AsmMatcherEmitter.cpp revision 79ed3f77e8b87615b80054ca6e4e3ba5e07445bd
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "StringMatcher.h"
80#include "llvm/ADT/OwningPtr.h"
81#include "llvm/ADT/SmallVector.h"
82#include "llvm/ADT/STLExtras.h"
83#include "llvm/ADT/StringExtras.h"
84#include "llvm/Support/CommandLine.h"
85#include "llvm/Support/Debug.h"
86#include <list>
87#include <map>
88#include <set>
89using namespace llvm;
90
91static cl::opt<std::string>
92MatchPrefix("match-prefix", cl::init(""),
93            cl::desc("Only match instructions with the given prefix"));
94
95/// FlattenVariants - Flatten an .td file assembly string by selecting the
96/// variant at index \arg N.
97static std::string FlattenVariants(const std::string &AsmString,
98                                   unsigned N) {
99  StringRef Cur = AsmString;
100  std::string Res = "";
101
102  for (;;) {
103    // Find the start of the next variant string.
104    size_t VariantsStart = 0;
105    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
106      if (Cur[VariantsStart] == '{' &&
107          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
108                                  Cur[VariantsStart-1] != '\\')))
109        break;
110
111    // Add the prefix to the result.
112    Res += Cur.slice(0, VariantsStart);
113    if (VariantsStart == Cur.size())
114      break;
115
116    ++VariantsStart; // Skip the '{'.
117
118    // Scan to the end of the variants string.
119    size_t VariantsEnd = VariantsStart;
120    unsigned NestedBraces = 1;
121    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
122      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
123        if (--NestedBraces == 0)
124          break;
125      } else if (Cur[VariantsEnd] == '{')
126        ++NestedBraces;
127    }
128
129    // Select the Nth variant (or empty).
130    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
131    for (unsigned i = 0; i != N; ++i)
132      Selection = Selection.split('|').second;
133    Res += Selection.split('|').first;
134
135    assert(VariantsEnd != Cur.size() &&
136           "Unterminated variants in assembly string!");
137    Cur = Cur.substr(VariantsEnd + 1);
138  }
139
140  return Res;
141}
142
143/// TokenizeAsmString - Tokenize a simplified assembly string.
144static void TokenizeAsmString(StringRef AsmString,
145                              SmallVectorImpl<StringRef> &Tokens) {
146  unsigned Prev = 0;
147  bool InTok = true;
148  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
149    switch (AsmString[i]) {
150    case '[':
151    case ']':
152    case '*':
153    case '!':
154    case ' ':
155    case '\t':
156    case ',':
157      if (InTok) {
158        Tokens.push_back(AsmString.slice(Prev, i));
159        InTok = false;
160      }
161      if (!isspace(AsmString[i]) && AsmString[i] != ',')
162        Tokens.push_back(AsmString.substr(i, 1));
163      Prev = i + 1;
164      break;
165
166    case '\\':
167      if (InTok) {
168        Tokens.push_back(AsmString.slice(Prev, i));
169        InTok = false;
170      }
171      ++i;
172      assert(i != AsmString.size() && "Invalid quoted character");
173      Tokens.push_back(AsmString.substr(i, 1));
174      Prev = i + 1;
175      break;
176
177    case '$': {
178      // If this isn't "${", treat like a normal token.
179      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
180        if (InTok) {
181          Tokens.push_back(AsmString.slice(Prev, i));
182          InTok = false;
183        }
184        Prev = i;
185        break;
186      }
187
188      if (InTok) {
189        Tokens.push_back(AsmString.slice(Prev, i));
190        InTok = false;
191      }
192
193      StringRef::iterator End =
194        std::find(AsmString.begin() + i, AsmString.end(), '}');
195      assert(End != AsmString.end() && "Missing brace in operand reference!");
196      size_t EndPos = End - AsmString.begin();
197      Tokens.push_back(AsmString.slice(i, EndPos+1));
198      Prev = EndPos + 1;
199      i = EndPos;
200      break;
201    }
202
203    case '.':
204      if (InTok) {
205        Tokens.push_back(AsmString.slice(Prev, i));
206      }
207      Prev = i;
208      InTok = true;
209      break;
210
211    default:
212      InTok = true;
213    }
214  }
215  if (InTok && Prev != AsmString.size())
216    Tokens.push_back(AsmString.substr(Prev));
217}
218
219static bool IsAssemblerInstruction(StringRef Name,
220                                   const CodeGenInstruction &CGI,
221                                   const SmallVectorImpl<StringRef> &Tokens) {
222  // Ignore "codegen only" instructions.
223  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
224    return false;
225
226  // Ignore pseudo ops.
227  //
228  // FIXME: This is a hack; can we convert these instructions to set the
229  // "codegen only" bit instead?
230  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
231    if (Form->getValue()->getAsString() == "Pseudo")
232      return false;
233
234  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
235  //
236  // FIXME: This is a total hack.
237  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
238    return false;
239
240  // Ignore instructions with no .s string.
241  //
242  // FIXME: What are these?
243  if (CGI.AsmString.empty())
244    return false;
245
246  // FIXME: Hack; ignore any instructions with a newline in them.
247  if (std::find(CGI.AsmString.begin(),
248                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
249    return false;
250
251  // Ignore instructions with attributes, these are always fake instructions for
252  // simplifying codegen.
253  //
254  // FIXME: Is this true?
255  //
256  // Also, check for instructions which reference the operand multiple times;
257  // this implies a constraint we would not honor.
258  std::set<std::string> OperandNames;
259  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
260    if (Tokens[i][0] == '$' &&
261        std::find(Tokens[i].begin(),
262                  Tokens[i].end(), ':') != Tokens[i].end()) {
263      DEBUG({
264          errs() << "warning: '" << Name << "': "
265                 << "ignoring instruction; operand with attribute '"
266                 << Tokens[i] << "'\n";
267        });
268      return false;
269    }
270
271    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
272      DEBUG({
273          errs() << "warning: '" << Name << "': "
274                 << "ignoring instruction with tied operand '"
275                 << Tokens[i].str() << "'\n";
276        });
277      return false;
278    }
279  }
280
281  return true;
282}
283
284namespace {
285
286struct SubtargetFeatureInfo;
287
288/// ClassInfo - Helper class for storing the information about a particular
289/// class of operands which can be matched.
290struct ClassInfo {
291  enum ClassInfoKind {
292    /// Invalid kind, for use as a sentinel value.
293    Invalid = 0,
294
295    /// The class for a particular token.
