AsmMatcherEmitter.cpp revision d3c9d9447ed7b5b8d3800b871ff162ae2df9fd5b
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific valeus in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "AsmMatcherEmitter.h"
100#include "CodeGenTarget.h"
101#include "StringMatcher.h"
102#include "StringToOffsetTable.h"
103#include "llvm/ADT/OwningPtr.h"
104#include "llvm/ADT/PointerUnion.h"
105#include "llvm/ADT/SmallPtrSet.h"
106#include "llvm/ADT/SmallVector.h"
107#include "llvm/ADT/STLExtras.h"
108#include "llvm/ADT/StringExtras.h"
109#include "llvm/Support/CommandLine.h"
110#include "llvm/Support/Debug.h"
111#include "llvm/Support/ErrorHandling.h"
112#include "llvm/TableGen/Error.h"
113#include "llvm/TableGen/Record.h"
114#include <map>
115#include <set>
116using namespace llvm;
117
118static cl::opt<std::string>
119MatchPrefix("match-prefix", cl::init(""),
120            cl::desc("Only match instructions with the given prefix"));
121
122namespace {
123class AsmMatcherInfo;
124struct SubtargetFeatureInfo;
125
126/// ClassInfo - Helper class for storing the information about a particular
127/// class of operands which can be matched.
128struct ClassInfo {
129  enum ClassInfoKind {
130    /// Invalid kind, for use as a sentinel value.
131    Invalid = 0,
132
133    /// The class for a particular token.
134    Token,
135
136    /// The (first) register class, subsequent register classes are
137    /// RegisterClass0+1, and so on.
138    RegisterClass0,
139
140    /// The (first) user defined class, subsequent user defined classes are
141    /// UserClass0+1, and so on.
142    UserClass0 = 1<<16
143  };
144
145  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
146  /// N) for the Nth user defined class.
147  unsigned Kind;
148
149  /// SuperClasses - The super classes of this class. Note that for simplicities
150  /// sake user operands only record their immediate super class, while register
151  /// operands include all superclasses.
152  std::vector<ClassInfo*> SuperClasses;
153
154  /// Name - The full class name, suitable for use in an enum.
155  std::string Name;
156
157  /// ClassName - The unadorned generic name for this class (e.g., Token).
158  std::string ClassName;
159
160  /// ValueName - The name of the value this class represents; for a token this
161  /// is the literal token string, for an operand it is the TableGen class (or
162  /// empty if this is a derived class).
163  std::string ValueName;
164
165  /// PredicateMethod - The name of the operand method to test whether the
166  /// operand matches this class; this is not valid for Token or register kinds.
167  std::string PredicateMethod;
168
169  /// RenderMethod - The name of the operand method to add this operand to an
170  /// MCInst; this is not valid for Token or register kinds.
171  std::string RenderMethod;
172
173  /// ParserMethod - The name of the operand method to do a target specific
174  /// parsing on the operand.
175  std::string ParserMethod;
176
177  /// For register classes, the records for all the registers in this class.
178  std::set<Record*> Registers;
179
180public:
181  /// isRegisterClass() - Check if this is a register class.
182  bool isRegisterClass() const {
183    return Kind >= RegisterClass0 && Kind < UserClass0;
184  }
185
186  /// isUserClass() - Check if this is a user defined class.
187  bool isUserClass() const {
188    return Kind >= UserClass0;
189  }
190
191  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
192  /// are related if they are in the same class hierarchy.
193  bool isRelatedTo(const ClassInfo &RHS) const {
194    // Tokens are only related to tokens.
195    if (Kind == Token || RHS.Kind == Token)
196      return Kind == Token && RHS.Kind == Token;
197
198    // Registers classes are only related to registers classes, and only if
199    // their intersection is non-empty.
200    if (isRegisterClass() || RHS.isRegisterClass()) {
201      if (!isRegisterClass() || !RHS.isRegisterClass())
202        return false;
203
204      std::set<Record*> Tmp;
205      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
206      std::set_intersection(Registers.begin(), Registers.end(),
207                            RHS.Registers.begin(), RHS.Registers.end(),
208                            II);
209
210      return !Tmp.empty();
211    }
212
213    // Otherwise we have two users operands; they are related if they are in the
214    // same class hierarchy.
215    //
216    // FIXME: This is an oversimplification, they should only be related if they
217    // intersect, however we don't have that information.
218    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
219    const ClassInfo *Root = this;
220    while (!Root->SuperClasses.empty())
221      Root = Root->SuperClasses.front();
222
223    const ClassInfo *RHSRoot = &RHS;
224    while (!RHSRoot->SuperClasses.empty())
225      RHSRoot = RHSRoot->SuperClasses.front();
226
227    return Root == RHSRoot;
228  }
229
230  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
231  bool isSubsetOf(const ClassInfo &RHS) const {
232    // This is a subset of RHS if it is the same class...
233    if (this == &RHS)
234      return true;
235
236    // ... or if any of its super classes are a subset of RHS.
237    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
238           ie = SuperClasses.end(); it != ie; ++it)
239      if ((*it)->isSubsetOf(RHS))
240        return true;
241
242    return false;
243  }
244
245  /// operator< - Compare two classes.
246  bool operator<(const ClassInfo &RHS) const {
247    if (this == &RHS)
248      return false;
249
250    // Unrelated classes can be ordered by kind.
251    if (!isRelatedTo(RHS))
252      return Kind < RHS.Kind;
253
254    switch (Kind) {
255    case Invalid:
256      llvm_unreachable("Invalid kind!");
257
258    default:
259      // This class precedes the RHS if it is a proper subset of the RHS.
260      if (isSubsetOf(RHS))
261        return true;
262      if (RHS.isSubsetOf(*this))
263        return false;
264
265      // Otherwise, order by name to ensure we have a total ordering.
266      return ValueName < RHS.ValueName;
267    }
268  }
269};
270
271/// MatchableInfo - Helper class for storing the necessary information for an
272/// instruction or alias which is capable of being matched.
273struct MatchableInfo {
274  struct AsmOperand {
275    /// Token - This is the token that the operand came from.
276    StringRef Token;
277
278    /// The unique class instance this operand should match.
279    ClassInfo *Class;
280
281    /// The operand name this is, if anything.
282    StringRef SrcOpName;
283
284    /// The suboperand index within SrcOpName, or -1 for the entire operand.
285    int SubOpIdx;
286
287    /// Register record if this token is singleton register.
288    Record *SingletonReg;
289
290    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
291				       SingletonReg(0) {}
292  };
293
294  /// ResOperand - This represents a single operand in the result instruction
295  /// generated by the match.  In cases (like addressing modes) where a single
296  /// assembler operand expands to multiple MCOperands, this represents the
297  /// single assembler operand, not the MCOperand.
298  struct ResOperand {
299    enum {
300      /// RenderAsmOperand - This represents an operand result that is
301      /// generated by calling the render method on the assembly operand.  The
302      /// corresponding AsmOperand is specified by AsmOperandNum.
303      RenderAsmOperand,
304
305      /// TiedOperand - This represents a result operand that is a duplicate of
306      /// a previous result operand.
307      TiedOperand,
308
309      /// ImmOperand - This represents an immediate value that is dumped into
310      /// the operand.
311      ImmOperand,
312
313      /// RegOperand - This represents a fixed register that is dumped in.
314      RegOperand
315    } Kind;
316
317    union {
318      /// This is the operand # in the AsmOperands list that this should be
319      /// copied from.
320      unsigned AsmOperandNum;
321
322      /// TiedOperandNum - This is the (earlier) result operand that should be
323      /// copied from.
324      unsigned TiedOperandNum;
325
326      /// ImmVal - This is the immediate value added to the instruction.
327      int64_t ImmVal;
328
329      /// Register - This is the register record.
330      Record *Register;
331    };
332
333    /// MINumOperands - The number of MCInst operands populated by this
334    /// operand.
335    unsigned MINumOperands;
336
337    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
338      ResOperand X;
339      X.Kind = RenderAsmOperand;
340      X.AsmOperandNum = AsmOpNum;
341      X.MINumOperands = NumOperands;
342      return X;
343    }
344
345    static ResOperand getTiedOp(unsigned TiedOperandNum) {
346      ResOperand X;
347      X.Kind = TiedOperand;
348      X.TiedOperandNum = TiedOperandNum;
349      X.MINumOperands = 1;
350      return X;
351    }
352
353    static ResOperand getImmOp(int64_t Val) {
354      ResOperand X;
355      X.Kind = ImmOperand;
356      X.ImmVal = Val;
357      X.MINumOperands = 1;
358      return X;
359    }
360
361    static ResOperand getRegOp(Record *Reg) {
362      ResOperand X;
363      X.Kind = RegOperand;
364      X.Register = Reg;
365      X.MINumOperands = 1;
366      return X;
367    }
368  };
369
370  /// AsmVariantID - Target's assembly syntax variant no.
371  int AsmVariantID;
372
373  /// TheDef - This is the definition of the instruction or InstAlias that this
374  /// matchable came from.
375  Record *const TheDef;
376
377  /// DefRec - This is the definition that it came from.
378  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
379
380  const CodeGenInstruction *getResultInst() const {
381    if (DefRec.is<const CodeGenInstruction*>())
382      return DefRec.get<const CodeGenInstruction*>();
383    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
384  }
385
386  /// ResOperands - This is the operand list that should be built for the result
387  /// MCInst.
388  std::vector<ResOperand> ResOperands;
389
390  /// AsmString - The assembly string for this instruction (with variants
391  /// removed), e.g. "movsx $src, $dst".
392  std::string AsmString;
393
394  /// Mnemonic - This is the first token of the matched instruction, its
395  /// mnemonic.
396  StringRef Mnemonic;
397
398  /// AsmOperands - The textual operands that this instruction matches,
399  /// annotated with a class and where in the OperandList they were defined.
