AsmMatcherEmitter.cpp revision 63faf82d0377f0a878d643ca2aacc02c35811b3e
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific valeus in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "AsmMatcherEmitter.h"
100#include "CodeGenTarget.h"
101#include "StringMatcher.h"
102#include "llvm/ADT/OwningPtr.h"
103#include "llvm/ADT/PointerUnion.h"
104#include "llvm/ADT/SmallPtrSet.h"
105#include "llvm/ADT/SmallVector.h"
106#include "llvm/ADT/STLExtras.h"
107#include "llvm/ADT/StringExtras.h"
108#include "llvm/Support/CommandLine.h"
109#include "llvm/Support/Debug.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include <map>
113#include <set>
114using namespace llvm;
115
116static cl::opt<std::string>
117MatchPrefix("match-prefix", cl::init(""),
118            cl::desc("Only match instructions with the given prefix"));
119
120namespace {
121class AsmMatcherInfo;
122struct SubtargetFeatureInfo;
123
124/// ClassInfo - Helper class for storing the information about a particular
125/// class of operands which can be matched.
126struct ClassInfo {
127  enum ClassInfoKind {
128    /// Invalid kind, for use as a sentinel value.
129    Invalid = 0,
130
131    /// The class for a particular token.
132    Token,
133
134    /// The (first) register class, subsequent register classes are
135    /// RegisterClass0+1, and so on.
136    RegisterClass0,
137
138    /// The (first) user defined class, subsequent user defined classes are
139    /// UserClass0+1, and so on.
140    UserClass0 = 1<<16
141  };
142
143  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
144  /// N) for the Nth user defined class.
145  unsigned Kind;
146
147  /// SuperClasses - The super classes of this class. Note that for simplicities
148  /// sake user operands only record their immediate super class, while register
149  /// operands include all superclasses.
150  std::vector<ClassInfo*> SuperClasses;
151
152  /// Name - The full class name, suitable for use in an enum.
153  std::string Name;
154
155  /// ClassName - The unadorned generic name for this class (e.g., Token).
156  std::string ClassName;
157
158  /// ValueName - The name of the value this class represents; for a token this
159  /// is the literal token string, for an operand it is the TableGen class (or
160  /// empty if this is a derived class).
161  std::string ValueName;
162
163  /// PredicateMethod - The name of the operand method to test whether the
164  /// operand matches this class; this is not valid for Token or register kinds.
165  std::string PredicateMethod;
166
167  /// RenderMethod - The name of the operand method to add this operand to an
168  /// MCInst; this is not valid for Token or register kinds.
169  std::string RenderMethod;
170
171  /// ParserMethod - The name of the operand method to do a target specific
172  /// parsing on the operand.
173  std::string ParserMethod;
174
175  /// For register classes, the records for all the registers in this class.
176  std::set<Record*> Registers;
177
178public:
179  /// isRegisterClass() - Check if this is a register class.
180  bool isRegisterClass() const {
181    return Kind >= RegisterClass0 && Kind < UserClass0;
182  }
183
184  /// isUserClass() - Check if this is a user defined class.
185  bool isUserClass() const {
186    return Kind >= UserClass0;
187  }
188
189  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
190  /// are related if they are in the same class hierarchy.
191  bool isRelatedTo(const ClassInfo &RHS) const {
192    // Tokens are only related to tokens.
193    if (Kind == Token || RHS.Kind == Token)
194      return Kind == Token && RHS.Kind == Token;
195
196    // Registers classes are only related to registers classes, and only if
197    // their intersection is non-empty.
198    if (isRegisterClass() || RHS.isRegisterClass()) {
199      if (!isRegisterClass() || !RHS.isRegisterClass())
200        return false;
201
202      std::set<Record*> Tmp;
203      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
204      std::set_intersection(Registers.begin(), Registers.end(),
205                            RHS.Registers.begin(), RHS.Registers.end(),
206                            II);
207
208      return !Tmp.empty();
209    }
210
211    // Otherwise we have two users operands; they are related if they are in the
212    // same class hierarchy.
213    //
214    // FIXME: This is an oversimplification, they should only be related if they
215    // intersect, however we don't have that information.
216    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
217    const ClassInfo *Root = this;
218    while (!Root->SuperClasses.empty())
219      Root = Root->SuperClasses.front();
220
221    const ClassInfo *RHSRoot = &RHS;
222    while (!RHSRoot->SuperClasses.empty())
223      RHSRoot = RHSRoot->SuperClasses.front();
224
225    return Root == RHSRoot;
226  }
227
228  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
229  bool isSubsetOf(const ClassInfo &RHS) const {
230    // This is a subset of RHS if it is the same class...
231    if (this == &RHS)
232      return true;
233
234    // ... or if any of its super classes are a subset of RHS.
235    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
236           ie = SuperClasses.end(); it != ie; ++it)
237      if ((*it)->isSubsetOf(RHS))
238        return true;
239
240    return false;
241  }
242
243  /// operator< - Compare two classes.
244  bool operator<(const ClassInfo &RHS) const {
245    if (this == &RHS)
246      return false;
247
248    // Unrelated classes can be ordered by kind.
249    if (!isRelatedTo(RHS))
250      return Kind < RHS.Kind;
251
252    switch (Kind) {
253    case Invalid:
254      assert(0 && "Invalid kind!");
255
256    default:
257      // This class precedes the RHS if it is a proper subset of the RHS.
258      if (isSubsetOf(RHS))
259        return true;
260      if (RHS.isSubsetOf(*this))
261        return false;
262
263      // Otherwise, order by name to ensure we have a total ordering.
264      return ValueName < RHS.ValueName;
265    }
266  }
267};
268
269/// MatchableInfo - Helper class for storing the necessary information for an
270/// instruction or alias which is capable of being matched.
271struct MatchableInfo {
272  struct AsmOperand {
273    /// Token - This is the token that the operand came from.
274    StringRef Token;
275
276    /// The unique class instance this operand should match.
277    ClassInfo *Class;
278
279    /// The operand name this is, if anything.
280    StringRef SrcOpName;
281
282    /// The suboperand index within SrcOpName, or -1 for the entire operand.
283    int SubOpIdx;
284
285    /// Register record if this token is singleton register.
286    Record *SingletonReg;
287
288    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
289				       SingletonReg(0) {}
290  };
291
292  /// ResOperand - This represents a single operand in the result instruction
293  /// generated by the match.  In cases (like addressing modes) where a single
294  /// assembler operand expands to multiple MCOperands, this represents the
295  /// single assembler operand, not the MCOperand.
296  struct ResOperand {
297    enum {
298      /// RenderAsmOperand - This represents an operand result that is
299      /// generated by calling the render method on the assembly operand.  The
300      /// corresponding AsmOperand is specified by AsmOperandNum.
301      RenderAsmOperand,
302
303      /// TiedOperand - This represents a result operand that is a duplicate of
304      /// a previous result operand.
305      TiedOperand,
306
307      /// ImmOperand - This represents an immediate value that is dumped into
308      /// the operand.
309      ImmOperand,
310
311      /// RegOperand - This represents a fixed register that is dumped in.
312      RegOperand
313    } Kind;
314
315    union {
316      /// This is the operand # in the AsmOperands list that this should be
317      /// copied from.
318      unsigned AsmOperandNum;
319
320      /// TiedOperandNum - This is the (earlier) result operand that should be
321      /// copied from.
322      unsigned TiedOperandNum;
323
324      /// ImmVal - This is the immediate value added to the instruction.
325      int64_t ImmVal;
326
327      /// Register - This is the register record.
328      Record *Register;
329    };
330
331    /// MINumOperands - The number of MCInst operands populated by this
332    /// operand.
333    unsigned MINumOperands;
334
335    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
336      ResOperand X;
337      X.Kind = RenderAsmOperand;
338      X.AsmOperandNum = AsmOpNum;
339      X.MINumOperands = NumOperands;
340      return X;
341    }
342
343    static ResOperand getTiedOp(unsigned TiedOperandNum) {
344      ResOperand X;
345      X.Kind = TiedOperand;
346      X.TiedOperandNum = TiedOperandNum;
347      X.MINumOperands = 1;
348      return X;
349    }
350
351    static ResOperand getImmOp(int64_t Val) {
352      ResOperand X;
353      X.Kind = ImmOperand;
354      X.ImmVal = Val;
355      X.MINumOperands = 1;
356      return X;
357    }
358
359    static ResOperand getRegOp(Record *Reg) {
360      ResOperand X;
361      X.Kind = RegOperand;
362      X.Register = Reg;
363      X.MINumOperands = 1;
364      return X;
365    }
366  };
367
368  /// TheDef - This is the definition of the instruction or InstAlias that this
369  /// matchable came from.
370  Record *const TheDef;
371
372  /// DefRec - This is the definition that it came from.
373  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
374
375  const CodeGenInstruction *getResultInst() const {
376    if (DefRec.is<const CodeGenInstruction*>())
377      return DefRec.get<const CodeGenInstruction*>();
378    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
379  }
380
381  /// ResOperands - This is the operand list that should be built for the result
382  /// MCInst.
383  std::vector<ResOperand> ResOperands;
384
385  /// AsmString - The assembly string for this instruction (with variants
386  /// removed), e.g. "movsx $src, $dst".
387  std::string AsmString;
388
389  /// Mnemonic - This is the first token of the matched instruction, its
390  /// mnemonic.
391  StringRef Mnemonic;
392
393  /// AsmOperands - The textual operands that this instruction matches,
394  /// annotated with a class and where in the OperandList they were defined.
