AsmMatcherEmitter.cpp revision 906bc368bc0fe18682edc0743ada41f62e436383
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//   2. The input can now be treated as a tuple of classes (static tokens are
67//      simple singleton sets). Each such tuple should generally map to a single
68//      instruction (we currently ignore cases where this isn't true, whee!!!),
69//      which we can emit a simple matcher for.
70//
71//===----------------------------------------------------------------------===//
72
73#include "AsmMatcherEmitter.h"
74#include "CodeGenTarget.h"
75#include "Record.h"
76#include "StringMatcher.h"
77#include "llvm/ADT/OwningPtr.h"
78#include "llvm/ADT/PointerUnion.h"
79#include "llvm/ADT/SmallPtrSet.h"
80#include "llvm/ADT/SmallVector.h"
81#include "llvm/ADT/STLExtras.h"
82#include "llvm/ADT/StringExtras.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Debug.h"
85#include <map>
86#include <set>
87using namespace llvm;
88
89static cl::opt<std::string>
90MatchPrefix("match-prefix", cl::init(""),
91            cl::desc("Only match instructions with the given prefix"));
92
93
94namespace {
95  class AsmMatcherInfo;
96struct SubtargetFeatureInfo;
97
98/// ClassInfo - Helper class for storing the information about a particular
99/// class of operands which can be matched.
100struct ClassInfo {
101  enum ClassInfoKind {
102    /// Invalid kind, for use as a sentinel value.
103    Invalid = 0,
104
105    /// The class for a particular token.
106    Token,
107
108    /// The (first) register class, subsequent register classes are
109    /// RegisterClass0+1, and so on.
110    RegisterClass0,
111
112    /// The (first) user defined class, subsequent user defined classes are
113    /// UserClass0+1, and so on.
114    UserClass0 = 1<<16
115  };
116
117  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
118  /// N) for the Nth user defined class.
119  unsigned Kind;
120
121  /// SuperClasses - The super classes of this class. Note that for simplicities
122  /// sake user operands only record their immediate super class, while register
123  /// operands include all superclasses.
124  std::vector<ClassInfo*> SuperClasses;
125
126  /// Name - The full class name, suitable for use in an enum.
127  std::string Name;
128
129  /// ClassName - The unadorned generic name for this class (e.g., Token).
130  std::string ClassName;
131
132  /// ValueName - The name of the value this class represents; for a token this
133  /// is the literal token string, for an operand it is the TableGen class (or
134  /// empty if this is a derived class).
135  std::string ValueName;
136
137  /// PredicateMethod - The name of the operand method to test whether the
138  /// operand matches this class; this is not valid for Token or register kinds.
139  std::string PredicateMethod;
140
141  /// RenderMethod - The name of the operand method to add this operand to an
142  /// MCInst; this is not valid for Token or register kinds.
143  std::string RenderMethod;
144
145  /// For register classes, the records for all the registers in this class.
146  std::set<Record*> Registers;
147
148public:
149  /// isRegisterClass() - Check if this is a register class.
150  bool isRegisterClass() const {
151    return Kind >= RegisterClass0 && Kind < UserClass0;
152  }
153
154  /// isUserClass() - Check if this is a user defined class.
155  bool isUserClass() const {
156    return Kind >= UserClass0;
157  }
158
159  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
160  /// are related if they are in the same class hierarchy.
161  bool isRelatedTo(const ClassInfo &RHS) const {
162    // Tokens are only related to tokens.
163    if (Kind == Token || RHS.Kind == Token)
164      return Kind == Token && RHS.Kind == Token;
165
166    // Registers classes are only related to registers classes, and only if
167    // their intersection is non-empty.
168    if (isRegisterClass() || RHS.isRegisterClass()) {
169      if (!isRegisterClass() || !RHS.isRegisterClass())
170        return false;
171
172      std::set<Record*> Tmp;
173      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
174      std::set_intersection(Registers.begin(), Registers.end(),
175                            RHS.Registers.begin(), RHS.Registers.end(),
176                            II);
177
178      return !Tmp.empty();
179    }
180
181    // Otherwise we have two users operands; they are related if they are in the
182    // same class hierarchy.
183    //
184    // FIXME: This is an oversimplification, they should only be related if they
185    // intersect, however we don't have that information.
186    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
187    const ClassInfo *Root = this;
188    while (!Root->SuperClasses.empty())
189      Root = Root->SuperClasses.front();
190
191    const ClassInfo *RHSRoot = &RHS;
192    while (!RHSRoot->SuperClasses.empty())
193      RHSRoot = RHSRoot->SuperClasses.front();
194
195    return Root == RHSRoot;
196  }
197
198  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
199  bool isSubsetOf(const ClassInfo &RHS) const {
200    // This is a subset of RHS if it is the same class...
201    if (this == &RHS)
202      return true;
203
204    // ... or if any of its super classes are a subset of RHS.
205    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
206           ie = SuperClasses.end(); it != ie; ++it)
207      if ((*it)->isSubsetOf(RHS))
208        return true;
209
210    return false;
211  }
212
213  /// operator< - Compare two classes.
214  bool operator<(const ClassInfo &RHS) const {
215    if (this == &RHS)
216      return false;
217
218    // Unrelated classes can be ordered by kind.
219    if (!isRelatedTo(RHS))
220      return Kind < RHS.Kind;
221
222    switch (Kind) {
223    case Invalid:
224      assert(0 && "Invalid kind!");
225    case Token:
226      // Tokens are comparable by value.
227      //
228      // FIXME: Compare by enum value.
229      return ValueName < RHS.ValueName;
230
231    default:
232      // This class preceeds the RHS if it is a proper subset of the RHS.
233      if (isSubsetOf(RHS))
234        return true;
235      if (RHS.isSubsetOf(*this))
236        return false;
237
238      // Otherwise, order by name to ensure we have a total ordering.
239      return ValueName < RHS.ValueName;
240    }
241  }
242};
243
244/// MatchableInfo - Helper class for storing the necessary information for an
245/// instruction or alias which is capable of being matched.
246struct MatchableInfo {
247  struct AsmOperand {
248    /// Token - This is the token that the operand came from.
249    StringRef Token;
250
251    /// The unique class instance this operand should match.
252    ClassInfo *Class;
253
254    /// The operand name this is, if anything.
255    StringRef SrcOpName;
256
257    explicit AsmOperand(StringRef T) : Token(T), Class(0) {}
258  };
259
260  /// ResOperand - This represents a single operand in the result instruction
261  /// generated by the match.  In cases (like addressing modes) where a single
262  /// assembler operand expands to multiple MCOperands, this represents the
263  /// single assembler operand, not the MCOperand.
264  struct ResOperand {
265    enum {
266      /// RenderAsmOperand - This represents an operand result that is
267      /// generated by calling the render method on the assembly operand.  The
268      /// corresponding AsmOperand is specified by AsmOperandNum.
269      RenderAsmOperand,
270
271      /// TiedOperand - This represents a result operand that is a duplicate of
272      /// a previous result operand.
273      TiedOperand,
274
275      /// ImmOperand - This represents an immediate value that is dumped into
276      /// the operand.
277      ImmOperand,
278
279      /// RegOperand - This represents a fixed register that is dumped in.
280      RegOperand
281    } Kind;
282
283    union {
284      /// This is the operand # in the AsmOperands list that this should be
285      /// copied from.
286      unsigned AsmOperandNum;
287
288      /// TiedOperandNum - This is the (earlier) result operand that should be
289      /// copied from.
290      unsigned TiedOperandNum;
291
292      /// ImmVal - This is the immediate value added to the instruction.
293      int64_t ImmVal;
294
295      /// Register - This is the register record.
296      Record *Register;
297    };
298
299    /// OpInfo - This is the information about the instruction operand that is
300    /// being populated.