296    Token,
297
298    /// The (first) register class, subsequent register classes are
299    /// RegisterClass0+1, and so on.
300    RegisterClass0,
301
302    /// The (first) user defined class, subsequent user defined classes are
303    /// UserClass0+1, and so on.
304    UserClass0 = 1<<16
305  };
306
307  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
308  /// N) for the Nth user defined class.
309  unsigned Kind;
310
311  /// SuperClasses - The super classes of this class. Note that for simplicities
312  /// sake user operands only record their immediate super class, while register
313  /// operands include all superclasses.
314  std::vector<ClassInfo*> SuperClasses;
315
316  /// Name - The full class name, suitable for use in an enum.
317  std::string Name;
318
319  /// ClassName - The unadorned generic name for this class (e.g., Token).
320  std::string ClassName;
321
322  /// ValueName - The name of the value this class represents; for a token this
323  /// is the literal token string, for an operand it is the TableGen class (or
324  /// empty if this is a derived class).
325  std::string ValueName;
326
327  /// PredicateMethod - The name of the operand method to test whether the
328  /// operand matches this class; this is not valid for Token or register kinds.
329  std::string PredicateMethod;
330
331  /// RenderMethod - The name of the operand method to add this operand to an
332  /// MCInst; this is not valid for Token or register kinds.
333  std::string RenderMethod;
334
335  /// For register classes, the records for all the registers in this class.
336  std::set<Record*> Registers;
337
338public:
339  /// isRegisterClass() - Check if this is a register class.
340  bool isRegisterClass() const {
341    return Kind >= RegisterClass0 && Kind < UserClass0;
342  }
343
344  /// isUserClass() - Check if this is a user defined class.
345  bool isUserClass() const {
346    return Kind >= UserClass0;
347  }
348
349  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
350  /// are related if they are in the same class hierarchy.
351  bool isRelatedTo(const ClassInfo &RHS) const {
352    // Tokens are only related to tokens.
353    if (Kind == Token || RHS.Kind == Token)
354      return Kind == Token && RHS.Kind == Token;
355
356    // Registers classes are only related to registers classes, and only if
357    // their intersection is non-empty.
358    if (isRegisterClass() || RHS.isRegisterClass()) {
359      if (!isRegisterClass() || !RHS.isRegisterClass())
360        return false;
361
362      std::set<Record*> Tmp;
363      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
364      std::set_intersection(Registers.begin(), Registers.end(),
365                            RHS.Registers.begin(), RHS.Registers.end(),
366                            II);
367
368      return !Tmp.empty();
369    }
370
371    // Otherwise we have two users operands; they are related if they are in the
372    // same class hierarchy.
373    //
374    // FIXME: This is an oversimplification, they should only be related if they
375    // intersect, however we don't have that information.
376    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
377    const ClassInfo *Root = this;
378    while (!Root->SuperClasses.empty())
379      Root = Root->SuperClasses.front();
380
381    const ClassInfo *RHSRoot = &RHS;
382    while (!RHSRoot->SuperClasses.empty())
383      RHSRoot = RHSRoot->SuperClasses.front();
384
385    return Root == RHSRoot;
386  }
387
388  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
389  bool isSubsetOf(const ClassInfo &RHS) const {
390    // This is a subset of RHS if it is the same class...
391    if (this == &RHS)
392      return true;
393
394    // ... or if any of its super classes are a subset of RHS.
395    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
396           ie = SuperClasses.end(); it != ie; ++it)
397      if ((*it)->isSubsetOf(RHS))
398        return true;
399
400    return false;
401  }
402
403  /// operator< - Compare two classes.
404  bool operator<(const ClassInfo &RHS) const {
405    if (this == &RHS)
406      return false;
407
408    // Unrelated classes can be ordered by kind.
409    if (!isRelatedTo(RHS))
410      return Kind < RHS.Kind;
411
412    switch (Kind) {
413    case Invalid:
414      assert(0 && "Invalid kind!");
415    case Token:
416      // Tokens are comparable by value.
417      //
418      // FIXME: Compare by enum value.
419      return ValueName < RHS.ValueName;
420
421    default:
422      // This class preceeds the RHS if it is a proper subset of the RHS.
423      if (isSubsetOf(RHS))
424        return true;
425      if (RHS.isSubsetOf(*this))
426        return false;
427
428      // Otherwise, order by name to ensure we have a total ordering.
429      return ValueName < RHS.ValueName;
430    }
431  }
432};
433
434/// InstructionInfo - Helper class for storing the necessary information for an
435/// instruction which is capable of being matched.
436struct InstructionInfo {
437  struct Operand {
438    /// The unique class instance this operand should match.
439    ClassInfo *Class;
440
441    /// The original operand this corresponds to, if any.
442    const CodeGenInstruction::OperandInfo *OperandInfo;
443  };
444
445  /// InstrName - The target name for this instruction.
446  std::string InstrName;
447
448  /// Instr - The instruction this matches.
449  const CodeGenInstruction *Instr;
450
451  /// AsmString - The assembly string for this instruction (with variants
452  /// removed).
453  std::string AsmString;
454
455  /// Tokens - The tokenized assembly pattern that this instruction matches.
456  SmallVector<StringRef, 4> Tokens;
457
458  /// Operands - The operands that this instruction matches.
459  SmallVector<Operand, 4> Operands;
460
461  /// Predicates - The required subtarget features to match this instruction.
462  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
463
464  /// ConversionFnKind - The enum value which is passed to the generated
465  /// ConvertToMCInst to convert parsed operands into an MCInst for this
466  /// function.
467  std::string ConversionFnKind;
468
469  /// operator< - Compare two instructions.
470  bool operator<(const InstructionInfo &RHS) const {
471    if (Operands.size() != RHS.Operands.size())
472      return Operands.size() < RHS.Operands.size();
473
474    // Compare lexicographically by operand. The matcher validates that other
475    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
476    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
477      if (*Operands[i].Class < *RHS.Operands[i].Class)
478        return true;
479      if (*RHS.Operands[i].Class < *Operands[i].Class)
480        return false;
481    }
482
483    return false;
484  }
485
486  /// CouldMatchAmiguouslyWith - Check whether this instruction could
487  /// ambiguously match the same set of operands as \arg RHS (without being a
488  /// strictly superior match).
489  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
490    // The number of operands is unambiguous.
491    if (Operands.size() != RHS.Operands.size())
492      return false;
493
494    // Otherwise, make sure the ordering of the two instructions is unambiguous
495    // by checking that either (a) a token or operand kind discriminates them,
496    // or (b) the ordering among equivalent kinds is consistent.
