AsmMatcherEmitter.cpp revision 7417b761c2d88335bd77d38911ff8d323fc4a4f2
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "llvm/ADT/OwningPtr.h"
80#include "llvm/ADT/SmallVector.h"
81#include "llvm/ADT/STLExtras.h"
82#include "llvm/ADT/StringExtras.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Debug.h"
85#include <list>
86#include <map>
87#include <set>
88using namespace llvm;
89
90static cl::opt<std::string>
91MatchPrefix("match-prefix", cl::init(""),
92            cl::desc("Only match instructions with the given prefix"));
93
94/// FlattenVariants - Flatten an .td file assembly string by selecting the
95/// variant at index \arg N.
96static std::string FlattenVariants(const std::string &AsmString,
97                                   unsigned N) {
98  StringRef Cur = AsmString;
99  std::string Res = "";
100
101  for (;;) {
102    // Find the start of the next variant string.
103    size_t VariantsStart = 0;
104    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
105      if (Cur[VariantsStart] == '{' &&
106          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
107                                  Cur[VariantsStart-1] != '\\')))
108        break;
109
110    // Add the prefix to the result.
111    Res += Cur.slice(0, VariantsStart);
112    if (VariantsStart == Cur.size())
113      break;
114
115    ++VariantsStart; // Skip the '{'.
116
117    // Scan to the end of the variants string.
118    size_t VariantsEnd = VariantsStart;
119    unsigned NestedBraces = 1;
120    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
121      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
122        if (--NestedBraces == 0)
123          break;
124      } else if (Cur[VariantsEnd] == '{')
125        ++NestedBraces;
126    }
127
128    // Select the Nth variant (or empty).
129    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
130    for (unsigned i = 0; i != N; ++i)
131      Selection = Selection.split('|').second;
132    Res += Selection.split('|').first;
133
134    assert(VariantsEnd != Cur.size() &&
135           "Unterminated variants in assembly string!");
136    Cur = Cur.substr(VariantsEnd + 1);
137  }
138
139  return Res;
140}
141
142/// TokenizeAsmString - Tokenize a simplified assembly string.
143static void TokenizeAsmString(const StringRef &AsmString,
144                              SmallVectorImpl<StringRef> &Tokens) {
145  unsigned Prev = 0;
146  bool InTok = true;
147  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
148    switch (AsmString[i]) {
149    case '[':
150    case ']':
151    case '*':
152    case '!':
153    case ' ':
154    case '\t':
155    case ',':
156      if (InTok) {
157        Tokens.push_back(AsmString.slice(Prev, i));
158        InTok = false;
159      }
160      if (!isspace(AsmString[i]) && AsmString[i] != ',')
161        Tokens.push_back(AsmString.substr(i, 1));
162      Prev = i + 1;
163      break;
164
165    case '\\':
166      if (InTok) {
167        Tokens.push_back(AsmString.slice(Prev, i));
168        InTok = false;
169      }
170      ++i;
171      assert(i != AsmString.size() && "Invalid quoted character");
172      Tokens.push_back(AsmString.substr(i, 1));
173      Prev = i + 1;
174      break;
175
176    case '$': {
177      // If this isn't "${", treat like a normal token.
178      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
179        if (InTok) {
180          Tokens.push_back(AsmString.slice(Prev, i));
181          InTok = false;
182        }
183        Prev = i;
184        break;
185      }
186
187      if (InTok) {
188        Tokens.push_back(AsmString.slice(Prev, i));
189        InTok = false;
190      }
191
192      StringRef::iterator End =
193        std::find(AsmString.begin() + i, AsmString.end(), '}');
194      assert(End != AsmString.end() && "Missing brace in operand reference!");
195      size_t EndPos = End - AsmString.begin();
196      Tokens.push_back(AsmString.slice(i, EndPos+1));
197      Prev = EndPos + 1;
198      i = EndPos;
199      break;
200    }
201
202    default:
203      InTok = true;
204    }
205  }
206  if (InTok && Prev != AsmString.size())
207    Tokens.push_back(AsmString.substr(Prev));
208}
209
210static bool IsAssemblerInstruction(const StringRef &Name,
211                                   const CodeGenInstruction &CGI,
212                                   const SmallVectorImpl<StringRef> &Tokens) {
213  // Ignore "codegen only" instructions.
214  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
215    return false;
216
217  // Ignore pseudo ops.
218  //
219  // FIXME: This is a hack; can we convert these instructions to set the
220  // "codegen only" bit instead?
221  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
222    if (Form->getValue()->getAsString() == "Pseudo")
223      return false;
224
225  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
226  //
227  // FIXME: This is a total hack.
228  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
229    return false;
230
231  // Ignore instructions with no .s string.
232  //
233  // FIXME: What are these?
234  if (CGI.AsmString.empty())
235    return false;
236
237  // FIXME: Hack; ignore any instructions with a newline in them.
238  if (std::find(CGI.AsmString.begin(),
239                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
240    return false;
241
242  // Ignore instructions with attributes, these are always fake instructions for
243  // simplifying codegen.
244  //
245  // FIXME: Is this true?
246  //
247  // Also, check for instructions which reference the operand multiple times;
248  // this implies a constraint we would not honor.
249  std::set<std::string> OperandNames;
250  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
251    if (Tokens[i][0] == '$' &&
252        std::find(Tokens[i].begin(),
253                  Tokens[i].end(), ':') != Tokens[i].end()) {
254      DEBUG({
255          errs() << "warning: '" << Name << "': "
256                 << "ignoring instruction; operand with attribute '"
257                 << Tokens[i] << "'\n";
258        });
259      return false;
260    }
261
262    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
263      std::string Err = "'" + Name.str() + "': " +
264        "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
265      throw TGError(CGI.TheDef->getLoc(), Err);
266    }
267  }
268
269  return true;
270}
271
272namespace {
273
274/// ClassInfo - Helper class for storing the information about a particular
275/// class of operands which can be matched.
