  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2467     << Target.getName() << ClassName << "::\n"
2468     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2469     << " &Operands,\n                      unsigned MCK) {\n\n"
2470     << "  switch(MCK) {\n";
2471
2472  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2473       ie = Info.Classes.end(); it != ie; ++it) {
2474    ClassInfo *CI = *it;
2475    if (CI->ParserMethod.empty())
2476      continue;
2477    OS << "  case " << CI->Name << ":\n"
2478       << "    return " << CI->ParserMethod << "(Operands);\n";
2479  }
2480
2481  OS << "  default:\n";
2482  OS << "    return MatchOperand_NoMatch;\n";
2483  OS << "  }\n";
2484  OS << "  return MatchOperand_NoMatch;\n";
2485  OS << "}\n\n";
2486
2487  // Emit the static custom operand parser. This code is very similar with
2488  // the other matcher. Also use MatchResultTy here just in case we go for
2489  // a better error handling.
2490  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2491     << Target.getName() << ClassName << "::\n"
2492     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2493     << " &Operands,\n                       StringRef Mnemonic) {\n";
2494
2495  // Emit code to get the available features.
2496  OS << "  // Get the current feature set.\n";
2497  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2498
2499  OS << "  // Get the next operand index.\n";
2500  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2501
2502  // Emit code to search the table.
2503  OS << "  // Search the table.\n";
2504  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2505  OS << " MnemonicRange =\n";
2506  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2507     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2508     << "                     LessOpcodeOperand());\n\n";
2509
2510  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2511  OS << "    return MatchOperand_NoMatch;\n\n";
2512
2513  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2514     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2515
2516  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2517  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2518
2519  // Emit check that the required features are available.
2520  OS << "    // check if the available features match\n";
2521  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2522     << "!= it->RequiredFeatures) {\n";
2523  OS << "      continue;\n";
2524  OS << "    }\n\n";
2525
2526  // Emit check to ensure the operand number matches.
2527  OS << "    // check if the operand in question has a custom parser.\n";
2528  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2529  OS << "      continue;\n\n";
2530
2531  // Emit call to the custom parser method
2532  OS << "    // call custom parse method to handle the operand\n";
2533  OS << "    OperandMatchResultTy Result = ";
2534  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2535  OS << "    if (Result != MatchOperand_NoMatch)\n";
2536  OS << "      return Result;\n";
2537  OS << "  }\n\n";
2538
2539  OS << "  // Okay, we had no match.\n";
2540  OS << "  return MatchOperand_NoMatch;\n";
2541  OS << "}\n\n";
2542}
2543
2544void AsmMatcherEmitter::run(raw_ostream &OS) {
2545  CodeGenTarget Target(Records);
2546  Record *AsmParser = Target.getAsmParser();
2547  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2548
2549  // Compute the information on the instructions to match.
2550  AsmMatcherInfo Info(AsmParser, Target, Records);
2551  Info.buildInfo();
2552
2553  // Sort the instruction table using the partial order on classes. We use
2554  // stable_sort to ensure that ambiguous instructions are still
2555  // deterministically ordered.
2556  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2557                   less_ptr<MatchableInfo>());
2558
2559  DEBUG_WITH_TYPE("instruction_info", {
2560      for (std::vector<MatchableInfo*>::iterator
2561             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2562           it != ie; ++it)
2563        (*it)->dump();
2564    });
2565
2566  // Check for ambiguous matchables.
2567  DEBUG_WITH_TYPE("ambiguous_instrs", {
2568    unsigned NumAmbiguous = 0;
2569    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2570      for (unsigned j = i + 1; j != e; ++j) {
2571        MatchableInfo &A = *Info.Matchables[i];
2572        MatchableInfo &B = *Info.Matchables[j];
2573
2574        if (A.couldMatchAmbiguouslyWith(B)) {
2575          errs() << "warning: ambiguous matchables:\n";
2576          A.dump();
2577          errs() << "\nis incomparable with:\n";
2578          B.dump();
2579          errs() << "\n\n";
2580          ++NumAmbiguous;
2581        }
2582      }
2583    }
2584    if (NumAmbiguous)
2585      errs() << "warning: " << NumAmbiguous
2586             << " ambiguous matchables!\n";
2587  });
2588
2589  // Compute the information on the custom operand parsing.