395  /// This directly corresponds to the tokenized AsmString after the mnemonic is
396  /// removed.
397  SmallVector<AsmOperand, 4> AsmOperands;
398
399  /// Predicates - The required subtarget features to match this instruction.
400  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
401
402  /// ConversionFnKind - The enum value which is passed to the generated
403  /// ConvertToMCInst to convert parsed operands into an MCInst for this
404  /// function.
405  std::string ConversionFnKind;
406
407  MatchableInfo(const CodeGenInstruction &CGI)
408    : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) {
409  }
410
411  MatchableInfo(const CodeGenInstAlias *Alias)
412    : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) {
413  }
414
415  void Initialize(const AsmMatcherInfo &Info,
416                  SmallPtrSet<Record*, 16> &SingletonRegisters,
417		  int AsmVariantNo, std::string &RegisterPrefix);
418
419  /// Validate - Return true if this matchable is a valid thing to match against
420  /// and perform a bunch of validity checking.
421  bool Validate(StringRef CommentDelimiter, bool Hack) const;
422
423  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
424  /// if present, from specified token.
425  void
426  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
427                                        std::string &RegisterPrefix);
428
429  /// FindAsmOperand - Find the AsmOperand with the specified name and
430  /// suboperand index.
431  int FindAsmOperand(StringRef N, int SubOpIdx) const {
432    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
433      if (N == AsmOperands[i].SrcOpName &&
434          SubOpIdx == AsmOperands[i].SubOpIdx)
435        return i;
436    return -1;
437  }
438
439  /// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
440  /// This does not check the suboperand index.
441  int FindAsmOperandNamed(StringRef N) const {
442    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
443      if (N == AsmOperands[i].SrcOpName)
444        return i;
445    return -1;
446  }
447
448  void BuildInstructionResultOperands();
449  void BuildAliasResultOperands();
450
451  /// operator< - Compare two matchables.
452  bool operator<(const MatchableInfo &RHS) const {
453    // The primary comparator is the instruction mnemonic.
454    if (Mnemonic != RHS.Mnemonic)
455      return Mnemonic < RHS.Mnemonic;
456
457    if (AsmOperands.size() != RHS.AsmOperands.size())
458      return AsmOperands.size() < RHS.AsmOperands.size();
459
460    // Compare lexicographically by operand. The matcher validates that other
461    // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
462    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
463      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
464        return true;
465      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
466        return false;
467    }
468
469    return false;
470  }
471
472  /// CouldMatchAmbiguouslyWith - Check whether this matchable could
473  /// ambiguously match the same set of operands as \arg RHS (without being a
474  /// strictly superior match).
475  bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
476    // The primary comparator is the instruction mnemonic.
477    if (Mnemonic != RHS.Mnemonic)
478      return false;
479
480    // The number of operands is unambiguous.
481    if (AsmOperands.size() != RHS.AsmOperands.size())
482      return false;
483
484    // Otherwise, make sure the ordering of the two instructions is unambiguous
485    // by checking that either (a) a token or operand kind discriminates them,
486    // or (b) the ordering among equivalent kinds is consistent.
487
488    // Tokens and operand kinds are unambiguous (assuming a correct target
489    // specific parser).
490    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
491      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
492          AsmOperands[i].Class->Kind == ClassInfo::Token)
493        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
494            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
495          return false;
496
497    // Otherwise, this operand could commute if all operands are equivalent, or
498    // there is a pair of operands that compare less than and a pair that
499    // compare greater than.
500    bool HasLT = false, HasGT = false;
501    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
502      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
503        HasLT = true;
504      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
505        HasGT = true;
506    }
507
508    return !(HasLT ^ HasGT);
509  }
510
511  void dump();
512
513private:
514  void TokenizeAsmString(const AsmMatcherInfo &Info);
515};
516
517/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
518/// feature which participates in instruction matching.
519struct SubtargetFeatureInfo {
520  /// \brief The predicate record for this feature.
521  Record *TheDef;
522
523  /// \brief An unique index assigned to represent this feature.
524  unsigned Index;
525
526  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
527
528  /// \brief The name of the enumerated constant identifying this feature.
529  std::string getEnumName() const {
530    return "Feature_" + TheDef->getName();
531  }
532};
533
534struct OperandMatchEntry {
535  unsigned OperandMask;
536  MatchableInfo* MI;
537  ClassInfo *CI;
538
539  static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
540                                  unsigned opMask) {
541    OperandMatchEntry X;
542    X.OperandMask = opMask;
543    X.CI = ci;
544    X.MI = mi;
545    return X;
546  }
547};
548
549
550class AsmMatcherInfo {
551public:
552  /// Tracked Records
553  RecordKeeper &Records;
554
555  /// The tablegen AsmParser record.
556  Record *AsmParser;
557
558  /// Target - The target information.
559  CodeGenTarget &Target;
560
561  /// The classes which are needed for matching.
562  std::vector<ClassInfo*> Classes;
563
564  /// The information on the matchables to match.
565  std::vector<MatchableInfo*> Matchables;
566
567  /// Info for custom matching operands by user defined methods.
568  std::vector<OperandMatchEntry> OperandMatchInfo;
569
570  /// Map of Register records to their class information.
571  std::map<Record*, ClassInfo*> RegisterClasses;
572
573  /// Map of Predicate records to their subtarget information.
574  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
575
576private:
577  /// Map of token to class information which has already been constructed.
578  std::map<std::string, ClassInfo*> TokenClasses;
579
580  /// Map of RegisterClass records to their class information.
581  std::map<Record*, ClassInfo*> RegisterClassClasses;
582
583  /// Map of AsmOperandClass records to their class information.
584  std::map<Record*, ClassInfo*> AsmOperandClasses;
585
586private:
587  /// getTokenClass - Lookup or create the class for the given token.
588  ClassInfo *getTokenClass(StringRef Token);
589
590  /// getOperandClass - Lookup or create the class for the given operand.
591  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
592                             int SubOpIdx);
593  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
594
595  /// BuildRegisterClasses - Build the ClassInfo* instances for register
596  /// classes.
597  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
598
599  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
600  /// operand classes.
601  void BuildOperandClasses();
602
603  void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
604                                        unsigned AsmOpIdx);
605  void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
606                                  MatchableInfo::AsmOperand &Op);
607
608public:
609  AsmMatcherInfo(Record *AsmParser,
610                 CodeGenTarget &Target,
611                 RecordKeeper &Records);
612
613  /// BuildInfo - Construct the various tables used during matching.
614  void BuildInfo();
615
616  /// BuildOperandMatchInfo - Build the necessary information to handle user
617  /// defined operand parsing methods.
618  void BuildOperandMatchInfo();
619
620  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
621  /// given operand.
622  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
623    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
624    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
625      SubtargetFeatures.find(Def);
626    return I == SubtargetFeatures.end() ? 0 : I->second;
627  }
628
629  RecordKeeper &getRecords() const {
630    return Records;
631  }
632};
633
634}
635
636void MatchableInfo::dump() {
637  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
638
639  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
640    AsmOperand &Op = AsmOperands[i];
641    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
642    errs() << '\"' << Op.Token << "\"\n";
643  }
644}
645
646void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
647                               SmallPtrSet<Record*, 16> &SingletonRegisters,
648                               int AsmVariantNo, std::string &RegisterPrefix) {
649  // TODO: Eventually support asmparser for Variant != 0.
650  AsmString =
651    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
652
653  TokenizeAsmString(Info);
654
655  // Compute the require features.
656  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
657  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
658    if (SubtargetFeatureInfo *Feature =
659        Info.getSubtargetFeature(Predicates[i]))
660      RequiredFeatures.push_back(Feature);
661
662  // Collect singleton registers, if used.
663  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
664    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
665    if (Record *Reg = AsmOperands[i].SingletonReg)
666      SingletonRegisters.insert(Reg);
667  }
668}
669
670/// TokenizeAsmString - Tokenize a simplified assembly string.
671void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
672  StringRef String = AsmString;
673  unsigned Prev = 0;
674  bool InTok = true;
675  for (unsigned i = 0, e = String.size(); i != e; ++i) {
676    switch (String[i]) {
677    case '[':
678    case ']':
679    case '*':
680    case '!':
681    case ' ':
682    case '\t':
683    case ',':
684      if (InTok) {
685        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
686        InTok = false;
687      }
688      if (!isspace(String[i]) && String[i] != ',')
689        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
690      Prev = i + 1;
691      break;
692
693    case '\\':
694      if (InTok) {
695        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
696        InTok = false;
697      }
698      ++i;
699      assert(i != String.size() && "Invalid quoted character");
700      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
701      Prev = i + 1;
702      break;
703
704    case '$': {
705      if (InTok) {
706        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
707        InTok = false;
708      }
709
710      // If this isn't "${", treat like a normal token.
711      if (i + 1 == String.size() || String[i + 1] != '{') {
712        Prev = i;
713        break;
714      }
715
716      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
717      assert(End != String.end() && "Missing brace in operand reference!");
718      size_t EndPos = End - String.begin();
719      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
720      Prev = EndPos + 1;
721      i = EndPos;
722      break;
723    }
724
725    case '.':
726      if (InTok)
727        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
728      Prev = i;
729      InTok = true;
730      break;
731
732    default:
733      InTok = true;
734    }
735  }
736  if (InTok && Prev != String.size())
737    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
738
739  // The first token of the instruction is the mnemonic, which must be a
740  // simple string, not a $foo variable or a singleton register.