497
498    // Tokens and operand kinds are unambiguous (assuming a correct target
499    // specific parser).
500    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
501      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
502          Operands[i].Class->Kind == ClassInfo::Token)
503        if (*Operands[i].Class < *RHS.Operands[i].Class ||
504            *RHS.Operands[i].Class < *Operands[i].Class)
505          return false;
506
507    // Otherwise, this operand could commute if all operands are equivalent, or
508    // there is a pair of operands that compare less than and a pair that
509    // compare greater than.
510    bool HasLT = false, HasGT = false;
511    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
512      if (*Operands[i].Class < *RHS.Operands[i].Class)
513        HasLT = true;
514      if (*RHS.Operands[i].Class < *Operands[i].Class)
515        HasGT = true;
516    }
517
518    return !(HasLT ^ HasGT);
519  }
520
521public:
522  void dump();
523};
524
525/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
526/// feature which participates in instruction matching.
527struct SubtargetFeatureInfo {
528  /// \brief The predicate record for this feature.
529  Record *TheDef;
530
531  /// \brief An unique index assigned to represent this feature.
532  unsigned Index;
533
534  /// \brief The name of the enumerated constant identifying this feature.
535  std::string EnumName;
536};
537
538class AsmMatcherInfo {
539public:
540  /// The tablegen AsmParser record.
541  Record *AsmParser;
542
543  /// The AsmParser "CommentDelimiter" value.
544  std::string CommentDelimiter;
545
546  /// The AsmParser "RegisterPrefix" value.
547  std::string RegisterPrefix;
548
549  /// The classes which are needed for matching.
550  std::vector<ClassInfo*> Classes;
551
552  /// The information on the instruction to match.
553  std::vector<InstructionInfo*> Instructions;
554
555  /// Map of Register records to their class information.
556  std::map<Record*, ClassInfo*> RegisterClasses;
557
558  /// Map of Predicate records to their subtarget information.
559  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
560
561private:
562  /// Map of token to class information which has already been constructed.
563  std::map<std::string, ClassInfo*> TokenClasses;
564
565  /// Map of RegisterClass records to their class information.
566  std::map<Record*, ClassInfo*> RegisterClassClasses;
567
568  /// Map of AsmOperandClass records to their class information.
569  std::map<Record*, ClassInfo*> AsmOperandClasses;
570
571private:
572  /// getTokenClass - Lookup or create the class for the given token.
573  ClassInfo *getTokenClass(StringRef Token);
574
575  /// getOperandClass - Lookup or create the class for the given operand.
576  ClassInfo *getOperandClass(StringRef Token,
577                             const CodeGenInstruction::OperandInfo &OI);
578
579  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
580  /// given operand.
581  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
582    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
583
584    SubtargetFeatureInfo *&Entry = SubtargetFeatures[Def];
585    if (!Entry) {
586      Entry = new SubtargetFeatureInfo;
587      Entry->TheDef = Def;
588      Entry->Index = SubtargetFeatures.size() - 1;
589      Entry->EnumName = "Feature_" + Def->getName();
590      assert(Entry->Index < 32 && "Too many subtarget features!");
591    }
592
593    return Entry;
594  }
595
596  /// BuildRegisterClasses - Build the ClassInfo* instances for register
597  /// classes.
598  void BuildRegisterClasses(CodeGenTarget &Target,
599                            std::set<std::string> &SingletonRegisterNames);
600
601  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
602  /// operand classes.
603  void BuildOperandClasses(CodeGenTarget &Target);
604
605public:
606  AsmMatcherInfo(Record *_AsmParser);
607
608  /// BuildInfo - Construct the various tables used during matching.
609  void BuildInfo(CodeGenTarget &Target);
610};
611
612}
613
614void InstructionInfo::dump() {
615  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
616         << ", tokens:[";
617  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
618    errs() << Tokens[i];
619    if (i + 1 != e)
620      errs() << ", ";
621  }
622  errs() << "]\n";
623
624  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
625    Operand &Op = Operands[i];
626    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
627    if (Op.Class->Kind == ClassInfo::Token) {
628      errs() << '\"' << Tokens[i] << "\"\n";
629      continue;
630    }
631
632    if (!Op.OperandInfo) {
633      errs() << "(singleton register)\n";
634      continue;
635    }
636
637    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
638    errs() << OI.Name << " " << OI.Rec->getName()
639           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
640  }
641}
642
643static std::string getEnumNameForToken(StringRef Str) {
644  std::string Res;
645
646  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
647    switch (*it) {
648    case '*': Res += "_STAR_"; break;
649    case '%': Res += "_PCT_"; break;
650    case ':': Res += "_COLON_"; break;
651
652    default:
653      if (isalnum(*it))  {
654        Res += *it;
655      } else {
656        Res += "_" + utostr((unsigned) *it) + "_";
657      }
658    }
659  }
660
661  return Res;
662}
663
664/// getRegisterRecord - Get the register record for \arg name, or 0.
665static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
666  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
667    const CodeGenRegister &Reg = Target.getRegisters()[i];
668    if (Name == Reg.TheDef->getValueAsString("AsmName"))
669      return Reg.TheDef;
670  }
671
672  return 0;
673}
674
675ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
676  ClassInfo *&Entry = TokenClasses[Token];
677
678  if (!Entry) {
679    Entry = new ClassInfo();
680    Entry->Kind = ClassInfo::Token;
681    Entry->ClassName = "Token";
682    Entry->Name = "MCK_" + getEnumNameForToken(Token);
683    Entry->ValueName = Token;
684    Entry->PredicateMethod = "<invalid>";
685    Entry->RenderMethod = "<invalid>";
686    Classes.push_back(Entry);
687  }
688
689  return Entry;
690}
691
692ClassInfo *
693AsmMatcherInfo::getOperandClass(StringRef Token,
694                                const CodeGenInstruction::OperandInfo &OI) {
695  if (OI.Rec->isSubClassOf("RegisterClass")) {
696    ClassInfo *CI = RegisterClassClasses[OI.Rec];
697
698    if (!CI) {
699      PrintError(OI.Rec->getLoc(), "register class has no class info!");
700      throw std::string("ERROR: Missing register class!");
701    }
702
703    return CI;
704  }
705
706  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
707  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
708  ClassInfo *CI = AsmOperandClasses[MatchClass];
709
710  if (!CI) {
711    PrintError(OI.Rec->getLoc(), "operand has no match class!");
712    throw std::string("ERROR: Missing match class!");
713  }
714
715  return CI;
716}
717
718void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
719                                          std::set<std::string>
720                                            &SingletonRegisterNames) {
721  std::vector<CodeGenRegisterClass> RegisterClasses;
722  std::vector<CodeGenRegister> Registers;
723
724  RegisterClasses = Target.getRegisterClasses();
725  Registers = Target.getRegisters();
726
727  // The register sets used for matching.