276struct ClassInfo {
277  enum ClassInfoKind {
278    /// Invalid kind, for use as a sentinel value.
279    Invalid = 0,
280
281    /// The class for a particular token.
282    Token,
283
284    /// The (first) register class, subsequent register classes are
285    /// RegisterClass0+1, and so on.
286    RegisterClass0,
287
288    /// The (first) user defined class, subsequent user defined classes are
289    /// UserClass0+1, and so on.
290    UserClass0 = 1<<16
291  };
292
293  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
294  /// N) for the Nth user defined class.
295  unsigned Kind;
296
297  /// SuperClasses - The super classes of this class. Note that for simplicities
298  /// sake user operands only record their immediate super class, while register
299  /// operands include all superclasses.
300  std::vector<ClassInfo*> SuperClasses;
301
302  /// Name - The full class name, suitable for use in an enum.
303  std::string Name;
304
305  /// ClassName - The unadorned generic name for this class (e.g., Token).
306  std::string ClassName;
307
308  /// ValueName - The name of the value this class represents; for a token this
309  /// is the literal token string, for an operand it is the TableGen class (or
310  /// empty if this is a derived class).
311  std::string ValueName;
312
313  /// PredicateMethod - The name of the operand method to test whether the
314  /// operand matches this class; this is not valid for Token or register kinds.
315  std::string PredicateMethod;
316
317  /// RenderMethod - The name of the operand method to add this operand to an
318  /// MCInst; this is not valid for Token or register kinds.
319  std::string RenderMethod;
320
321  /// For register classes, the records for all the registers in this class.
322  std::set<Record*> Registers;
323
324public:
325  /// isRegisterClass() - Check if this is a register class.
326  bool isRegisterClass() const {
327    return Kind >= RegisterClass0 && Kind < UserClass0;
328  }
329
330  /// isUserClass() - Check if this is a user defined class.
331  bool isUserClass() const {
332    return Kind >= UserClass0;
333  }
334
335  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
336  /// are related if they are in the same class hierarchy.
337  bool isRelatedTo(const ClassInfo &RHS) const {
338    // Tokens are only related to tokens.
339    if (Kind == Token || RHS.Kind == Token)
340      return Kind == Token && RHS.Kind == Token;
341
342    // Registers classes are only related to registers classes, and only if
343    // their intersection is non-empty.
344    if (isRegisterClass() || RHS.isRegisterClass()) {
345      if (!isRegisterClass() || !RHS.isRegisterClass())
346        return false;
347
348      std::set<Record*> Tmp;
349      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
350      std::set_intersection(Registers.begin(), Registers.end(),
351                            RHS.Registers.begin(), RHS.Registers.end(),
352                            II);
353
354      return !Tmp.empty();
355    }
356
357    // Otherwise we have two users operands; they are related if they are in the
358    // same class hierarchy.
359    //
360    // FIXME: This is an oversimplification, they should only be related if they
361    // intersect, however we don't have that information.
362    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
363    const ClassInfo *Root = this;
364    while (!Root->SuperClasses.empty())
365      Root = Root->SuperClasses.front();
366
367    const ClassInfo *RHSRoot = &RHS;
368    while (!RHSRoot->SuperClasses.empty())
369      RHSRoot = RHSRoot->SuperClasses.front();
370
371    return Root == RHSRoot;
372  }
373
374  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
375  bool isSubsetOf(const ClassInfo &RHS) const {
376    // This is a subset of RHS if it is the same class...
377    if (this == &RHS)
378      return true;
379
380    // ... or if any of its super classes are a subset of RHS.
381    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
382           ie = SuperClasses.end(); it != ie; ++it)
383      if ((*it)->isSubsetOf(RHS))
384        return true;
385
386    return false;
387  }
388
389  /// operator< - Compare two classes.
390  bool operator<(const ClassInfo &RHS) const {
391    // Unrelated classes can be ordered by kind.
392    if (!isRelatedTo(RHS))
393      return Kind < RHS.Kind;
394
395    switch (Kind) {
396    case Invalid:
397      assert(0 && "Invalid kind!");
398    case Token:
399      // Tokens are comparable by value.
400      //
401      // FIXME: Compare by enum value.
402      return ValueName < RHS.ValueName;
403
404    default:
405      // This class preceeds the RHS if it is a proper subset of the RHS.
406      return this != &RHS && isSubsetOf(RHS);
407    }
408  }
409};
410
411/// InstructionInfo - Helper class for storing the necessary information for an
412/// instruction which is capable of being matched.
413struct InstructionInfo {
414  struct Operand {
415    /// The unique class instance this operand should match.
416    ClassInfo *Class;
417
418    /// The original operand this corresponds to, if any.
419    const CodeGenInstruction::OperandInfo *OperandInfo;
420  };
421
422  /// InstrName - The target name for this instruction.
423  std::string InstrName;
424
425  /// Instr - The instruction this matches.
426  const CodeGenInstruction *Instr;
427
428  /// AsmString - The assembly string for this instruction (with variants
429  /// removed).
430  std::string AsmString;
431
432  /// Tokens - The tokenized assembly pattern that this instruction matches.
433  SmallVector<StringRef, 4> Tokens;
434
435  /// Operands - The operands that this instruction matches.
436  SmallVector<Operand, 4> Operands;
437
438  /// ConversionFnKind - The enum value which is passed to the generated
439  /// ConvertToMCInst to convert parsed operands into an MCInst for this
440  /// function.