741  if (AsmOperands.empty())
742    throw TGError(TheDef->getLoc(),
743                  "Instruction '" + TheDef->getName() + "' has no tokens");
744  Mnemonic = AsmOperands[0].Token;
745  // FIXME : Check and raise an error if it is a register.
746  if (Mnemonic[0] == '$')
747    throw TGError(TheDef->getLoc(),
748                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
749
750  // Remove the first operand, it is tracked in the mnemonic field.
751  AsmOperands.erase(AsmOperands.begin());
752}
753
754bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
755  // Reject matchables with no .s string.
756  if (AsmString.empty())
757    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
758
759  // Reject any matchables with a newline in them, they should be marked
760  // isCodeGenOnly if they are pseudo instructions.
761  if (AsmString.find('\n') != std::string::npos)
762    throw TGError(TheDef->getLoc(),
763                  "multiline instruction is not valid for the asmparser, "
764                  "mark it isCodeGenOnly");
765
766  // Remove comments from the asm string.  We know that the asmstring only
767  // has one line.
768  if (!CommentDelimiter.empty() &&
769      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
770    throw TGError(TheDef->getLoc(),
771                  "asmstring for instruction has comment character in it, "
772                  "mark it isCodeGenOnly");
773
774  // Reject matchables with operand modifiers, these aren't something we can
775  // handle, the target should be refactored to use operands instead of
776  // modifiers.
777  //
778  // Also, check for instructions which reference the operand multiple times;
779  // this implies a constraint we would not honor.
780  std::set<std::string> OperandNames;
781  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
782    StringRef Tok = AsmOperands[i].Token;
783    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
784      throw TGError(TheDef->getLoc(),
785                    "matchable with operand modifier '" + Tok.str() +
786                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
787
788    // Verify that any operand is only mentioned once.
789    // We reject aliases and ignore instructions for now.
790    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
791      if (!Hack)
792        throw TGError(TheDef->getLoc(),
793                      "ERROR: matchable with tied operand '" + Tok.str() +
794                      "' can never be matched!");
795      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
796      // bunch of instructions.  It is unclear what the right answer is.
797      DEBUG({
798        errs() << "warning: '" << TheDef->getName() << "': "
799               << "ignoring instruction with tied operand '"
800               << Tok.str() << "'\n";
801      });
802      return false;
803    }
804  }
805
806  return true;
807}
808
809/// extractSingletonRegisterForAsmOperand - Extract singleton register, if present,
810/// from specified token.
811void MatchableInfo::
812extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
813				      std::string &RegisterPrefix) {
814  StringRef Tok = AsmOperands[i].Token;
815  if (RegisterPrefix.empty()) {
816    if (i) {
817      std::string LoweredTok = Tok.lower();
818      if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
819	AsmOperands[i].SingletonReg = Reg->TheDef;
820    } else
821      if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(Tok))
822	AsmOperands[i].SingletonReg = Reg->TheDef;
823    return;
824  }
825
826  if (!Tok.startswith(RegisterPrefix))
827    return;
828
829  StringRef RegName = Tok.substr(RegisterPrefix.size());
830  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
831    AsmOperands[i].SingletonReg = Reg->TheDef;
832
833  // If there is no register prefix (i.e. "%" in "%eax"), then this may
834  // be some random non-register token, just ignore it.
835  return;
836}
837
838static std::string getEnumNameForToken(StringRef Str) {
839  std::string Res;
840
841  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
842    switch (*it) {
843    case '*': Res += "_STAR_"; break;
844    case '%': Res += "_PCT_"; break;
845    case ':': Res += "_COLON_"; break;
846    case '!': Res += "_EXCLAIM_"; break;
847    case '.': Res += "_DOT_"; break;
848    default:
849      if (isalnum(*it))
850        Res += *it;
851      else
852        Res += "_" + utostr((unsigned) *it) + "_";
853    }
854  }
855
856  return Res;
857}
858
859ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
860  ClassInfo *&Entry = TokenClasses[Token];
861
862  if (!Entry) {
863    Entry = new ClassInfo();
864    Entry->Kind = ClassInfo::Token;
865    Entry->ClassName = "Token";
866    Entry->Name = "MCK_" + getEnumNameForToken(Token);
867    Entry->ValueName = Token;
868    Entry->PredicateMethod = "<invalid>";
869    Entry->RenderMethod = "<invalid>";
870    Entry->ParserMethod = "";
871    Classes.push_back(Entry);
872  }
873
874  return Entry;
875}
876
877ClassInfo *
878AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
879                                int SubOpIdx) {
880  Record *Rec = OI.Rec;
881  if (SubOpIdx != -1)
882    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
883  return getOperandClass(Rec, SubOpIdx);
884}
885
886ClassInfo *
887AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
888  if (Rec->isSubClassOf("RegisterOperand")) {
889    // RegisterOperand may have an associated ParserMatchClass. If it does,
890    // use it, else just fall back to the underlying register class.
891    const RecordVal *R = Rec->getValue("ParserMatchClass");
892    if (R == 0 || R->getValue() == 0)
893      throw "Record `" + Rec->getName() +
894        "' does not have a ParserMatchClass!\n";
895
896    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
897      Record *MatchClass = DI->getDef();
898      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
899        return CI;
900    }
901
902    // No custom match class. Just use the register class.
903    Record *ClassRec = Rec->getValueAsDef("RegClass");
904    if (!ClassRec)
905      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
906                    "' has no associated register class!\n");
907    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
908      return CI;
909    throw TGError(Rec->getLoc(), "register class has no class info!");
910  }
911
912
913  if (Rec->isSubClassOf("RegisterClass")) {
914    if (ClassInfo *CI = RegisterClassClasses[Rec])
915      return CI;
916    throw TGError(Rec->getLoc(), "register class has no class info!");
917  }
918
919  assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
920  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
921  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
922    return CI;
923
924  throw TGError(Rec->getLoc(), "operand has no match class!");
925}
926
927void AsmMatcherInfo::
928BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
929  const std::vector<CodeGenRegister*> &Registers =
930    Target.getRegBank().getRegisters();
931  ArrayRef<CodeGenRegisterClass*> RegClassList =
932    Target.getRegBank().getRegClasses();
933
934  // The register sets used for matching.
935  std::set< std::set<Record*> > RegisterSets;
936
937  // Gather the defined sets.
938  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
939       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
940    RegisterSets.insert(std::set<Record*>(
941        (*it)->getOrder().begin(), (*it)->getOrder().end()));
942
943  // Add any required singleton sets.
944  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
945       ie = SingletonRegisters.end(); it != ie; ++it) {
946    Record *Rec = *it;
947    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
948  }
949
950  // Introduce derived sets where necessary (when a register does not determine
951  // a unique register set class), and build the mapping of registers to the set
952  // they should classify to.
953  std::map<Record*, std::set<Record*> > RegisterMap;
954  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
955         ie = Registers.end(); it != ie; ++it) {
956    const CodeGenRegister &CGR = **it;
957    // Compute the intersection of all sets containing this register.
958    std::set<Record*> ContainingSet;
959
960    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
961           ie = RegisterSets.end(); it != ie; ++it) {
962      if (!it->count(CGR.TheDef))
963        continue;
964
965      if (ContainingSet.empty()) {
966        ContainingSet = *it;
967        continue;
968      }
969
970      std::set<Record*> Tmp;
971      std::swap(Tmp, ContainingSet);
972      std::insert_iterator< std::set<Record*> > II(ContainingSet,
973                                                   ContainingSet.begin());
974      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
975    }
976
977    if (!ContainingSet.empty()) {
978      RegisterSets.insert(ContainingSet);
979      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
980    }
981  }
982
983  // Construct the register classes.
984  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
985  unsigned Index = 0;
986  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
987         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
988    ClassInfo *CI = new ClassInfo();
989    CI->Kind = ClassInfo::RegisterClass0 + Index;
990    CI->ClassName = "Reg" + utostr(Index);
991    CI->Name = "MCK_Reg" + utostr(Index);
992    CI->ValueName = "";
993    CI->PredicateMethod = ""; // unused
994    CI->RenderMethod = "addRegOperands";
995    CI->Registers = *it;
996    Classes.push_back(CI);
997    RegisterSetClasses.insert(std::make_pair(*it, CI));
998  }
999
1000  // Find the superclasses; we could compute only the subgroup lattice edges,
1001  // but there isn't really a point.
1002  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1003         ie = RegisterSets.end(); it != ie; ++it) {
1004    ClassInfo *CI = RegisterSetClasses[*it];
1005    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1006           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1007      if (*it != *it2 &&
1008          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1009        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1010  }
1011
1012  // Name the register classes which correspond to a user defined RegisterClass.
1013  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1014       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1015    const CodeGenRegisterClass &RC = **it;
1016    // Def will be NULL for non-user defined register classes.
1017    Record *Def = RC.getDef();
1018    if (!Def)
1019      continue;
1020    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1021                                                         RC.getOrder().end())];
1022    if (CI->ValueName.empty()) {
1023      CI->ClassName = RC.getName();
1024      CI->Name = "MCK_" + RC.getName();
1025      CI->ValueName = RC.getName();
1026    } else
1027      CI->ValueName = CI->ValueName + "," + RC.getName();
1028
1029    RegisterClassClasses.insert(std::make_pair(Def, CI));
1030  }
1031
1032  // Populate the map for individual registers.
1033  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1034         ie = RegisterMap.end(); it != ie; ++it)
1035    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1036
1037  // Name the register classes which correspond to singleton registers.
