AsmMatcherEmitter.cpp revision dfb5ceae90c016ba4ca8a7f1a3b79c360d888f30
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific values in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "StringToOffsetTable.h"
101#include "llvm/ADT/OwningPtr.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/STLExtras.h"
104#include "llvm/ADT/SmallPtrSet.h"
105#include "llvm/ADT/SmallVector.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include "llvm/TableGen/StringMatcher.h"
113#include "llvm/TableGen/TableGenBackend.h"
114#include <cassert>
115#include <map>
116#include <set>
117#include <sstream>
118using namespace llvm;
119
120static cl::opt<std::string>
121MatchPrefix("match-prefix", cl::init(""),
122            cl::desc("Only match instructions with the given prefix"));
123
124namespace {
125class AsmMatcherInfo;
126struct SubtargetFeatureInfo;
127
128typedef std::set<Record *, LessRecordByID> RegisterSet;
129
130class AsmMatcherEmitter {
131  RecordKeeper &Records;
132public:
133  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
134
135  void run(raw_ostream &o);
136};
137
138/// ClassInfo - Helper class for storing the information about a particular
139/// class of operands which can be matched.
140struct ClassInfo {
141  enum ClassInfoKind {
142    /// Invalid kind, for use as a sentinel value.
143    Invalid = 0,
144
145    /// The class for a particular token.
146    Token,
147
148    /// The (first) register class, subsequent register classes are
149    /// RegisterClass0+1, and so on.
150    RegisterClass0,
151
152    /// The (first) user defined class, subsequent user defined classes are
153    /// UserClass0+1, and so on.
154    UserClass0 = 1<<16
155  };
156
157  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
158  /// N) for the Nth user defined class.
159  unsigned Kind;
160
161  /// SuperClasses - The super classes of this class. Note that for simplicities
162  /// sake user operands only record their immediate super class, while register
163  /// operands include all superclasses.
164  std::vector<ClassInfo*> SuperClasses;
165
166  /// Name - The full class name, suitable for use in an enum.
167  std::string Name;
168
169  /// ClassName - The unadorned generic name for this class (e.g., Token).
170  std::string ClassName;
171
172  /// ValueName - The name of the value this class represents; for a token this
173  /// is the literal token string, for an operand it is the TableGen class (or
174  /// empty if this is a derived class).
175  std::string ValueName;
176
177  /// PredicateMethod - The name of the operand method to test whether the
178  /// operand matches this class; this is not valid for Token or register kinds.
179  std::string PredicateMethod;
180
181  /// RenderMethod - The name of the operand method to add this operand to an
182  /// MCInst; this is not valid for Token or register kinds.
183  std::string RenderMethod;
184
185  /// ParserMethod - The name of the operand method to do a target specific
186  /// parsing on the operand.
187  std::string ParserMethod;
188
189  /// For register classes, the records for all the registers in this class.
190  RegisterSet Registers;
191
192  /// For custom match classes, he diagnostic kind for when the predicate fails.
193  std::string DiagnosticType;
194public:
195  /// isRegisterClass() - Check if this is a register class.
196  bool isRegisterClass() const {
197    return Kind >= RegisterClass0 && Kind < UserClass0;
198  }
199
200  /// isUserClass() - Check if this is a user defined class.
201  bool isUserClass() const {
202    return Kind >= UserClass0;
203  }
204
205  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
206  /// are related if they are in the same class hierarchy.
207  bool isRelatedTo(const ClassInfo &RHS) const {
208    // Tokens are only related to tokens.
209    if (Kind == Token || RHS.Kind == Token)
210      return Kind == Token && RHS.Kind == Token;
211
212    // Registers classes are only related to registers classes, and only if
213    // their intersection is non-empty.
214    if (isRegisterClass() || RHS.isRegisterClass()) {
215      if (!isRegisterClass() || !RHS.isRegisterClass())
216        return false;
217
218      RegisterSet Tmp;
219      std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
220      std::set_intersection(Registers.begin(), Registers.end(),
221                            RHS.Registers.begin(), RHS.Registers.end(),
222                            II);
223
224      return !Tmp.empty();
225    }
226
227    // Otherwise we have two users operands; they are related if they are in the
228    // same class hierarchy.
229    //
230    // FIXME: This is an oversimplification, they should only be related if they
231    // intersect, however we don't have that information.