441  std::string ConversionFnKind;
442
443  /// operator< - Compare two instructions.
444  bool operator<(const InstructionInfo &RHS) const {
445    if (Operands.size() != RHS.Operands.size())
446      return Operands.size() < RHS.Operands.size();
447
448    // Compare lexicographically by operand. The matcher validates that other
449    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
450    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
451      if (*Operands[i].Class < *RHS.Operands[i].Class)
452        return true;
453      if (*RHS.Operands[i].Class < *Operands[i].Class)
454        return false;
455    }
456
457    return false;
458  }
459
460  /// CouldMatchAmiguouslyWith - Check whether this instruction could
461  /// ambiguously match the same set of operands as \arg RHS (without being a
462  /// strictly superior match).
463  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
464    // The number of operands is unambiguous.
465    if (Operands.size() != RHS.Operands.size())
466      return false;
467
468    // Tokens and operand kinds are unambiguous (assuming a correct target
469    // specific parser).
470    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
471      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
472          Operands[i].Class->Kind == ClassInfo::Token)
473        if (*Operands[i].Class < *RHS.Operands[i].Class ||
474            *RHS.Operands[i].Class < *Operands[i].Class)
475          return false;
476
477    // Otherwise, this operand could commute if all operands are equivalent, or
478    // there is a pair of operands that compare less than and a pair that
479    // compare greater than.
480    bool HasLT = false, HasGT = false;
481    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
482      if (*Operands[i].Class < *RHS.Operands[i].Class)
483        HasLT = true;
484      if (*RHS.Operands[i].Class < *Operands[i].Class)
485        HasGT = true;
486    }
487
488    return !(HasLT ^ HasGT);
489  }
490
491public:
492  void dump();
493};
494
495class AsmMatcherInfo {
496public:
497  /// The tablegen AsmParser record.
498  Record *AsmParser;
499
500  /// The AsmParser "CommentDelimiter" value.
501  std::string CommentDelimiter;
502
503  /// The AsmParser "RegisterPrefix" value.
504  std::string RegisterPrefix;
505
506  /// The classes which are needed for matching.
507  std::vector<ClassInfo*> Classes;
508
509  /// The information on the instruction to match.
510  std::vector<InstructionInfo*> Instructions;
511
512  /// Map of Register records to their class information.
513  std::map<Record*, ClassInfo*> RegisterClasses;
514
515private:
516  /// Map of token to class information which has already been constructed.
517  std::map<std::string, ClassInfo*> TokenClasses;
518
519  /// Map of RegisterClass records to their class information.
520  std::map<Record*, ClassInfo*> RegisterClassClasses;
521
522  /// Map of AsmOperandClass records to their class information.
523  std::map<Record*, ClassInfo*> AsmOperandClasses;
524
525private:
526  /// getTokenClass - Lookup or create the class for the given token.
527  ClassInfo *getTokenClass(const StringRef &Token);
528
529  /// getOperandClass - Lookup or create the class for the given operand.
530  ClassInfo *getOperandClass(const StringRef &Token,
531                             const CodeGenInstruction::OperandInfo &OI);
532
533  /// BuildRegisterClasses - Build the ClassInfo* instances for register
534  /// classes.
535  void BuildRegisterClasses(CodeGenTarget &Target);
536
537  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
538  /// operand classes.
539  void BuildOperandClasses(CodeGenTarget &Target);
540
541public:
542  AsmMatcherInfo(Record *_AsmParser);
543
544  /// BuildInfo - Construct the various tables used during matching.
545  void BuildInfo(CodeGenTarget &Target);
546};
547
548}
549
550void InstructionInfo::dump() {
551  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
552         << ", tokens:[";
553  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
554    errs() << Tokens[i];
555    if (i + 1 != e)
556      errs() << ", ";
557  }
558  errs() << "]\n";
559
560  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
561    Operand &Op = Operands[i];
562    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
563    if (Op.Class->Kind == ClassInfo::Token) {
564      errs() << '\"' << Tokens[i] << "\"\n";
565      continue;
566    }
567
568    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
569    errs() << OI.Name << " " << OI.Rec->getName()
570           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
571  }
572}
573
574static std::string getEnumNameForToken(const StringRef &Str) {
575  std::string Res;
576
577  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
578    switch (*it) {
579    case '*': Res += "_STAR_"; break;
580    case '%': Res += "_PCT_"; break;
581    case ':': Res += "_COLON_"; break;
582
583    default:
584      if (isalnum(*it))  {
585        Res += *it;
586      } else {
587        Res += "_" + utostr((unsigned) *it) + "_";
588      }
589    }
590  }
591
592  return Res;
593}
594
595ClassInfo *AsmMatcherInfo::getTokenClass(const StringRef &Token) {
596  ClassInfo *&Entry = TokenClasses[Token];
597
598  if (!Entry) {
599    Entry = new ClassInfo();
600    Entry->Kind = ClassInfo::Token;
601    Entry->ClassName = "Token";
602    Entry->Name = "MCK_" + getEnumNameForToken(Token);
603    Entry->ValueName = Token;
604    Entry->PredicateMethod = "<invalid>";
605    Entry->RenderMethod = "<invalid>";
606    Classes.push_back(Entry);
607  }
608
609  return Entry;
610}
611
612ClassInfo *
613AsmMatcherInfo::getOperandClass(const StringRef &Token,
614                                const CodeGenInstruction::OperandInfo &OI) {
615  if (OI.Rec->isSubClassOf("RegisterClass")) {
616    ClassInfo *CI = RegisterClassClasses[OI.Rec];
617
618    if (!CI) {
619      PrintError(OI.Rec->getLoc(), "register class has no class info!");
620      throw std::string("ERROR: Missing register class!");
621    }
622
623    return CI;
624  }
625
626  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
627  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
628  ClassInfo *CI = AsmOperandClasses[MatchClass];
629
630  if (!CI) {
631    PrintError(OI.Rec->getLoc(), "operand has no match class!");
632    throw std::string("ERROR: Missing match class!");
633  }
634
635  return CI;
636}
637
638void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target) {
639  std::vector<CodeGenRegisterClass> RegisterClasses;
640  std::vector<CodeGenRegister> Registers;
641
642  RegisterClasses = Target.getRegisterClasses();
643  Registers = Target.getRegisters();
644
645  // The register sets used for matching.