1038  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1039         ie = SingletonRegisters.end(); it != ie; ++it) {
1040    Record *Rec = *it;
1041    ClassInfo *CI = RegisterClasses[Rec];
1042    assert(CI && "Missing singleton register class info!");
1043
1044    if (CI->ValueName.empty()) {
1045      CI->ClassName = Rec->getName();
1046      CI->Name = "MCK_" + Rec->getName();
1047      CI->ValueName = Rec->getName();
1048    } else
1049      CI->ValueName = CI->ValueName + "," + Rec->getName();
1050  }
1051}
1052
1053void AsmMatcherInfo::BuildOperandClasses() {
1054  std::vector<Record*> AsmOperands =
1055    Records.getAllDerivedDefinitions("AsmOperandClass");
1056
1057  // Pre-populate AsmOperandClasses map.
1058  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1059         ie = AsmOperands.end(); it != ie; ++it)
1060    AsmOperandClasses[*it] = new ClassInfo();
1061
1062  unsigned Index = 0;
1063  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1064         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1065    ClassInfo *CI = AsmOperandClasses[*it];
1066    CI->Kind = ClassInfo::UserClass0 + Index;
1067
1068    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1069    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1070      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1071      if (!DI) {
1072        PrintError((*it)->getLoc(), "Invalid super class reference!");
1073        continue;
1074      }
1075
1076      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1077      if (!SC)
1078        PrintError((*it)->getLoc(), "Invalid super class reference!");
1079      else
1080        CI->SuperClasses.push_back(SC);
1081    }
1082    CI->ClassName = (*it)->getValueAsString("Name");
1083    CI->Name = "MCK_" + CI->ClassName;
1084    CI->ValueName = (*it)->getName();
1085
1086    // Get or construct the predicate method name.
1087    Init *PMName = (*it)->getValueInit("PredicateMethod");
1088    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1089      CI->PredicateMethod = SI->getValue();
1090    } else {
1091      assert(dynamic_cast<UnsetInit*>(PMName) &&
1092             "Unexpected PredicateMethod field!");
1093      CI->PredicateMethod = "is" + CI->ClassName;
1094    }
1095
1096    // Get or construct the render method name.
1097    Init *RMName = (*it)->getValueInit("RenderMethod");
1098    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1099      CI->RenderMethod = SI->getValue();
1100    } else {
1101      assert(dynamic_cast<UnsetInit*>(RMName) &&
1102             "Unexpected RenderMethod field!");
1103      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1104    }
1105
1106    // Get the parse method name or leave it as empty.
1107    Init *PRMName = (*it)->getValueInit("ParserMethod");
1108    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1109      CI->ParserMethod = SI->getValue();
1110
1111    AsmOperandClasses[*it] = CI;
1112    Classes.push_back(CI);
1113  }
1114}
1115
1116AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1117                               CodeGenTarget &target,
1118                               RecordKeeper &records)
1119  : Records(records), AsmParser(asmParser), Target(target) {
1120}
1121
1122/// BuildOperandMatchInfo - Build the necessary information to handle user
1123/// defined operand parsing methods.
1124void AsmMatcherInfo::BuildOperandMatchInfo() {
1125
1126  /// Map containing a mask with all operands indicies that can be found for
1127  /// that class inside a instruction.
1128  std::map<ClassInfo*, unsigned> OpClassMask;
1129
1130  for (std::vector<MatchableInfo*>::const_iterator it =
1131       Matchables.begin(), ie = Matchables.end();
1132       it != ie; ++it) {
1133    MatchableInfo &II = **it;
1134    OpClassMask.clear();
1135
1136    // Keep track of all operands of this instructions which belong to the
1137    // same class.
1138    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1139      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1140      if (Op.Class->ParserMethod.empty())
1141        continue;
1142      unsigned &OperandMask = OpClassMask[Op.Class];
1143      OperandMask |= (1 << i);
1144    }
1145
1146    // Generate operand match info for each mnemonic/operand class pair.
1147    for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1148         iie = OpClassMask.end(); iit != iie; ++iit) {
1149      unsigned OpMask = iit->second;
1150      ClassInfo *CI = iit->first;
1151      OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
1152    }
1153  }
1154}
1155
1156void AsmMatcherInfo::BuildInfo() {
1157  // Build information about all of the AssemblerPredicates.
1158  std::vector<Record*> AllPredicates =
1159    Records.getAllDerivedDefinitions("Predicate");
1160  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1161    Record *Pred = AllPredicates[i];
1162    // Ignore predicates that are not intended for the assembler.
1163    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1164      continue;
1165
1166    if (Pred->getName().empty())
1167      throw TGError(Pred->getLoc(), "Predicate has no name!");
1168
1169    unsigned FeatureNo = SubtargetFeatures.size();
1170    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1171    assert(FeatureNo < 32 && "Too many subtarget features!");
1172  }
1173
1174  std::string CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
1175  std::string RegisterPrefix = AsmParser->getValueAsString("RegisterPrefix");
1176  int AsmVariantNo = AsmParser->getValueAsInt("Variant");
1177
1178  // Parse the instructions; we need to do this first so that we can gather the
1179  // singleton register classes.
1180  SmallPtrSet<Record*, 16> SingletonRegisters;
1181  for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1182       E = Target.inst_end(); I != E; ++I) {
1183    const CodeGenInstruction &CGI = **I;
1184
1185    // If the tblgen -match-prefix option is specified (for tblgen hackers),
1186    // filter the set of instructions we consider.
1187    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1188      continue;
1189
1190    // Ignore "codegen only" instructions.
1191    if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1192      continue;
1193
1194    // Validate the operand list to ensure we can handle this instruction.
1195    for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1196      const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1197
1198      // Validate tied operands.
1199      if (OI.getTiedRegister() != -1) {
1200        // If we have a tied operand that consists of multiple MCOperands,
1201        // reject it.  We reject aliases and ignore instructions for now.
1202        if (OI.MINumOperands != 1) {
1203          // FIXME: Should reject these.  The ARM backend hits this with $lane
1204          // in a bunch of instructions. It is unclear what the right answer is.
1205          DEBUG({
1206            errs() << "warning: '" << CGI.TheDef->getName() << "': "
1207            << "ignoring instruction with multi-operand tied operand '"
1208            << OI.Name << "'\n";
1209          });
1210          continue;
1211        }
1212      }
1213    }
1214
1215    OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1216
1217    II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1218
1219    // Ignore instructions which shouldn't be matched and diagnose invalid
1220    // instruction definitions with an error.
1221    if (!II->Validate(CommentDelimiter, true))
1222      continue;
1223
1224    // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1225    //
1226    // FIXME: This is a total hack.
1227    if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1228        StringRef(II->TheDef->getName()).endswith("_Int"))
1229      continue;
1230
1231     Matchables.push_back(II.take());
1232  }
1233
1234  // Parse all of the InstAlias definitions and stick them in the list of
1235  // matchables.
1236  std::vector<Record*> AllInstAliases =
1237    Records.getAllDerivedDefinitions("InstAlias");
1238  for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1239    CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1240
1241    // If the tblgen -match-prefix option is specified (for tblgen hackers),
1242    // filter the set of instruction aliases we consider, based on the target
1243    // instruction.
1244    if (!StringRef(Alias->ResultInst->TheDef->getName()).startswith(
1245          MatchPrefix))
1246      continue;
1247
1248    OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1249
1250    II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1251
1252    // Validate the alias definitions.
1253    II->Validate(CommentDelimiter, false);
1254
1255    Matchables.push_back(II.take());
1256  }
1257
1258  // Build info for the register classes.
1259  BuildRegisterClasses(SingletonRegisters);
1260
1261  // Build info for the user defined assembly operand classes.
1262  BuildOperandClasses();
1263
1264  // Build the information about matchables, now that we have fully formed
1265  // classes.
1266  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1267         ie = Matchables.end(); it != ie; ++it) {
1268    MatchableInfo *II = *it;
1269
1270    // Parse the tokens after the mnemonic.
1271    // Note: BuildInstructionOperandReference may insert new AsmOperands, so
1272    // don't precompute the loop bound.
1273    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1274      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1275      StringRef Token = Op.Token;
1276
1277      // Check for singleton registers.
1278      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1279        Op.Class = RegisterClasses[RegRecord];
1280        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1281               "Unexpected class for singleton register");
1282        continue;
1283      }
1284
1285      // Check for simple tokens.
1286      if (Token[0] != '$') {
1287        Op.Class = getTokenClass(Token);
1288        continue;
1289      }
1290
1291      if (Token.size() > 1 && isdigit(Token[1])) {
1292        Op.Class = getTokenClass(Token);
1293        continue;
1294      }
1295
1296      // Otherwise this is an operand reference.
1297      StringRef OperandName;
1298      if (Token[1] == '{')
1299        OperandName = Token.substr(2, Token.size() - 3);
1300      else
1301        OperandName = Token.substr(1);
1302
1303      if (II->DefRec.is<const CodeGenInstruction*>())
1304        BuildInstructionOperandReference(II, OperandName, i);
1305      else
1306        BuildAliasOperandReference(II, OperandName, Op);
1307    }
1308
1309    if (II->DefRec.is<const CodeGenInstruction*>())
1310      II->BuildInstructionResultOperands();
1311    else
1312      II->BuildAliasResultOperands();
1313  }
1314
1315  // Process token alias definitions and set up the associated superclass
1316  // information.
1317  std::vector<Record*> AllTokenAliases =
1318    Records.getAllDerivedDefinitions("TokenAlias");
1319  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1320    Record *Rec = AllTokenAliases[i];
1321    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1322    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1323    FromClass->SuperClasses.push_back(ToClass);
1324  }
1325
1326  // Reorder classes so that classes precede super classes.