400  /// This directly corresponds to the tokenized AsmString after the mnemonic is
401  /// removed.
402  SmallVector<AsmOperand, 4> AsmOperands;
403
404  /// Predicates - The required subtarget features to match this instruction.
405  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
406
407  /// ConversionFnKind - The enum value which is passed to the generated
408  /// ConvertToMCInst to convert parsed operands into an MCInst for this
409  /// function.
410  std::string ConversionFnKind;
411
412  MatchableInfo(const CodeGenInstruction &CGI)
413    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
414      AsmString(CGI.AsmString) {
415  }
416
417  MatchableInfo(const CodeGenInstAlias *Alias)
418    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
419      AsmString(Alias->AsmString) {
420  }
421
422  void Initialize(const AsmMatcherInfo &Info,
423                  SmallPtrSet<Record*, 16> &SingletonRegisters,
424		  int AsmVariantNo, std::string &RegisterPrefix);
425
426  /// Validate - Return true if this matchable is a valid thing to match against
427  /// and perform a bunch of validity checking.
428  bool Validate(StringRef CommentDelimiter, bool Hack) const;
429
430  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
431  /// if present, from specified token.
432  void
433  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
434                                        std::string &RegisterPrefix);
435
436  /// FindAsmOperand - Find the AsmOperand with the specified name and
437  /// suboperand index.
438  int FindAsmOperand(StringRef N, int SubOpIdx) const {
439    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
440      if (N == AsmOperands[i].SrcOpName &&
441          SubOpIdx == AsmOperands[i].SubOpIdx)
442        return i;
443    return -1;
444  }
445
446  /// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
447  /// This does not check the suboperand index.
448  int FindAsmOperandNamed(StringRef N) const {
449    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
450      if (N == AsmOperands[i].SrcOpName)
451        return i;
452    return -1;
453  }
454
455  void BuildInstructionResultOperands();
456  void BuildAliasResultOperands();
457
458  /// operator< - Compare two matchables.
459  bool operator<(const MatchableInfo &RHS) const {
460    // The primary comparator is the instruction mnemonic.
461    if (Mnemonic != RHS.Mnemonic)
462      return Mnemonic < RHS.Mnemonic;
463
464    if (AsmOperands.size() != RHS.AsmOperands.size())
465      return AsmOperands.size() < RHS.AsmOperands.size();
466
467    // Compare lexicographically by operand. The matcher validates that other
468    // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
469    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
470      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
471        return true;
472      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
473        return false;
474    }
475
476    return false;
477  }
478
479  /// CouldMatchAmbiguouslyWith - Check whether this matchable could
480  /// ambiguously match the same set of operands as \arg RHS (without being a
481  /// strictly superior match).
482  bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
483    // The primary comparator is the instruction mnemonic.
484    if (Mnemonic != RHS.Mnemonic)
485      return false;
486
487    // The number of operands is unambiguous.
488    if (AsmOperands.size() != RHS.AsmOperands.size())
489      return false;
490
491    // Otherwise, make sure the ordering of the two instructions is unambiguous
492    // by checking that either (a) a token or operand kind discriminates them,
493    // or (b) the ordering among equivalent kinds is consistent.
494
495    // Tokens and operand kinds are unambiguous (assuming a correct target
496    // specific parser).
497    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
498      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
499          AsmOperands[i].Class->Kind == ClassInfo::Token)
500        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
501            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
502          return false;
503
504    // Otherwise, this operand could commute if all operands are equivalent, or
505    // there is a pair of operands that compare less than and a pair that
506    // compare greater than.
507    bool HasLT = false, HasGT = false;
508    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
509      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
510        HasLT = true;
511      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
512        HasGT = true;
513    }
514
515    return !(HasLT ^ HasGT);
516  }
517
518  void dump();
519
520private:
521  void TokenizeAsmString(const AsmMatcherInfo &Info);
522};
523
524/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
525/// feature which participates in instruction matching.
526struct SubtargetFeatureInfo {
527  /// \brief The predicate record for this feature.
528  Record *TheDef;
529
530  /// \brief An unique index assigned to represent this feature.
531  unsigned Index;
532
533  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
534
535  /// \brief The name of the enumerated constant identifying this feature.
536  std::string getEnumName() const {
537    return "Feature_" + TheDef->getName();
538  }
539};
540
541struct OperandMatchEntry {
542  unsigned OperandMask;
543  MatchableInfo* MI;
544  ClassInfo *CI;
545
546  static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
547                                  unsigned opMask) {
548    OperandMatchEntry X;
549    X.OperandMask = opMask;
550    X.CI = ci;
551    X.MI = mi;
552    return X;
553  }
554};
555
556
557class AsmMatcherInfo {
558public:
559  /// Tracked Records
560  RecordKeeper &Records;
561
562  /// The tablegen AsmParser record.
563  Record *AsmParser;
564
565  /// Target - The target information.
566  CodeGenTarget &Target;
567
568  /// The classes which are needed for matching.
569  std::vector<ClassInfo*> Classes;
570
571  /// The information on the matchables to match.
572  std::vector<MatchableInfo*> Matchables;
573
574  /// Info for custom matching operands by user defined methods.
575  std::vector<OperandMatchEntry> OperandMatchInfo;
576
577  /// Map of Register records to their class information.
578  std::map<Record*, ClassInfo*> RegisterClasses;
579
580  /// Map of Predicate records to their subtarget information.
581  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
582
583private:
584  /// Map of token to class information which has already been constructed.
585  std::map<std::string, ClassInfo*> TokenClasses;
586
587  /// Map of RegisterClass records to their class information.
588  std::map<Record*, ClassInfo*> RegisterClassClasses;
589
590  /// Map of AsmOperandClass records to their class information.
591  std::map<Record*, ClassInfo*> AsmOperandClasses;
592
593private:
594  /// getTokenClass - Lookup or create the class for the given token.
595  ClassInfo *getTokenClass(StringRef Token);
596
597  /// getOperandClass - Lookup or create the class for the given operand.
598  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
599                             int SubOpIdx);
600  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
601
602  /// BuildRegisterClasses - Build the ClassInfo* instances for register
603  /// classes.
604  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
605
606  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
607  /// operand classes.
608  void BuildOperandClasses();
609
610  void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
611                                        unsigned AsmOpIdx);
612  void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
613                                  MatchableInfo::AsmOperand &Op);
614
615public:
616  AsmMatcherInfo(Record *AsmParser,
617                 CodeGenTarget &Target,
618                 RecordKeeper &Records);
619
620  /// BuildInfo - Construct the various tables used during matching.
621  void BuildInfo();
622
623  /// BuildOperandMatchInfo - Build the necessary information to handle user
624  /// defined operand parsing methods.
625  void BuildOperandMatchInfo();
626
627  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
628  /// given operand.
629  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
630    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
631    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
632      SubtargetFeatures.find(Def);
633    return I == SubtargetFeatures.end() ? 0 : I->second;
634  }
635
636  RecordKeeper &getRecords() const {
637    return Records;
638  }
639};
640
641}
642
643void MatchableInfo::dump() {
644  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
645
646  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
647    AsmOperand &Op = AsmOperands[i];
648    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
649    errs() << '\"' << Op.Token << "\"\n";
650  }
651}
652
653void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
654                               SmallPtrSet<Record*, 16> &SingletonRegisters,
655                               int AsmVariantNo, std::string &RegisterPrefix) {
656  AsmVariantID = AsmVariantNo;
657  AsmString =
658    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
659
660  TokenizeAsmString(Info);
661
662  // Compute the require features.
663  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
664  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
665    if (SubtargetFeatureInfo *Feature =
666        Info.getSubtargetFeature(Predicates[i]))
667      RequiredFeatures.push_back(Feature);
668
669  // Collect singleton registers, if used.
670  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
671    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
672    if (Record *Reg = AsmOperands[i].SingletonReg)
673      SingletonRegisters.insert(Reg);
674  }
675}
676
677/// TokenizeAsmString - Tokenize a simplified assembly string.
678void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
679  StringRef String = AsmString;
680  unsigned Prev = 0;
681  bool InTok = true;
682  for (unsigned i = 0, e = String.size(); i != e; ++i) {
683    switch (String[i]) {
684    case '[':
685    case ']':
686    case '*':
687    case '!':
688    case ' ':
689    case '\t':
690    case ',':
691      if (InTok) {
692        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
693        InTok = false;
694      }
695      if (!isspace(String[i]) && String[i] != ',')
696        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
697      Prev = i + 1;
698      break;
699
700    case '\\':
701      if (InTok) {
702        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
703        InTok = false;
704      }
705      ++i;
706      assert(i != String.size() && "Invalid quoted character");
707      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
708      Prev = i + 1;
709      break;
710
711    case '$': {
712      if (InTok) {
713        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
714        InTok = false;
715      }
716
717      // If this isn't "${", treat like a normal token.
718      if (i + 1 == String.size() || String[i + 1] != '{') {
719        Prev = i;
720        break;
721      }
722
723      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
724      assert(End != String.end() && "Missing brace in operand reference!");
725      size_t EndPos = End - String.begin();
726      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
727      Prev = EndPos + 1;
728      i = EndPos;
729      break;
730    }
731
732    case '.':
733      if (InTok)
734        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
735      Prev = i;
736      InTok = true;
737      break;
738
739    default:
740      InTok = true;
741    }
742  }
743  if (InTok && Prev != String.size())
744    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
745
746  // The first token of the instruction is the mnemonic, which must be a
747  // simple string, not a $foo variable or a singleton register.
748  if (AsmOperands.empty())
749    throw TGError(TheDef->getLoc(),
750                  "Instruction '" + TheDef->getName() + "' has no tokens");
751  Mnemonic = AsmOperands[0].Token;
752  // FIXME : Check and raise an error if it is a register.