2590  Info.buildOperandMatchInfo();
2591
2592  // Write the output.
2593
2594  // Information for the class declaration.
2595  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2596  OS << "#undef GET_ASSEMBLER_HEADER\n";
2597  OS << "  // This should be included into the middle of the declaration of\n";
2598  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2599  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2600  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2601     << "unsigned Opcode,\n"
2602     << "                          const SmallVectorImpl<MCParsedAsmOperand*> "
2603     << "&Operands);\n";
2604  OS << "  unsigned getMCInstOperandNumImpl(unsigned Kind, MCInst &Inst,\n     "
2605     << "                              const "
2606     << "SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n                     "
2607     << "          unsigned OperandNum, unsigned &NumMCOperands);\n";
2608  OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
2609  OS << "  unsigned MatchInstructionImpl(\n"
2610     << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
2611     << "    unsigned &Kind, MCInst &Inst, "
2612     << "unsigned &ErrorInfo,\n    unsigned VariantID = 0);\n";
2613
2614  if (Info.OperandMatchInfo.size()) {
2615    OS << "\n  enum OperandMatchResultTy {\n";
2616    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2617    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2618    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2619    OS << "  };\n";
2620    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2621    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2622    OS << "    StringRef Mnemonic);\n";
2623
2624    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2625    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2626    OS << "    unsigned MCK);\n\n";
2627  }
2628
2629  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2630
2631  // Emit the operand match diagnostic enum names.
2632  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2633  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2634  emitOperandDiagnosticTypes(Info, OS);
2635  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2636
2637
2638  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2639  OS << "#undef GET_REGISTER_MATCHER\n\n";
2640
2641  // Emit the subtarget feature enumeration.
2642  emitSubtargetFeatureFlagEnumeration(Info, OS);
2643
2644  // Emit the function to match a register name to number.
2645  // This should be omitted for Mips target
2646  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2647    emitMatchRegisterName(Target, AsmParser, OS);
2648
2649  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2650
2651  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2652  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2653
2654  // Generate the helper function to get the names for subtarget features.
2655  emitGetSubtargetFeatureName(Info, OS);
2656
2657  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2658
2659  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2660  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2661
2662  // Generate the function that remaps for mnemonic aliases.
2663  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info);
2664
2665  // Generate the unified function to convert operands into an MCInst.
2666  emitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2667
2668  // Emit the enumeration for classes which participate in matching.
2669  emitMatchClassEnumeration(Target, Info.Classes, OS);
2670
2671  // Emit the routine to match token strings to their match class.
2672  emitMatchTokenString(Target, Info.Classes, OS);
2673
2674  // Emit the subclass predicate routine.
2675  emitIsSubclass(Target, Info.Classes, OS);
2676
2677  // Emit the routine to validate an operand against a match class.
2678  emitValidateOperandClass(Info, OS);
2679
2680  // Emit the available features compute function.
2681  emitComputeAvailableFeatures(Info, OS);
2682
2683
2684  size_t MaxNumOperands = 0;
2685  for (std::vector<MatchableInfo*>::const_iterator it =
2686         Info.Matchables.begin(), ie = Info.Matchables.end();
2687       it != ie; ++it)
2688    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
2689
2690  // Emit the static match table; unused classes get initalized to 0 which is
2691  // guaranteed to be InvalidMatchClass.
2692  //
2693  // FIXME: We can reduce the size of this table very easily. First, we change
2694  // it so that store the kinds in separate bit-fields for each index, which
2695  // only needs to be the max width used for classes at that index (we also need
2696  // to reject based on this during classification). If we then make sure to
2697  // order the match kinds appropriately (putting mnemonics last), then we
2698  // should only end up using a few bits for each class, especially the ones
2699  // following the mnemonic.