1327  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1328}
1329
1330/// BuildInstructionOperandReference - The specified operand is a reference to a
1331/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1332void AsmMatcherInfo::
1333BuildInstructionOperandReference(MatchableInfo *II,
1334                                 StringRef OperandName,
1335                                 unsigned AsmOpIdx) {
1336  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1337  const CGIOperandList &Operands = CGI.Operands;
1338  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1339
1340  // Map this token to an operand.
1341  unsigned Idx;
1342  if (!Operands.hasOperandNamed(OperandName, Idx))
1343    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1344                  OperandName.str() + "'");
1345
1346  // If the instruction operand has multiple suboperands, but the parser
1347  // match class for the asm operand is still the default "ImmAsmOperand",
1348  // then handle each suboperand separately.
1349  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1350    Record *Rec = Operands[Idx].Rec;
1351    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1352    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1353    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1354      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1355      StringRef Token = Op->Token; // save this in case Op gets moved
1356      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1357        MatchableInfo::AsmOperand NewAsmOp(Token);
1358        NewAsmOp.SubOpIdx = SI;
1359        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1360      }
1361      // Replace Op with first suboperand.
1362      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1363      Op->SubOpIdx = 0;
1364    }
1365  }
1366
1367  // Set up the operand class.
1368  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1369
1370  // If the named operand is tied, canonicalize it to the untied operand.
1371  // For example, something like:
1372  //   (outs GPR:$dst), (ins GPR:$src)
1373  // with an asmstring of
1374  //   "inc $src"
1375  // we want to canonicalize to:
1376  //   "inc $dst"
1377  // so that we know how to provide the $dst operand when filling in the result.
1378  int OITied = Operands[Idx].getTiedRegister();
1379  if (OITied != -1) {
1380    // The tied operand index is an MIOperand index, find the operand that
1381    // contains it.
1382    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1383    OperandName = Operands[Idx.first].Name;
1384    Op->SubOpIdx = Idx.second;
1385  }
1386
1387  Op->SrcOpName = OperandName;
1388}
1389
1390/// BuildAliasOperandReference - When parsing an operand reference out of the
1391/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1392/// operand reference is by looking it up in the result pattern definition.
1393void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
1394                                                StringRef OperandName,
1395                                                MatchableInfo::AsmOperand &Op) {
1396  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1397
1398  // Set up the operand class.
1399  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1400    if (CGA.ResultOperands[i].isRecord() &&
1401        CGA.ResultOperands[i].getName() == OperandName) {
1402      // It's safe to go with the first one we find, because CodeGenInstAlias
1403      // validates that all operands with the same name have the same record.
1404      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1405      // Use the match class from the Alias definition, not the
1406      // destination instruction, as we may have an immediate that's
1407      // being munged by the match class.
1408      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1409                                 Op.SubOpIdx);
1410      Op.SrcOpName = OperandName;
1411      return;
1412    }
1413
1414  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1415                OperandName.str() + "'");
1416}
1417
1418void MatchableInfo::BuildInstructionResultOperands() {
1419  const CodeGenInstruction *ResultInst = getResultInst();
1420
1421  // Loop over all operands of the result instruction, determining how to
1422  // populate them.
1423  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1424    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1425
1426    // If this is a tied operand, just copy from the previously handled operand.
1427    int TiedOp = OpInfo.getTiedRegister();
1428    if (TiedOp != -1) {
1429      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1430      continue;
1431    }
1432
1433    // Find out what operand from the asmparser this MCInst operand comes from.
1434    int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
1435    if (OpInfo.Name.empty() || SrcOperand == -1)
1436      throw TGError(TheDef->getLoc(), "Instruction '" +
1437                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1438                    "' that doesn't appear in asm string!");
1439
1440    // Check if the one AsmOperand populates the entire operand.
1441    unsigned NumOperands = OpInfo.MINumOperands;
1442    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1443      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1444      continue;
1445    }
1446
1447    // Add a separate ResOperand for each suboperand.
1448    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1449      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1450             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1451             "unexpected AsmOperands for suboperands");
1452      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1453    }
1454  }
1455}
1456
1457void MatchableInfo::BuildAliasResultOperands() {
1458  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1459  const CodeGenInstruction *ResultInst = getResultInst();
1460
1461  // Loop over all operands of the result instruction, determining how to
1462  // populate them.
1463  unsigned AliasOpNo = 0;
1464  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1465  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1466    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1467
1468    // If this is a tied operand, just copy from the previously handled operand.
1469    int TiedOp = OpInfo->getTiedRegister();
1470    if (TiedOp != -1) {
1471      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1472      continue;
1473    }
1474
1475    // Handle all the suboperands for this operand.
1476    const std::string &OpName = OpInfo->Name;
1477    for ( ; AliasOpNo <  LastOpNo &&
1478            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1479      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1480
1481      // Find out what operand from the asmparser that this MCInst operand
1482      // comes from.
1483      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1484      default: assert(0 && "unexpected InstAlias operand kind");
1485      case CodeGenInstAlias::ResultOperand::K_Record: {
1486        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1487        int SrcOperand = FindAsmOperand(Name, SubIdx);
1488        if (SrcOperand == -1)
1489          throw TGError(TheDef->getLoc(), "Instruction '" +
1490                        TheDef->getName() + "' has operand '" + OpName +
1491                        "' that doesn't appear in asm string!");
1492        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1493        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1494                                                        NumOperands));
1495        break;
1496      }
1497      case CodeGenInstAlias::ResultOperand::K_Imm: {
1498        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1499        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1500        break;
1501      }
1502      case CodeGenInstAlias::ResultOperand::K_Reg: {
1503        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1504        ResOperands.push_back(ResOperand::getRegOp(Reg));
1505        break;
1506      }
1507      }
1508    }
1509  }
1510}
1511
1512static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1513                                std::vector<MatchableInfo*> &Infos,
1514                                raw_ostream &OS) {
1515  // Write the convert function to a separate stream, so we can drop it after
1516  // the enum.
1517  std::string ConvertFnBody;
1518  raw_string_ostream CvtOS(ConvertFnBody);
1519
1520  // Function we have already generated.
1521  std::set<std::string> GeneratedFns;
1522
1523  // Start the unified conversion function.
1524  CvtOS << "bool " << Target.getName() << ClassName << "::\n";
1525  CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
1526        << "unsigned Opcode,\n"
1527        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1528        << "> &Operands) {\n";
1529  CvtOS << "  Inst.setOpcode(Opcode);\n";
1530  CvtOS << "  switch (Kind) {\n";
1531  CvtOS << "  default:\n";
1532
1533  // Start the enum, which we will generate inline.
1534
1535  OS << "// Unified function for converting operands to MCInst instances.\n\n";
1536  OS << "enum ConversionKind {\n";
1537
1538  // TargetOperandClass - This is the target's operand class, like X86Operand.
1539  std::string TargetOperandClass = Target.getName() + "Operand";
1540
1541  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1542         ie = Infos.end(); it != ie; ++it) {
1543    MatchableInfo &II = **it;
1544
1545    // Check if we have a custom match function.
1546    std::string AsmMatchConverter =
1547      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1548    if (!AsmMatchConverter.empty()) {
1549      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1550      II.ConversionFnKind = Signature;
1551
1552      // Check if we have already generated this signature.
1553      if (!GeneratedFns.insert(Signature).second)
1554        continue;
1555
1556      // If not, emit it now.  Add to the enum list.
1557      OS << "  " << Signature << ",\n";
1558
1559      CvtOS << "  case " << Signature << ":\n";
1560      CvtOS << "    return " << AsmMatchConverter
1561            << "(Inst, Opcode, Operands);\n";
1562      continue;
1563    }
1564
1565    // Build the conversion function signature.
1566    std::string Signature = "Convert";
1567    std::string CaseBody;
1568    raw_string_ostream CaseOS(CaseBody);
1569
1570    // Compute the convert enum and the case body.
1571    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1572      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1573
1574      // Generate code to populate each result operand.
1575      switch (OpInfo.Kind) {
1576      case MatchableInfo::ResOperand::RenderAsmOperand: {
1577        // This comes from something we parsed.
1578        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1579
1580        // Registers are always converted the same, don't duplicate the
1581        // conversion function based on them.
1582        Signature += "__";
1583        if (Op.Class->isRegisterClass())
1584          Signature += "Reg";
1585        else
1586          Signature += Op.Class->ClassName;
1587        Signature += utostr(OpInfo.MINumOperands);
1588        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1589
1590        CaseOS << "    ((" << TargetOperandClass << "*)Operands["
1591               << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
1592               << "(Inst, " << OpInfo.MINumOperands << ");\n";
1593        break;
1594      }
1595
1596      case MatchableInfo::ResOperand::TiedOperand: {
1597        // If this operand is tied to a previous one, just copy the MCInst
1598        // operand from the earlier one.We can only tie single MCOperand values.
1599        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1600        unsigned TiedOp = OpInfo.TiedOperandNum;
1601        assert(i > TiedOp && "Tied operand precedes its target!");
1602        CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
1603        Signature += "__Tie" + utostr(TiedOp);
1604        break;
1605      }
1606      case MatchableInfo::ResOperand::ImmOperand: {
1607        int64_t Val = OpInfo.ImmVal;
1608        CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
1609        Signature += "__imm" + itostr(Val);
1610        break;
1611      }
1612      case MatchableInfo::ResOperand::RegOperand: {
1613        if (OpInfo.Register == 0) {
1614          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1615          Signature += "__reg0";
1616        } else {
1617          std::string N = getQualifiedName(OpInfo.Register);
1618          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
1619          Signature += "__reg" + OpInfo.Register->getName();
1620        }
1621      }
1622      }
1623    }
1624
1625    II.ConversionFnKind = Signature;
1626
1627    // Check if we have already generated this signature.