753  if (Mnemonic[0] == '$')
754    throw TGError(TheDef->getLoc(),
755                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
756
757  // Remove the first operand, it is tracked in the mnemonic field.
758  AsmOperands.erase(AsmOperands.begin());
759}
760
761bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
762  // Reject matchables with no .s string.
763  if (AsmString.empty())
764    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
765
766  // Reject any matchables with a newline in them, they should be marked
767  // isCodeGenOnly if they are pseudo instructions.
768  if (AsmString.find('\n') != std::string::npos)
769    throw TGError(TheDef->getLoc(),
770                  "multiline instruction is not valid for the asmparser, "
771                  "mark it isCodeGenOnly");
772
773  // Remove comments from the asm string.  We know that the asmstring only
774  // has one line.
775  if (!CommentDelimiter.empty() &&
776      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
777    throw TGError(TheDef->getLoc(),
778                  "asmstring for instruction has comment character in it, "
779                  "mark it isCodeGenOnly");
780
781  // Reject matchables with operand modifiers, these aren't something we can
782  // handle, the target should be refactored to use operands instead of
783  // modifiers.
784  //
785  // Also, check for instructions which reference the operand multiple times;
786  // this implies a constraint we would not honor.
787  std::set<std::string> OperandNames;
788  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
789    StringRef Tok = AsmOperands[i].Token;
790    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
791      throw TGError(TheDef->getLoc(),
792                    "matchable with operand modifier '" + Tok.str() +
793                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
794
795    // Verify that any operand is only mentioned once.
796    // We reject aliases and ignore instructions for now.
797    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
798      if (!Hack)
799        throw TGError(TheDef->getLoc(),
800                      "ERROR: matchable with tied operand '" + Tok.str() +
801                      "' can never be matched!");
802      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
803      // bunch of instructions.  It is unclear what the right answer is.
804      DEBUG({
805        errs() << "warning: '" << TheDef->getName() << "': "
806               << "ignoring instruction with tied operand '"
807               << Tok.str() << "'\n";
808      });
809      return false;
810    }
811  }
812
813  return true;
814}
815
816/// extractSingletonRegisterForAsmOperand - Extract singleton register,
817/// if present, from specified token.
818void MatchableInfo::
819extractSingletonRegisterForAsmOperand(unsigned OperandNo,
820                                      const AsmMatcherInfo &Info,
821				      std::string &RegisterPrefix) {
822  StringRef Tok = AsmOperands[OperandNo].Token;
823  if (RegisterPrefix.empty()) {
824    std::string LoweredTok = Tok.lower();
825    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
826      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
827    return;
828  }
829
830  if (!Tok.startswith(RegisterPrefix))
831    return;
832
833  StringRef RegName = Tok.substr(RegisterPrefix.size());
834  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
835    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
836
837  // If there is no register prefix (i.e. "%" in "%eax"), then this may
838  // be some random non-register token, just ignore it.
839  return;
840}
841
842static std::string getEnumNameForToken(StringRef Str) {
843  std::string Res;
844
845  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
846    switch (*it) {
847    case '*': Res += "_STAR_"; break;
848    case '%': Res += "_PCT_"; break;
849    case ':': Res += "_COLON_"; break;
850    case '!': Res += "_EXCLAIM_"; break;
851    case '.': Res += "_DOT_"; break;
852    default:
853      if (isalnum(*it))
854        Res += *it;
855      else
856        Res += "_" + utostr((unsigned) *it) + "_";
857    }
858  }
859
860  return Res;
861}
862
863ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
864  ClassInfo *&Entry = TokenClasses[Token];
865
866  if (!Entry) {
867    Entry = new ClassInfo();
868    Entry->Kind = ClassInfo::Token;
869    Entry->ClassName = "Token";
870    Entry->Name = "MCK_" + getEnumNameForToken(Token);
871    Entry->ValueName = Token;
872    Entry->PredicateMethod = "<invalid>";
873    Entry->RenderMethod = "<invalid>";
874    Entry->ParserMethod = "";
875    Classes.push_back(Entry);
876  }
877
878  return Entry;
879}
880
881ClassInfo *
882AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
883                                int SubOpIdx) {
884  Record *Rec = OI.Rec;
885  if (SubOpIdx != -1)
886    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
887  return getOperandClass(Rec, SubOpIdx);
888}
889
890ClassInfo *
891AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
892  if (Rec->isSubClassOf("RegisterOperand")) {
893    // RegisterOperand may have an associated ParserMatchClass. If it does,
894    // use it, else just fall back to the underlying register class.
895    const RecordVal *R = Rec->getValue("ParserMatchClass");
896    if (R == 0 || R->getValue() == 0)
897      throw "Record `" + Rec->getName() +
898        "' does not have a ParserMatchClass!\n";
899
900    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
901      Record *MatchClass = DI->getDef();
902      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
903        return CI;
904    }
905
906    // No custom match class. Just use the register class.
907    Record *ClassRec = Rec->getValueAsDef("RegClass");
908    if (!ClassRec)
909      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
910                    "' has no associated register class!\n");
911    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
912      return CI;
913    throw TGError(Rec->getLoc(), "register class has no class info!");
914  }
915
916
917  if (Rec->isSubClassOf("RegisterClass")) {
918    if (ClassInfo *CI = RegisterClassClasses[Rec])
919      return CI;
920    throw TGError(Rec->getLoc(), "register class has no class info!");
921  }
922
923  assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
924  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
925  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
926    return CI;
927
928  throw TGError(Rec->getLoc(), "operand has no match class!");
929}
930
931void AsmMatcherInfo::
932BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
933  const std::vector<CodeGenRegister*> &Registers =
934    Target.getRegBank().getRegisters();
935  ArrayRef<CodeGenRegisterClass*> RegClassList =
936    Target.getRegBank().getRegClasses();
937
938  // The register sets used for matching.
939  std::set< std::set<Record*> > RegisterSets;
940
941  // Gather the defined sets.
942  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
943       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
944    RegisterSets.insert(std::set<Record*>(
945        (*it)->getOrder().begin(), (*it)->getOrder().end()));
946
947  // Add any required singleton sets.
948  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
949       ie = SingletonRegisters.end(); it != ie; ++it) {
950    Record *Rec = *it;
951    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
952  }
953
954  // Introduce derived sets where necessary (when a register does not determine
955  // a unique register set class), and build the mapping of registers to the set
956  // they should classify to.
957  std::map<Record*, std::set<Record*> > RegisterMap;
958  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
959         ie = Registers.end(); it != ie; ++it) {
960    const CodeGenRegister &CGR = **it;
961    // Compute the intersection of all sets containing this register.
962    std::set<Record*> ContainingSet;
963
964    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
965           ie = RegisterSets.end(); it != ie; ++it) {
966      if (!it->count(CGR.TheDef))
967        continue;
968
969      if (ContainingSet.empty()) {
970        ContainingSet = *it;
971        continue;
972      }
973
974      std::set<Record*> Tmp;
975      std::swap(Tmp, ContainingSet);
976      std::insert_iterator< std::set<Record*> > II(ContainingSet,
977                                                   ContainingSet.begin());
978      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
979    }
980
981    if (!ContainingSet.empty()) {
982      RegisterSets.insert(ContainingSet);
983      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
984    }
985  }
986
987  // Construct the register classes.
988  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
989  unsigned Index = 0;
990  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
991         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
992    ClassInfo *CI = new ClassInfo();
993    CI->Kind = ClassInfo::RegisterClass0 + Index;
994    CI->ClassName = "Reg" + utostr(Index);
995    CI->Name = "MCK_Reg" + utostr(Index);
996    CI->ValueName = "";
997    CI->PredicateMethod = ""; // unused
998    CI->RenderMethod = "addRegOperands";
999    CI->Registers = *it;
1000    Classes.push_back(CI);
1001    RegisterSetClasses.insert(std::make_pair(*it, CI));
1002  }
1003
1004  // Find the superclasses; we could compute only the subgroup lattice edges,
1005  // but there isn't really a point.
1006  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1007         ie = RegisterSets.end(); it != ie; ++it) {
1008    ClassInfo *CI = RegisterSetClasses[*it];
1009    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1010           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1011      if (*it != *it2 &&
1012          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1013        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1014  }
1015
1016  // Name the register classes which correspond to a user defined RegisterClass.
1017  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1018       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1019    const CodeGenRegisterClass &RC = **it;
1020    // Def will be NULL for non-user defined register classes.
1021    Record *Def = RC.getDef();
1022    if (!Def)
1023      continue;
1024    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1025                                                         RC.getOrder().end())];
1026    if (CI->ValueName.empty()) {
1027      CI->ClassName = RC.getName();
1028      CI->Name = "MCK_" + RC.getName();
1029      CI->ValueName = RC.getName();
1030    } else
1031      CI->ValueName = CI->ValueName + "," + RC.getName();
1032
1033    RegisterClassClasses.insert(std::make_pair(Def, CI));
1034  }
1035
1036  // Populate the map for individual registers.
1037  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1038         ie = RegisterMap.end(); it != ie; ++it)
1039    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1040
1041  // Name the register classes which correspond to singleton registers.
1042  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1043         ie = SingletonRegisters.end(); it != ie; ++it) {
1044    Record *Rec = *it;
1045    ClassInfo *CI = RegisterClasses[Rec];
1046    assert(CI && "Missing singleton register class info!");
1047
1048    if (CI->ValueName.empty()) {
1049      CI->ClassName = Rec->getName();
1050      CI->Name = "MCK_" + Rec->getName();
1051      CI->ValueName = Rec->getName();
1052    } else
1053      CI->ValueName = CI->ValueName + "," + Rec->getName();
1054  }
1055}
1056
1057void AsmMatcherInfo::BuildOperandClasses() {
1058  std::vector<Record*> AsmOperands =
1059    Records.getAllDerivedDefinitions("AsmOperandClass");
1060
1061  // Pre-populate AsmOperandClasses map.