646  std::set< std::set<Record*> > RegisterSets;
647
648  // Gather the defined sets.
649  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
650         ie = RegisterClasses.end(); it != ie; ++it)
651    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
652                                          it->Elements.end()));
653
654  // Introduce derived sets where necessary (when a register does not determine
655  // a unique register set class), and build the mapping of registers to the set
656  // they should classify to.
657  std::map<Record*, std::set<Record*> > RegisterMap;
658  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
659         ie = Registers.end(); it != ie; ++it) {
660    CodeGenRegister &CGR = *it;
661    // Compute the intersection of all sets containing this register.
662    std::set<Record*> ContainingSet;
663
664    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
665           ie = RegisterSets.end(); it != ie; ++it) {
666      if (!it->count(CGR.TheDef))
667        continue;
668
669      if (ContainingSet.empty()) {
670        ContainingSet = *it;
671      } else {
672        std::set<Record*> Tmp;
673        std::swap(Tmp, ContainingSet);
674        std::insert_iterator< std::set<Record*> > II(ContainingSet,
675                                                     ContainingSet.begin());
676        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
677                              II);
678      }
679    }
680
681    if (!ContainingSet.empty()) {
682      RegisterSets.insert(ContainingSet);
683      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
684    }
685  }
686
687  // Construct the register classes.
688  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
689  unsigned Index = 0;
690  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
691         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
692    ClassInfo *CI = new ClassInfo();
693    CI->Kind = ClassInfo::RegisterClass0 + Index;
694    CI->ClassName = "Reg" + utostr(Index);
695    CI->Name = "MCK_Reg" + utostr(Index);
696    CI->ValueName = "";
697    CI->PredicateMethod = ""; // unused
698    CI->RenderMethod = "addRegOperands";
699    CI->Registers = *it;
700    Classes.push_back(CI);
701    RegisterSetClasses.insert(std::make_pair(*it, CI));
702  }
703
704  // Find the superclasses; we could compute only the subgroup lattice edges,
705  // but there isn't really a point.
706  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
707         ie = RegisterSets.end(); it != ie; ++it) {
708    ClassInfo *CI = RegisterSetClasses[*it];
709    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
710           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
711      if (*it != *it2 &&
712          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
713        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
714  }
715
716  // Name the register classes which correspond to a user defined RegisterClass.
717  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
718         ie = RegisterClasses.end(); it != ie; ++it) {
719    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
720                                                         it->Elements.end())];
721    if (CI->ValueName.empty()) {
722      CI->ClassName = it->getName();
723      CI->Name = "MCK_" + it->getName();
724      CI->ValueName = it->getName();
725    } else
726      CI->ValueName = CI->ValueName + "," + it->getName();
727
728    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
729  }
730
731  // Populate the map for individual registers.
732  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
733         ie = RegisterMap.end(); it != ie; ++it)
734    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
735}
736
737void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
738  std::vector<Record*> AsmOperands;
739  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
740  unsigned Index = 0;
741  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
742         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
743    ClassInfo *CI = new ClassInfo();
744    CI->Kind = ClassInfo::UserClass0 + Index;
745
746    Init *Super = (*it)->getValueInit("SuperClass");
747    if (DefInit *DI = dynamic_cast<DefInit*>(Super)) {
748      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
749      if (!SC)
750        PrintError((*it)->getLoc(), "Invalid super class reference!");
751      else
752        CI->SuperClasses.push_back(SC);
753    } else {
754      assert(dynamic_cast<UnsetInit*>(Super) && "Unexpected SuperClass field!");
755    }
756    CI->ClassName = (*it)->getValueAsString("Name");
757    CI->Name = "MCK_" + CI->ClassName;
758    CI->ValueName = (*it)->getName();
759
760    // Get or construct the predicate method name.
761    Init *PMName = (*it)->getValueInit("PredicateMethod");
762    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
763      CI->PredicateMethod = SI->getValue();
764    } else {
765      assert(dynamic_cast<UnsetInit*>(PMName) &&
766             "Unexpected PredicateMethod field!");
767      CI->PredicateMethod = "is" + CI->ClassName;
768    }
769
770    // Get or construct the render method name.
771    Init *RMName = (*it)->getValueInit("RenderMethod");
772    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
773      CI->RenderMethod = SI->getValue();
774    } else {
775      assert(dynamic_cast<UnsetInit*>(RMName) &&
776             "Unexpected RenderMethod field!");
777      CI->RenderMethod = "add" + CI->ClassName + "Operands";
778    }
779
780    AsmOperandClasses[*it] = CI;
781    Classes.push_back(CI);
782  }
783}
784
785AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
786  : AsmParser(_AsmParser),
787    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
788    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
789{
790}
791
792void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
793  // Build info for the register classes.
794  BuildRegisterClasses(Target);
795
796  // Build info for the user defined assembly operand classes.
797  BuildOperandClasses(Target);
798
799  // Build the instruction information.