728  std::set< std::set<Record*> > RegisterSets;
729
730  // Gather the defined sets.
731  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
732         ie = RegisterClasses.end(); it != ie; ++it)
733    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
734                                          it->Elements.end()));
735
736  // Add any required singleton sets.
737  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
738         ie = SingletonRegisterNames.end(); it != ie; ++it)
739    if (Record *Rec = getRegisterRecord(Target, *it))
740      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
741
742  // Introduce derived sets where necessary (when a register does not determine
743  // a unique register set class), and build the mapping of registers to the set
744  // they should classify to.
745  std::map<Record*, std::set<Record*> > RegisterMap;
746  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
747         ie = Registers.end(); it != ie; ++it) {
748    CodeGenRegister &CGR = *it;
749    // Compute the intersection of all sets containing this register.
750    std::set<Record*> ContainingSet;
751
752    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
753           ie = RegisterSets.end(); it != ie; ++it) {
754      if (!it->count(CGR.TheDef))
755        continue;
756
757      if (ContainingSet.empty()) {
758        ContainingSet = *it;
759      } else {
760        std::set<Record*> Tmp;
761        std::swap(Tmp, ContainingSet);
762        std::insert_iterator< std::set<Record*> > II(ContainingSet,
763                                                     ContainingSet.begin());
764        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
765                              II);
766      }
767    }
768
769    if (!ContainingSet.empty()) {
770      RegisterSets.insert(ContainingSet);
771      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
772    }
773  }
774
775  // Construct the register classes.
776  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
777  unsigned Index = 0;
778  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
779         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
780    ClassInfo *CI = new ClassInfo();
781    CI->Kind = ClassInfo::RegisterClass0 + Index;
782    CI->ClassName = "Reg" + utostr(Index);
783    CI->Name = "MCK_Reg" + utostr(Index);
784    CI->ValueName = "";
785    CI->PredicateMethod = ""; // unused
786    CI->RenderMethod = "addRegOperands";
787    CI->Registers = *it;
788    Classes.push_back(CI);
789    RegisterSetClasses.insert(std::make_pair(*it, CI));
790  }
791
792  // Find the superclasses; we could compute only the subgroup lattice edges,
793  // but there isn't really a point.
794  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
795         ie = RegisterSets.end(); it != ie; ++it) {
796    ClassInfo *CI = RegisterSetClasses[*it];
797    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
798           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
799      if (*it != *it2 &&
800          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
801        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
802  }
803
804  // Name the register classes which correspond to a user defined RegisterClass.
805  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
806         ie = RegisterClasses.end(); it != ie; ++it) {
807    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
808                                                         it->Elements.end())];
809    if (CI->ValueName.empty()) {
810      CI->ClassName = it->getName();
811      CI->Name = "MCK_" + it->getName();
812      CI->ValueName = it->getName();
813    } else
814      CI->ValueName = CI->ValueName + "," + it->getName();
815
816    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
817  }
818
819  // Populate the map for individual registers.
820  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
821         ie = RegisterMap.end(); it != ie; ++it)
822    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
823
824  // Name the register classes which correspond to singleton registers.
825  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
826         ie = SingletonRegisterNames.end(); it != ie; ++it) {
827    if (Record *Rec = getRegisterRecord(Target, *it)) {
828      ClassInfo *CI = this->RegisterClasses[Rec];
829      assert(CI && "Missing singleton register class info!");
830
831      if (CI->ValueName.empty()) {
832        CI->ClassName = Rec->getName();
833        CI->Name = "MCK_" + Rec->getName();
834        CI->ValueName = Rec->getName();
835      } else
836        CI->ValueName = CI->ValueName + "," + Rec->getName();
837    }
838  }
839}
840
841void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
842  std::vector<Record*> AsmOperands;
843  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
844
845  // Pre-populate AsmOperandClasses map.
846  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
847         ie = AsmOperands.end(); it != ie; ++it)
848    AsmOperandClasses[*it] = new ClassInfo();
849
850  unsigned Index = 0;
851  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
852         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
853    ClassInfo *CI = AsmOperandClasses[*it];
854    CI->Kind = ClassInfo::UserClass0 + Index;
855
856    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
857    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
858      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
859      if (!DI) {
860        PrintError((*it)->getLoc(), "Invalid super class reference!");
861        continue;
862      }
863
864      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
865      if (!SC)
866        PrintError((*it)->getLoc(), "Invalid super class reference!");
867      else
868        CI->SuperClasses.push_back(SC);
869    }
870    CI->ClassName = (*it)->getValueAsString("Name");
871    CI->Name = "MCK_" + CI->ClassName;
872    CI->ValueName = (*it)->getName();
873
874    // Get or construct the predicate method name.
875    Init *PMName = (*it)->getValueInit("PredicateMethod");
876    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
877      CI->PredicateMethod = SI->getValue();
878    } else {
879      assert(dynamic_cast<UnsetInit*>(PMName) &&
880             "Unexpected PredicateMethod field!");
881      CI->PredicateMethod = "is" + CI->ClassName;
882    }
883
884    // Get or construct the render method name.
885    Init *RMName = (*it)->getValueInit("RenderMethod");
886    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
887      CI->RenderMethod = SI->getValue();
888    } else {
889      assert(dynamic_cast<UnsetInit*>(RMName) &&
890             "Unexpected RenderMethod field!");
891      CI->RenderMethod = "add" + CI->ClassName + "Operands";
892    }
893
894    AsmOperandClasses[*it] = CI;
895    Classes.push_back(CI);
896  }
897}
898
899AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
900  : AsmParser(_AsmParser),
901    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
902    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
903{
904}
905
906void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
907  // Parse the instructions; we need to do this first so that we can gather the
908  // singleton register classes.
909  std::set<std::string> SingletonRegisterNames;
910
911  const std::vector<const CodeGenInstruction*> &InstrList =
912    Target.getInstructionsByEnumValue();
913
914  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
915    const CodeGenInstruction &CGI = *InstrList[i];
916
917    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
918      continue;
919
920    OwningPtr<InstructionInfo> II(new InstructionInfo());
921
922    II->InstrName = CGI.TheDef->getName();
923    II->Instr = &CGI;
924    II->AsmString = FlattenVariants(CGI.AsmString, 0);
925
926    // Remove comments from the asm string.