232    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
233    const ClassInfo *Root = this;
234    while (!Root->SuperClasses.empty())
235      Root = Root->SuperClasses.front();
236
237    const ClassInfo *RHSRoot = &RHS;
238    while (!RHSRoot->SuperClasses.empty())
239      RHSRoot = RHSRoot->SuperClasses.front();
240
241    return Root == RHSRoot;
242  }
243
244  /// isSubsetOf - Test whether this class is a subset of \p RHS.
245  bool isSubsetOf(const ClassInfo &RHS) const {
246    // This is a subset of RHS if it is the same class...
247    if (this == &RHS)
248      return true;
249
250    // ... or if any of its super classes are a subset of RHS.
251    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
252           ie = SuperClasses.end(); it != ie; ++it)
253      if ((*it)->isSubsetOf(RHS))
254        return true;
255
256    return false;
257  }
258
259  /// operator< - Compare two classes.
260  bool operator<(const ClassInfo &RHS) const {
261    if (this == &RHS)
262      return false;
263
264    // Unrelated classes can be ordered by kind.
265    if (!isRelatedTo(RHS))
266      return Kind < RHS.Kind;
267
268    switch (Kind) {
269    case Invalid:
270      llvm_unreachable("Invalid kind!");
271
272    default:
273      // This class precedes the RHS if it is a proper subset of the RHS.
274      if (isSubsetOf(RHS))
275        return true;
276      if (RHS.isSubsetOf(*this))
277        return false;
278
279      // Otherwise, order by name to ensure we have a total ordering.
280      return ValueName < RHS.ValueName;
281    }
282  }
283};
284
285namespace {
286/// Sort ClassInfo pointers independently of pointer value.
287struct LessClassInfoPtr {
288  bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const {
289    return *LHS < *RHS;
290  }
291};
292}
293
294/// MatchableInfo - Helper class for storing the necessary information for an
295/// instruction or alias which is capable of being matched.
296struct MatchableInfo {
297  struct AsmOperand {
298    /// Token - This is the token that the operand came from.
299    StringRef Token;
300
301    /// The unique class instance this operand should match.
302    ClassInfo *Class;
303
304    /// The operand name this is, if anything.
305    StringRef SrcOpName;
306
307    /// The suboperand index within SrcOpName, or -1 for the entire operand.
308    int SubOpIdx;
309
310    /// Register record if this token is singleton register.
311    Record *SingletonReg;
312
313    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
314                                       SingletonReg(0) {}
315  };
316
317  /// ResOperand - This represents a single operand in the result instruction
318  /// generated by the match.  In cases (like addressing modes) where a single
319  /// assembler operand expands to multiple MCOperands, this represents the
320  /// single assembler operand, not the MCOperand.
321  struct ResOperand {
322    enum {
323      /// RenderAsmOperand - This represents an operand result that is
324      /// generated by calling the render method on the assembly operand.  The
325      /// corresponding AsmOperand is specified by AsmOperandNum.
326      RenderAsmOperand,
327
328      /// TiedOperand - This represents a result operand that is a duplicate of
329      /// a previous result operand.
330      TiedOperand,
331
332      /// ImmOperand - This represents an immediate value that is dumped into
333      /// the operand.
334      ImmOperand,
335
336      /// RegOperand - This represents a fixed register that is dumped in.
337      RegOperand
338    } Kind;
339
340    union {
341      /// This is the operand # in the AsmOperands list that this should be
342      /// copied from.
343      unsigned AsmOperandNum;
344
345      /// TiedOperandNum - This is the (earlier) result operand that should be
346      /// copied from.
347      unsigned TiedOperandNum;
348
349      /// ImmVal - This is the immediate value added to the instruction.
350      int64_t ImmVal;
351
352      /// Register - This is the register record.
353      Record *Register;
354    };
355
356    /// MINumOperands - The number of MCInst operands populated by this
357    /// operand.
358    unsigned MINumOperands;
359
360    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
361      ResOperand X;
362      X.Kind = RenderAsmOperand;
363      X.AsmOperandNum = AsmOpNum;
364      X.MINumOperands = NumOperands;
365      return X;
366    }
367
368    static ResOperand getTiedOp(unsigned TiedOperandNum) {
369      ResOperand X;
370      X.Kind = TiedOperand;
371      X.TiedOperandNum = TiedOperandNum;
372      X.MINumOperands = 1;
373      return X;
374    }
375
376    static ResOperand getImmOp(int64_t Val) {
377      ResOperand X;
378      X.Kind = ImmOperand;
379      X.ImmVal = Val;
380      X.MINumOperands = 1;
381      return X;
382    }
383
384    static ResOperand getRegOp(Record *Reg) {
385      ResOperand X;
386      X.Kind = RegOperand;
387      X.Register = Reg;
388      X.MINumOperands = 1;
389      return X;
390    }
391  };
392
393  /// AsmVariantID - Target's assembly syntax variant no.