1062  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1063         ie = AsmOperands.end(); it != ie; ++it)
1064    AsmOperandClasses[*it] = new ClassInfo();
1065
1066  unsigned Index = 0;
1067  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1068         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1069    ClassInfo *CI = AsmOperandClasses[*it];
1070    CI->Kind = ClassInfo::UserClass0 + Index;
1071
1072    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1073    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1074      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1075      if (!DI) {
1076        PrintError((*it)->getLoc(), "Invalid super class reference!");
1077        continue;
1078      }
1079
1080      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1081      if (!SC)
1082        PrintError((*it)->getLoc(), "Invalid super class reference!");
1083      else
1084        CI->SuperClasses.push_back(SC);
1085    }
1086    CI->ClassName = (*it)->getValueAsString("Name");
1087    CI->Name = "MCK_" + CI->ClassName;
1088    CI->ValueName = (*it)->getName();
1089
1090    // Get or construct the predicate method name.
1091    Init *PMName = (*it)->getValueInit("PredicateMethod");
1092    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1093      CI->PredicateMethod = SI->getValue();
1094    } else {
1095      assert(dynamic_cast<UnsetInit*>(PMName) &&
1096             "Unexpected PredicateMethod field!");
1097      CI->PredicateMethod = "is" + CI->ClassName;
1098    }
1099
1100    // Get or construct the render method name.
1101    Init *RMName = (*it)->getValueInit("RenderMethod");
1102    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1103      CI->RenderMethod = SI->getValue();
1104    } else {
1105      assert(dynamic_cast<UnsetInit*>(RMName) &&
1106             "Unexpected RenderMethod field!");
1107      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1108    }
1109
1110    // Get the parse method name or leave it as empty.
1111    Init *PRMName = (*it)->getValueInit("ParserMethod");
1112    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1113      CI->ParserMethod = SI->getValue();
1114
1115    AsmOperandClasses[*it] = CI;
1116    Classes.push_back(CI);
1117  }
1118}
1119
1120AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1121                               CodeGenTarget &target,
1122                               RecordKeeper &records)
1123  : Records(records), AsmParser(asmParser), Target(target) {
1124}
1125
1126/// BuildOperandMatchInfo - Build the necessary information to handle user
1127/// defined operand parsing methods.
1128void AsmMatcherInfo::BuildOperandMatchInfo() {
1129
1130  /// Map containing a mask with all operands indicies that can be found for
1131  /// that class inside a instruction.
1132  std::map<ClassInfo*, unsigned> OpClassMask;
1133
1134  for (std::vector<MatchableInfo*>::const_iterator it =
1135       Matchables.begin(), ie = Matchables.end();
1136       it != ie; ++it) {
1137    MatchableInfo &II = **it;
1138    OpClassMask.clear();
1139
1140    // Keep track of all operands of this instructions which belong to the
1141    // same class.
1142    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1143      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1144      if (Op.Class->ParserMethod.empty())
1145        continue;
1146      unsigned &OperandMask = OpClassMask[Op.Class];
1147      OperandMask |= (1 << i);
1148    }
1149
1150    // Generate operand match info for each mnemonic/operand class pair.
1151    for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1152         iie = OpClassMask.end(); iit != iie; ++iit) {
1153      unsigned OpMask = iit->second;
1154      ClassInfo *CI = iit->first;
1155      OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
1156    }
1157  }
1158}
1159
1160void AsmMatcherInfo::BuildInfo() {
1161  // Build information about all of the AssemblerPredicates.
1162  std::vector<Record*> AllPredicates =
1163    Records.getAllDerivedDefinitions("Predicate");
1164  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1165    Record *Pred = AllPredicates[i];
1166    // Ignore predicates that are not intended for the assembler.
1167    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1168      continue;
1169
1170    if (Pred->getName().empty())
1171      throw TGError(Pred->getLoc(), "Predicate has no name!");
1172
1173    unsigned FeatureNo = SubtargetFeatures.size();
1174    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1175    assert(FeatureNo < 32 && "Too many subtarget features!");
1176  }
1177
1178  // Parse the instructions; we need to do this first so that we can gather the
1179  // singleton register classes.
1180  SmallPtrSet<Record*, 16> SingletonRegisters;
1181  unsigned VariantCount = Target.getAsmParserVariantCount();
1182  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1183    Record *AsmVariant = Target.getAsmParserVariant(VC);
1184    std::string CommentDelimiter = AsmVariant->getValueAsString("CommentDelimiter");
1185    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1186    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1187
1188    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1189	   E = Target.inst_end(); I != E; ++I) {
1190      const CodeGenInstruction &CGI = **I;
1191
1192      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1193      // filter the set of instructions we consider.
1194      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1195	continue;
1196
1197      // Ignore "codegen only" instructions.
1198      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1199	continue;
1200
1201      // Validate the operand list to ensure we can handle this instruction.
1202      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1203	const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1204
1205	// Validate tied operands.
1206	if (OI.getTiedRegister() != -1) {
1207	  // If we have a tied operand that consists of multiple MCOperands,
1208	  // reject it.  We reject aliases and ignore instructions for now.
1209	  if (OI.MINumOperands != 1) {
1210	    // FIXME: Should reject these.  The ARM backend hits this with $lane
1211	    // in a bunch of instructions. It is unclear what the right answer is.
1212	    DEBUG({
1213		errs() << "warning: '" << CGI.TheDef->getName() << "': "
1214		       << "ignoring instruction with multi-operand tied operand '"
1215		       << OI.Name << "'\n";
1216	      });
1217	    continue;
1218	  }
1219	}
1220      }
1221
1222      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1223
1224      II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1225
1226      // Ignore instructions which shouldn't be matched and diagnose invalid
1227      // instruction definitions with an error.
1228      if (!II->Validate(CommentDelimiter, true))
1229	continue;
1230
1231      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1232      //
1233      // FIXME: This is a total hack.
1234      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1235	  StringRef(II->TheDef->getName()).endswith("_Int"))
1236	continue;
1237
1238      Matchables.push_back(II.take());
1239    }
1240
1241    // Parse all of the InstAlias definitions and stick them in the list of
1242    // matchables.
1243    std::vector<Record*> AllInstAliases =
1244      Records.getAllDerivedDefinitions("InstAlias");
1245    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1246      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1247
1248      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1249      // filter the set of instruction aliases we consider, based on the target
1250      // instruction.
1251      if (!StringRef(Alias->ResultInst->TheDef->getName()).startswith(
1252								      MatchPrefix))
1253	continue;
1254
1255      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1256
1257      II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1258
1259      // Validate the alias definitions.
1260      II->Validate(CommentDelimiter, false);
1261
1262      Matchables.push_back(II.take());
1263    }
1264  }
1265
1266  // Build info for the register classes.
1267  BuildRegisterClasses(SingletonRegisters);
1268
1269  // Build info for the user defined assembly operand classes.
1270  BuildOperandClasses();
1271
1272  // Build the information about matchables, now that we have fully formed
1273  // classes.
1274  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1275         ie = Matchables.end(); it != ie; ++it) {
1276    MatchableInfo *II = *it;
1277
1278    // Parse the tokens after the mnemonic.
1279    // Note: BuildInstructionOperandReference may insert new AsmOperands, so
1280    // don't precompute the loop bound.
1281    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1282      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1283      StringRef Token = Op.Token;
1284
1285      // Check for singleton registers.
1286      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1287        Op.Class = RegisterClasses[RegRecord];
1288        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1289               "Unexpected class for singleton register");
1290        continue;
1291      }
1292
1293      // Check for simple tokens.
1294      if (Token[0] != '$') {
1295        Op.Class = getTokenClass(Token);
1296        continue;
1297      }
1298
1299      if (Token.size() > 1 && isdigit(Token[1])) {
1300        Op.Class = getTokenClass(Token);
1301        continue;
1302      }
1303
1304      // Otherwise this is an operand reference.
1305      StringRef OperandName;
1306      if (Token[1] == '{')
1307        OperandName = Token.substr(2, Token.size() - 3);
1308      else
1309        OperandName = Token.substr(1);
1310
1311      if (II->DefRec.is<const CodeGenInstruction*>())
1312        BuildInstructionOperandReference(II, OperandName, i);
1313      else
1314        BuildAliasOperandReference(II, OperandName, Op);
1315    }
1316
1317    if (II->DefRec.is<const CodeGenInstruction*>())
1318      II->BuildInstructionResultOperands();
1319    else
1320      II->BuildAliasResultOperands();
1321  }
1322
1323  // Process token alias definitions and set up the associated superclass
1324  // information.
1325  std::vector<Record*> AllTokenAliases =
1326    Records.getAllDerivedDefinitions("TokenAlias");
1327  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1328    Record *Rec = AllTokenAliases[i];
1329    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1330    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1331    FromClass->SuperClasses.push_back(ToClass);
1332  }
1333
1334  // Reorder classes so that classes precede super classes.
1335  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1336}
1337
1338/// BuildInstructionOperandReference - The specified operand is a reference to a
1339/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1340void AsmMatcherInfo::
1341BuildInstructionOperandReference(MatchableInfo *II,
1342                                 StringRef OperandName,
1343                                 unsigned AsmOpIdx) {
1344  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1345  const CGIOperandList &Operands = CGI.Operands;
1346  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1347
1348  // Map this token to an operand.
1349  unsigned Idx;
1350  if (!Operands.hasOperandNamed(OperandName, Idx))
1351    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1352                  OperandName.str() + "'");
1353
1354  // If the instruction operand has multiple suboperands, but the parser
1355  // match class for the asm operand is still the default "ImmAsmOperand",
1356  // then handle each suboperand separately.