800  for (std::map<std::string, CodeGenInstruction>::const_iterator
801         it = Target.getInstructions().begin(),
802         ie = Target.getInstructions().end();
803       it != ie; ++it) {
804    const CodeGenInstruction &CGI = it->second;
805
806    if (!StringRef(it->first).startswith(MatchPrefix))
807      continue;
808
809    OwningPtr<InstructionInfo> II(new InstructionInfo);
810
811    II->InstrName = it->first;
812    II->Instr = &it->second;
813    II->AsmString = FlattenVariants(CGI.AsmString, 0);
814
815    // Remove comments from the asm string.
816    if (!CommentDelimiter.empty()) {
817      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
818      if (Idx != StringRef::npos)
819        II->AsmString = II->AsmString.substr(0, Idx);
820    }
821
822    TokenizeAsmString(II->AsmString, II->Tokens);
823
824    // Ignore instructions which shouldn't be matched.
825    if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
826      continue;
827
828    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
829      StringRef Token = II->Tokens[i];
830
831      // Check for simple tokens.
832      if (Token[0] != '$') {
833        InstructionInfo::Operand Op;
834        Op.Class = getTokenClass(Token);
835        Op.OperandInfo = 0;
836        II->Operands.push_back(Op);
837        continue;
838      }
839
840      // Otherwise this is an operand reference.
841      StringRef OperandName;
842      if (Token[1] == '{')
843        OperandName = Token.substr(2, Token.size() - 3);
844      else
845        OperandName = Token.substr(1);
846
847      // Map this token to an operand. FIXME: Move elsewhere.
848      unsigned Idx;
849      try {
850        Idx = CGI.getOperandNamed(OperandName);
851      } catch(...) {
852        errs() << "error: unable to find operand: '" << OperandName << "'!\n";
853        break;
854      }
855
856      const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx];
857      InstructionInfo::Operand Op;
858      Op.Class = getOperandClass(Token, OI);
859      Op.OperandInfo = &OI;
860      II->Operands.push_back(Op);
861    }
862
863    // If we broke out, ignore the instruction.
864    if (II->Operands.size() != II->Tokens.size())
865      continue;
866
867    Instructions.push_back(II.take());
868  }
869
870  // Reorder classes so that classes preceed super classes.
871  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
872}
873
874static void EmitConvertToMCInst(CodeGenTarget &Target,
875                                std::vector<InstructionInfo*> &Infos,
876                                raw_ostream &OS) {
877  // Write the convert function to a separate stream, so we can drop it after
878  // the enum.
879  std::string ConvertFnBody;
880  raw_string_ostream CvtOS(ConvertFnBody);
881
882  // Function we have already generated.
883  std::set<std::string> GeneratedFns;
884
885  // Start the unified conversion function.
886
887  CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
888        << "unsigned Opcode,\n"
889        << "                            SmallVectorImpl<"
890        << Target.getName() << "Operand> &Operands) {\n";
891  CvtOS << "  Inst.setOpcode(Opcode);\n";
892  CvtOS << "  switch (Kind) {\n";
893  CvtOS << "  default:\n";
894
895  // Start the enum, which we will generate inline.
896
897  OS << "// Unified function for converting operants to MCInst instances.\n\n";
898  OS << "enum ConversionKind {\n";
899
900  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
901         ie = Infos.end(); it != ie; ++it) {
902    InstructionInfo &II = **it;
903
904    // Order the (class) operands by the order to convert them into an MCInst.
905    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
906    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
907      InstructionInfo::Operand &Op = II.Operands[i];
908      if (Op.OperandInfo)
909        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
910    }
911    std::sort(MIOperandList.begin(), MIOperandList.end());
912
913    // Compute the total number of operands.
914    unsigned NumMIOperands = 0;
915    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
916      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
917      NumMIOperands = std::max(NumMIOperands,
918                               OI.MIOperandNo + OI.MINumOperands);
919    }
920
921    // Build the conversion function signature.
922    std::string Signature = "Convert";
923    unsigned CurIndex = 0;
924    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
925      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
926      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
927             "Duplicate match for instruction operand!");
928
929      Signature += "_";
930
931      // Skip operands which weren't matched by anything, this occurs when the
932      // .td file encodes "implicit" operands as explicit ones.
933      //
934      // FIXME: This should be removed from the MCInst structure.
935      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
936        Signature += "Imp";
937
938      // Registers are always converted the same, don't duplicate the conversion
939      // function based on them.
940      //
941      // FIXME: We could generalize this based on the render method, if it
942      // mattered.
943      if (Op.Class->isRegisterClass())
944        Signature += "Reg";
945      else
946        Signature += Op.Class->ClassName;
947      Signature += utostr(Op.OperandInfo->MINumOperands);
948      Signature += "_" + utostr(MIOperandList[i].second);
949
950      CurIndex += Op.OperandInfo->MINumOperands;
951    }
952
953    // Add any trailing implicit operands.
954    for (; CurIndex != NumMIOperands; ++CurIndex)
955      Signature += "Imp";
956
957    II.ConversionFnKind = Signature;
958
959    // Check if we have already generated this signature.
960    if (!GeneratedFns.insert(Signature).second)
961      continue;
962
963    // If not, emit it now.
964
965    // Add to the enum list.
966    OS << "  " << Signature << ",\n";
967
968    // And to the convert function.
969    CvtOS << "  case " << Signature << ":\n";
970    CurIndex = 0;
971    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
972      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
973
974      // Add the implicit operands.
975      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
976        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
977
978      CvtOS << "    Operands[" << MIOperandList[i].second
979         << "]." << Op.Class->RenderMethod
980         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
981      CurIndex += Op.OperandInfo->MINumOperands;
982    }
983
984    // And add trailing implicit operands.