1628    if (!GeneratedFns.insert(Signature).second)
1629      continue;
1630
1631    // If not, emit it now.  Add to the enum list.
1632    OS << "  " << Signature << ",\n";
1633
1634    CvtOS << "  case " << Signature << ":\n";
1635    CvtOS << CaseOS.str();
1636    CvtOS << "    return true;\n";
1637  }
1638
1639  // Finish the convert function.
1640
1641  CvtOS << "  }\n";
1642  CvtOS << "  return false;\n";
1643  CvtOS << "}\n\n";
1644
1645  // Finish the enum, and drop the convert function after it.
1646
1647  OS << "  NumConversionVariants\n";
1648  OS << "};\n\n";
1649
1650  OS << CvtOS.str();
1651}
1652
1653/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1654static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1655                                      std::vector<ClassInfo*> &Infos,
1656                                      raw_ostream &OS) {
1657  OS << "namespace {\n\n";
1658
1659  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1660     << "/// instruction matching.\n";
1661  OS << "enum MatchClassKind {\n";
1662  OS << "  InvalidMatchClass = 0,\n";
1663  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1664         ie = Infos.end(); it != ie; ++it) {
1665    ClassInfo &CI = **it;
1666    OS << "  " << CI.Name << ", // ";
1667    if (CI.Kind == ClassInfo::Token) {
1668      OS << "'" << CI.ValueName << "'\n";
1669    } else if (CI.isRegisterClass()) {
1670      if (!CI.ValueName.empty())
1671        OS << "register class '" << CI.ValueName << "'\n";
1672      else
1673        OS << "derived register class\n";
1674    } else {
1675      OS << "user defined class '" << CI.ValueName << "'\n";
1676    }
1677  }
1678  OS << "  NumMatchClassKinds\n";
1679  OS << "};\n\n";
1680
1681  OS << "}\n\n";
1682}
1683
1684/// EmitValidateOperandClass - Emit the function to validate an operand class.
1685static void EmitValidateOperandClass(AsmMatcherInfo &Info,
1686                                     raw_ostream &OS) {
1687  OS << "static bool validateOperandClass(MCParsedAsmOperand *GOp, "
1688     << "MatchClassKind Kind) {\n";
1689  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
1690     << Info.Target.getName() << "Operand*)GOp;\n";
1691
1692  // The InvalidMatchClass is not to match any operand.
1693  OS << "  if (Kind == InvalidMatchClass)\n";
1694  OS << "    return false;\n\n";
1695
1696  // Check for Token operands first.
1697  OS << "  if (Operand.isToken())\n";
1698  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind);"
1699     << "\n\n";
1700
1701  // Check for register operands, including sub-classes.
1702  OS << "  if (Operand.isReg()) {\n";
1703  OS << "    MatchClassKind OpKind;\n";
1704  OS << "    switch (Operand.getReg()) {\n";
1705  OS << "    default: OpKind = InvalidMatchClass; break;\n";
1706  for (std::map<Record*, ClassInfo*>::iterator
1707         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1708       it != ie; ++it)
1709    OS << "    case " << Info.Target.getName() << "::"
1710       << it->first->getName() << ": OpKind = " << it->second->Name
1711       << "; break;\n";
1712  OS << "    }\n";
1713  OS << "    return isSubclass(OpKind, Kind);\n";
1714  OS << "  }\n\n";
1715
1716  // Check the user classes. We don't care what order since we're only
1717  // actually matching against one of them.
1718  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1719         ie = Info.Classes.end(); it != ie; ++it) {
1720    ClassInfo &CI = **it;
1721
1722    if (!CI.isUserClass())
1723      continue;
1724
1725    OS << "  // '" << CI.ClassName << "' class\n";
1726    OS << "  if (Kind == " << CI.Name
1727       << " && Operand." << CI.PredicateMethod << "()) {\n";
1728    OS << "    return true;\n";
1729    OS << "  }\n\n";
1730  }
1731
1732  OS << "  return false;\n";
1733  OS << "}\n\n";
1734}
1735
1736/// EmitIsSubclass - Emit the subclass predicate function.
1737static void EmitIsSubclass(CodeGenTarget &Target,
1738                           std::vector<ClassInfo*> &Infos,
1739                           raw_ostream &OS) {
1740  OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1741  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
1742  OS << "  if (A == B)\n";
1743  OS << "    return true;\n\n";
1744
1745  OS << "  switch (A) {\n";
1746  OS << "  default:\n";
1747  OS << "    return false;\n";
1748  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1749         ie = Infos.end(); it != ie; ++it) {
1750    ClassInfo &A = **it;
1751
1752    std::vector<StringRef> SuperClasses;
1753    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1754         ie = Infos.end(); it != ie; ++it) {
1755      ClassInfo &B = **it;
1756
1757      if (&A != &B && A.isSubsetOf(B))
1758        SuperClasses.push_back(B.Name);
1759    }
1760
1761    if (SuperClasses.empty())
1762      continue;
1763
1764    OS << "\n  case " << A.Name << ":\n";
1765
1766    if (SuperClasses.size() == 1) {
1767      OS << "    return B == " << SuperClasses.back() << ";\n";
1768      continue;
1769    }
1770
1771    OS << "    switch (B) {\n";
1772    OS << "    default: return false;\n";
1773    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1774      OS << "    case " << SuperClasses[i] << ": return true;\n";
1775    OS << "    }\n";
1776  }
1777  OS << "  }\n";
1778  OS << "}\n\n";
1779}
1780
1781/// EmitMatchTokenString - Emit the function to match a token string to the
1782/// appropriate match class value.
1783static void EmitMatchTokenString(CodeGenTarget &Target,
1784                                 std::vector<ClassInfo*> &Infos,
1785                                 raw_ostream &OS) {
1786  // Construct the match list.
1787  std::vector<StringMatcher::StringPair> Matches;
1788  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1789         ie = Infos.end(); it != ie; ++it) {
1790    ClassInfo &CI = **it;
1791
1792    if (CI.Kind == ClassInfo::Token)
1793      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1794                                                  "return " + CI.Name + ";"));
1795  }
1796
1797  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
1798
1799  StringMatcher("Name", Matches, OS).Emit();
1800
1801  OS << "  return InvalidMatchClass;\n";
1802  OS << "}\n\n";
1803}
1804
1805/// EmitMatchRegisterName - Emit the function to match a string to the target
1806/// specific register enum.
1807static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1808                                  raw_ostream &OS) {
1809  // Construct the match list.
1810  std::vector<StringMatcher::StringPair> Matches;
1811  const std::vector<CodeGenRegister*> &Regs =
1812    Target.getRegBank().getRegisters();
1813  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1814    const CodeGenRegister *Reg = Regs[i];
1815    if (Reg->TheDef->getValueAsString("AsmName").empty())
1816      continue;
1817
1818    Matches.push_back(StringMatcher::StringPair(
1819                                     Reg->TheDef->getValueAsString("AsmName"),
1820                                     "return " + utostr(Reg->EnumValue) + ";"));
1821  }
1822
1823  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1824
1825  StringMatcher("Name", Matches, OS).Emit();
1826
1827  OS << "  return 0;\n";
1828  OS << "}\n\n";
1829}
1830
1831/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1832/// definitions.
1833static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1834                                                raw_ostream &OS) {
1835  OS << "// Flags for subtarget features that participate in "
1836     << "instruction matching.\n";
1837  OS << "enum SubtargetFeatureFlag {\n";
1838  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1839         it = Info.SubtargetFeatures.begin(),
1840         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1841    SubtargetFeatureInfo &SFI = *it->second;
1842    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1843  }
1844  OS << "  Feature_None = 0\n";
1845  OS << "};\n\n";
1846}
1847
1848/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1849/// available features given a subtarget.
1850static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1851                                         raw_ostream &OS) {
1852  std::string ClassName =
1853    Info.AsmParser->getValueAsString("AsmParserClassName");
1854
1855  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1856     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
1857  OS << "  unsigned Features = 0;\n";
1858  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1859         it = Info.SubtargetFeatures.begin(),
1860         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1861    SubtargetFeatureInfo &SFI = *it->second;
1862
1863    OS << "  if (";
1864    std::string CondStorage = SFI.TheDef->getValueAsString("AssemblerCondString");
1865    StringRef Conds = CondStorage;
1866    std::pair<StringRef,StringRef> Comma = Conds.split(',');
1867    bool First = true;
1868    do {
1869      if (!First)
1870        OS << " && ";
1871
1872      bool Neg = false;
1873      StringRef Cond = Comma.first;
1874      if (Cond[0] == '!') {
1875        Neg = true;
1876        Cond = Cond.substr(1);
1877      }
1878
1879      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
1880      if (Neg)
1881        OS << " == 0";
1882      else
1883        OS << " != 0";
1884      OS << ")";
1885
1886      if (Comma.second.empty())
1887        break;
1888
1889      First = false;
1890      Comma = Comma.second.split(',');
1891    } while (true);
1892
1893    OS << ")\n";
1894    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1895  }
1896  OS << "  return Features;\n";
1897  OS << "}\n\n";
1898}
1899
1900static std::string GetAliasRequiredFeatures(Record *R,
1901                                            const AsmMatcherInfo &Info) {
1902  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1903  std::string Result;
1904  unsigned NumFeatures = 0;
1905  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1906    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1907
1908    if (F == 0)
1909      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1910                    "' is not marked as an AssemblerPredicate!");
1911
1912    if (NumFeatures)
1913      Result += '|';
1914
1915    Result += F->getEnumName();
1916    ++NumFeatures;
1917  }
1918
1919  if (NumFeatures > 1)
1920    Result = '(' + Result + ')';
1921  return Result;
1922}
1923
1924/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1925/// emit a function for them and return true, otherwise return false.