1357  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1358    Record *Rec = Operands[Idx].Rec;
1359    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1360    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1361    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1362      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1363      StringRef Token = Op->Token; // save this in case Op gets moved
1364      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1365        MatchableInfo::AsmOperand NewAsmOp(Token);
1366        NewAsmOp.SubOpIdx = SI;
1367        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1368      }
1369      // Replace Op with first suboperand.
1370      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1371      Op->SubOpIdx = 0;
1372    }
1373  }
1374
1375  // Set up the operand class.
1376  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1377
1378  // If the named operand is tied, canonicalize it to the untied operand.
1379  // For example, something like:
1380  //   (outs GPR:$dst), (ins GPR:$src)
1381  // with an asmstring of
1382  //   "inc $src"
1383  // we want to canonicalize to:
1384  //   "inc $dst"
1385  // so that we know how to provide the $dst operand when filling in the result.
1386  int OITied = Operands[Idx].getTiedRegister();
1387  if (OITied != -1) {
1388    // The tied operand index is an MIOperand index, find the operand that
1389    // contains it.
1390    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1391    OperandName = Operands[Idx.first].Name;
1392    Op->SubOpIdx = Idx.second;
1393  }
1394
1395  Op->SrcOpName = OperandName;
1396}
1397
1398/// BuildAliasOperandReference - When parsing an operand reference out of the
1399/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1400/// operand reference is by looking it up in the result pattern definition.
1401void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
1402                                                StringRef OperandName,
1403                                                MatchableInfo::AsmOperand &Op) {
1404  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1405
1406  // Set up the operand class.
1407  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1408    if (CGA.ResultOperands[i].isRecord() &&
1409        CGA.ResultOperands[i].getName() == OperandName) {
1410      // It's safe to go with the first one we find, because CodeGenInstAlias
1411      // validates that all operands with the same name have the same record.
1412      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1413      // Use the match class from the Alias definition, not the
1414      // destination instruction, as we may have an immediate that's
1415      // being munged by the match class.
1416      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1417                                 Op.SubOpIdx);
1418      Op.SrcOpName = OperandName;
1419      return;
1420    }
1421
1422  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1423                OperandName.str() + "'");
1424}
1425
1426void MatchableInfo::BuildInstructionResultOperands() {
1427  const CodeGenInstruction *ResultInst = getResultInst();
1428
1429  // Loop over all operands of the result instruction, determining how to
1430  // populate them.
1431  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1432    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1433
1434    // If this is a tied operand, just copy from the previously handled operand.
1435    int TiedOp = OpInfo.getTiedRegister();
1436    if (TiedOp != -1) {
1437      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1438      continue;
1439    }
1440
1441    // Find out what operand from the asmparser this MCInst operand comes from.
1442    int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
1443    if (OpInfo.Name.empty() || SrcOperand == -1)
1444      throw TGError(TheDef->getLoc(), "Instruction '" +
1445                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1446                    "' that doesn't appear in asm string!");
1447
1448    // Check if the one AsmOperand populates the entire operand.
1449    unsigned NumOperands = OpInfo.MINumOperands;
1450    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1451      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1452      continue;
1453    }
1454
1455    // Add a separate ResOperand for each suboperand.
1456    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1457      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1458             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1459             "unexpected AsmOperands for suboperands");
1460      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1461    }
1462  }
1463}
1464
1465void MatchableInfo::BuildAliasResultOperands() {
1466  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1467  const CodeGenInstruction *ResultInst = getResultInst();
1468
1469  // Loop over all operands of the result instruction, determining how to
1470  // populate them.
1471  unsigned AliasOpNo = 0;
1472  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1473  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1474    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1475
1476    // If this is a tied operand, just copy from the previously handled operand.
1477    int TiedOp = OpInfo->getTiedRegister();
1478    if (TiedOp != -1) {
1479      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1480      continue;
1481    }
1482
1483    // Handle all the suboperands for this operand.
1484    const std::string &OpName = OpInfo->Name;
1485    for ( ; AliasOpNo <  LastOpNo &&
1486            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1487      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1488
1489      // Find out what operand from the asmparser that this MCInst operand
1490      // comes from.
1491      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1492      case CodeGenInstAlias::ResultOperand::K_Record: {
1493        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1494        int SrcOperand = FindAsmOperand(Name, SubIdx);
1495        if (SrcOperand == -1)
1496          throw TGError(TheDef->getLoc(), "Instruction '" +
1497                        TheDef->getName() + "' has operand '" + OpName +
1498                        "' that doesn't appear in asm string!");
1499        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1500        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1501                                                        NumOperands));
1502        break;
1503      }
1504      case CodeGenInstAlias::ResultOperand::K_Imm: {
1505        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1506        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1507        break;
1508      }
1509      case CodeGenInstAlias::ResultOperand::K_Reg: {
1510        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1511        ResOperands.push_back(ResOperand::getRegOp(Reg));
1512        break;
1513      }
1514      }
1515    }
1516  }
1517}
1518
1519static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1520                                std::vector<MatchableInfo*> &Infos,
1521                                raw_ostream &OS) {
1522  // Write the convert function to a separate stream, so we can drop it after
1523  // the enum.
1524  std::string ConvertFnBody;
1525  raw_string_ostream CvtOS(ConvertFnBody);
1526
1527  // Function we have already generated.
1528  std::set<std::string> GeneratedFns;
1529
1530  // Start the unified conversion function.
1531  CvtOS << "bool " << Target.getName() << ClassName << "::\n";
1532  CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
1533        << "unsigned Opcode,\n"
1534        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1535        << "> &Operands) {\n";
1536  CvtOS << "  Inst.setOpcode(Opcode);\n";
1537  CvtOS << "  switch (Kind) {\n";
1538  CvtOS << "  default:\n";
1539
1540  // Start the enum, which we will generate inline.
1541
1542  OS << "// Unified function for converting operands to MCInst instances.\n\n";
1543  OS << "enum ConversionKind {\n";
1544
1545  // TargetOperandClass - This is the target's operand class, like X86Operand.
1546  std::string TargetOperandClass = Target.getName() + "Operand";
1547
1548  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1549         ie = Infos.end(); it != ie; ++it) {
1550    MatchableInfo &II = **it;
1551
1552    // Check if we have a custom match function.
1553    std::string AsmMatchConverter =
1554      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1555    if (!AsmMatchConverter.empty()) {
1556      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1557      II.ConversionFnKind = Signature;
1558
1559      // Check if we have already generated this signature.
1560      if (!GeneratedFns.insert(Signature).second)
1561        continue;
1562
1563      // If not, emit it now.  Add to the enum list.
1564      OS << "  " << Signature << ",\n";
1565
1566      CvtOS << "  case " << Signature << ":\n";
1567      CvtOS << "    return " << AsmMatchConverter
1568            << "(Inst, Opcode, Operands);\n";
1569      continue;
1570    }
1571
1572    // Build the conversion function signature.
1573    std::string Signature = "Convert";
1574    std::string CaseBody;
1575    raw_string_ostream CaseOS(CaseBody);
1576
1577    // Compute the convert enum and the case body.
1578    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1579      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1580
1581      // Generate code to populate each result operand.
1582      switch (OpInfo.Kind) {
1583      case MatchableInfo::ResOperand::RenderAsmOperand: {
1584        // This comes from something we parsed.
1585        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1586
1587        // Registers are always converted the same, don't duplicate the
1588        // conversion function based on them.
1589        Signature += "__";
1590        if (Op.Class->isRegisterClass())
1591          Signature += "Reg";
1592        else
1593          Signature += Op.Class->ClassName;
1594        Signature += utostr(OpInfo.MINumOperands);
1595        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1596
1597        CaseOS << "    ((" << TargetOperandClass << "*)Operands["
1598               << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
1599               << "(Inst, " << OpInfo.MINumOperands << ");\n";
1600        break;
1601      }
1602
1603      case MatchableInfo::ResOperand::TiedOperand: {
1604        // If this operand is tied to a previous one, just copy the MCInst
1605        // operand from the earlier one.We can only tie single MCOperand values.
1606        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1607        unsigned TiedOp = OpInfo.TiedOperandNum;
1608        assert(i > TiedOp && "Tied operand precedes its target!");
1609        CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
1610        Signature += "__Tie" + utostr(TiedOp);
1611        break;
1612      }
1613      case MatchableInfo::ResOperand::ImmOperand: {
1614        int64_t Val = OpInfo.ImmVal;
1615        CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
1616        Signature += "__imm" + itostr(Val);
1617        break;
1618      }
1619      case MatchableInfo::ResOperand::RegOperand: {
1620        if (OpInfo.Register == 0) {
1621          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1622          Signature += "__reg0";
1623        } else {
1624          std::string N = getQualifiedName(OpInfo.Register);
1625          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
1626          Signature += "__reg" + OpInfo.Register->getName();
1627        }
1628      }
1629      }
1630    }
1631
1632    II.ConversionFnKind = Signature;
1633
1634    // Check if we have already generated this signature.
1635    if (!GeneratedFns.insert(Signature).second)
1636      continue;
1637
1638    // If not, emit it now.  Add to the enum list.
1639    OS << "  " << Signature << ",\n";
1640
1641    CvtOS << "  case " << Signature << ":\n";
1642    CvtOS << CaseOS.str();
1643    CvtOS << "    return true;\n";
1644  }
1645
1646  // Finish the convert function.
1647
1648  CvtOS << "  }\n";
1649  CvtOS << "  return false;\n";
1650  CvtOS << "}\n\n";
1651
1652  // Finish the enum, and drop the convert function after it.