985    for (; CurIndex != NumMIOperands; ++CurIndex)
986      CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
987    CvtOS << "    break;\n";
988  }
989
990  // Finish the convert function.
991
992  CvtOS << "  }\n";
993  CvtOS << "  return false;\n";
994  CvtOS << "}\n\n";
995
996  // Finish the enum, and drop the convert function after it.
997
998  OS << "  NumConversionVariants\n";
999  OS << "};\n\n";
1000
1001  OS << CvtOS.str();
1002}
1003
1004/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1005static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1006                                      std::vector<ClassInfo*> &Infos,
1007                                      raw_ostream &OS) {
1008  OS << "namespace {\n\n";
1009
1010  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1011     << "/// instruction matching.\n";
1012  OS << "enum MatchClassKind {\n";
1013  OS << "  InvalidMatchClass = 0,\n";
1014  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1015         ie = Infos.end(); it != ie; ++it) {
1016    ClassInfo &CI = **it;
1017    OS << "  " << CI.Name << ", // ";
1018    if (CI.Kind == ClassInfo::Token) {
1019      OS << "'" << CI.ValueName << "'\n";
1020    } else if (CI.isRegisterClass()) {
1021      if (!CI.ValueName.empty())
1022        OS << "register class '" << CI.ValueName << "'\n";
1023      else
1024        OS << "derived register class\n";
1025    } else {
1026      OS << "user defined class '" << CI.ValueName << "'\n";
1027    }
1028  }
1029  OS << "  NumMatchClassKinds\n";
1030  OS << "};\n\n";
1031
1032  OS << "}\n\n";
1033}
1034
1035/// EmitClassifyOperand - Emit the function to classify an operand.
1036static void EmitClassifyOperand(CodeGenTarget &Target,
1037                                AsmMatcherInfo &Info,
1038                                raw_ostream &OS) {
1039  OS << "static MatchClassKind ClassifyOperand("
1040     << Target.getName() << "Operand &Operand) {\n";
1041
1042  // Classify tokens.
1043  OS << "  if (Operand.isToken())\n";
1044  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1045
1046  // Classify registers.
1047  //
1048  // FIXME: Don't hardcode isReg, getReg.
1049  OS << "  if (Operand.isReg()) {\n";
1050  OS << "    switch (Operand.getReg()) {\n";
1051  OS << "    default: return InvalidMatchClass;\n";
1052  for (std::map<Record*, ClassInfo*>::iterator
1053         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1054       it != ie; ++it)
1055    OS << "    case " << Target.getName() << "::"
1056       << it->first->getName() << ": return " << it->second->Name << ";\n";
1057  OS << "    }\n";
1058  OS << "  }\n\n";
1059
1060  // Classify user defined operands.
1061  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1062         ie = Info.Classes.end(); it != ie; ++it) {
1063    ClassInfo &CI = **it;
1064
1065    if (!CI.isUserClass())
1066      continue;
1067
1068    OS << "  // '" << CI.ClassName << "' class";
1069    if (!CI.SuperClasses.empty()) {
1070      OS << ", subclass of ";
1071      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1072        if (i) OS << ", ";
1073        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1074        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1075      }
1076    }
1077    OS << "\n";
1078
1079    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1080
1081    // Validate subclass relationships.
1082    if (!CI.SuperClasses.empty()) {
1083      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1084        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1085           << "() && \"Invalid class relationship!\");\n";
1086    }
1087
1088    OS << "    return " << CI.Name << ";\n";
1089    OS << "  }\n\n";
1090  }
1091  OS << "  return InvalidMatchClass;\n";
1092  OS << "}\n\n";
1093}
1094
1095/// EmitIsSubclass - Emit the subclass predicate function.
1096static void EmitIsSubclass(CodeGenTarget &Target,
1097                           std::vector<ClassInfo*> &Infos,
1098                           raw_ostream &OS) {
1099  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1100  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1101  OS << "  if (A == B)\n";
1102  OS << "    return true;\n\n";
1103
1104  OS << "  switch (A) {\n";
1105  OS << "  default:\n";
1106  OS << "    return false;\n";
1107  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1108         ie = Infos.end(); it != ie; ++it) {
1109    ClassInfo &A = **it;
1110
1111    if (A.Kind != ClassInfo::Token) {
1112      std::vector<StringRef> SuperClasses;
1113      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1114             ie = Infos.end(); it != ie; ++it) {
1115        ClassInfo &B = **it;
1116
1117        if (&A != &B && A.isSubsetOf(B))
1118          SuperClasses.push_back(B.Name);
1119      }
1120
1121      if (SuperClasses.empty())
1122        continue;
1123
1124      OS << "\n  case " << A.Name << ":\n";
1125
1126      if (SuperClasses.size() == 1) {
1127        OS << "    return B == " << SuperClasses.back() << ";\n";
1128        continue;
1129      }
1130
1131      OS << "    switch (B) {\n";
1132      OS << "    default: return false;\n";
1133      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1134        OS << "    case " << SuperClasses[i] << ": return true;\n";
1135      OS << "    }\n";
1136    }
1137  }
1138  OS << "  }\n";
1139  OS << "}\n\n";
1140}
1141
1142typedef std::pair<std::string, std::string> StringPair;
1143
1144/// FindFirstNonCommonLetter - Find the first character in the keys of the
1145/// string pairs that is not shared across the whole set of strings.  All
1146/// strings are assumed to have the same length.
1147static unsigned
1148FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
1149  assert(!Matches.empty());
1150  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
1151    // Check to see if letter i is the same across the set.