394  int AsmVariantID;
395
396  /// TheDef - This is the definition of the instruction or InstAlias that this
397  /// matchable came from.
398  Record *const TheDef;
399
400  /// DefRec - This is the definition that it came from.
401  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
402
403  const CodeGenInstruction *getResultInst() const {
404    if (DefRec.is<const CodeGenInstruction*>())
405      return DefRec.get<const CodeGenInstruction*>();
406    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
407  }
408
409  /// ResOperands - This is the operand list that should be built for the result
410  /// MCInst.
411  SmallVector<ResOperand, 8> ResOperands;
412
413  /// AsmString - The assembly string for this instruction (with variants
414  /// removed), e.g. "movsx $src, $dst".
415  std::string AsmString;
416
417  /// Mnemonic - This is the first token of the matched instruction, its
418  /// mnemonic.
419  StringRef Mnemonic;
420
421  /// AsmOperands - The textual operands that this instruction matches,
422  /// annotated with a class and where in the OperandList they were defined.
423  /// This directly corresponds to the tokenized AsmString after the mnemonic is
424  /// removed.
425  SmallVector<AsmOperand, 8> AsmOperands;
426
427  /// Predicates - The required subtarget features to match this instruction.
428  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
429
430  /// ConversionFnKind - The enum value which is passed to the generated
431  /// convertToMCInst to convert parsed operands into an MCInst for this
432  /// function.
433  std::string ConversionFnKind;
434
435  MatchableInfo(const CodeGenInstruction &CGI)
436    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
437      AsmString(CGI.AsmString) {
438  }
439
440  MatchableInfo(const CodeGenInstAlias *Alias)
441    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
442      AsmString(Alias->AsmString) {
443  }
444
445  // Two-operand aliases clone from the main matchable, but mark the second
446  // operand as a tied operand of the first for purposes of the assembler.
447  void formTwoOperandAlias(StringRef Constraint);
448
449  void initialize(const AsmMatcherInfo &Info,
450                  SmallPtrSet<Record*, 16> &SingletonRegisters,
451                  int AsmVariantNo, std::string &RegisterPrefix);
452
453  /// validate - Return true if this matchable is a valid thing to match against
454  /// and perform a bunch of validity checking.
455  bool validate(StringRef CommentDelimiter, bool Hack) const;
456
457  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
458  /// if present, from specified token.
459  void
460  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
461                                        std::string &RegisterPrefix);
462
463  /// findAsmOperand - Find the AsmOperand with the specified name and
464  /// suboperand index.
465  int findAsmOperand(StringRef N, int SubOpIdx) const {
466    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
467      if (N == AsmOperands[i].SrcOpName &&
468          SubOpIdx == AsmOperands[i].SubOpIdx)
469        return i;
470    return -1;
471  }
472
473  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
474  /// This does not check the suboperand index.
475  int findAsmOperandNamed(StringRef N) const {
476    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
477      if (N == AsmOperands[i].SrcOpName)
478        return i;
479    return -1;
480  }
481
482  void buildInstructionResultOperands();
483  void buildAliasResultOperands();
484
485  /// operator< - Compare two matchables.
486  bool operator<(const MatchableInfo &RHS) const {
487    // The primary comparator is the instruction mnemonic.
488    if (Mnemonic != RHS.Mnemonic)
489      return Mnemonic < RHS.Mnemonic;
490
491    if (AsmOperands.size() != RHS.AsmOperands.size())
492      return AsmOperands.size() < RHS.AsmOperands.size();
493
494    // Compare lexicographically by operand. The matcher validates that other
495    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
496    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
497      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
498        return true;
499      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
500        return false;
501    }
502
503    // Give matches that require more features higher precedence. This is useful
504    // because we cannot define AssemblerPredicates with the negation of
505    // processor features. For example, ARM v6 "nop" may be either a HINT or
506    // MOV. With v6, we want to match HINT. The assembler has no way to
507    // predicate MOV under "NoV6", but HINT will always match first because it
508    // requires V6 while MOV does not.
509    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
510      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
511
512    return false;
513  }
514
515  /// couldMatchAmbiguouslyWith - Check whether this matchable could
516  /// ambiguously match the same set of operands as \p RHS (without being a
517  /// strictly superior match).