927    if (!CommentDelimiter.empty()) {
928      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
929      if (Idx != StringRef::npos)
930        II->AsmString = II->AsmString.substr(0, Idx);
931    }
932
933    TokenizeAsmString(II->AsmString, II->Tokens);
934
935    // Ignore instructions which shouldn't be matched.
936    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
937      continue;
938
939    // Collect singleton registers, if used.
940    if (!RegisterPrefix.empty()) {
941      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
942        if (II->Tokens[i].startswith(RegisterPrefix)) {
943          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
944          Record *Rec = getRegisterRecord(Target, RegName);
945
946          if (!Rec) {
947            std::string Err = "unable to find register for '" + RegName.str() +
948              "' (which matches register prefix)";
949            throw TGError(CGI.TheDef->getLoc(), Err);
950          }
951
952          SingletonRegisterNames.insert(RegName);
953        }
954      }
955    }
956
957    // Compute the require features.
958    ListInit *Predicates = CGI.TheDef->getValueAsListInit("Predicates");
959    for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
960      if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
961        // Ignore OptForSize and OptForSpeed, they aren't really requirements,
962        // rather they are hints to isel.
963        //
964        // FIXME: Find better way to model this.
965        if (Pred->getDef()->getName() == "OptForSize" ||
966            Pred->getDef()->getName() == "OptForSpeed")
967          continue;
968
969        // FIXME: Total hack; for now, we just limit ourselves to In32BitMode
970        // and In64BitMode, because we aren't going to have the right feature
971        // masks for SSE and friends. We need to decide what we are going to do
972        // about CPU subtypes to implement this the right way.
973        if (Pred->getDef()->getName() != "In32BitMode" &&
974            Pred->getDef()->getName() != "In64BitMode")
975          continue;
976
977        II->RequiredFeatures.push_back(getSubtargetFeature(Pred->getDef()));
978      }
979    }
980
981    Instructions.push_back(II.take());
982  }
983
984  // Build info for the register classes.
985  BuildRegisterClasses(Target, SingletonRegisterNames);
986
987  // Build info for the user defined assembly operand classes.
988  BuildOperandClasses(Target);
989
990  // Build the instruction information.
991  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
992         ie = Instructions.end(); it != ie; ++it) {
993    InstructionInfo *II = *it;
994
995    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
996      StringRef Token = II->Tokens[i];
997
998      // Check for singleton registers.
999      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
1000        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
1001        InstructionInfo::Operand Op;
1002        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
1003        Op.OperandInfo = 0;
1004        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1005               "Unexpected class for singleton register");
1006        II->Operands.push_back(Op);
1007        continue;
1008      }
1009
1010      // Check for simple tokens.
1011      if (Token[0] != '$') {
1012        InstructionInfo::Operand Op;
1013        Op.Class = getTokenClass(Token);
1014        Op.OperandInfo = 0;
1015        II->Operands.push_back(Op);
1016        continue;
1017      }
1018
1019      // Otherwise this is an operand reference.
1020      StringRef OperandName;
1021      if (Token[1] == '{')
1022        OperandName = Token.substr(2, Token.size() - 3);
1023      else
1024        OperandName = Token.substr(1);
1025
1026      // Map this token to an operand. FIXME: Move elsewhere.
1027      unsigned Idx;
1028      try {
1029        Idx = II->Instr->getOperandNamed(OperandName);
1030      } catch(...) {
1031        throw std::string("error: unable to find operand: '" +
1032                          OperandName.str() + "'");
1033      }
1034
1035      // FIXME: This is annoying, the named operand may be tied (e.g.,
1036      // XCHG8rm). What we want is the untied operand, which we now have to
1037      // grovel for. Only worry about this for single entry operands, we have to
1038      // clean this up anyway.
1039      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
1040      if (OI->Constraints[0].isTied()) {
1041        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
1042
1043        // The tied operand index is an MIOperand index, find the operand that
1044        // contains it.
1045        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
1046          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
1047            OI = &II->Instr->OperandList[i];
1048            break;
1049          }
1050        }
1051
1052        assert(OI && "Unable to find tied operand target!");
1053      }
1054
1055      InstructionInfo::Operand Op;
1056      Op.Class = getOperandClass(Token, *OI);
1057      Op.OperandInfo = OI;
1058      II->Operands.push_back(Op);
1059    }
1060  }
1061
1062  // Reorder classes so that classes preceed super classes.
1063  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1064}
1065
1066static std::pair<unsigned, unsigned> *
1067GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
1068                      unsigned Index) {
1069  for (unsigned i = 0, e = List.size(); i != e; ++i)
1070    if (Index == List[i].first)
1071      return &List[i];
1072
1073  return 0;
1074}
1075
1076static void EmitConvertToMCInst(CodeGenTarget &Target,
1077                                std::vector<InstructionInfo*> &Infos,
1078                                raw_ostream &OS) {
1079  // Write the convert function to a separate stream, so we can drop it after
1080  // the enum.
1081  std::string ConvertFnBody;
1082  raw_string_ostream CvtOS(ConvertFnBody);
1083
1084  // Function we have already generated.
1085  std::set<std::string> GeneratedFns;
1086
1087  // Start the unified conversion function.
1088
1089  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1090        << "unsigned Opcode,\n"
1091        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1092        << "> &Operands) {\n";
1093  CvtOS << "  Inst.setOpcode(Opcode);\n";
1094  CvtOS << "  switch (Kind) {\n";
1095  CvtOS << "  default:\n";
1096
1097  // Start the enum, which we will generate inline.
1098
1099  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1100  OS << "enum ConversionKind {\n";
1101
1102  // TargetOperandClass - This is the target's operand class, like X86Operand.
1103  std::string TargetOperandClass = Target.getName() + "Operand";
1104
1105  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1106         ie = Infos.end(); it != ie; ++it) {
1107    InstructionInfo &II = **it;
1108
1109    // Order the (class) operands by the order to convert them into an MCInst.
1110    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1111    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1112      InstructionInfo::Operand &Op = II.Operands[i];
1113      if (Op.OperandInfo)
1114        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1115    }
1116
1117    // Find any tied operands.
1118    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1119    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1120      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1121      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1122        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1123        if (CI.isTied())
1124          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1125                                                CI.getTiedOperand()));
1126      }
1127    }
1128
1129    std::sort(MIOperandList.begin(), MIOperandList.end());
1130
1131    // Compute the total number of operands.