1152    char Letter = Matches[0]->first[i];
1153
1154    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
1155      if (Matches[str]->first[i] != Letter)
1156        return i;
1157  }
1158
1159  return Matches[0]->first.size();
1160}
1161
1162/// EmitStringMatcherForChar - Given a set of strings that are known to be the
1163/// same length and whose characters leading up to CharNo are the same, emit
1164/// code to verify that CharNo and later are the same.
1165///
1166/// \return - True if control can leave the emitted code fragment.
1167static bool EmitStringMatcherForChar(const std::string &StrVariableName,
1168                                  const std::vector<const StringPair*> &Matches,
1169                                     unsigned CharNo, unsigned IndentCount,
1170                                     raw_ostream &OS) {
1171  assert(!Matches.empty() && "Must have at least one string to match!");
1172  std::string Indent(IndentCount*2+4, ' ');
1173
1174  // If we have verified that the entire string matches, we're done: output the
1175  // matching code.
1176  if (CharNo == Matches[0]->first.size()) {
1177    assert(Matches.size() == 1 && "Had duplicate keys to match on");
1178
1179    // FIXME: If Matches[0].first has embeded \n, this will be bad.
1180    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
1181       << "\"\n";
1182    return false;
1183  }
1184
1185  // Bucket the matches by the character we are comparing.
1186  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
1187
1188  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1189    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
1190
1191
1192  // If we have exactly one bucket to match, see how many characters are common
1193  // across the whole set and match all of them at once.
1194  if (MatchesByLetter.size() == 1) {
1195    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
1196    unsigned NumChars = FirstNonCommonLetter-CharNo;
1197
1198    // Emit code to break out if the prefix doesn't match.
1199    if (NumChars == 1) {
1200      // Do the comparison with if (Str[1] != 'f')
1201      // FIXME: Need to escape general characters.
1202      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
1203         << Matches[0]->first[CharNo] << "')\n";
1204      OS << Indent << "  break;\n";
1205    } else {
1206      // Do the comparison with if (Str.substr(1,3) != "foo").
1207      // FIXME: Need to escape general strings.
1208      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
1209         << NumChars << ") != \"";
1210      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
1211      OS << Indent << "  break;\n";
1212    }
1213
1214    return EmitStringMatcherForChar(StrVariableName, Matches,
1215                                    FirstNonCommonLetter, IndentCount, OS);
1216  }
1217
1218  // Otherwise, we have multiple possible things, emit a switch on the
1219  // character.
1220  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
1221  OS << Indent << "default: break;\n";
1222
1223  for (std::map<char, std::vector<const StringPair*> >::iterator LI =
1224       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
1225    // TODO: escape hard stuff (like \n) if we ever care about it.
1226    OS << Indent << "case '" << LI->first << "':\t // "
1227       << LI->second.size() << " strings to match.\n";
1228    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
1229                                 IndentCount+1, OS))
1230      OS << Indent << "  break;\n";
1231  }
1232
1233  OS << Indent << "}\n";
1234  return true;
1235}
1236
1237
1238/// EmitStringMatcher - Given a list of strings and code to execute when they
1239/// match, output a simple switch tree to classify the input string.
1240///
1241/// If a match is found, the code in Vals[i].second is executed; control must
1242/// not exit this code fragment.  If nothing matches, execution falls through.
1243///
1244/// \param StrVariableName - The name of the variable to test.
1245static void EmitStringMatcher(const std::string &StrVariableName,
1246                              const std::vector<StringPair> &Matches,
1247                              raw_ostream &OS) {
1248  // First level categorization: group strings by length.
1249  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
1250
1251  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1252    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
1253
1254  // Output a switch statement on length and categorize the elements within each
1255  // bin.
1256  OS << "  switch (" << StrVariableName << ".size()) {\n";
1257  OS << "  default: break;\n";
1258
1259  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
1260       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
1261    OS << "  case " << LI->first << ":\t // " << LI->second.size()
1262       << " strings to match.\n";
1263    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
1264      OS << "    break;\n";
1265  }
1266
1267  OS << "  }\n";
1268}
1269
1270
1271/// EmitMatchTokenString - Emit the function to match a token string to the
1272/// appropriate match class value.
1273static void EmitMatchTokenString(CodeGenTarget &Target,
1274                                 std::vector<ClassInfo*> &Infos,
1275                                 raw_ostream &OS) {
1276  // Construct the match list.
1277  std::vector<StringPair> Matches;
1278  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1279         ie = Infos.end(); it != ie; ++it) {
1280    ClassInfo &CI = **it;
1281
1282    if (CI.Kind == ClassInfo::Token)
1283      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
1284  }
1285
1286  OS << "static MatchClassKind MatchTokenString(const StringRef &Name) {\n";
1287
1288  EmitStringMatcher("Name", Matches, OS);
1289
1290  OS << "  return InvalidMatchClass;\n";
1291  OS << "}\n\n";
1292}
1293
1294/// EmitMatchRegisterName - Emit the function to match a string to the target
1295/// specific register enum.
1296static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1297                                  raw_ostream &OS) {
1298  // Construct the match list.
1299  std::vector<StringPair> Matches;
1300  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1301    const CodeGenRegister &Reg = Target.getRegisters()[i];
1302    if (Reg.TheDef->getValueAsString("AsmName").empty())
1303      continue;
1304
1305    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
1306                                 "return " + utostr(i + 1) + ";"));
1307  }
1308
1309  OS << "unsigned " << Target.getName()
1310     << AsmParser->getValueAsString("AsmParserClassName")
1311     << "::MatchRegisterName(const StringRef &Name) {\n";
1312
1313  EmitStringMatcher("Name", Matches, OS);
1314
1315  OS << "  return 0;\n";
1316  OS << "}\n\n";
1317}
1318
1319void AsmMatcherEmitter::run(raw_ostream &OS) {
1320  CodeGenTarget Target;
1321  Record *AsmParser = Target.getAsmParser();
1322  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1323
1324  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1325
1326  // Emit the function to match a register name to number.