518  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
519    // The primary comparator is the instruction mnemonic.
520    if (Mnemonic != RHS.Mnemonic)
521      return false;
522
523    // The number of operands is unambiguous.
524    if (AsmOperands.size() != RHS.AsmOperands.size())
525      return false;
526
527    // Otherwise, make sure the ordering of the two instructions is unambiguous
528    // by checking that either (a) a token or operand kind discriminates them,
529    // or (b) the ordering among equivalent kinds is consistent.
530
531    // Tokens and operand kinds are unambiguous (assuming a correct target
532    // specific parser).
533    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
534      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
535          AsmOperands[i].Class->Kind == ClassInfo::Token)
536        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
537            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
538          return false;
539
540    // Otherwise, this operand could commute if all operands are equivalent, or
541    // there is a pair of operands that compare less than and a pair that
542    // compare greater than.
543    bool HasLT = false, HasGT = false;
544    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
545      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
546        HasLT = true;
547      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
548        HasGT = true;
549    }
550
551    return !(HasLT ^ HasGT);
552  }
553
554  void dump();
555
556private:
557  void tokenizeAsmString(const AsmMatcherInfo &Info);
558};
559
560/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
561/// feature which participates in instruction matching.
562struct SubtargetFeatureInfo {
563  /// \brief The predicate record for this feature.
564  Record *TheDef;
565
566  /// \brief An unique index assigned to represent this feature.
567  unsigned Index;
568
569  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
570
571  /// \brief The name of the enumerated constant identifying this feature.
572  std::string getEnumName() const {
573    return "Feature_" + TheDef->getName();
574  }
575};
576
577struct OperandMatchEntry {
578  unsigned OperandMask;
579  MatchableInfo* MI;
580  ClassInfo *CI;
581
582  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
583                                  unsigned opMask) {
584    OperandMatchEntry X;
585    X.OperandMask = opMask;
586    X.CI = ci;
587    X.MI = mi;
588    return X;
589  }
590};
591
592
593class AsmMatcherInfo {
594public:
595  /// Tracked Records
596  RecordKeeper &Records;
597
598  /// The tablegen AsmParser record.
599  Record *AsmParser;
600
601  /// Target - The target information.
602  CodeGenTarget &Target;
603
604  /// The classes which are needed for matching.
605  std::vector<ClassInfo*> Classes;
606
607  /// The information on the matchables to match.
608  std::vector<MatchableInfo*> Matchables;
609
610  /// Info for custom matching operands by user defined methods.
611  std::vector<OperandMatchEntry> OperandMatchInfo;
612
613  /// Map of Register records to their class information.
614  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
615  RegisterClassesTy RegisterClasses;
616
617  /// Map of Predicate records to their subtarget information.
618  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
619
620  /// Map of AsmOperandClass records to their class information.
621  std::map<Record*, ClassInfo*> AsmOperandClasses;
622
623private:
624  /// Map of token to class information which has already been constructed.
625  std::map<std::string, ClassInfo*> TokenClasses;
626
627  /// Map of RegisterClass records to their class information.
628  std::map<Record*, ClassInfo*> RegisterClassClasses;
629
630private:
631  /// getTokenClass - Lookup or create the class for the given token.
632  ClassInfo *getTokenClass(StringRef Token);
633
634  /// getOperandClass - Lookup or create the class for the given operand.
635  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
636                             int SubOpIdx);
637  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
638
639  /// buildRegisterClasses - Build the ClassInfo* instances for register
640  /// classes.
641  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
642
643  /// buildOperandClasses - Build the ClassInfo* instances for user defined
644  /// operand classes.
645  void buildOperandClasses();
646
647  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
648                                        unsigned AsmOpIdx);
649  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
650                                  MatchableInfo::AsmOperand &Op);
651
652public:
653  AsmMatcherInfo(Record *AsmParser,
654                 CodeGenTarget &Target,
655                 RecordKeeper &Records);
656
657  /// buildInfo - Construct the various tables used during matching.
658  void buildInfo();
659
660  /// buildOperandMatchInfo - Build the necessary information to handle user
661  /// defined operand parsing methods.
662  void buildOperandMatchInfo();
663
664  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
665  /// given operand.
666  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
667    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
668    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
669      SubtargetFeatures.find(Def);
670    return I == SubtargetFeatures.end() ? 0 : I->second;
671  }
672
673  RecordKeeper &getRecords() const {
674    return Records;
675  }
676};
677
678} // End anonymous namespace
679
680void MatchableInfo::dump() {
681  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
682
683  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
684    AsmOperand &Op = AsmOperands[i];
685    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
686    errs() << '\"' << Op.Token << "\"\n";
687  }
688}
689
690static std::pair<StringRef, StringRef>
691parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
692  // Split via the '='.