1653
1654  OS << "  NumConversionVariants\n";
1655  OS << "};\n\n";
1656
1657  OS << CvtOS.str();
1658}
1659
1660/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1661static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1662                                      std::vector<ClassInfo*> &Infos,
1663                                      raw_ostream &OS) {
1664  OS << "namespace {\n\n";
1665
1666  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1667     << "/// instruction matching.\n";
1668  OS << "enum MatchClassKind {\n";
1669  OS << "  InvalidMatchClass = 0,\n";
1670  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1671         ie = Infos.end(); it != ie; ++it) {
1672    ClassInfo &CI = **it;
1673    OS << "  " << CI.Name << ", // ";
1674    if (CI.Kind == ClassInfo::Token) {
1675      OS << "'" << CI.ValueName << "'\n";
1676    } else if (CI.isRegisterClass()) {
1677      if (!CI.ValueName.empty())
1678        OS << "register class '" << CI.ValueName << "'\n";
1679      else
1680        OS << "derived register class\n";
1681    } else {
1682      OS << "user defined class '" << CI.ValueName << "'\n";
1683    }
1684  }
1685  OS << "  NumMatchClassKinds\n";
1686  OS << "};\n\n";
1687
1688  OS << "}\n\n";
1689}
1690
1691/// EmitValidateOperandClass - Emit the function to validate an operand class.
1692static void EmitValidateOperandClass(AsmMatcherInfo &Info,
1693                                     raw_ostream &OS) {
1694  OS << "static bool validateOperandClass(MCParsedAsmOperand *GOp, "
1695     << "MatchClassKind Kind) {\n";
1696  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
1697     << Info.Target.getName() << "Operand*)GOp;\n";
1698
1699  // The InvalidMatchClass is not to match any operand.
1700  OS << "  if (Kind == InvalidMatchClass)\n";
1701  OS << "    return false;\n\n";
1702
1703  // Check for Token operands first.
1704  OS << "  if (Operand.isToken())\n";
1705  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind);"
1706     << "\n\n";
1707
1708  // Check for register operands, including sub-classes.
1709  OS << "  if (Operand.isReg()) {\n";
1710  OS << "    MatchClassKind OpKind;\n";
1711  OS << "    switch (Operand.getReg()) {\n";
1712  OS << "    default: OpKind = InvalidMatchClass; break;\n";
1713  for (std::map<Record*, ClassInfo*>::iterator
1714         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1715       it != ie; ++it)
1716    OS << "    case " << Info.Target.getName() << "::"
1717       << it->first->getName() << ": OpKind = " << it->second->Name
1718       << "; break;\n";
1719  OS << "    }\n";
1720  OS << "    return isSubclass(OpKind, Kind);\n";
1721  OS << "  }\n\n";
1722
1723  // Check the user classes. We don't care what order since we're only
1724  // actually matching against one of them.
1725  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1726         ie = Info.Classes.end(); it != ie; ++it) {
1727    ClassInfo &CI = **it;
1728
1729    if (!CI.isUserClass())
1730      continue;
1731
1732    OS << "  // '" << CI.ClassName << "' class\n";
1733    OS << "  if (Kind == " << CI.Name
1734       << " && Operand." << CI.PredicateMethod << "()) {\n";
1735    OS << "    return true;\n";
1736    OS << "  }\n\n";
1737  }
1738
1739  OS << "  return false;\n";
1740  OS << "}\n\n";
1741}
1742
1743/// EmitIsSubclass - Emit the subclass predicate function.
1744static void EmitIsSubclass(CodeGenTarget &Target,
1745                           std::vector<ClassInfo*> &Infos,
1746                           raw_ostream &OS) {
1747  OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1748  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
1749  OS << "  if (A == B)\n";
1750  OS << "    return true;\n\n";
1751
1752  OS << "  switch (A) {\n";
1753  OS << "  default:\n";
1754  OS << "    return false;\n";
1755  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1756         ie = Infos.end(); it != ie; ++it) {
1757    ClassInfo &A = **it;
1758
1759    std::vector<StringRef> SuperClasses;
1760    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1761         ie = Infos.end(); it != ie; ++it) {
1762      ClassInfo &B = **it;
1763
1764      if (&A != &B && A.isSubsetOf(B))
1765        SuperClasses.push_back(B.Name);
1766    }
1767
1768    if (SuperClasses.empty())
1769      continue;
1770
1771    OS << "\n  case " << A.Name << ":\n";
1772
1773    if (SuperClasses.size() == 1) {
1774      OS << "    return B == " << SuperClasses.back() << ";\n";
1775      continue;
1776    }
1777
1778    OS << "    switch (B) {\n";
1779    OS << "    default: return false;\n";
1780    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1781      OS << "    case " << SuperClasses[i] << ": return true;\n";
1782    OS << "    }\n";
1783  }
1784  OS << "  }\n";
1785  OS << "}\n\n";
1786}
1787
1788/// EmitMatchTokenString - Emit the function to match a token string to the
1789/// appropriate match class value.
1790static void EmitMatchTokenString(CodeGenTarget &Target,
1791                                 std::vector<ClassInfo*> &Infos,
1792                                 raw_ostream &OS) {
1793  // Construct the match list.
1794  std::vector<StringMatcher::StringPair> Matches;
1795  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1796         ie = Infos.end(); it != ie; ++it) {
1797    ClassInfo &CI = **it;
1798
1799    if (CI.Kind == ClassInfo::Token)
1800      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1801                                                  "return " + CI.Name + ";"));
1802  }
1803
1804  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
1805
1806  StringMatcher("Name", Matches, OS).Emit();
1807
1808  OS << "  return InvalidMatchClass;\n";
1809  OS << "}\n\n";
1810}
1811
1812/// EmitMatchRegisterName - Emit the function to match a string to the target
1813/// specific register enum.
1814static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1815                                  raw_ostream &OS) {
1816  // Construct the match list.
1817  std::vector<StringMatcher::StringPair> Matches;
1818  const std::vector<CodeGenRegister*> &Regs =
1819    Target.getRegBank().getRegisters();
1820  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1821    const CodeGenRegister *Reg = Regs[i];
1822    if (Reg->TheDef->getValueAsString("AsmName").empty())
1823      continue;
1824
1825    Matches.push_back(StringMatcher::StringPair(
1826                                     Reg->TheDef->getValueAsString("AsmName"),
1827                                     "return " + utostr(Reg->EnumValue) + ";"));
1828  }
1829
1830  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1831
1832  StringMatcher("Name", Matches, OS).Emit();
1833
1834  OS << "  return 0;\n";
1835  OS << "}\n\n";
1836}
1837
1838/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1839/// definitions.
1840static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1841                                                raw_ostream &OS) {
1842  OS << "// Flags for subtarget features that participate in "
1843     << "instruction matching.\n";
1844  OS << "enum SubtargetFeatureFlag {\n";
1845  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1846         it = Info.SubtargetFeatures.begin(),
1847         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1848    SubtargetFeatureInfo &SFI = *it->second;
1849    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1850  }
1851  OS << "  Feature_None = 0\n";
1852  OS << "};\n\n";
1853}
1854
1855/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1856/// available features given a subtarget.
1857static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1858                                         raw_ostream &OS) {
1859  std::string ClassName =
1860    Info.AsmParser->getValueAsString("AsmParserClassName");
1861
1862  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1863     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
1864  OS << "  unsigned Features = 0;\n";
1865  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1866         it = Info.SubtargetFeatures.begin(),
1867         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1868    SubtargetFeatureInfo &SFI = *it->second;
1869
1870    OS << "  if (";
1871    std::string CondStorage = SFI.TheDef->getValueAsString("AssemblerCondString");
1872    StringRef Conds = CondStorage;
1873    std::pair<StringRef,StringRef> Comma = Conds.split(',');
1874    bool First = true;
1875    do {
1876      if (!First)
1877        OS << " && ";
1878
1879      bool Neg = false;
1880      StringRef Cond = Comma.first;
1881      if (Cond[0] == '!') {
1882        Neg = true;
1883        Cond = Cond.substr(1);
1884      }
1885
1886      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
1887      if (Neg)
1888        OS << " == 0";
1889      else
1890        OS << " != 0";
1891      OS << ")";
1892
1893      if (Comma.second.empty())
1894        break;
1895
1896      First = false;
1897      Comma = Comma.second.split(',');
1898    } while (true);
1899
1900    OS << ")\n";
1901    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1902  }
1903  OS << "  return Features;\n";
1904  OS << "}\n\n";
1905}
1906
1907static std::string GetAliasRequiredFeatures(Record *R,
1908                                            const AsmMatcherInfo &Info) {
1909  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1910  std::string Result;
1911  unsigned NumFeatures = 0;
1912  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1913    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1914
1915    if (F == 0)
1916      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1917                    "' is not marked as an AssemblerPredicate!");
1918
1919    if (NumFeatures)
1920      Result += '|';
1921
1922    Result += F->getEnumName();
1923    ++NumFeatures;
1924  }
1925
1926  if (NumFeatures > 1)
1927    Result = '(' + Result + ')';
1928  return Result;
1929}
1930
1931/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1932/// emit a function for them and return true, otherwise return false.
1933static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1934  // Ignore aliases when match-prefix is set.
1935  if (!MatchPrefix.empty())
1936    return false;
1937
1938  std::vector<Record*> Aliases =
1939    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
1940  if (Aliases.empty()) return false;
1941
1942  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
1943        "unsigned Features) {\n";
1944
1945  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1946  // iteration order of the map is stable.
1947  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1948
1949  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1950    Record *R = Aliases[i];
1951    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1952  }
1953
1954  // Process each alias a "from" mnemonic at a time, building the code executed
1955  // by the string remapper.
1956  std::vector<StringMatcher::StringPair> Cases;
1957  for (std::map<std::string, std::vector<Record*> >::iterator
1958       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1959       I != E; ++I) {
1960    const std::vector<Record*> &ToVec = I->second;
1961
1962    // Loop through each alias and emit code that handles each case.  If there
1963    // are two instructions without predicates, emit an error.  If there is one,
1964    // emit it last.