2700  OS << "namespace {\n";
2701  OS << "  struct MatchEntry {\n";
2702  OS << "    static const char *const MnemonicTable;\n";
2703  OS << "    uint32_t Mnemonic;\n";
2704  OS << "    uint16_t Opcode;\n";
2705  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2706               << " ConvertFn;\n";
2707  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2708               << " RequiredFeatures;\n";
2709  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2710               << " Classes[" << MaxNumOperands << "];\n";
2711  OS << "    uint8_t AsmVariantID;\n\n";
2712  OS << "    StringRef getMnemonic() const {\n";
2713  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2714  OS << "                       MnemonicTable[Mnemonic]);\n";
2715  OS << "    }\n";
2716  OS << "  };\n\n";
2717
2718  OS << "  // Predicate for searching for an opcode.\n";
2719  OS << "  struct LessOpcode {\n";
2720  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2721  OS << "      return LHS.getMnemonic() < RHS;\n";
2722  OS << "    }\n";
2723  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2724  OS << "      return LHS < RHS.getMnemonic();\n";
2725  OS << "    }\n";
2726  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2727  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2728  OS << "    }\n";
2729  OS << "  };\n";
2730
2731  OS << "} // end anonymous namespace.\n\n";
2732
2733  StringToOffsetTable StringTable;
2734
2735  OS << "static const MatchEntry MatchTable["
2736     << Info.Matchables.size() << "] = {\n";
2737
2738  for (std::vector<MatchableInfo*>::const_iterator it =
2739       Info.Matchables.begin(), ie = Info.Matchables.end();
2740       it != ie; ++it) {
2741    MatchableInfo &II = **it;
2742
2743    // Store a pascal-style length byte in the mnemonic.
2744    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2745    OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2746       << " /* " << II.Mnemonic << " */, "
2747       << Target.getName() << "::"
2748       << II.getResultInst()->TheDef->getName() << ", "
2749       << II.ConversionFnKind << ", ";
2750
2751    // Write the required features mask.
2752    if (!II.RequiredFeatures.empty()) {
2753      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2754        if (i) OS << "|";
2755        OS << II.RequiredFeatures[i]->getEnumName();
2756      }
2757    } else
2758      OS << "0";
2759
2760    OS << ", { ";
2761    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2762      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2763
2764      if (i) OS << ", ";
2765      OS << Op.Class->Name;
2766    }
2767    OS << " }, " << II.AsmVariantID;
2768    OS << "},\n";
2769  }
2770
2771  OS << "};\n\n";
2772
2773  OS << "const char *const MatchEntry::MnemonicTable =\n";
2774  StringTable.EmitString(OS);
2775  OS << ";\n\n";
2776
2777  // A method to determine if a mnemonic is in the list.
2778  OS << "bool " << Target.getName() << ClassName << "::\n"
2779     << "MnemonicIsValid(StringRef Mnemonic) {\n";
2780  OS << "  // Search the table.\n";
2781  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2782  OS << "    std::equal_range(MatchTable, MatchTable+"
2783     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2784  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2785  OS << "}\n\n";
2786
2787  // Finally, build the match function.
2788  OS << "unsigned "
2789     << Target.getName() << ClassName << "::\n"
2790     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2791     << " &Operands,\n";
2792  OS << "                     unsigned &Kind, MCInst &Inst, unsigned ";
2793  OS << "&ErrorInfo,\n                     unsigned VariantID) {\n";
2794
2795  OS << "  // Eliminate obvious mismatches.\n";
2796  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2797  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2798  OS << "    return Match_InvalidOperand;\n";
2799  OS << "  }\n\n";
2800
2801  // Emit code to get the available features.
2802  OS << "  // Get the current feature set.\n";
2803  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2804
2805  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2806  OS << "  StringRef Mnemonic = ((" << Target.getName()
2807     << "Operand*)Operands[0])->getToken();\n\n";
2808
2809  if (HasMnemonicAliases) {
2810    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2811    OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
2812    OS << "  if (!VariantID)\n";
2813    OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2814  }
2815
2816  // Emit code to compute the class list for this operand vector.
2817  OS << "  // Some state to try to produce better error messages.\n";
2818  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2819  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2820  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2821  OS << "  unsigned MissingFeatures = ~0U;\n";
2822  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2823  OS << "  // wrong for all instances of the instruction.\n";
2824  OS << "  ErrorInfo = ~0U;\n";
2825
2826  // Emit code to search the table.