693  std::pair<StringRef, StringRef> Ops = S.split('=');
694  if (Ops.second == "")
695    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
696  // Trim whitespace and the leading '$' on the operand names.
697  size_t start = Ops.first.find_first_of('$');
698  if (start == std::string::npos)
699    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
700  Ops.first = Ops.first.slice(start + 1, std::string::npos);
701  size_t end = Ops.first.find_last_of(" \t");
702  Ops.first = Ops.first.slice(0, end);
703  // Now the second operand.
704  start = Ops.second.find_first_of('$');
705  if (start == std::string::npos)
706    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
707  Ops.second = Ops.second.slice(start + 1, std::string::npos);
708  end = Ops.second.find_last_of(" \t");
709  Ops.first = Ops.first.slice(0, end);
710  return Ops;
711}
712
713void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
714  // Figure out which operands are aliased and mark them as tied.
715  std::pair<StringRef, StringRef> Ops =
716    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
717
718  // Find the AsmOperands that refer to the operands we're aliasing.
719  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
720  int DstAsmOperand = findAsmOperandNamed(Ops.second);
721  if (SrcAsmOperand == -1)
722    PrintFatalError(TheDef->getLoc(),
723                  "unknown source two-operand alias operand '" +
724                  Ops.first.str() + "'.");
725  if (DstAsmOperand == -1)
726    PrintFatalError(TheDef->getLoc(),
727                  "unknown destination two-operand alias operand '" +
728                  Ops.second.str() + "'.");
729
730  // Find the ResOperand that refers to the operand we're aliasing away
731  // and update it to refer to the combined operand instead.
732  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
733    ResOperand &Op = ResOperands[i];
734    if (Op.Kind == ResOperand::RenderAsmOperand &&
735        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
736      Op.AsmOperandNum = DstAsmOperand;
737      break;
738    }
739  }
740  // Remove the AsmOperand for the alias operand.
741  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
742  // Adjust the ResOperand references to any AsmOperands that followed
743  // the one we just deleted.
744  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
745    ResOperand &Op = ResOperands[i];
746    switch(Op.Kind) {
747    default:
748      // Nothing to do for operands that don't reference AsmOperands.
749      break;
750    case ResOperand::RenderAsmOperand:
751      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
752        --Op.AsmOperandNum;
753      break;
754    case ResOperand::TiedOperand:
755      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
756        --Op.TiedOperandNum;
757      break;
758    }
759  }
760}
761
762void MatchableInfo::initialize(const AsmMatcherInfo &Info,
763                               SmallPtrSet<Record*, 16> &SingletonRegisters,
764                               int AsmVariantNo, std::string &RegisterPrefix) {
765  AsmVariantID = AsmVariantNo;
766  AsmString =
767    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
768
769  tokenizeAsmString(Info);
770
771  // Compute the require features.
772  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
773  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
774    if (SubtargetFeatureInfo *Feature =
775        Info.getSubtargetFeature(Predicates[i]))
776      RequiredFeatures.push_back(Feature);
777
778  // Collect singleton registers, if used.
779  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
780    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
781    if (Record *Reg = AsmOperands[i].SingletonReg)
782      SingletonRegisters.insert(Reg);
783  }
784}
785
786/// tokenizeAsmString - Tokenize a simplified assembly string.
787void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
788  StringRef String = AsmString;
789  unsigned Prev = 0;
790  bool InTok = true;
791  for (unsigned i = 0, e = String.size(); i != e; ++i) {
792    switch (String[i]) {
793    case '[':
794    case ']':
795    case '*':
796    case '!':
797    case ' ':
798    case '\t':
799    case ',':
800      if (InTok) {
801        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
802        InTok = false;
803      }
804      if (!isspace(String[i]) && String[i] != ',')
805        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
806      Prev = i + 1;
807      break;
808
809    case '\\':
810      if (InTok) {
811        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
812        InTok = false;
813      }
814      ++i;
815      assert(i != String.size() && "Invalid quoted character");
816      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
817      Prev = i + 1;
818      break;
819
820    case '$': {
821      if (InTok) {
822        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
823        InTok = false;
824      }
825
826      // If this isn't "${", treat like a normal token.