1965    std::string MatchCode;
1966    int AliasWithNoPredicate = -1;
1967
1968    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1969      Record *R = ToVec[i];
1970      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1971
1972      // If this unconditionally matches, remember it for later and diagnose
1973      // duplicates.
1974      if (FeatureMask.empty()) {
1975        if (AliasWithNoPredicate != -1) {
1976          // We can't have two aliases from the same mnemonic with no predicate.
1977          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1978                     "two MnemonicAliases with the same 'from' mnemonic!");
1979          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1980        }
1981
1982        AliasWithNoPredicate = i;
1983        continue;
1984      }
1985      if (R->getValueAsString("ToMnemonic") == I->first)
1986        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
1987
1988      if (!MatchCode.empty())
1989        MatchCode += "else ";
1990      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1991      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1992    }
1993
1994    if (AliasWithNoPredicate != -1) {
1995      Record *R = ToVec[AliasWithNoPredicate];
1996      if (!MatchCode.empty())
1997        MatchCode += "else\n  ";
1998      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1999    }
2000
2001    MatchCode += "return;";
2002
2003    Cases.push_back(std::make_pair(I->first, MatchCode));
2004  }
2005
2006  StringMatcher("Mnemonic", Cases, OS).Emit();
2007  OS << "}\n\n";
2008
2009  return true;
2010}
2011
2012static const char *getMinimalTypeForRange(uint64_t Range) {
2013  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2014  if (Range > 0xFFFF)
2015    return "uint32_t";
2016  if (Range > 0xFF)
2017    return "uint16_t";
2018  return "uint8_t";
2019}
2020
2021static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2022                              const AsmMatcherInfo &Info, StringRef ClassName) {
2023  // Emit the static custom operand parsing table;
2024  OS << "namespace {\n";
2025  OS << "  struct OperandMatchEntry {\n";
2026  OS << "    static const char *const MnemonicTable;\n";
2027  OS << "    unsigned OperandMask;\n";
2028  OS << "    uint16_t Mnemonic;\n";
2029  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2030               << " Class;\n";
2031  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2032               << " RequiredFeatures;\n\n";
2033  OS << "    StringRef getMnemonic() const {\n";
2034  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2035  OS << "                       MnemonicTable[Mnemonic]);\n";
2036  OS << "    }\n";
2037  OS << "  };\n\n";
2038
2039  OS << "  // Predicate for searching for an opcode.\n";
2040  OS << "  struct LessOpcodeOperand {\n";
2041  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2042  OS << "      return LHS.getMnemonic()  < RHS;\n";
2043  OS << "    }\n";
2044  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2045  OS << "      return LHS < RHS.getMnemonic();\n";
2046  OS << "    }\n";
2047  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2048  OS << " const OperandMatchEntry &RHS) {\n";
2049  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2050  OS << "    }\n";
2051  OS << "  };\n";
2052
2053  OS << "} // end anonymous namespace.\n\n";
2054
2055  StringToOffsetTable StringTable;
2056
2057  OS << "static const OperandMatchEntry OperandMatchTable["
2058     << Info.OperandMatchInfo.size() << "] = {\n";
2059
2060  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2061  for (std::vector<OperandMatchEntry>::const_iterator it =
2062       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2063       it != ie; ++it) {
2064    const OperandMatchEntry &OMI = *it;
2065    const MatchableInfo &II = *OMI.MI;
2066
2067    OS << "  { " << OMI.OperandMask;
2068
2069    OS << " /* ";
2070    bool printComma = false;
2071    for (int i = 0, e = 31; i !=e; ++i)
2072      if (OMI.OperandMask & (1 << i)) {
2073        if (printComma)
2074          OS << ", ";
2075        OS << i;
2076        printComma = true;
2077      }
2078    OS << " */";
2079
2080    // Store a pascal-style length byte in the mnemonic.
2081    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2082    unsigned Idx = StringTable.GetOrAddStringOffset(LenMnemonic, false);
2083    assert(Idx <= 0xffff && "String offset too large to fit in table");
2084    OS << ", " << Idx << " /* " << II.Mnemonic << " */";
2085
2086    OS << ", " << OMI.CI->Name
2087       << ", ";
2088
2089    // Write the required features mask.
2090    if (!II.RequiredFeatures.empty()) {
2091      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2092        if (i) OS << "|";
2093        OS << II.RequiredFeatures[i]->getEnumName();
2094      }
2095    } else
2096      OS << "0";
2097    OS << " },\n";
2098  }
2099  OS << "};\n\n";
2100
2101  OS << "const char *const OperandMatchEntry::MnemonicTable =\n";
2102  StringTable.EmitString(OS);
2103  OS << ";\n\n";
2104
2105  // Emit the operand class switch to call the correct custom parser for
2106  // the found operand class.
2107  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2108     << Target.getName() << ClassName << "::\n"
2109     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2110     << " &Operands,\n                      unsigned MCK) {\n\n"
2111     << "  switch(MCK) {\n";
2112
2113  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2114       ie = Info.Classes.end(); it != ie; ++it) {
2115    ClassInfo *CI = *it;
2116    if (CI->ParserMethod.empty())
2117      continue;
2118    OS << "  case " << CI->Name << ":\n"
2119       << "    return " << CI->ParserMethod << "(Operands);\n";
2120  }
2121
2122  OS << "  default:\n";
2123  OS << "    return MatchOperand_NoMatch;\n";
2124  OS << "  }\n";
2125  OS << "  return MatchOperand_NoMatch;\n";
2126  OS << "}\n\n";
2127
2128  // Emit the static custom operand parser. This code is very similar with
2129  // the other matcher. Also use MatchResultTy here just in case we go for
2130  // a better error handling.
2131  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2132     << Target.getName() << ClassName << "::\n"
2133     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2134     << " &Operands,\n                       StringRef Mnemonic) {\n";
2135
2136  // Emit code to get the available features.
2137  OS << "  // Get the current feature set.\n";
2138  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2139
2140  OS << "  // Get the next operand index.\n";
2141  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2142
2143  // Emit code to search the table.
2144  OS << "  // Search the table.\n";
2145  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2146  OS << " MnemonicRange =\n";
2147  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2148     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2149     << "                     LessOpcodeOperand());\n\n";
2150
2151  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2152  OS << "    return MatchOperand_NoMatch;\n\n";
2153
2154  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2155     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2156
2157  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2158  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2159
2160  // Emit check that the required features are available.
2161  OS << "    // check if the available features match\n";
2162  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2163     << "!= it->RequiredFeatures) {\n";
2164  OS << "      continue;\n";
2165  OS << "    }\n\n";
2166
2167  // Emit check to ensure the operand number matches.
2168  OS << "    // check if the operand in question has a custom parser.\n";
2169  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2170  OS << "      continue;\n\n";
2171
2172  // Emit call to the custom parser method
2173  OS << "    // call custom parse method to handle the operand\n";
2174  OS << "    OperandMatchResultTy Result = ";
2175  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2176  OS << "    if (Result != MatchOperand_NoMatch)\n";
2177  OS << "      return Result;\n";
2178  OS << "  }\n\n";
2179
2180  OS << "  // Okay, we had no match.\n";
2181  OS << "  return MatchOperand_NoMatch;\n";
2182  OS << "}\n\n";
2183}
2184
2185void AsmMatcherEmitter::run(raw_ostream &OS) {
2186  CodeGenTarget Target(Records);
2187  Record *AsmParser = Target.getAsmParser();
2188  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2189
2190  // Compute the information on the instructions to match.
2191  AsmMatcherInfo Info(AsmParser, Target, Records);
2192  Info.BuildInfo();
2193
2194  // Sort the instruction table using the partial order on classes. We use
2195  // stable_sort to ensure that ambiguous instructions are still
2196  // deterministically ordered.
2197  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2198                   less_ptr<MatchableInfo>());
2199
2200  DEBUG_WITH_TYPE("instruction_info", {
2201      for (std::vector<MatchableInfo*>::iterator
2202             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2203           it != ie; ++it)
2204        (*it)->dump();
2205    });
2206
2207  // Check for ambiguous matchables.
2208  DEBUG_WITH_TYPE("ambiguous_instrs", {
2209    unsigned NumAmbiguous = 0;
2210    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2211      for (unsigned j = i + 1; j != e; ++j) {
2212        MatchableInfo &A = *Info.Matchables[i];
2213        MatchableInfo &B = *Info.Matchables[j];
2214
2215        if (A.CouldMatchAmbiguouslyWith(B)) {
2216          errs() << "warning: ambiguous matchables:\n";
2217          A.dump();
2218          errs() << "\nis incomparable with:\n";
2219          B.dump();
2220          errs() << "\n\n";
2221          ++NumAmbiguous;
2222        }
2223      }
2224    }
2225    if (NumAmbiguous)
2226      errs() << "warning: " << NumAmbiguous
2227             << " ambiguous matchables!\n";
2228  });
2229
2230  // Compute the information on the custom operand parsing.
2231  Info.BuildOperandMatchInfo();
2232
2233  // Write the output.
2234
2235  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2236
2237  // Information for the class declaration.
2238  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2239  OS << "#undef GET_ASSEMBLER_HEADER\n";
2240  OS << "  // This should be included into the middle of the declaration of\n";
2241  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2242  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2243  OS << "  bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
2244     << "unsigned Opcode,\n"
2245     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2246     << "&Operands);\n";
2247  OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
2248  OS << "  unsigned MatchInstructionImpl(\n";
2249  OS << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2250  OS << "    MCInst &Inst, unsigned &ErrorInfo, unsigned VariantID = 0);\n";
2251
2252  if (Info.OperandMatchInfo.size()) {
2253    OS << "\n  enum OperandMatchResultTy {\n";
2254    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2255    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2256    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2257    OS << "  };\n";
2258    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2259    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2260    OS << "    StringRef Mnemonic);\n";
2261
2262    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2263    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2264    OS << "    unsigned MCK);\n\n";
2265  }
2266
2267  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2268
2269  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2270  OS << "#undef GET_REGISTER_MATCHER\n\n";
2271
2272  // Emit the subtarget feature enumeration.