301    const CGIOperandList::OperandInfo *OpInfo;
302
303    static ResOperand getRenderedOp(unsigned AsmOpNum,
304                                    const CGIOperandList::OperandInfo *Op) {
305      ResOperand X;
306      X.Kind = RenderAsmOperand;
307      X.AsmOperandNum = AsmOpNum;
308      X.OpInfo = Op;
309      return X;
310    }
311
312    static ResOperand getTiedOp(unsigned TiedOperandNum,
313                                const CGIOperandList::OperandInfo *Op) {
314      ResOperand X;
315      X.Kind = TiedOperand;
316      X.TiedOperandNum = TiedOperandNum;
317      X.OpInfo = Op;
318      return X;
319    }
320
321    static ResOperand getImmOp(int64_t Val,
322                               const CGIOperandList::OperandInfo *Op) {
323      ResOperand X;
324      X.Kind = ImmOperand;
325      X.ImmVal = Val;
326      X.OpInfo = Op;
327      return X;
328    }
329
330    static ResOperand getRegOp(Record *Reg,
331                               const CGIOperandList::OperandInfo *Op) {
332      ResOperand X;
333      X.Kind = RegOperand;
334      X.Register = Reg;
335      X.OpInfo = Op;
336      return X;
337    }
338
339  };
340
341  /// TheDef - This is the definition of the instruction or InstAlias that this
342  /// matchable came from.
343  Record *const TheDef;
344
345  /// DefRec - This is the definition that it came from.
346  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
347
348  const CodeGenInstruction *getResultInst() const {
349    if (DefRec.is<const CodeGenInstruction*>())
350      return DefRec.get<const CodeGenInstruction*>();
351    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
352  }
353
354  /// ResOperands - This is the operand list that should be built for the result
355  /// MCInst.
356  std::vector<ResOperand> ResOperands;
357
358  /// AsmString - The assembly string for this instruction (with variants
359  /// removed), e.g. "movsx $src, $dst".
360  std::string AsmString;
361
362  /// Mnemonic - This is the first token of the matched instruction, its
363  /// mnemonic.
364  StringRef Mnemonic;
365
366  /// AsmOperands - The textual operands that this instruction matches,
367  /// annotated with a class and where in the OperandList they were defined.
368  /// This directly corresponds to the tokenized AsmString after the mnemonic is
369  /// removed.
370  SmallVector<AsmOperand, 4> AsmOperands;
371
372  /// Predicates - The required subtarget features to match this instruction.
373  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
374
375  /// ConversionFnKind - The enum value which is passed to the generated
376  /// ConvertToMCInst to convert parsed operands into an MCInst for this
377  /// function.
378  std::string ConversionFnKind;
379
380  MatchableInfo(const CodeGenInstruction &CGI)
381    : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) {
382  }
383
384  MatchableInfo(const CodeGenInstAlias *Alias)
385    : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) {
386  }
387
388  void Initialize(const AsmMatcherInfo &Info,
389                  SmallPtrSet<Record*, 16> &SingletonRegisters);
390
391  /// Validate - Return true if this matchable is a valid thing to match against
392  /// and perform a bunch of validity checking.
393  bool Validate(StringRef CommentDelimiter, bool Hack) const;
394
395  /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
396  /// register, return the Record for it, otherwise return null.
397  Record *getSingletonRegisterForAsmOperand(unsigned i,
398                                            const AsmMatcherInfo &Info) const;
399
400  int FindAsmOperandNamed(StringRef N) const {
401    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
402      if (N == AsmOperands[i].SrcOpName)
403        return i;
404    return -1;
405  }
406
407  void BuildInstructionResultOperands();
408  void BuildAliasResultOperands();
409
410  /// operator< - Compare two matchables.
411  bool operator<(const MatchableInfo &RHS) const {
412    // The primary comparator is the instruction mnemonic.
413    if (Mnemonic != RHS.Mnemonic)
414      return Mnemonic < RHS.Mnemonic;
415
416    if (AsmOperands.size() != RHS.AsmOperands.size())
417      return AsmOperands.size() < RHS.AsmOperands.size();
418
419    // Compare lexicographically by operand. The matcher validates that other
420    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
421    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
422      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
423        return true;
424      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
425        return false;
426    }
427
428    return false;
429  }
430
431  /// CouldMatchAmiguouslyWith - Check whether this matchable could
432  /// ambiguously match the same set of operands as \arg RHS (without being a
433  /// strictly superior match).
434  bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) {
435    // The primary comparator is the instruction mnemonic.
436    if (Mnemonic != RHS.Mnemonic)
437      return false;
438
439    // The number of operands is unambiguous.
440    if (AsmOperands.size() != RHS.AsmOperands.size())
441      return false;
442
443    // Otherwise, make sure the ordering of the two instructions is unambiguous
444    // by checking that either (a) a token or operand kind discriminates them,
445    // or (b) the ordering among equivalent kinds is consistent.
446
447    // Tokens and operand kinds are unambiguous (assuming a correct target
448    // specific parser).
449    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
450      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
451          AsmOperands[i].Class->Kind == ClassInfo::Token)
452        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
453            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
454          return false;
455
456    // Otherwise, this operand could commute if all operands are equivalent, or
457    // there is a pair of operands that compare less than and a pair that
458    // compare greater than.
459    bool HasLT = false, HasGT = false;
460    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
461      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
462        HasLT = true;
463      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
464        HasGT = true;
465    }
466
467    return !(HasLT ^ HasGT);
468  }
469
470  void dump();
471
472private:
473  void TokenizeAsmString(const AsmMatcherInfo &Info);
474};
475
476/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
477/// feature which participates in instruction matching.
478struct SubtargetFeatureInfo {
479  /// \brief The predicate record for this feature.
480  Record *TheDef;
481
482  /// \brief An unique index assigned to represent this feature.
483  unsigned Index;
484
485  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
486
487  /// \brief The name of the enumerated constant identifying this feature.
488  std::string getEnumName() const {
489    return "Feature_" + TheDef->getName();
490  }
491};
492
493class AsmMatcherInfo {
494public:
495  /// Tracked Records
496  RecordKeeper &Records;
497
498  /// The tablegen AsmParser record.
499  Record *AsmParser;
500
501  /// Target - The target information.
502  CodeGenTarget &Target;
503
504  /// The AsmParser "RegisterPrefix" value.
505  std::string RegisterPrefix;
506
507  /// The classes which are needed for matching.
508  std::vector<ClassInfo*> Classes;
509
510  /// The information on the matchables to match.
511  std::vector<MatchableInfo*> Matchables;
512
513  /// Map of Register records to their class information.
514  std::map<Record*, ClassInfo*> RegisterClasses;
515
516  /// Map of Predicate records to their subtarget information.
517  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
518
519private:
520  /// Map of token to class information which has already been constructed.
521  std::map<std::string, ClassInfo*> TokenClasses;
522
523  /// Map of RegisterClass records to their class information.
524  std::map<Record*, ClassInfo*> RegisterClassClasses;
525
526  /// Map of AsmOperandClass records to their class information.
527  std::map<Record*, ClassInfo*> AsmOperandClasses;
528
529private:
530  /// getTokenClass - Lookup or create the class for the given token.
531  ClassInfo *getTokenClass(StringRef Token);
532
533  /// getOperandClass - Lookup or create the class for the given operand.
534  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI);
535
536  /// BuildRegisterClasses - Build the ClassInfo* instances for register
537  /// classes.
538  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
539
540  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
541  /// operand classes.
542  void BuildOperandClasses();
543
544  void BuildInstructionOperandReference(MatchableInfo *II,
545                                        StringRef OpName,
546                                        MatchableInfo::AsmOperand &Op);
547  void BuildAliasOperandReference(MatchableInfo *II,
548                                  StringRef OpName,
549                                  MatchableInfo::AsmOperand &Op);
550
551public:
552  AsmMatcherInfo(Record *AsmParser,
553                 CodeGenTarget &Target,
554                 RecordKeeper &Records);
555
556  /// BuildInfo - Construct the various tables used during matching.
557  void BuildInfo();
558
559  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
560  /// given operand.