1132    unsigned NumMIOperands = 0;
1133    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1134      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1135      NumMIOperands = std::max(NumMIOperands,
1136                               OI.MIOperandNo + OI.MINumOperands);
1137    }
1138
1139    // Build the conversion function signature.
1140    std::string Signature = "Convert";
1141    unsigned CurIndex = 0;
1142    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1143      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1144      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1145             "Duplicate match for instruction operand!");
1146
1147      // Skip operands which weren't matched by anything, this occurs when the
1148      // .td file encodes "implicit" operands as explicit ones.
1149      //
1150      // FIXME: This should be removed from the MCInst structure.
1151      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1152        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1153                                                                   CurIndex);
1154        if (!Tie)
1155          Signature += "__Imp";
1156        else
1157          Signature += "__Tie" + utostr(Tie->second);
1158      }
1159
1160      Signature += "__";
1161
1162      // Registers are always converted the same, don't duplicate the conversion
1163      // function based on them.
1164      //
1165      // FIXME: We could generalize this based on the render method, if it
1166      // mattered.
1167      if (Op.Class->isRegisterClass())
1168        Signature += "Reg";
1169      else
1170        Signature += Op.Class->ClassName;
1171      Signature += utostr(Op.OperandInfo->MINumOperands);
1172      Signature += "_" + utostr(MIOperandList[i].second);
1173
1174      CurIndex += Op.OperandInfo->MINumOperands;
1175    }
1176
1177    // Add any trailing implicit operands.
1178    for (; CurIndex != NumMIOperands; ++CurIndex) {
1179      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1180                                                                 CurIndex);
1181      if (!Tie)
1182        Signature += "__Imp";
1183      else
1184        Signature += "__Tie" + utostr(Tie->second);
1185    }
1186
1187    II.ConversionFnKind = Signature;
1188
1189    // Check if we have already generated this signature.
1190    if (!GeneratedFns.insert(Signature).second)
1191      continue;
1192
1193    // If not, emit it now.
1194
1195    // Add to the enum list.
1196    OS << "  " << Signature << ",\n";
1197
1198    // And to the convert function.
1199    CvtOS << "  case " << Signature << ":\n";
1200    CurIndex = 0;
1201    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1202      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1203
1204      // Add the implicit operands.
1205      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1206        // See if this is a tied operand.
1207        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1208                                                                   CurIndex);
1209
1210        if (!Tie) {
1211          // If not, this is some implicit operand. Just assume it is a register
1212          // for now.
1213          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1214        } else {
1215          // Copy the tied operand.
1216          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1217          CvtOS << "    Inst.addOperand(Inst.getOperand("
1218                << Tie->second << "));\n";
1219        }
1220      }
1221
1222      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1223         << MIOperandList[i].second
1224         << "])->" << Op.Class->RenderMethod
1225         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1226      CurIndex += Op.OperandInfo->MINumOperands;
1227    }
1228
1229    // And add trailing implicit operands.
1230    for (; CurIndex != NumMIOperands; ++CurIndex) {
1231      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1232                                                                 CurIndex);
1233
1234      if (!Tie) {
1235        // If not, this is some implicit operand. Just assume it is a register
1236        // for now.
1237        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1238      } else {
1239        // Copy the tied operand.
1240        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1241        CvtOS << "    Inst.addOperand(Inst.getOperand("
1242              << Tie->second << "));\n";
1243      }
1244    }
1245
1246    CvtOS << "    return;\n";
1247  }
1248
1249  // Finish the convert function.
1250
1251  CvtOS << "  }\n";
1252  CvtOS << "}\n\n";
1253
1254  // Finish the enum, and drop the convert function after it.
1255
1256  OS << "  NumConversionVariants\n";
1257  OS << "};\n\n";
1258
1259  OS << CvtOS.str();
1260}
1261
1262/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1263static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1264                                      std::vector<ClassInfo*> &Infos,
1265                                      raw_ostream &OS) {
1266  OS << "namespace {\n\n";
1267
1268  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1269     << "/// instruction matching.\n";
1270  OS << "enum MatchClassKind {\n";
1271  OS << "  InvalidMatchClass = 0,\n";
1272  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1273         ie = Infos.end(); it != ie; ++it) {
1274    ClassInfo &CI = **it;
1275    OS << "  " << CI.Name << ", // ";
1276    if (CI.Kind == ClassInfo::Token) {
1277      OS << "'" << CI.ValueName << "'\n";
1278    } else if (CI.isRegisterClass()) {
1279      if (!CI.ValueName.empty())
1280        OS << "register class '" << CI.ValueName << "'\n";
1281      else
1282        OS << "derived register class\n";
1283    } else {
1284      OS << "user defined class '" << CI.ValueName << "'\n";
1285    }
1286  }
1287  OS << "  NumMatchClassKinds\n";
1288  OS << "};\n\n";
1289
1290  OS << "}\n\n";
1291}
1292
1293/// EmitClassifyOperand - Emit the function to classify an operand.
1294static void EmitClassifyOperand(CodeGenTarget &Target,
1295                                AsmMatcherInfo &Info,
1296                                raw_ostream &OS) {
1297  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1298     << "  " << Target.getName() << "Operand &Operand = *("
1299     << Target.getName() << "Operand*)GOp;\n";
1300
1301  // Classify tokens.
1302  OS << "  if (Operand.isToken())\n";
1303  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1304
1305  // Classify registers.
1306  //
1307  // FIXME: Don't hardcode isReg, getReg.
1308  OS << "  if (Operand.isReg()) {\n";
1309  OS << "    switch (Operand.getReg()) {\n";
1310  OS << "    default: return InvalidMatchClass;\n";
1311  for (std::map<Record*, ClassInfo*>::iterator
1312         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1313       it != ie; ++it)
1314    OS << "    case " << Target.getName() << "::"
1315       << it->first->getName() << ": return " << it->second->Name << ";\n";
1316  OS << "    }\n";
1317  OS << "  }\n\n";
1318
1319  // Classify user defined operands.
1320  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1321         ie = Info.Classes.end(); it != ie; ++it) {
1322    ClassInfo &CI = **it;
1323
1324    if (!CI.isUserClass())
1325      continue;
1326
1327    OS << "  // '" << CI.ClassName << "' class";
1328    if (!CI.SuperClasses.empty()) {
1329      OS << ", subclass of ";
1330      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1331        if (i) OS << ", ";
1332        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1333        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1334      }
1335    }
1336    OS << "\n";
1337
1338    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1339
1340    // Validate subclass relationships.