2273  EmitSubtargetFeatureFlagEnumeration(Info, OS);
2274
2275  // Emit the function to match a register name to number.
2276  EmitMatchRegisterName(Target, AsmParser, OS);
2277
2278  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2279
2280
2281  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2282  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2283
2284  // Generate the function that remaps for mnemonic aliases.
2285  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
2286
2287  // Generate the unified function to convert operands into an MCInst.
2288  EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2289
2290  // Emit the enumeration for classes which participate in matching.
2291  EmitMatchClassEnumeration(Target, Info.Classes, OS);
2292
2293  // Emit the routine to match token strings to their match class.
2294  EmitMatchTokenString(Target, Info.Classes, OS);
2295
2296  // Emit the subclass predicate routine.
2297  EmitIsSubclass(Target, Info.Classes, OS);
2298
2299  // Emit the routine to validate an operand against a match class.
2300  EmitValidateOperandClass(Info, OS);
2301
2302  // Emit the available features compute function.
2303  EmitComputeAvailableFeatures(Info, OS);
2304
2305
2306  size_t MaxNumOperands = 0;
2307  for (std::vector<MatchableInfo*>::const_iterator it =
2308         Info.Matchables.begin(), ie = Info.Matchables.end();
2309       it != ie; ++it)
2310    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
2311
2312  // Emit the static match table; unused classes get initalized to 0 which is
2313  // guaranteed to be InvalidMatchClass.
2314  //
2315  // FIXME: We can reduce the size of this table very easily. First, we change
2316  // it so that store the kinds in separate bit-fields for each index, which
2317  // only needs to be the max width used for classes at that index (we also need
2318  // to reject based on this during classification). If we then make sure to
2319  // order the match kinds appropriately (putting mnemonics last), then we
2320  // should only end up using a few bits for each class, especially the ones
2321  // following the mnemonic.
2322  OS << "namespace {\n";
2323  OS << "  struct MatchEntry {\n";
2324  OS << "    static const char *const MnemonicTable;\n";
2325  OS << "    uint16_t Opcode;\n";
2326  OS << "    uint16_t Mnemonic;\n";
2327  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2328               << " ConvertFn;\n";
2329  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2330               << " Classes[" << MaxNumOperands << "];\n";
2331  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2332               << " RequiredFeatures;\n";
2333  OS << "    uint8_t AsmVariantID;\n\n";
2334  OS << "    StringRef getMnemonic() const {\n";
2335  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2336  OS << "                       MnemonicTable[Mnemonic]);\n";
2337  OS << "    }\n";
2338  OS << "  };\n\n";
2339
2340  OS << "  // Predicate for searching for an opcode.\n";
2341  OS << "  struct LessOpcode {\n";
2342  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2343  OS << "      return LHS.getMnemonic() < RHS;\n";
2344  OS << "    }\n";
2345  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2346  OS << "      return LHS < RHS.getMnemonic();\n";
2347  OS << "    }\n";
2348  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2349  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2350  OS << "    }\n";
2351  OS << "  };\n";
2352
2353  OS << "} // end anonymous namespace.\n\n";
2354
2355  StringToOffsetTable StringTable;
2356
2357  OS << "static const MatchEntry MatchTable["
2358     << Info.Matchables.size() << "] = {\n";
2359
2360  for (std::vector<MatchableInfo*>::const_iterator it =
2361       Info.Matchables.begin(), ie = Info.Matchables.end();
2362       it != ie; ++it) {
2363    MatchableInfo &II = **it;
2364
2365    // Store a pascal-style length byte in the mnemonic.
2366    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2367    unsigned Idx = StringTable.GetOrAddStringOffset(LenMnemonic, false);
2368    assert(Idx <= 0xffff && "String offset too large to fit in table");
2369    OS << "  { " << Target.getName() << "::"
2370       << II.getResultInst()->TheDef->getName() << ", "
2371       << Idx << " /* " << II.Mnemonic << " */"
2372       << ", " << II.ConversionFnKind << ", { ";
2373    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2374      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2375
2376      if (i) OS << ", ";
2377      OS << Op.Class->Name;
2378    }
2379    OS << " }, ";
2380
2381    // Write the required features mask.
2382    if (!II.RequiredFeatures.empty()) {
2383      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2384        if (i) OS << "|";
2385        OS << II.RequiredFeatures[i]->getEnumName();
2386      }
2387    } else
2388      OS << "0";
2389    OS << ", " << II.AsmVariantID;
2390    OS << "},\n";
2391  }
2392
2393  OS << "};\n\n";
2394
2395  OS << "const char *const MatchEntry::MnemonicTable =\n";
2396  StringTable.EmitString(OS);
2397  OS << ";\n\n";
2398
2399  // A method to determine if a mnemonic is in the list.
2400  OS << "bool " << Target.getName() << ClassName << "::\n"
2401     << "MnemonicIsValid(StringRef Mnemonic) {\n";
2402  OS << "  // Search the table.\n";
2403  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2404  OS << "    std::equal_range(MatchTable, MatchTable+"
2405     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2406  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2407  OS << "}\n\n";
2408
2409  // Finally, build the match function.
2410  OS << "unsigned "
2411     << Target.getName() << ClassName << "::\n"
2412     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2413     << " &Operands,\n";
2414  OS << "                     MCInst &Inst, unsigned &ErrorInfo,\n";
2415  OS << "                     unsigned VariantID) {\n";
2416
2417  // Emit code to get the available features.
2418  OS << "  // Get the current feature set.\n";
2419  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2420
2421  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2422  OS << "  StringRef Mnemonic = ((" << Target.getName()
2423     << "Operand*)Operands[0])->getToken();\n\n";
2424
2425  if (HasMnemonicAliases) {
2426    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2427    OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
2428    OS << "  if (!VariantID)\n";
2429    OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2430  }
2431
2432  // Emit code to compute the class list for this operand vector.
2433  OS << "  // Eliminate obvious mismatches.\n";
2434  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2435  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2436  OS << "    return Match_InvalidOperand;\n";
2437  OS << "  }\n\n";
2438
2439  OS << "  // Some state to try to produce better error messages.\n";
2440  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2441  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2442  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2443  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2444  OS << "  // wrong for all instances of the instruction.\n";
2445  OS << "  ErrorInfo = ~0U;\n";
2446
2447  // Emit code to search the table.
2448  OS << "  // Search the table.\n";
2449  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2450  OS << "    std::equal_range(MatchTable, MatchTable+"
2451     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2452
2453  OS << "  // Return a more specific error code if no mnemonics match.\n";
2454  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2455  OS << "    return Match_MnemonicFail;\n\n";
2456
2457  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2458     << "*ie = MnemonicRange.second;\n";
2459  OS << "       it != ie; ++it) {\n";
2460
2461  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2462  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2463
2464  // Emit check that the subclasses match.
2465  OS << "    if (VariantID != it->AsmVariantID) continue;\n";
2466  OS << "    bool OperandsValid = true;\n";
2467  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2468  OS << "      if (i + 1 >= Operands.size()) {\n";
2469  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2470  OS << "        break;\n";
2471  OS << "      }\n";
2472  OS << "      if (validateOperandClass(Operands[i+1], "
2473                                       "(MatchClassKind)it->Classes[i]))\n";
2474  OS << "        continue;\n";
2475  OS << "      // If this operand is broken for all of the instances of this\n";
2476  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2477  OS << "      if (it == MnemonicRange.first || ErrorInfo <= i+1)\n";
2478  OS << "        ErrorInfo = i+1;\n";
2479  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2480  OS << "      OperandsValid = false;\n";
2481  OS << "      break;\n";
2482  OS << "    }\n\n";
2483
2484  OS << "    if (!OperandsValid) continue;\n";
2485
2486  // Emit check that the required features are available.
2487  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2488     << "!= it->RequiredFeatures) {\n";
2489  OS << "      HadMatchOtherThanFeatures = true;\n";
2490  OS << "      continue;\n";
2491  OS << "    }\n";
2492  OS << "\n";
2493  OS << "    // We have selected a definite instruction, convert the parsed\n"
2494     << "    // operands into the appropriate MCInst.\n";
2495  OS << "    if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
2496     << "                         it->Opcode, Operands))\n";
2497  OS << "      return Match_ConversionFail;\n";
2498  OS << "\n";
2499
2500  // Verify the instruction with the target-specific match predicate function.
2501  OS << "    // We have a potential match. Check the target predicate to\n"
2502     << "    // handle any context sensitive constraints.\n"
2503     << "    unsigned MatchResult;\n"
2504     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2505     << " Match_Success) {\n"
2506     << "      Inst.clear();\n"
2507     << "      RetCode = MatchResult;\n"
2508     << "      HadMatchOtherThanPredicate = true;\n"
2509     << "      continue;\n"
2510     << "    }\n\n";
2511
2512  // Call the post-processing function, if used.
2513  std::string InsnCleanupFn =
2514    AsmParser->getValueAsString("AsmParserInstCleanup");
2515  if (!InsnCleanupFn.empty())
2516    OS << "    " << InsnCleanupFn << "(Inst);\n";
2517
2518  OS << "    return Match_Success;\n";
2519  OS << "  }\n\n";
2520
2521  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2522  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)";
2523  OS << " return RetCode;\n";
2524  OS << "  return Match_MissingFeature;\n";
2525  OS << "}\n\n";
2526
2527  if (Info.OperandMatchInfo.size())
2528    EmitCustomOperandParsing(OS, Target, Info, ClassName);
2529
2530  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2531}
2532