561  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
562    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
563    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
564      SubtargetFeatures.find(Def);
565    return I == SubtargetFeatures.end() ? 0 : I->second;
566  }
567
568  RecordKeeper &getRecords() const {
569    return Records;
570  }
571};
572
573}
574
575void MatchableInfo::dump() {
576  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
577
578  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
579    AsmOperand &Op = AsmOperands[i];
580    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
581    errs() << '\"' << Op.Token << "\"\n";
582  }
583}
584
585void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
586                               SmallPtrSet<Record*, 16> &SingletonRegisters) {
587  // TODO: Eventually support asmparser for Variant != 0.
588  AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0);
589
590  TokenizeAsmString(Info);
591
592  // Compute the require features.
593  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
594  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
595    if (SubtargetFeatureInfo *Feature =
596        Info.getSubtargetFeature(Predicates[i]))
597      RequiredFeatures.push_back(Feature);
598
599  // Collect singleton registers, if used.
600  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
601    if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info))
602      SingletonRegisters.insert(Reg);
603  }
604}
605
606/// TokenizeAsmString - Tokenize a simplified assembly string.
607void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
608  StringRef String = AsmString;
609  unsigned Prev = 0;
610  bool InTok = true;
611  for (unsigned i = 0, e = String.size(); i != e; ++i) {
612    switch (String[i]) {
613    case '[':
614    case ']':
615    case '*':
616    case '!':
617    case ' ':
618    case '\t':
619    case ',':
620      if (InTok) {
621        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
622        InTok = false;
623      }
624      if (!isspace(String[i]) && String[i] != ',')
625        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
626      Prev = i + 1;
627      break;
628
629    case '\\':
630      if (InTok) {
631        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
632        InTok = false;
633      }
634      ++i;
635      assert(i != String.size() && "Invalid quoted character");
636      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
637      Prev = i + 1;
638      break;
639
640    case '$': {
641      if (InTok) {
642        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
643        InTok = false;
644      }
645
646      // If this isn't "${", treat like a normal token.
647      if (i + 1 == String.size() || String[i + 1] != '{') {
648        Prev = i;
649        break;
650      }
651
652      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
653      assert(End != String.end() && "Missing brace in operand reference!");
654      size_t EndPos = End - String.begin();
655      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
656      Prev = EndPos + 1;
657      i = EndPos;
658      break;
659    }
660
661    case '.':
662      if (InTok)
663        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
664      Prev = i;
665      InTok = true;
666      break;
667
668    default:
669      InTok = true;
670    }
671  }
672  if (InTok && Prev != String.size())
673    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
674
675  // The first token of the instruction is the mnemonic, which must be a
676  // simple string, not a $foo variable or a singleton register.
677  assert(!AsmOperands.empty() && "Instruction has no tokens?");
678  Mnemonic = AsmOperands[0].Token;
679  if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info))
680    throw TGError(TheDef->getLoc(),
681                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
682
683  // Remove the first operand, it is tracked in the mnemonic field.
684  AsmOperands.erase(AsmOperands.begin());
685}
686
687
688
689bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
690  // Reject matchables with no .s string.
691  if (AsmString.empty())
692    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
693
694  // Reject any matchables with a newline in them, they should be marked
695  // isCodeGenOnly if they are pseudo instructions.
696  if (AsmString.find('\n') != std::string::npos)
697    throw TGError(TheDef->getLoc(),
698                  "multiline instruction is not valid for the asmparser, "
699                  "mark it isCodeGenOnly");
700
701  // Remove comments from the asm string.  We know that the asmstring only
702  // has one line.
703  if (!CommentDelimiter.empty() &&
704      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
705    throw TGError(TheDef->getLoc(),
706                  "asmstring for instruction has comment character in it, "
707                  "mark it isCodeGenOnly");
708
709  // Reject matchables with operand modifiers, these aren't something we can
710  // handle, the target should be refactored to use operands instead of
711  // modifiers.
712  //
713  // Also, check for instructions which reference the operand multiple times;
714  // this implies a constraint we would not honor.
715  std::set<std::string> OperandNames;
716  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
717    StringRef Tok = AsmOperands[i].Token;
718    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
719      throw TGError(TheDef->getLoc(),
720                    "matchable with operand modifier '" + Tok.str() +
721                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
722
723    // Verify that any operand is only mentioned once.
724    // We reject aliases and ignore instructions for now.
725    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
726      if (!Hack)
727        throw TGError(TheDef->getLoc(),
728                      "ERROR: matchable with tied operand '" + Tok.str() +
729                      "' can never be matched!");
730      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
731      // bunch of instructions.  It is unclear what the right answer is.
732      DEBUG({
733        errs() << "warning: '" << TheDef->getName() << "': "
734               << "ignoring instruction with tied operand '"
735               << Tok.str() << "'\n";
736      });
737      return false;
738    }
739  }
740
741  return true;
742}
743
744
745/// getSingletonRegisterForAsmOperand - If the specified token is a singleton
746/// register, return the register name, otherwise return a null StringRef.
747Record *MatchableInfo::
748getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{
749  StringRef Tok = AsmOperands[i].Token;
750  if (!Tok.startswith(Info.RegisterPrefix))
751    return 0;
752
753  StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
754  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
755    return Reg->TheDef;
756
757  // If there is no register prefix (i.e. "%" in "%eax"), then this may
758  // be some random non-register token, just ignore it.
759  if (Info.RegisterPrefix.empty())
760    return 0;
761
762  // Otherwise, we have something invalid prefixed with the register prefix,
763  // such as %foo.
764  std::string Err = "unable to find register for '" + RegName.str() +
765  "' (which matches register prefix)";
766  throw TGError(TheDef->getLoc(), Err);
767}
768
769
770static std::string getEnumNameForToken(StringRef Str) {
771  std::string Res;
772
773  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
774    switch (*it) {
775    case '*': Res += "_STAR_"; break;
776    case '%': Res += "_PCT_"; break;
777    case ':': Res += "_COLON_"; break;
778    case '!': Res += "_EXCLAIM_"; break;
779    default:
780      if (isalnum(*it))
781        Res += *it;
782      else
783        Res += "_" + utostr((unsigned) *it) + "_";
784    }
785  }
786
787  return Res;
788}
789
790ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
791  ClassInfo *&Entry = TokenClasses[Token];
792
793  if (!Entry) {
794    Entry = new ClassInfo();
795    Entry->Kind = ClassInfo::Token;
796    Entry->ClassName = "Token";
797    Entry->Name = "MCK_" + getEnumNameForToken(Token);
798    Entry->ValueName = Token;
799    Entry->PredicateMethod = "<invalid>";
800    Entry->RenderMethod = "<invalid>";
801    Classes.push_back(Entry);
802  }
803
804  return Entry;
805}
806
807ClassInfo *
808AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI) {
809  if (OI.Rec->isSubClassOf("RegisterClass")) {
810    if (ClassInfo *CI = RegisterClassClasses[OI.Rec])
811      return CI;
812    throw TGError(OI.Rec->getLoc(), "register class has no class info!");
813  }
814
815  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
816  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
817  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
818    return CI;
819
820  throw TGError(OI.Rec->getLoc(), "operand has no match class!");
821}
822
823void AsmMatcherInfo::
824BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
825  const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
826  const std::vector<CodeGenRegisterClass> &RegClassList =
827    Target.getRegisterClasses();
828
829  // The register sets used for matching.
830  std::set< std::set<Record*> > RegisterSets;
831
832  // Gather the defined sets.
833  for (std::vector<CodeGenRegisterClass>::const_iterator it =
834       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
835    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
836                                          it->Elements.end()));
837
838  // Add any required singleton sets.
839  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
840       ie = SingletonRegisters.end(); it != ie; ++it) {
841    Record *Rec = *it;
842    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
843  }
844
845  // Introduce derived sets where necessary (when a register does not determine
846  // a unique register set class), and build the mapping of registers to the set
847  // they should classify to.
848  std::map<Record*, std::set<Record*> > RegisterMap;
849  for (std::vector<CodeGenRegister>::const_iterator it = Registers.begin(),
850         ie = Registers.end(); it != ie; ++it) {
851    const CodeGenRegister &CGR = *it;
852    // Compute the intersection of all sets containing this register.