1341    if (!CI.SuperClasses.empty()) {
1342      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1343        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1344           << "() && \"Invalid class relationship!\");\n";
1345    }
1346
1347    OS << "    return " << CI.Name << ";\n";
1348    OS << "  }\n\n";
1349  }
1350  OS << "  return InvalidMatchClass;\n";
1351  OS << "}\n\n";
1352}
1353
1354/// EmitIsSubclass - Emit the subclass predicate function.
1355static void EmitIsSubclass(CodeGenTarget &Target,
1356                           std::vector<ClassInfo*> &Infos,
1357                           raw_ostream &OS) {
1358  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1359  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1360  OS << "  if (A == B)\n";
1361  OS << "    return true;\n\n";
1362
1363  OS << "  switch (A) {\n";
1364  OS << "  default:\n";
1365  OS << "    return false;\n";
1366  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1367         ie = Infos.end(); it != ie; ++it) {
1368    ClassInfo &A = **it;
1369
1370    if (A.Kind != ClassInfo::Token) {
1371      std::vector<StringRef> SuperClasses;
1372      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1373             ie = Infos.end(); it != ie; ++it) {
1374        ClassInfo &B = **it;
1375
1376        if (&A != &B && A.isSubsetOf(B))
1377          SuperClasses.push_back(B.Name);
1378      }
1379
1380      if (SuperClasses.empty())
1381        continue;
1382
1383      OS << "\n  case " << A.Name << ":\n";
1384
1385      if (SuperClasses.size() == 1) {
1386        OS << "    return B == " << SuperClasses.back() << ";\n";
1387        continue;
1388      }
1389
1390      OS << "    switch (B) {\n";
1391      OS << "    default: return false;\n";
1392      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1393        OS << "    case " << SuperClasses[i] << ": return true;\n";
1394      OS << "    }\n";
1395    }
1396  }
1397  OS << "  }\n";
1398  OS << "}\n\n";
1399}
1400
1401
1402
1403/// EmitMatchTokenString - Emit the function to match a token string to the
1404/// appropriate match class value.
1405static void EmitMatchTokenString(CodeGenTarget &Target,
1406                                 std::vector<ClassInfo*> &Infos,
1407                                 raw_ostream &OS) {
1408  // Construct the match list.
1409  std::vector<StringMatcher::StringPair> Matches;
1410  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1411         ie = Infos.end(); it != ie; ++it) {
1412    ClassInfo &CI = **it;
1413
1414    if (CI.Kind == ClassInfo::Token)
1415      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1416                                                  "return " + CI.Name + ";"));
1417  }
1418
1419  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1420
1421  StringMatcher("Name", Matches, OS).Emit();
1422
1423  OS << "  return InvalidMatchClass;\n";
1424  OS << "}\n\n";
1425}
1426
1427/// EmitMatchRegisterName - Emit the function to match a string to the target
1428/// specific register enum.
1429static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1430                                  raw_ostream &OS) {
1431  // Construct the match list.
1432  std::vector<StringMatcher::StringPair> Matches;
1433  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1434    const CodeGenRegister &Reg = Target.getRegisters()[i];
1435    if (Reg.TheDef->getValueAsString("AsmName").empty())
1436      continue;
1437
1438    Matches.push_back(StringMatcher::StringPair(
1439                                        Reg.TheDef->getValueAsString("AsmName"),
1440                                        "return " + utostr(i + 1) + ";"));
1441  }
1442
1443  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1444
1445  StringMatcher("Name", Matches, OS).Emit();
1446
1447  OS << "  return 0;\n";
1448  OS << "}\n\n";
1449}
1450
1451/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1452/// definitions.
1453static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
1454                                                AsmMatcherInfo &Info,
1455                                                raw_ostream &OS) {
1456  OS << "// Flags for subtarget features that participate in "
1457     << "instruction matching.\n";
1458  OS << "enum SubtargetFeatureFlag {\n";
1459  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1460         it = Info.SubtargetFeatures.begin(),
1461         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1462    SubtargetFeatureInfo &SFI = *it->second;
1463    OS << "  " << SFI.EnumName << " = (1 << " << SFI.Index << "),\n";
1464  }
1465  OS << "  Feature_None = 0\n";
1466  OS << "};\n\n";
1467}
1468
1469/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1470/// available features given a subtarget.
1471static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
1472                                         AsmMatcherInfo &Info,
1473                                         raw_ostream &OS) {
1474  std::string ClassName =
1475    Info.AsmParser->getValueAsString("AsmParserClassName");
1476
1477  OS << "unsigned " << Target.getName() << ClassName << "::\n"
1478     << "ComputeAvailableFeatures(const " << Target.getName()
1479     << "Subtarget *Subtarget) const {\n";
1480  OS << "  unsigned Features = 0;\n";
1481  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1482         it = Info.SubtargetFeatures.begin(),
1483         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1484    SubtargetFeatureInfo &SFI = *it->second;
1485    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1486       << ")\n";
1487    OS << "    Features |= " << SFI.EnumName << ";\n";
1488  }
1489  OS << "  return Features;\n";
1490  OS << "}\n\n";
1491}
1492
1493void AsmMatcherEmitter::run(raw_ostream &OS) {
1494  CodeGenTarget Target;
1495  Record *AsmParser = Target.getAsmParser();
1496  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1497
1498  // Compute the information on the instructions to match.
1499  AsmMatcherInfo Info(AsmParser);
1500  Info.BuildInfo(Target);
1501
1502  // Sort the instruction table using the partial order on classes. We use
1503  // stable_sort to ensure that ambiguous instructions are still
1504  // deterministically ordered.
1505  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1506                   less_ptr<InstructionInfo>());
1507
1508  DEBUG_WITH_TYPE("instruction_info", {
1509      for (std::vector<InstructionInfo*>::iterator
1510             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1511           it != ie; ++it)
1512        (*it)->dump();
1513    });
1514
1515  // Check for ambiguous instructions.