1926static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1927  // Ignore aliases when match-prefix is set.
1928  if (!MatchPrefix.empty())
1929    return false;
1930
1931  std::vector<Record*> Aliases =
1932    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
1933  if (Aliases.empty()) return false;
1934
1935  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
1936        "unsigned Features) {\n";
1937
1938  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1939  // iteration order of the map is stable.
1940  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1941
1942  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1943    Record *R = Aliases[i];
1944    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1945  }
1946
1947  // Process each alias a "from" mnemonic at a time, building the code executed
1948  // by the string remapper.
1949  std::vector<StringMatcher::StringPair> Cases;
1950  for (std::map<std::string, std::vector<Record*> >::iterator
1951       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1952       I != E; ++I) {
1953    const std::vector<Record*> &ToVec = I->second;
1954
1955    // Loop through each alias and emit code that handles each case.  If there
1956    // are two instructions without predicates, emit an error.  If there is one,
1957    // emit it last.
1958    std::string MatchCode;
1959    int AliasWithNoPredicate = -1;
1960
1961    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1962      Record *R = ToVec[i];
1963      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1964
1965      // If this unconditionally matches, remember it for later and diagnose
1966      // duplicates.
1967      if (FeatureMask.empty()) {
1968        if (AliasWithNoPredicate != -1) {
1969          // We can't have two aliases from the same mnemonic with no predicate.
1970          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1971                     "two MnemonicAliases with the same 'from' mnemonic!");
1972          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1973        }
1974
1975        AliasWithNoPredicate = i;
1976        continue;
1977      }
1978      if (R->getValueAsString("ToMnemonic") == I->first)
1979        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
1980
1981      if (!MatchCode.empty())
1982        MatchCode += "else ";
1983      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1984      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1985    }
1986
1987    if (AliasWithNoPredicate != -1) {
1988      Record *R = ToVec[AliasWithNoPredicate];
1989      if (!MatchCode.empty())
1990        MatchCode += "else\n  ";
1991      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1992    }
1993
1994    MatchCode += "return;";
1995
1996    Cases.push_back(std::make_pair(I->first, MatchCode));
1997  }
1998
1999  StringMatcher("Mnemonic", Cases, OS).Emit();
2000  OS << "}\n\n";
2001
2002  return true;
2003}
2004
2005static const char *getMinimalTypeForRange(uint64_t Range) {
2006  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2007  if (Range > 0xFFFF)
2008    return "uint32_t";
2009  if (Range > 0xFF)
2010    return "uint16_t";
2011  return "uint8_t";
2012}
2013
2014static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2015                              const AsmMatcherInfo &Info, StringRef ClassName) {
2016  // Emit the static custom operand parsing table;
2017  OS << "namespace {\n";
2018  OS << "  struct OperandMatchEntry {\n";
2019  OS << "    const char *Mnemonic;\n";
2020  OS << "    unsigned OperandMask;\n";
2021  OS << "    MatchClassKind Class;\n";
2022  OS << "    unsigned RequiredFeatures;\n";
2023  OS << "  };\n\n";
2024
2025  OS << "  // Predicate for searching for an opcode.\n";
2026  OS << "  struct LessOpcodeOperand {\n";
2027  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2028  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
2029  OS << "    }\n";
2030  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2031  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
2032  OS << "    }\n";
2033  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2034  OS << " const OperandMatchEntry &RHS) {\n";
2035  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
2036  OS << "    }\n";
2037  OS << "  };\n";
2038
2039  OS << "} // end anonymous namespace.\n\n";
2040
2041  OS << "static const OperandMatchEntry OperandMatchTable["
2042     << Info.OperandMatchInfo.size() << "] = {\n";
2043
2044  OS << "  /* Mnemonic, Operand List Mask, Operand Class, Features */\n";
2045  for (std::vector<OperandMatchEntry>::const_iterator it =
2046       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2047       it != ie; ++it) {
2048    const OperandMatchEntry &OMI = *it;
2049    const MatchableInfo &II = *OMI.MI;
2050
2051    OS << "  { \"" << II.Mnemonic << "\""
2052       << ", " << OMI.OperandMask;
2053
2054    OS << " /* ";
2055    bool printComma = false;
2056    for (int i = 0, e = 31; i !=e; ++i)
2057      if (OMI.OperandMask & (1 << i)) {
2058        if (printComma)
2059          OS << ", ";
2060        OS << i;
2061        printComma = true;
2062      }
2063    OS << " */";
2064
2065    OS << ", " << OMI.CI->Name
2066       << ", ";
2067
2068    // Write the required features mask.
2069    if (!II.RequiredFeatures.empty()) {
2070      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2071        if (i) OS << "|";
2072        OS << II.RequiredFeatures[i]->getEnumName();
2073      }
2074    } else
2075      OS << "0";
2076    OS << " },\n";
2077  }
2078  OS << "};\n\n";
2079
2080  // Emit the operand class switch to call the correct custom parser for
2081  // the found operand class.
2082  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2083     << Target.getName() << ClassName << "::\n"
2084     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2085     << " &Operands,\n                      unsigned MCK) {\n\n"
2086     << "  switch(MCK) {\n";
2087
2088  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2089       ie = Info.Classes.end(); it != ie; ++it) {
2090    ClassInfo *CI = *it;
2091    if (CI->ParserMethod.empty())
2092      continue;
2093    OS << "  case " << CI->Name << ":\n"
2094       << "    return " << CI->ParserMethod << "(Operands);\n";
2095  }
2096
2097  OS << "  default:\n";
2098  OS << "    return MatchOperand_NoMatch;\n";
2099  OS << "  }\n";
2100  OS << "  return MatchOperand_NoMatch;\n";
2101  OS << "}\n\n";
2102
2103  // Emit the static custom operand parser. This code is very similar with
2104  // the other matcher. Also use MatchResultTy here just in case we go for
2105  // a better error handling.
2106  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2107     << Target.getName() << ClassName << "::\n"
2108     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2109     << " &Operands,\n                       StringRef Mnemonic) {\n";
2110
2111  // Emit code to get the available features.
2112  OS << "  // Get the current feature set.\n";
2113  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2114
2115  OS << "  // Get the next operand index.\n";
2116  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2117
2118  // Emit code to search the table.
2119  OS << "  // Search the table.\n";
2120  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2121  OS << " MnemonicRange =\n";
2122  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2123     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2124     << "                     LessOpcodeOperand());\n\n";
2125
2126  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2127  OS << "    return MatchOperand_NoMatch;\n\n";
2128
2129  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2130     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2131
2132  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2133  OS << "    assert(Mnemonic == it->Mnemonic);\n\n";
2134
2135  // Emit check that the required features are available.
2136  OS << "    // check if the available features match\n";
2137  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2138     << "!= it->RequiredFeatures) {\n";
2139  OS << "      continue;\n";
2140  OS << "    }\n\n";
2141
2142  // Emit check to ensure the operand number matches.
2143  OS << "    // check if the operand in question has a custom parser.\n";
2144  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2145  OS << "      continue;\n\n";
2146
2147  // Emit call to the custom parser method
2148  OS << "    // call custom parse method to handle the operand\n";
2149  OS << "    OperandMatchResultTy Result = ";
2150  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2151  OS << "    if (Result != MatchOperand_NoMatch)\n";
2152  OS << "      return Result;\n";
2153  OS << "  }\n\n";
2154
2155  OS << "  // Okay, we had no match.\n";
2156  OS << "  return MatchOperand_NoMatch;\n";
2157  OS << "}\n\n";
2158}
2159
2160void AsmMatcherEmitter::run(raw_ostream &OS) {
2161  CodeGenTarget Target(Records);
2162  Record *AsmParser = Target.getAsmParser();
2163  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2164
2165  // Compute the information on the instructions to match.
2166  AsmMatcherInfo Info(AsmParser, Target, Records);
2167  Info.BuildInfo();
2168
2169  // Sort the instruction table using the partial order on classes. We use
2170  // stable_sort to ensure that ambiguous instructions are still
2171  // deterministically ordered.
2172  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2173                   less_ptr<MatchableInfo>());
2174
2175  DEBUG_WITH_TYPE("instruction_info", {
2176      for (std::vector<MatchableInfo*>::iterator
2177             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2178           it != ie; ++it)
2179        (*it)->dump();
2180    });
2181
2182  // Check for ambiguous matchables.
2183  DEBUG_WITH_TYPE("ambiguous_instrs", {
2184    unsigned NumAmbiguous = 0;
2185    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2186      for (unsigned j = i + 1; j != e; ++j) {
2187        MatchableInfo &A = *Info.Matchables[i];
2188        MatchableInfo &B = *Info.Matchables[j];
2189
2190        if (A.CouldMatchAmbiguouslyWith(B)) {
2191          errs() << "warning: ambiguous matchables:\n";
2192          A.dump();
2193          errs() << "\nis incomparable with:\n";
2194          B.dump();
2195          errs() << "\n\n";
2196          ++NumAmbiguous;
2197        }
2198      }
2199    }
2200    if (NumAmbiguous)
2201      errs() << "warning: " << NumAmbiguous
2202             << " ambiguous matchables!\n";
2203  });
2204
2205  // Compute the information on the custom operand parsing.