853    std::set<Record*> ContainingSet;
854
855    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
856           ie = RegisterSets.end(); it != ie; ++it) {
857      if (!it->count(CGR.TheDef))
858        continue;
859
860      if (ContainingSet.empty()) {
861        ContainingSet = *it;
862        continue;
863      }
864
865      std::set<Record*> Tmp;
866      std::swap(Tmp, ContainingSet);
867      std::insert_iterator< std::set<Record*> > II(ContainingSet,
868                                                   ContainingSet.begin());
869      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
870    }
871
872    if (!ContainingSet.empty()) {
873      RegisterSets.insert(ContainingSet);
874      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
875    }
876  }
877
878  // Construct the register classes.
879  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
880  unsigned Index = 0;
881  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
882         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
883    ClassInfo *CI = new ClassInfo();
884    CI->Kind = ClassInfo::RegisterClass0 + Index;
885    CI->ClassName = "Reg" + utostr(Index);
886    CI->Name = "MCK_Reg" + utostr(Index);
887    CI->ValueName = "";
888    CI->PredicateMethod = ""; // unused
889    CI->RenderMethod = "addRegOperands";
890    CI->Registers = *it;
891    Classes.push_back(CI);
892    RegisterSetClasses.insert(std::make_pair(*it, CI));
893  }
894
895  // Find the superclasses; we could compute only the subgroup lattice edges,
896  // but there isn't really a point.
897  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
898         ie = RegisterSets.end(); it != ie; ++it) {
899    ClassInfo *CI = RegisterSetClasses[*it];
900    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
901           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
902      if (*it != *it2 &&
903          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
904        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
905  }
906
907  // Name the register classes which correspond to a user defined RegisterClass.
908  for (std::vector<CodeGenRegisterClass>::const_iterator
909       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
910    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
911                                                         it->Elements.end())];
912    if (CI->ValueName.empty()) {
913      CI->ClassName = it->getName();
914      CI->Name = "MCK_" + it->getName();
915      CI->ValueName = it->getName();
916    } else
917      CI->ValueName = CI->ValueName + "," + it->getName();
918
919    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
920  }
921
922  // Populate the map for individual registers.
923  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
924         ie = RegisterMap.end(); it != ie; ++it)
925    RegisterClasses[it->first] = RegisterSetClasses[it->second];
926
927  // Name the register classes which correspond to singleton registers.
928  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
929         ie = SingletonRegisters.end(); it != ie; ++it) {
930    Record *Rec = *it;
931    ClassInfo *CI = RegisterClasses[Rec];
932    assert(CI && "Missing singleton register class info!");
933
934    if (CI->ValueName.empty()) {
935      CI->ClassName = Rec->getName();
936      CI->Name = "MCK_" + Rec->getName();
937      CI->ValueName = Rec->getName();
938    } else
939      CI->ValueName = CI->ValueName + "," + Rec->getName();
940  }
941}
942
943void AsmMatcherInfo::BuildOperandClasses() {
944  std::vector<Record*> AsmOperands =
945    Records.getAllDerivedDefinitions("AsmOperandClass");
946
947  // Pre-populate AsmOperandClasses map.
948  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
949         ie = AsmOperands.end(); it != ie; ++it)
950    AsmOperandClasses[*it] = new ClassInfo();
951
952  unsigned Index = 0;
953  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
954         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
955    ClassInfo *CI = AsmOperandClasses[*it];
956    CI->Kind = ClassInfo::UserClass0 + Index;
957
958    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
959    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
960      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
961      if (!DI) {
962        PrintError((*it)->getLoc(), "Invalid super class reference!");
963        continue;
964      }
965
966      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
967      if (!SC)
968        PrintError((*it)->getLoc(), "Invalid super class reference!");
969      else
970        CI->SuperClasses.push_back(SC);
971    }
972    CI->ClassName = (*it)->getValueAsString("Name");
973    CI->Name = "MCK_" + CI->ClassName;
974    CI->ValueName = (*it)->getName();
975
976    // Get or construct the predicate method name.
977    Init *PMName = (*it)->getValueInit("PredicateMethod");
978    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
979      CI->PredicateMethod = SI->getValue();
980    } else {
981      assert(dynamic_cast<UnsetInit*>(PMName) &&
982             "Unexpected PredicateMethod field!");
983      CI->PredicateMethod = "is" + CI->ClassName;
984    }
985
986    // Get or construct the render method name.
987    Init *RMName = (*it)->getValueInit("RenderMethod");
988    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
989      CI->RenderMethod = SI->getValue();
990    } else {
991      assert(dynamic_cast<UnsetInit*>(RMName) &&
992             "Unexpected RenderMethod field!");
993      CI->RenderMethod = "add" + CI->ClassName + "Operands";
994    }
995
996    AsmOperandClasses[*it] = CI;
997    Classes.push_back(CI);
998  }
999}
1000
1001AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1002                               CodeGenTarget &target,
1003                               RecordKeeper &records)
1004  : Records(records), AsmParser(asmParser), Target(target),
1005    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) {
1006}
1007
1008
1009void AsmMatcherInfo::BuildInfo() {
1010  // Build information about all of the AssemblerPredicates.
1011  std::vector<Record*> AllPredicates =
1012    Records.getAllDerivedDefinitions("Predicate");
1013  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1014    Record *Pred = AllPredicates[i];
1015    // Ignore predicates that are not intended for the assembler.
1016    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1017      continue;
1018
1019    if (Pred->getName().empty())
1020      throw TGError(Pred->getLoc(), "Predicate has no name!");
1021
1022    unsigned FeatureNo = SubtargetFeatures.size();
1023    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1024    assert(FeatureNo < 32 && "Too many subtarget features!");
1025  }
1026
1027  StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
1028
1029  // Parse the instructions; we need to do this first so that we can gather the
1030  // singleton register classes.
1031  SmallPtrSet<Record*, 16> SingletonRegisters;
1032  for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1033       E = Target.inst_end(); I != E; ++I) {
1034    const CodeGenInstruction &CGI = **I;
1035
1036    // If the tblgen -match-prefix option is specified (for tblgen hackers),
1037    // filter the set of instructions we consider.
1038    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1039      continue;
1040
1041    // Ignore "codegen only" instructions.
1042    if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1043      continue;
1044
1045    // Validate the operand list to ensure we can handle this instruction.
1046    for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1047      const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1048
1049      // Validate tied operands.
1050      if (OI.getTiedRegister() != -1) {
1051        // If we have a tied operand that consists of multiple MCOperands, reject
1052        // it.  We reject aliases and ignore instructions for now.
1053        if (OI.MINumOperands != 1) {
1054          // FIXME: Should reject these.  The ARM backend hits this with $lane
1055          // in a bunch of instructions. It is unclear what the right answer is.
1056          DEBUG({
1057            errs() << "warning: '" << CGI.TheDef->getName() << "': "
1058            << "ignoring instruction with multi-operand tied operand '"
1059            << OI.Name << "'\n";
1060          });
1061          continue;
1062        }
1063      }
1064    }
1065
1066    OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1067
1068    II->Initialize(*this, SingletonRegisters);
1069
1070    // Ignore instructions which shouldn't be matched and diagnose invalid
1071    // instruction definitions with an error.
1072    if (!II->Validate(CommentDelimiter, true))
1073      continue;
1074
1075    // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1076    //
1077    // FIXME: This is a total hack.
1078    if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1079        StringRef(II->TheDef->getName()).endswith("_Int"))
1080      continue;
1081
1082     Matchables.push_back(II.take());
1083  }
1084
1085  // Parse all of the InstAlias definitions and stick them in the list of
1086  // matchables.
1087  std::vector<Record*> AllInstAliases =
1088    Records.getAllDerivedDefinitions("InstAlias");
1089  for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1090    CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1091
1092    OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1093
1094    II->Initialize(*this, SingletonRegisters);
1095
1096    // Validate the alias definitions.
1097    II->Validate(CommentDelimiter, false);
1098
1099    Matchables.push_back(II.take());
1100  }
1101
1102  // Build info for the register classes.
1103  BuildRegisterClasses(SingletonRegisters);
1104
1105  // Build info for the user defined assembly operand classes.
1106  BuildOperandClasses();
1107
1108  // Build the information about matchables, now that we have fully formed
1109  // classes.