1516  unsigned NumAmbiguous = 0;
1517  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1518    for (unsigned j = i + 1; j != e; ++j) {
1519      InstructionInfo &A = *Info.Instructions[i];
1520      InstructionInfo &B = *Info.Instructions[j];
1521
1522      if (A.CouldMatchAmiguouslyWith(B)) {
1523        DEBUG_WITH_TYPE("ambiguous_instrs", {
1524            errs() << "warning: ambiguous instruction match:\n";
1525            A.dump();
1526            errs() << "\nis incomparable with:\n";
1527            B.dump();
1528            errs() << "\n\n";
1529          });
1530        ++NumAmbiguous;
1531      }
1532    }
1533  }
1534  if (NumAmbiguous)
1535    DEBUG_WITH_TYPE("ambiguous_instrs", {
1536        errs() << "warning: " << NumAmbiguous
1537               << " ambiguous instructions!\n";
1538      });
1539
1540  // Write the output.
1541
1542  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1543
1544  // Information for the class declaration.
1545  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1546  OS << "#undef GET_ASSEMBLER_HEADER\n";
1547  OS << "  // This should be included into the middle of the declaration of \n";
1548  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1549  OS << "  unsigned ComputeAvailableFeatures(const " <<
1550           Target.getName() << "Subtarget *Subtarget) const;\n";
1551  OS << "  enum MatchResultTy {\n";
1552  OS << "    Match_Success, Match_Fail\n";
1553  OS << "  };\n";
1554  OS << "  MatchResultTy MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1555     << " &Operands, MCInst &Inst);\n\n";
1556  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1557
1558
1559
1560
1561  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1562  OS << "#undef GET_REGISTER_MATCHER\n\n";
1563
1564  // Emit the subtarget feature enumeration.
1565  EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);
1566
1567  // Emit the function to match a register name to number.
1568  EmitMatchRegisterName(Target, AsmParser, OS);
1569
1570  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1571
1572
1573  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1574  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1575
1576  // Generate the unified function to convert operands into an MCInst.
1577  EmitConvertToMCInst(Target, Info.Instructions, OS);
1578
1579  // Emit the enumeration for classes which participate in matching.
1580  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1581
1582  // Emit the routine to match token strings to their match class.
1583  EmitMatchTokenString(Target, Info.Classes, OS);
1584
1585  // Emit the routine to classify an operand.
1586  EmitClassifyOperand(Target, Info, OS);
1587
1588  // Emit the subclass predicate routine.
1589  EmitIsSubclass(Target, Info.Classes, OS);
1590
1591  // Emit the available features compute function.
1592  EmitComputeAvailableFeatures(Target, Info, OS);
1593
1594  // Finally, build the match function.
1595
1596  size_t MaxNumOperands = 0;
1597  for (std::vector<InstructionInfo*>::const_iterator it =
1598         Info.Instructions.begin(), ie = Info.Instructions.end();
1599       it != ie; ++it)
1600    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1601
1602  OS << Target.getName() << ClassName << "::MatchResultTy "
1603     << Target.getName() << ClassName << "::\n"
1604     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1605     << " &Operands,\n";
1606  OS << "                     MCInst &Inst) {\n";
1607
1608  // Emit the static match table; unused classes get initalized to 0 which is
1609  // guaranteed to be InvalidMatchClass.
1610  //
1611  // FIXME: We can reduce the size of this table very easily. First, we change
1612  // it so that store the kinds in separate bit-fields for each index, which
1613  // only needs to be the max width used for classes at that index (we also need
1614  // to reject based on this during classification). If we then make sure to
1615  // order the match kinds appropriately (putting mnemonics last), then we
1616  // should only end up using a few bits for each class, especially the ones
1617  // following the mnemonic.
1618  OS << "  static const struct MatchEntry {\n";
1619  OS << "    unsigned Opcode;\n";
1620  OS << "    ConversionKind ConvertFn;\n";
1621  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1622  OS << "    unsigned RequiredFeatures;\n";
1623  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
1624
1625  for (std::vector<InstructionInfo*>::const_iterator it =
1626         Info.Instructions.begin(), ie = Info.Instructions.end();
1627       it != ie; ++it) {
1628    InstructionInfo &II = **it;
1629
1630    OS << "    { " << Target.getName() << "::" << II.InstrName
1631       << ", " << II.ConversionFnKind << ", { ";
1632    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1633      InstructionInfo::Operand &Op = II.Operands[i];
1634
1635      if (i) OS << ", ";
1636      OS << Op.Class->Name;
1637    }
1638    OS << " }, ";
1639
1640    // Write the required features mask.
1641    if (!II.RequiredFeatures.empty()) {
1642      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1643        if (i) OS << "|";
1644        OS << II.RequiredFeatures[i]->EnumName;
1645      }
1646    } else
1647      OS << "0";
1648
1649    OS << "},\n";
1650  }
1651
1652  OS << "  };\n\n";
1653
1654
1655  // Emit code to get the available features.
1656  OS << "  // Get the current feature set.\n";
1657  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1658
1659  // Emit code to compute the class list for this operand vector.
1660  OS << "  // Eliminate obvious mismatches.\n";
1661  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
1662  OS << "    return Match_Fail;\n\n";
1663
1664  OS << "  // Compute the class list for this operand vector.\n";
1665  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1666  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1667  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1668
1669  OS << "    // Check for invalid operands before matching.\n";
1670  OS << "    if (Classes[i] == InvalidMatchClass)\n";
1671  OS << "      return Match_Fail;\n";
1672  OS << "  }\n\n";
1673
1674  OS << "  // Mark unused classes.\n";
1675  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
1676     << "i != e; ++i)\n";
1677  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1678
1679  // Emit code to search the table.
1680  OS << "  // Search the table.\n";
1681  OS << "  for (const MatchEntry *it = MatchTable, "
1682     << "*ie = MatchTable + " << Info.Instructions.size()
1683     << "; it != ie; ++it) {\n";
1684
1685  // Emit check that the required features are available.
1686  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
1687     << "!= it->RequiredFeatures)\n";
1688  OS << "      continue;\n";
1689
1690  // Emit check that the subclasses match.
1691  for (unsigned i = 0; i != MaxNumOperands; ++i) {
1692    OS << "    if (!IsSubclass(Classes["
1693       << i << "], it->Classes[" << i << "]))\n";
1694    OS << "      continue;\n";
1695  }
1696
1697  OS << "\n";
1698  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1699
1700  // Call the post-processing function, if used.
1701  std::string InsnCleanupFn =
1702    AsmParser->getValueAsString("AsmParserInstCleanup");
1703  if (!InsnCleanupFn.empty())
1704    OS << "    " << InsnCleanupFn << "(Inst);\n";
1705
1706  OS << "    return Match_Success;\n";
1707  OS << "  }\n\n";
1708
1709  OS << "  return Match_Fail;\n";
1710  OS << "}\n\n";
1711
1712  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
1713}
1714