2206  Info.BuildOperandMatchInfo();
2207
2208  // Write the output.
2209
2210  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2211
2212  // Information for the class declaration.
2213  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2214  OS << "#undef GET_ASSEMBLER_HEADER\n";
2215  OS << "  // This should be included into the middle of the declaration of\n";
2216  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2217  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2218  OS << "  bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
2219     << "unsigned Opcode,\n"
2220     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2221     << "&Operands);\n";
2222  OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
2223  OS << "  unsigned MatchInstructionImpl(\n";
2224  OS << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2225  OS << "    MCInst &Inst, unsigned &ErrorInfo);\n";
2226
2227  if (Info.OperandMatchInfo.size()) {
2228    OS << "\n  enum OperandMatchResultTy {\n";
2229    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2230    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2231    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2232    OS << "  };\n";
2233    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2234    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2235    OS << "    StringRef Mnemonic);\n";
2236
2237    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2238    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2239    OS << "    unsigned MCK);\n\n";
2240  }
2241
2242  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2243
2244  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2245  OS << "#undef GET_REGISTER_MATCHER\n\n";
2246
2247  // Emit the subtarget feature enumeration.
2248  EmitSubtargetFeatureFlagEnumeration(Info, OS);
2249
2250  // Emit the function to match a register name to number.
2251  EmitMatchRegisterName(Target, AsmParser, OS);
2252
2253  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2254
2255
2256  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2257  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2258
2259  // Generate the function that remaps for mnemonic aliases.
2260  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
2261
2262  // Generate the unified function to convert operands into an MCInst.
2263  EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2264
2265  // Emit the enumeration for classes which participate in matching.
2266  EmitMatchClassEnumeration(Target, Info.Classes, OS);
2267
2268  // Emit the routine to match token strings to their match class.
2269  EmitMatchTokenString(Target, Info.Classes, OS);
2270
2271  // Emit the subclass predicate routine.
2272  EmitIsSubclass(Target, Info.Classes, OS);
2273
2274  // Emit the routine to validate an operand against a match class.
2275  EmitValidateOperandClass(Info, OS);
2276
2277  // Emit the available features compute function.
2278  EmitComputeAvailableFeatures(Info, OS);
2279
2280
2281  size_t MaxNumOperands = 0;
2282  for (std::vector<MatchableInfo*>::const_iterator it =
2283         Info.Matchables.begin(), ie = Info.Matchables.end();
2284       it != ie; ++it)
2285    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
2286
2287  // Emit the static match table; unused classes get initalized to 0 which is
2288  // guaranteed to be InvalidMatchClass.
2289  //
2290  // FIXME: We can reduce the size of this table very easily. First, we change
2291  // it so that store the kinds in separate bit-fields for each index, which
2292  // only needs to be the max width used for classes at that index (we also need
2293  // to reject based on this during classification). If we then make sure to
2294  // order the match kinds appropriately (putting mnemonics last), then we
2295  // should only end up using a few bits for each class, especially the ones
2296  // following the mnemonic.
2297  OS << "namespace {\n";
2298  OS << "  struct MatchEntry {\n";
2299  OS << "    unsigned Opcode;\n";
2300  OS << "    const char *Mnemonic;\n";
2301  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2302               << " ConvertFn;\n";
2303  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2304               << " Classes[" << MaxNumOperands << "];\n";
2305  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2306               << " RequiredFeatures;\n";
2307  OS << "  };\n\n";
2308
2309  OS << "  // Predicate for searching for an opcode.\n";
2310  OS << "  struct LessOpcode {\n";
2311  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2312  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
2313  OS << "    }\n";
2314  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2315  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
2316  OS << "    }\n";
2317  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2318  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
2319  OS << "    }\n";
2320  OS << "  };\n";
2321
2322  OS << "} // end anonymous namespace.\n\n";
2323
2324  OS << "static const MatchEntry MatchTable["
2325     << Info.Matchables.size() << "] = {\n";
2326
2327  for (std::vector<MatchableInfo*>::const_iterator it =
2328       Info.Matchables.begin(), ie = Info.Matchables.end();
2329       it != ie; ++it) {
2330    MatchableInfo &II = **it;
2331
2332    OS << "  { " << Target.getName() << "::"
2333       << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\""
2334       << ", " << II.ConversionFnKind << ", { ";
2335    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2336      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2337
2338      if (i) OS << ", ";
2339      OS << Op.Class->Name;
2340    }
2341    OS << " }, ";
2342
2343    // Write the required features mask.
2344    if (!II.RequiredFeatures.empty()) {
2345      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2346        if (i) OS << "|";
2347        OS << II.RequiredFeatures[i]->getEnumName();
2348      }
2349    } else
2350      OS << "0";
2351
2352    OS << "},\n";
2353  }
2354
2355  OS << "};\n\n";
2356
2357  // A method to determine if a mnemonic is in the list.
2358  OS << "bool " << Target.getName() << ClassName << "::\n"
2359     << "MnemonicIsValid(StringRef Mnemonic) {\n";
2360  OS << "  // Search the table.\n";
2361  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2362  OS << "    std::equal_range(MatchTable, MatchTable+"
2363     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2364  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2365  OS << "}\n\n";
2366
2367  // Finally, build the match function.
2368  OS << "unsigned "
2369     << Target.getName() << ClassName << "::\n"
2370     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2371     << " &Operands,\n";
2372  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
2373
2374  // Emit code to get the available features.
2375  OS << "  // Get the current feature set.\n";
2376  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2377
2378  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2379  OS << "  StringRef Mnemonic = ((" << Target.getName()
2380     << "Operand*)Operands[0])->getToken();\n\n";
2381
2382  if (HasMnemonicAliases) {
2383    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2384    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2385  }
2386
2387  // Emit code to compute the class list for this operand vector.
2388  OS << "  // Eliminate obvious mismatches.\n";
2389  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2390  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2391  OS << "    return Match_InvalidOperand;\n";
2392  OS << "  }\n\n";
2393
2394  OS << "  // Some state to try to produce better error messages.\n";
2395  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2396  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2397  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2398  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2399  OS << "  // wrong for all instances of the instruction.\n";
2400  OS << "  ErrorInfo = ~0U;\n";
2401
2402  // Emit code to search the table.
2403  OS << "  // Search the table.\n";
2404  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2405  OS << "    std::equal_range(MatchTable, MatchTable+"
2406     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2407
2408  OS << "  // Return a more specific error code if no mnemonics match.\n";
2409  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2410  OS << "    return Match_MnemonicFail;\n\n";
2411
2412  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2413     << "*ie = MnemonicRange.second;\n";
2414  OS << "       it != ie; ++it) {\n";
2415
2416  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2417  OS << "    assert(Mnemonic == it->Mnemonic);\n";
2418
2419  // Emit check that the subclasses match.
2420  OS << "    bool OperandsValid = true;\n";
2421  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2422  OS << "      if (i + 1 >= Operands.size()) {\n";
2423  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2424  OS << "        break;\n";
2425  OS << "      }\n";
2426  OS << "      if (validateOperandClass(Operands[i+1], "
2427                                       "(MatchClassKind)it->Classes[i]))\n";
2428  OS << "        continue;\n";
2429  OS << "      // If this operand is broken for all of the instances of this\n";
2430  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2431  OS << "      if (it == MnemonicRange.first || ErrorInfo <= i+1)\n";
2432  OS << "        ErrorInfo = i+1;\n";
2433  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2434  OS << "      OperandsValid = false;\n";
2435  OS << "      break;\n";
2436  OS << "    }\n\n";
2437
2438  OS << "    if (!OperandsValid) continue;\n";
2439
2440  // Emit check that the required features are available.
2441  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2442     << "!= it->RequiredFeatures) {\n";
2443  OS << "      HadMatchOtherThanFeatures = true;\n";
2444  OS << "      continue;\n";
2445  OS << "    }\n";
2446  OS << "\n";
2447  OS << "    // We have selected a definite instruction, convert the parsed\n"
2448     << "    // operands into the appropriate MCInst.\n";
2449  OS << "    if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
2450     << "                         it->Opcode, Operands))\n";
2451  OS << "      return Match_ConversionFail;\n";
2452  OS << "\n";
2453
2454  // Verify the instruction with the target-specific match predicate function.
2455  OS << "    // We have a potential match. Check the target predicate to\n"
2456     << "    // handle any context sensitive constraints.\n"
2457     << "    unsigned MatchResult;\n"
2458     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2459     << " Match_Success) {\n"
2460     << "      Inst.clear();\n"
2461     << "      RetCode = MatchResult;\n"
2462     << "      HadMatchOtherThanPredicate = true;\n"
2463     << "      continue;\n"
2464     << "    }\n\n";
2465
2466  // Call the post-processing function, if used.
2467  std::string InsnCleanupFn =
2468    AsmParser->getValueAsString("AsmParserInstCleanup");
2469  if (!InsnCleanupFn.empty())
2470    OS << "    " << InsnCleanupFn << "(Inst);\n";
2471
2472  OS << "    return Match_Success;\n";
2473  OS << "  }\n\n";
2474
2475  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2476  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)";
2477  OS << " return RetCode;\n";
2478  OS << "  return Match_MissingFeature;\n";
2479  OS << "}\n\n";
2480
2481  if (Info.OperandMatchInfo.size())
2482    EmitCustomOperandParsing(OS, Target, Info, ClassName);
2483
2484  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2485}
2486