1110  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1111         ie = Matchables.end(); it != ie; ++it) {
1112    MatchableInfo *II = *it;
1113
1114    // Parse the tokens after the mnemonic.
1115    for (unsigned i = 0, e = II->AsmOperands.size(); i != e; ++i) {
1116      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1117      StringRef Token = Op.Token;
1118
1119      // Check for singleton registers.
1120      if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) {
1121        Op.Class = RegisterClasses[RegRecord];
1122        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1123               "Unexpected class for singleton register");
1124        continue;
1125      }
1126
1127      // Check for simple tokens.
1128      if (Token[0] != '$') {
1129        Op.Class = getTokenClass(Token);
1130        continue;
1131      }
1132
1133      if (Token.size() > 1 && isdigit(Token[1])) {
1134        Op.Class = getTokenClass(Token);
1135        continue;
1136      }
1137
1138      // Otherwise this is an operand reference.
1139      StringRef OperandName;
1140      if (Token[1] == '{')
1141        OperandName = Token.substr(2, Token.size() - 3);
1142      else
1143        OperandName = Token.substr(1);
1144
1145      if (II->DefRec.is<const CodeGenInstruction*>())
1146        BuildInstructionOperandReference(II, OperandName, Op);
1147      else
1148        BuildAliasOperandReference(II, OperandName, Op);
1149    }
1150
1151    if (II->DefRec.is<const CodeGenInstruction*>())
1152      II->BuildInstructionResultOperands();
1153    else
1154      II->BuildAliasResultOperands();
1155  }
1156
1157  // Reorder classes so that classes preceed super classes.
1158  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1159}
1160
1161/// BuildInstructionOperandReference - The specified operand is a reference to a
1162/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1163void AsmMatcherInfo::
1164BuildInstructionOperandReference(MatchableInfo *II,
1165                                 StringRef OperandName,
1166                                 MatchableInfo::AsmOperand &Op) {
1167  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1168  const CGIOperandList &Operands = CGI.Operands;
1169
1170  // Map this token to an operand.
1171  unsigned Idx;
1172  if (!Operands.hasOperandNamed(OperandName, Idx))
1173    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1174                  OperandName.str() + "'");
1175
1176  // Set up the operand class.
1177  Op.Class = getOperandClass(Operands[Idx]);
1178
1179  // If the named operand is tied, canonicalize it to the untied operand.
1180  // For example, something like:
1181  //   (outs GPR:$dst), (ins GPR:$src)
1182  // with an asmstring of
1183  //   "inc $src"
1184  // we want to canonicalize to:
1185  //   "inc $dst"
1186  // so that we know how to provide the $dst operand when filling in the result.
1187  int OITied = Operands[Idx].getTiedRegister();
1188  if (OITied != -1) {
1189    // The tied operand index is an MIOperand index, find the operand that
1190    // contains it.
1191    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
1192      if (Operands[i].MIOperandNo == unsigned(OITied)) {
1193        OperandName = Operands[i].Name;
1194        break;
1195      }
1196    }
1197  }
1198
1199  Op.SrcOpName = OperandName;
1200}
1201
1202/// BuildAliasOperandReference - When parsing an operand reference out of the
1203/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1204/// operand reference is by looking it up in the result pattern definition.
1205void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
1206                                                StringRef OperandName,
1207                                                MatchableInfo::AsmOperand &Op) {
1208  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1209
1210  // Set up the operand class.
1211  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1212    if (CGA.ResultOperands[i].isRecord() &&
1213        CGA.ResultOperands[i].getName() == OperandName) {
1214      // It's safe to go with the first one we find, because CodeGenInstAlias
1215      // validates that all operands with the same name have the same record.
1216      unsigned ResultIdx = CGA.ResultInstOperandIndex[i];
1217      Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx]);
1218      Op.SrcOpName = OperandName;
1219      return;
1220    }
1221
1222  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1223                OperandName.str() + "'");
1224}
1225
1226void MatchableInfo::BuildInstructionResultOperands() {
1227  const CodeGenInstruction *ResultInst = getResultInst();
1228
1229  // Loop over all operands of the result instruction, determining how to
1230  // populate them.
1231  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1232    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1233
1234    // If this is a tied operand, just copy from the previously handled operand.
1235    int TiedOp = OpInfo.getTiedRegister();
1236    if (TiedOp != -1) {
1237      ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo));
1238      continue;
1239    }
1240
1241    // Find out what operand from the asmparser that this MCInst operand comes
1242    // from.
1243    int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
1244
1245    if (!OpInfo.Name.empty() && SrcOperand != -1) {
1246      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo));
1247      continue;
1248    }
1249
1250    throw TGError(TheDef->getLoc(), "Instruction '" +
1251                  TheDef->getName() + "' has operand '" + OpInfo.Name +
1252                  "' that doesn't appear in asm string!");
1253  }
1254}
1255
1256void MatchableInfo::BuildAliasResultOperands() {
1257  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1258  const CodeGenInstruction *ResultInst = getResultInst();
1259
1260  // Loop over all operands of the result instruction, determining how to
1261  // populate them.
1262  unsigned AliasOpNo = 0;
1263  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1264    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1265
1266    // If this is a tied operand, just copy from the previously handled operand.
1267    int TiedOp = OpInfo.getTiedRegister();
1268    if (TiedOp != -1) {
1269      ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo));
1270      continue;
1271    }
1272
1273    // Find out what operand from the asmparser that this MCInst operand comes
1274    // from.
1275    switch (CGA.ResultOperands[AliasOpNo].Kind) {
1276    case CodeGenInstAlias::ResultOperand::K_Record: {
1277      StringRef Name = CGA.ResultOperands[AliasOpNo++].getName();
1278      int SrcOperand = FindAsmOperandNamed(Name);
1279      if (SrcOperand != -1) {
1280        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo));
1281        continue;
1282      }
1283
1284      throw TGError(TheDef->getLoc(), "Instruction '" +
1285                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1286                    "' that doesn't appear in asm string!");
1287    }
1288    case CodeGenInstAlias::ResultOperand::K_Imm: {
1289      int64_t ImmVal = CGA.ResultOperands[AliasOpNo++].getImm();
1290      ResOperands.push_back(ResOperand::getImmOp(ImmVal, &OpInfo));
1291      continue;
1292    }
1293
1294    case CodeGenInstAlias::ResultOperand::K_Reg: {
1295      Record *Reg = CGA.ResultOperands[AliasOpNo++].getRegister();
1296      ResOperands.push_back(ResOperand::getRegOp(Reg, &OpInfo));
1297      continue;
1298    }
1299    }
1300  }
1301}
1302
1303static void EmitConvertToMCInst(CodeGenTarget &Target,
1304                                std::vector<MatchableInfo*> &Infos,
1305                                raw_ostream &OS) {
1306  // Write the convert function to a separate stream, so we can drop it after
1307  // the enum.
1308  std::string ConvertFnBody;
1309  raw_string_ostream CvtOS(ConvertFnBody);
1310
1311  // Function we have already generated.
1312  std::set<std::string> GeneratedFns;
1313
1314  // Start the unified conversion function.
1315  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1316        << "unsigned Opcode,\n"
1317        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1318        << "> &Operands) {\n";
1319  CvtOS << "  Inst.setOpcode(Opcode);\n";
1320  CvtOS << "  switch (Kind) {\n";
1321  CvtOS << "  default:\n";
1322
1323  // Start the enum, which we will generate inline.
1324
1325  OS << "// Unified function for converting operands to MCInst instances.\n\n";
1326  OS << "enum ConversionKind {\n";
1327
1328  // TargetOperandClass - This is the target's operand class, like X86Operand.
1329  std::string TargetOperandClass = Target.getName() + "Operand";
1330
1331  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1332         ie = Infos.end(); it != ie; ++it) {
1333    MatchableInfo &II = **it;
1334
1335    // Build the conversion function signature.
1336    std::string Signature = "Convert";
1337    std::string CaseBody;
1338    raw_string_ostream CaseOS(CaseBody);
1339
1340    // Compute the convert enum and the case body.