2827  OS << "  // Search the table.\n";
2828  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2829  OS << "    std::equal_range(MatchTable, MatchTable+"
2830     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2831
2832  OS << "  // Return a more specific error code if no mnemonics match.\n";
2833  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2834  OS << "    return Match_MnemonicFail;\n\n";
2835
2836  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2837     << "*ie = MnemonicRange.second;\n";
2838  OS << "       it != ie; ++it) {\n";
2839
2840  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2841  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2842
2843  // Emit check that the subclasses match.
2844  OS << "    if (VariantID != it->AsmVariantID) continue;\n";
2845  OS << "    bool OperandsValid = true;\n";
2846  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2847  OS << "      if (i + 1 >= Operands.size()) {\n";
2848  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2849  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2850  OS << "        break;\n";
2851  OS << "      }\n";
2852  OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
2853  OS.indent(43);
2854  OS << "(MatchClassKind)it->Classes[i]);\n";
2855  OS << "      if (Diag == Match_Success)\n";
2856  OS << "        continue;\n";
2857  OS << "      // If this operand is broken for all of the instances of this\n";
2858  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2859  OS << "      // If we already had a match that only failed due to a\n";
2860  OS << "      // target predicate, that diagnostic is preferred.\n";
2861  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2862  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2863  OS << "        ErrorInfo = i+1;\n";
2864  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2865  OS << "        if (Diag != Match_InvalidOperand)\n";
2866  OS << "          RetCode = Diag;\n";
2867  OS << "      }\n";
2868  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2869  OS << "      OperandsValid = false;\n";
2870  OS << "      break;\n";
2871  OS << "    }\n\n";
2872
2873  OS << "    if (!OperandsValid) continue;\n";
2874
2875  // Emit check that the required features are available.
2876  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2877     << "!= it->RequiredFeatures) {\n";
2878  OS << "      HadMatchOtherThanFeatures = true;\n";
2879  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
2880        "~AvailableFeatures;\n";
2881  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
2882        "          CountPopulation_32(MissingFeatures))\n";
2883  OS << "        MissingFeatures = NewMissingFeatures;\n";
2884  OS << "      continue;\n";
2885  OS << "    }\n";
2886  OS << "\n";
2887  OS << "    // We have selected a definite instruction, convert the parsed\n"
2888     << "    // operands into the appropriate MCInst.\n";
2889  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2890  OS << "\n";
2891
2892  // Verify the instruction with the target-specific match predicate function.
2893  OS << "    // We have a potential match. Check the target predicate to\n"
2894     << "    // handle any context sensitive constraints.\n"
2895     << "    unsigned MatchResult;\n"
2896     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2897     << " Match_Success) {\n"
2898     << "      Inst.clear();\n"
2899     << "      RetCode = MatchResult;\n"
2900     << "      HadMatchOtherThanPredicate = true;\n"
2901     << "      continue;\n"
2902     << "    }\n\n";
2903
2904  // Call the post-processing function, if used.
2905  std::string InsnCleanupFn =
2906    AsmParser->getValueAsString("AsmParserInstCleanup");
2907  if (!InsnCleanupFn.empty())
2908    OS << "    " << InsnCleanupFn << "(Inst);\n";
2909
2910  OS << "    Kind = it->ConvertFn;\n";
2911  OS << "    return Match_Success;\n";
2912  OS << "  }\n\n";
2913
2914  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2915  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
2916  OS << "    return RetCode;\n\n";
2917  OS << "  // Missing feature matches return which features were missing\n";
2918  OS << "  ErrorInfo = MissingFeatures;\n";
2919  OS << "  return Match_MissingFeature;\n";
2920  OS << "}\n\n";
2921
2922  if (Info.OperandMatchInfo.size())
2923    emitCustomOperandParsing(OS, Target, Info, ClassName);
2924
2925  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2926}
2927
2928namespace llvm {
2929
2930void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
2931  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2932  AsmMatcherEmitter(RK).run(OS);
2933}
2934
2935} // End llvm namespace
2936