1327  EmitMatchRegisterName(Target, AsmParser, OS);
1328
1329  // Compute the information on the instructions to match.
1330  AsmMatcherInfo Info(AsmParser);
1331  Info.BuildInfo(Target);
1332
1333  // Sort the instruction table using the partial order on classes.
1334  std::sort(Info.Instructions.begin(), Info.Instructions.end(),
1335            less_ptr<InstructionInfo>());
1336
1337  DEBUG_WITH_TYPE("instruction_info", {
1338      for (std::vector<InstructionInfo*>::iterator
1339             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1340           it != ie; ++it)
1341        (*it)->dump();
1342    });
1343
1344  // Check for ambiguous instructions.
1345  unsigned NumAmbiguous = 0;
1346  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1347    for (unsigned j = i + 1; j != e; ++j) {
1348      InstructionInfo &A = *Info.Instructions[i];
1349      InstructionInfo &B = *Info.Instructions[j];
1350
1351      if (A.CouldMatchAmiguouslyWith(B)) {
1352        DEBUG_WITH_TYPE("ambiguous_instrs", {
1353            errs() << "warning: ambiguous instruction match:\n";
1354            A.dump();
1355            errs() << "\nis incomparable with:\n";
1356            B.dump();
1357            errs() << "\n\n";
1358          });
1359        ++NumAmbiguous;
1360      }
1361    }
1362  }
1363  if (NumAmbiguous)
1364    DEBUG_WITH_TYPE("ambiguous_instrs", {
1365        errs() << "warning: " << NumAmbiguous
1366               << " ambiguous instructions!\n";
1367      });
1368
1369  // Generate the unified function to convert operands into an MCInst.
1370  EmitConvertToMCInst(Target, Info.Instructions, OS);
1371
1372  // Emit the enumeration for classes which participate in matching.
1373  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1374
1375  // Emit the routine to match token strings to their match class.
1376  EmitMatchTokenString(Target, Info.Classes, OS);
1377
1378  // Emit the routine to classify an operand.
1379  EmitClassifyOperand(Target, Info, OS);
1380
1381  // Emit the subclass predicate routine.
1382  EmitIsSubclass(Target, Info.Classes, OS);
1383
1384  // Finally, build the match function.
1385
1386  size_t MaxNumOperands = 0;
1387  for (std::vector<InstructionInfo*>::const_iterator it =
1388         Info.Instructions.begin(), ie = Info.Instructions.end();
1389       it != ie; ++it)
1390    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1391
1392  OS << "bool " << Target.getName() << ClassName
1393     << "::MatchInstruction("
1394     << "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, "
1395     << "MCInst &Inst) {\n";
1396
1397  // Emit the static match table; unused classes get initalized to 0 which is
1398  // guaranteed to be InvalidMatchClass.
1399  //
1400  // FIXME: We can reduce the size of this table very easily. First, we change
1401  // it so that store the kinds in separate bit-fields for each index, which
1402  // only needs to be the max width used for classes at that index (we also need
1403  // to reject based on this during classification). If we then make sure to
1404  // order the match kinds appropriately (putting mnemonics last), then we
1405  // should only end up using a few bits for each class, especially the ones
1406  // following the mnemonic.
1407  OS << "  static const struct MatchEntry {\n";
1408  OS << "    unsigned Opcode;\n";
1409  OS << "    ConversionKind ConvertFn;\n";
1410  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1411  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
1412
1413  for (std::vector<InstructionInfo*>::const_iterator it =
1414         Info.Instructions.begin(), ie = Info.Instructions.end();
1415       it != ie; ++it) {
1416    InstructionInfo &II = **it;
1417
1418    OS << "    { " << Target.getName() << "::" << II.InstrName
1419       << ", " << II.ConversionFnKind << ", { ";
1420    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1421      InstructionInfo::Operand &Op = II.Operands[i];
1422
1423      if (i) OS << ", ";
1424      OS << Op.Class->Name;
1425    }
1426    OS << " } },\n";
1427  }
1428
1429  OS << "  };\n\n";
1430
1431  // Emit code to compute the class list for this operand vector.
1432  OS << "  // Eliminate obvious mismatches.\n";
1433  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
1434  OS << "    return true;\n\n";
1435
1436  OS << "  // Compute the class list for this operand vector.\n";
1437  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1438  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1439  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1440
1441  OS << "    // Check for invalid operands before matching.\n";
1442  OS << "    if (Classes[i] == InvalidMatchClass)\n";
1443  OS << "      return true;\n";
1444  OS << "  }\n\n";
1445
1446  OS << "  // Mark unused classes.\n";
1447  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
1448     << "i != e; ++i)\n";
1449  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1450
1451  // Emit code to search the table.
1452  OS << "  // Search the table.\n";
1453  OS << "  for (const MatchEntry *it = MatchTable, "
1454     << "*ie = MatchTable + " << Info.Instructions.size()
1455     << "; it != ie; ++it) {\n";
1456  for (unsigned i = 0; i != MaxNumOperands; ++i) {
1457    OS << "    if (!IsSubclass(Classes["
1458       << i << "], it->Classes[" << i << "]))\n";
1459    OS << "      continue;\n";
1460  }
1461  OS << "\n";
1462  OS << "    return ConvertToMCInst(it->ConvertFn, Inst, "
1463     << "it->Opcode, Operands);\n";
1464  OS << "  }\n\n";
1465
1466  OS << "  return true;\n";
1467  OS << "}\n\n";
1468}
1469