1341    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1342      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1343
1344      // Generate code to populate each result operand.
1345      switch (OpInfo.Kind) {
1346      case MatchableInfo::ResOperand::RenderAsmOperand: {
1347        // This comes from something we parsed.
1348        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1349
1350        // Registers are always converted the same, don't duplicate the
1351        // conversion function based on them.
1352        Signature += "__";
1353        if (Op.Class->isRegisterClass())
1354          Signature += "Reg";
1355        else
1356          Signature += Op.Class->ClassName;
1357        Signature += utostr(OpInfo.OpInfo->MINumOperands);
1358        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1359
1360        CaseOS << "    ((" << TargetOperandClass << "*)Operands["
1361               << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
1362               << "(Inst, " << OpInfo.OpInfo->MINumOperands << ");\n";
1363        break;
1364      }
1365
1366      case MatchableInfo::ResOperand::TiedOperand: {
1367        // If this operand is tied to a previous one, just copy the MCInst
1368        // operand from the earlier one.We can only tie single MCOperand values.
1369      //assert(OpInfo.OpInfo->MINumOperands == 1 && "Not a singular MCOperand");
1370        unsigned TiedOp = OpInfo.TiedOperandNum;
1371        assert(i > TiedOp && "Tied operand preceeds its target!");
1372        CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
1373        Signature += "__Tie" + utostr(TiedOp);
1374        break;
1375      }
1376      case MatchableInfo::ResOperand::ImmOperand: {
1377        int64_t Val = OpInfo.ImmVal;
1378        CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
1379        Signature += "__imm" + itostr(Val);
1380        break;
1381      }
1382      case MatchableInfo::ResOperand::RegOperand: {
1383        if (OpInfo.Register == 0) {
1384          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1385          Signature += "__reg0";
1386        } else {
1387          std::string N = getQualifiedName(OpInfo.Register);
1388          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
1389          Signature += "__reg" + OpInfo.Register->getName();
1390        }
1391      }
1392      }
1393    }
1394
1395    II.ConversionFnKind = Signature;
1396
1397    // Check if we have already generated this signature.
1398    if (!GeneratedFns.insert(Signature).second)
1399      continue;
1400
1401    // If not, emit it now.  Add to the enum list.
1402    OS << "  " << Signature << ",\n";
1403
1404    CvtOS << "  case " << Signature << ":\n";
1405    CvtOS << CaseOS.str();
1406    CvtOS << "    return;\n";
1407  }
1408
1409  // Finish the convert function.
1410
1411  CvtOS << "  }\n";
1412  CvtOS << "}\n\n";
1413
1414  // Finish the enum, and drop the convert function after it.
1415
1416  OS << "  NumConversionVariants\n";
1417  OS << "};\n\n";
1418
1419  OS << CvtOS.str();
1420}
1421
1422/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1423static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1424                                      std::vector<ClassInfo*> &Infos,
1425                                      raw_ostream &OS) {
1426  OS << "namespace {\n\n";
1427
1428  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1429     << "/// instruction matching.\n";
1430  OS << "enum MatchClassKind {\n";
1431  OS << "  InvalidMatchClass = 0,\n";
1432  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1433         ie = Infos.end(); it != ie; ++it) {
1434    ClassInfo &CI = **it;
1435    OS << "  " << CI.Name << ", // ";
1436    if (CI.Kind == ClassInfo::Token) {
1437      OS << "'" << CI.ValueName << "'\n";
1438    } else if (CI.isRegisterClass()) {
1439      if (!CI.ValueName.empty())
1440        OS << "register class '" << CI.ValueName << "'\n";
1441      else
1442        OS << "derived register class\n";
1443    } else {
1444      OS << "user defined class '" << CI.ValueName << "'\n";
1445    }
1446  }
1447  OS << "  NumMatchClassKinds\n";
1448  OS << "};\n\n";
1449
1450  OS << "}\n\n";
1451}
1452
1453/// EmitClassifyOperand - Emit the function to classify an operand.
1454static void EmitClassifyOperand(AsmMatcherInfo &Info,
1455                                raw_ostream &OS) {
1456  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1457     << "  " << Info.Target.getName() << "Operand &Operand = *("
1458     << Info.Target.getName() << "Operand*)GOp;\n";
1459
1460  // Classify tokens.
1461  OS << "  if (Operand.isToken())\n";
1462  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1463
1464  // Classify registers.
1465  //
1466  // FIXME: Don't hardcode isReg, getReg.
1467  OS << "  if (Operand.isReg()) {\n";
1468  OS << "    switch (Operand.getReg()) {\n";
1469  OS << "    default: return InvalidMatchClass;\n";
1470  for (std::map<Record*, ClassInfo*>::iterator
1471         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1472       it != ie; ++it)
1473    OS << "    case " << Info.Target.getName() << "::"
1474       << it->first->getName() << ": return " << it->second->Name << ";\n";
1475  OS << "    }\n";
1476  OS << "  }\n\n";
1477
1478  // Classify user defined operands.  To do so, we need to perform a topological
1479  // sort of the superclass relationship graph so that we always match the
1480  // narrowest type first.
1481
1482  // Collect the incoming edge counts for each class.
1483  std::map<ClassInfo*, unsigned> IncomingEdges;
1484  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1485         ie = Info.Classes.end(); it != ie; ++it) {
1486    ClassInfo &CI = **it;
1487
1488    if (!CI.isUserClass())
1489      continue;
1490
1491    for (std::vector<ClassInfo*>::iterator SI = CI.SuperClasses.begin(),
1492         SE = CI.SuperClasses.end(); SI != SE; ++SI)
1493      ++IncomingEdges[*SI];
1494  }
1495
1496  // Initialize a worklist of classes with no incoming edges.
1497  std::vector<ClassInfo*> LeafClasses;
1498  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1499         ie = Info.Classes.end(); it != ie; ++it) {
1500    if (!IncomingEdges[*it])
1501      LeafClasses.push_back(*it);
1502  }
1503
1504  // Iteratively pop the list, process that class, and update the incoming
1505  // edge counts for its super classes.  When a superclass reaches zero
1506  // incoming edges, push it onto the worklist for processing.
1507  while (!LeafClasses.empty()) {
1508    ClassInfo &CI = *LeafClasses.back();
1509    LeafClasses.pop_back();
1510
1511    if (!CI.isUserClass())
1512      continue;
1513
1514    OS << "  // '" << CI.ClassName << "' class";
1515    if (!CI.SuperClasses.empty()) {
1516      OS << ", subclass of ";
1517      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1518        if (i) OS << ", ";
1519        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1520        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1521
1522        --IncomingEdges[CI.SuperClasses[i]];
1523        if (!IncomingEdges[CI.SuperClasses[i]])
1524          LeafClasses.push_back(CI.SuperClasses[i]);
1525      }
1526    }
1527    OS << "\n";
1528
1529    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1530
1531    // Validate subclass relationships.
1532    if (!CI.SuperClasses.empty()) {
1533      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1534        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1535           << "() && \"Invalid class relationship!\");\n";
1536    }
1537
1538    OS << "    return " << CI.Name << ";\n";
1539    OS << "  }\n\n";
1540  }
1541
1542  OS << "  return InvalidMatchClass;\n";
1543  OS << "}\n\n";
1544}
1545
1546/// EmitIsSubclass - Emit the subclass predicate function.
1547static void EmitIsSubclass(CodeGenTarget &Target,
1548                           std::vector<ClassInfo*> &Infos,
1549                           raw_ostream &OS) {
1550  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1551  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1552  OS << "  if (A == B)\n";
1553  OS << "    return true;\n\n";
1554
1555  OS << "  switch (A) {\n";
1556  OS << "  default:\n";
1557  OS << "    return false;\n";
1558  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1559         ie = Infos.end(); it != ie; ++it) {
1560    ClassInfo &A = **it;
1561
1562    if (A.Kind != ClassInfo::Token) {
1563      std::vector<StringRef> SuperClasses;
1564      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1565             ie = Infos.end(); it != ie; ++it) {
1566        ClassInfo &B = **it;
1567
1568        if (&A != &B && A.isSubsetOf(B))
1569          SuperClasses.push_back(B.Name);
1570      }
1571
1572      if (SuperClasses.empty())
1573        continue;
1574
1575      OS << "\n  case " << A.Name << ":\n";
1576
1577      if (SuperClasses.size() == 1) {
1578        OS << "    return B == " << SuperClasses.back() << ";\n";
1579        continue;
1580      }
1581
1582      OS << "    switch (B) {\n";
1583      OS << "    default: return false;\n";
1584      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1585        OS << "    case " << SuperClasses[i] << ": return true;\n";
1586      OS << "    }\n";
1587    }
1588  }
1589  OS << "  }\n";
1590  OS << "}\n\n";
1591}
1592
1593
1594
1595/// EmitMatchTokenString - Emit the function to match a token string to the
1596/// appropriate match class value.
1597static void EmitMatchTokenString(CodeGenTarget &Target,
1598                                 std::vector<ClassInfo*> &Infos,
1599                                 raw_ostream &OS) {
1600  // Construct the match list.
1601  std::vector<StringMatcher::StringPair> Matches;
1602  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1603         ie = Infos.end(); it != ie; ++it) {
1604    ClassInfo &CI = **it;
1605
1606    if (CI.Kind == ClassInfo::Token)
1607      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1608                                                  "return " + CI.Name + ";"));
1609  }
1610
1611  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1612
1613  StringMatcher("Name", Matches, OS).Emit();
1614
1615  OS << "  return InvalidMatchClass;\n";
1616  OS << "}\n\n";
1617}
1618
1619/// EmitMatchRegisterName - Emit the function to match a string to the target
1620/// specific register enum.
1621static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1622                                  raw_ostream &OS) {
1623  // Construct the match list.
1624  std::vector<StringMatcher::StringPair> Matches;
1625  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1626    const CodeGenRegister &Reg = Target.getRegisters()[i];
1627    if (Reg.TheDef->getValueAsString("AsmName").empty())
1628      continue;
1629
1630    Matches.push_back(StringMatcher::StringPair(
1631                                        Reg.TheDef->getValueAsString("AsmName"),
1632                                        "return " + utostr(i + 1) + ";"));
1633  }
1634
1635  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1636
1637  StringMatcher("Name", Matches, OS).Emit();
1638
1639  OS << "  return 0;\n";
1640  OS << "}\n\n";
1641}
1642
1643/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1644/// definitions.
1645static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1646                                                raw_ostream &OS) {
1647  OS << "// Flags for subtarget features that participate in "
1648     << "instruction matching.\n";
1649  OS << "enum SubtargetFeatureFlag {\n";
1650  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1651         it = Info.SubtargetFeatures.begin(),
1652         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1653    SubtargetFeatureInfo &SFI = *it->second;
1654    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1655  }
1656  OS << "  Feature_None = 0\n";
1657  OS << "};\n\n";
1658}
1659
1660/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1661/// available features given a subtarget.
1662static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1663                                         raw_ostream &OS) {
1664  std::string ClassName =
1665    Info.AsmParser->getValueAsString("AsmParserClassName");
1666
1667  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1668     << "ComputeAvailableFeatures(const " << Info.Target.getName()
1669     << "Subtarget *Subtarget) const {\n";
1670  OS << "  unsigned Features = 0;\n";
1671  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1672         it = Info.SubtargetFeatures.begin(),
1673         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1674    SubtargetFeatureInfo &SFI = *it->second;
1675    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1676       << ")\n";
1677    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1678  }
1679  OS << "  return Features;\n";
1680  OS << "}\n\n";
1681}
1682
1683static std::string GetAliasRequiredFeatures(Record *R,
1684                                            const AsmMatcherInfo &Info) {
1685  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1686  std::string Result;
1687  unsigned NumFeatures = 0;
1688  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1689    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1690
1691    if (F == 0)
1692      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1693                    "' is not marked as an AssemblerPredicate!");
1694
1695    if (NumFeatures)
1696      Result += '|';
1697
1698    Result += F->getEnumName();
1699    ++NumFeatures;
1700  }
1701
1702  if (NumFeatures > 1)
1703    Result = '(' + Result + ')';
1704  return Result;
1705}
1706
1707/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1708/// emit a function for them and return true, otherwise return false.
1709static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1710  std::vector<Record*> Aliases =
1711    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
1712  if (Aliases.empty()) return false;
1713
1714  OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1715        "unsigned Features) {\n";
1716
1717  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1718  // iteration order of the map is stable.
1719  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1720
1721  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1722    Record *R = Aliases[i];
1723    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1724  }
1725
1726  // Process each alias a "from" mnemonic at a time, building the code executed
1727  // by the string remapper.
1728  std::vector<StringMatcher::StringPair> Cases;
1729  for (std::map<std::string, std::vector<Record*> >::iterator
1730       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1731       I != E; ++I) {
1732    const std::vector<Record*> &ToVec = I->second;
1733
1734    // Loop through each alias and emit code that handles each case.  If there
1735    // are two instructions without predicates, emit an error.  If there is one,
1736    // emit it last.
1737    std::string MatchCode;
1738    int AliasWithNoPredicate = -1;
1739
1740    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1741      Record *R = ToVec[i];
1742      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1743
1744      // If this unconditionally matches, remember it for later and diagnose
1745      // duplicates.
1746      if (FeatureMask.empty()) {
1747        if (AliasWithNoPredicate != -1) {
1748          // We can't have two aliases from the same mnemonic with no predicate.
1749          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1750                     "two MnemonicAliases with the same 'from' mnemonic!");
1751          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1752        }
1753
1754        AliasWithNoPredicate = i;
1755        continue;
1756      }
1757
1758      if (!MatchCode.empty())
1759        MatchCode += "else ";
1760      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1761      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1762    }
1763
1764    if (AliasWithNoPredicate != -1) {
1765      Record *R = ToVec[AliasWithNoPredicate];
1766      if (!MatchCode.empty())
1767        MatchCode += "else\n  ";
1768      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1769    }
1770
1771    MatchCode += "return;";
1772
1773    Cases.push_back(std::make_pair(I->first, MatchCode));
1774  }
1775
1776
1777  StringMatcher("Mnemonic", Cases, OS).Emit();
1778  OS << "}\n\n";
1779
1780  return true;
1781}
1782
1783void AsmMatcherEmitter::run(raw_ostream &OS) {
1784  CodeGenTarget Target(Records);
1785  Record *AsmParser = Target.getAsmParser();
1786  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1787
1788  // Compute the information on the instructions to match.
1789  AsmMatcherInfo Info(AsmParser, Target, Records);
1790  Info.BuildInfo();
1791
1792  // Sort the instruction table using the partial order on classes. We use
1793  // stable_sort to ensure that ambiguous instructions are still
1794  // deterministically ordered.
1795  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
1796                   less_ptr<MatchableInfo>());
1797
1798  DEBUG_WITH_TYPE("instruction_info", {
1799      for (std::vector<MatchableInfo*>::iterator
1800             it = Info.Matchables.begin(), ie = Info.Matchables.end();
1801           it != ie; ++it)
1802        (*it)->dump();
1803    });
1804
1805  // Check for ambiguous matchables.
1806  DEBUG_WITH_TYPE("ambiguous_instrs", {
1807    unsigned NumAmbiguous = 0;
1808    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
1809      for (unsigned j = i + 1; j != e; ++j) {
1810        MatchableInfo &A = *Info.Matchables[i];
1811        MatchableInfo &B = *Info.Matchables[j];
1812
1813        if (A.CouldMatchAmiguouslyWith(B)) {
1814          errs() << "warning: ambiguous matchables:\n";
1815          A.dump();
1816          errs() << "\nis incomparable with:\n";
1817          B.dump();
1818          errs() << "\n\n";
1819          ++NumAmbiguous;
1820        }
1821      }
1822    }
1823    if (NumAmbiguous)
1824      errs() << "warning: " << NumAmbiguous
1825             << " ambiguous matchables!\n";
1826  });
1827
1828  // Write the output.
1829
1830  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1831
1832  // Information for the class declaration.
1833  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1834  OS << "#undef GET_ASSEMBLER_HEADER\n";
1835  OS << "  // This should be included into the middle of the declaration of \n";
1836  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1837  OS << "  unsigned ComputeAvailableFeatures(const " <<
1838           Target.getName() << "Subtarget *Subtarget) const;\n";
1839  OS << "  enum MatchResultTy {\n";
1840  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
1841  OS << "    Match_MissingFeature\n";
1842  OS << "  };\n";
1843  OS << "  MatchResultTy MatchInstructionImpl(\n";
1844  OS << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
1845  OS << "    MCInst &Inst, unsigned &ErrorInfo);\n\n";
1846  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1847
1848  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1849  OS << "#undef GET_REGISTER_MATCHER\n\n";
1850
1851  // Emit the subtarget feature enumeration.
1852  EmitSubtargetFeatureFlagEnumeration(Info, OS);
1853
1854  // Emit the function to match a register name to number.
1855  EmitMatchRegisterName(Target, AsmParser, OS);
1856
1857  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1858
1859
1860  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1861  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1862
1863  // Generate the function that remaps for mnemonic aliases.
1864  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
1865
1866  // Generate the unified function to convert operands into an MCInst.
1867  EmitConvertToMCInst(Target, Info.Matchables, OS);
1868
1869  // Emit the enumeration for classes which participate in matching.
1870  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1871
1872  // Emit the routine to match token strings to their match class.
1873  EmitMatchTokenString(Target, Info.Classes, OS);
1874
1875  // Emit the routine to classify an operand.
1876  EmitClassifyOperand(Info, OS);
1877
1878  // Emit the subclass predicate routine.
1879  EmitIsSubclass(Target, Info.Classes, OS);
1880
1881  // Emit the available features compute function.
1882  EmitComputeAvailableFeatures(Info, OS);
1883
1884
1885  size_t MaxNumOperands = 0;
1886  for (std::vector<MatchableInfo*>::const_iterator it =
1887         Info.Matchables.begin(), ie = Info.Matchables.end();
1888       it != ie; ++it)
1889    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
1890
1891
1892  // Emit the static match table; unused classes get initalized to 0 which is
1893  // guaranteed to be InvalidMatchClass.
1894  //
1895  // FIXME: We can reduce the size of this table very easily. First, we change
1896  // it so that store the kinds in separate bit-fields for each index, which
1897  // only needs to be the max width used for classes at that index (we also need
1898  // to reject based on this during classification). If we then make sure to
1899  // order the match kinds appropriately (putting mnemonics last), then we
1900  // should only end up using a few bits for each class, especially the ones
1901  // following the mnemonic.
1902  OS << "namespace {\n";
1903  OS << "  struct MatchEntry {\n";
1904  OS << "    unsigned Opcode;\n";
1905  OS << "    const char *Mnemonic;\n";
1906  OS << "    ConversionKind ConvertFn;\n";
1907  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1908  OS << "    unsigned RequiredFeatures;\n";
1909  OS << "  };\n\n";
1910
1911  OS << "// Predicate for searching for an opcode.\n";
1912  OS << "  struct LessOpcode {\n";
1913  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
1914  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
1915  OS << "    }\n";
1916  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
1917  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
1918  OS << "    }\n";
1919  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
1920  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1921  OS << "    }\n";
1922  OS << "  };\n";
1923
1924  OS << "} // end anonymous namespace.\n\n";
1925
1926  OS << "static const MatchEntry MatchTable["
1927     << Info.Matchables.size() << "] = {\n";
1928
1929  for (std::vector<MatchableInfo*>::const_iterator it =
1930       Info.Matchables.begin(), ie = Info.Matchables.end();
1931       it != ie; ++it) {
1932    MatchableInfo &II = **it;
1933
1934
1935    OS << "  { " << Target.getName() << "::"
1936       << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\""
1937       << ", " << II.ConversionFnKind << ", { ";
1938    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1939      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1940
1941      if (i) OS << ", ";
1942      OS << Op.Class->Name;
1943    }
1944    OS << " }, ";
1945
1946    // Write the required features mask.
1947    if (!II.RequiredFeatures.empty()) {
1948      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1949        if (i) OS << "|";
1950        OS << II.RequiredFeatures[i]->getEnumName();
1951      }
1952    } else
1953      OS << "0";
1954
1955    OS << "},\n";
1956  }
1957
1958  OS << "};\n\n";
1959
1960  // Finally, build the match function.
1961  OS << Target.getName() << ClassName << "::MatchResultTy "
1962     << Target.getName() << ClassName << "::\n"
1963     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1964     << " &Operands,\n";
1965  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
1966
1967  // Emit code to get the available features.
1968  OS << "  // Get the current feature set.\n";
1969  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1970
1971  OS << "  // Get the instruction mnemonic, which is the first token.\n";
1972  OS << "  StringRef Mnemonic = ((" << Target.getName()
1973     << "Operand*)Operands[0])->getToken();\n\n";
1974
1975  if (HasMnemonicAliases) {
1976    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
1977    OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
1978  }
1979
1980  // Emit code to compute the class list for this operand vector.
1981  OS << "  // Eliminate obvious mismatches.\n";
1982  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
1983  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
1984  OS << "    return Match_InvalidOperand;\n";
1985  OS << "  }\n\n";
1986
1987  OS << "  // Compute the class list for this operand vector.\n";
1988  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1989  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
1990  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
1991
1992  OS << "    // Check for invalid operands before matching.\n";
1993  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
1994  OS << "      ErrorInfo = i;\n";
1995  OS << "      return Match_InvalidOperand;\n";
1996  OS << "    }\n";
1997  OS << "  }\n\n";
1998
1999  OS << "  // Mark unused classes.\n";
2000  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
2001     << "i != e; ++i)\n";
2002  OS << "    Classes[i] = InvalidMatchClass;\n\n";
2003
2004  OS << "  // Some state to try to produce better error messages.\n";
2005  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
2006  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
2007  OS << "  // wrong for all instances of the instruction.\n";
2008  OS << "  ErrorInfo = ~0U;\n";
2009
2010  // Emit code to search the table.
2011  OS << "  // Search the table.\n";
2012  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2013  OS << "    std::equal_range(MatchTable, MatchTable+"
2014     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2015
2016  OS << "  // Return a more specific error code if no mnemonics match.\n";
2017  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2018  OS << "    return Match_MnemonicFail;\n\n";
2019
2020  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2021     << "*ie = MnemonicRange.second;\n";
2022  OS << "       it != ie; ++it) {\n";
2023
2024  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2025  OS << "    assert(Mnemonic == it->Mnemonic);\n";
2026
2027  // Emit check that the subclasses match.
2028  OS << "    bool OperandsValid = true;\n";
2029  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2030  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
2031  OS << "        continue;\n";
2032  OS << "      // If this operand is broken for all of the instances of this\n";
2033  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2034  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
2035  OS << "        ErrorInfo = i+1;\n";
2036  OS << "      else\n";
2037  OS << "        ErrorInfo = ~0U;";
2038  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2039  OS << "      OperandsValid = false;\n";
2040  OS << "      break;\n";
2041  OS << "    }\n\n";
2042
2043  OS << "    if (!OperandsValid) continue;\n";
2044
2045  // Emit check that the required features are available.
2046  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2047     << "!= it->RequiredFeatures) {\n";
2048  OS << "      HadMatchOtherThanFeatures = true;\n";
2049  OS << "      continue;\n";
2050  OS << "    }\n";
2051
2052  OS << "\n";
2053  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2054
2055  // Call the post-processing function, if used.
2056  std::string InsnCleanupFn =
2057    AsmParser->getValueAsString("AsmParserInstCleanup");
2058  if (!InsnCleanupFn.empty())
2059    OS << "    " << InsnCleanupFn << "(Inst);\n";
2060
2061  OS << "    return Match_Success;\n";
2062  OS << "  }\n\n";
2063
2064  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2065  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
2066  OS << "  return Match_InvalidOperand;\n";
2067  OS << "}\n\n";
2068
2069  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2070}
2071