827      if (i + 1 == String.size() || String[i + 1] != '{') {
828        Prev = i;
829        break;
830      }
831
832      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
833      assert(End != String.end() && "Missing brace in operand reference!");
834      size_t EndPos = End - String.begin();
835      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
836      Prev = EndPos + 1;
837      i = EndPos;
838      break;
839    }
840
841    case '.':
842      if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
843        if (InTok)
844          AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
845        Prev = i;
846      }
847      InTok = true;
848      break;
849
850    default:
851      InTok = true;
852    }
853  }
854  if (InTok && Prev != String.size())
855    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
856
857  // The first token of the instruction is the mnemonic, which must be a
858  // simple string, not a $foo variable or a singleton register.
859  if (AsmOperands.empty())
860    PrintFatalError(TheDef->getLoc(),
861                  "Instruction '" + TheDef->getName() + "' has no tokens");
862  Mnemonic = AsmOperands[0].Token;
863  if (Mnemonic.empty())
864    PrintFatalError(TheDef->getLoc(),
865                  "Missing instruction mnemonic");
866  // FIXME : Check and raise an error if it is a register.
867  if (Mnemonic[0] == '$')
868    PrintFatalError(TheDef->getLoc(),
869                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
870
871  // Remove the first operand, it is tracked in the mnemonic field.
872  AsmOperands.erase(AsmOperands.begin());
873}
874
875bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
876  // Reject matchables with no .s string.
877  if (AsmString.empty())
878    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
879
880  // Reject any matchables with a newline in them, they should be marked
881  // isCodeGenOnly if they are pseudo instructions.
882  if (AsmString.find('\n') != std::string::npos)
883    PrintFatalError(TheDef->getLoc(),
884                  "multiline instruction is not valid for the asmparser, "
885                  "mark it isCodeGenOnly");
886
887  // Remove comments from the asm string.  We know that the asmstring only
888  // has one line.
889  if (!CommentDelimiter.empty() &&
890      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
891    PrintFatalError(TheDef->getLoc(),
892                  "asmstring for instruction has comment character in it, "
893                  "mark it isCodeGenOnly");
894
895  // Reject matchables with operand modifiers, these aren't something we can
896  // handle, the target should be refactored to use operands instead of
897  // modifiers.
898  //
899  // Also, check for instructions which reference the operand multiple times;
900  // this implies a constraint we would not honor.
901  std::set<std::string> OperandNames;
902  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
903    StringRef Tok = AsmOperands[i].Token;
904    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
905      PrintFatalError(TheDef->getLoc(),
906                    "matchable with operand modifier '" + Tok.str() +
907                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
908
909    // Verify that any operand is only mentioned once.
910    // We reject aliases and ignore instructions for now.
911    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
912      if (!Hack)
913        PrintFatalError(TheDef->getLoc(),
914                      "ERROR: matchable with tied operand '" + Tok.str() +
915                      "' can never be matched!");
916      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
917      // bunch of instructions.  It is unclear what the right answer is.
918      DEBUG({
919        errs() << "warning: '" << TheDef->getName() << "': "
920               << "ignoring instruction with tied operand '"
921               << Tok.str() << "'\n";
922      });
923      return false;
924    }
925  }
926
927  return true;
928}
929
930/// extractSingletonRegisterForAsmOperand - Extract singleton register,
931/// if present, from specified token.
932void MatchableInfo::
933extractSingletonRegisterForAsmOperand(unsigned OperandNo,
934                                      const AsmMatcherInfo &Info,
935                                      std::string &RegisterPrefix) {
936  StringRef Tok = AsmOperands[OperandNo].Token;
937  if (RegisterPrefix.empty()) {
938    std::string LoweredTok = Tok.lower();
939    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
940      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
941    return;
942  }
943
944  if (!Tok.startswith(RegisterPrefix))
945    return;
946
947  StringRef RegName = Tok.substr(RegisterPrefix.size());
948  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
949    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
950
951  // If there is no register prefix (i.e. "%" in "%eax"), then this may
952  // be some random non-register token, just ignore it.
953  return;
954}
955
956static std::string getEnumNameForToken(StringRef Str) {
957  std::string Res;
958
959  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
960    switch (*it) {
961    case '*': Res += "_STAR_"; break;
962    case '%': Res += "_PCT_"; break;
963    case ':': Res += "_COLON_"; break;
964    case '!': Res += "_EXCLAIM_"; break;
965    case '.': Res += "_DOT_"; break;
966    case '<': Res += "_LT_"; break;
967    case '>': Res += "_GT_"; break;
968    default:
969      if ((*it >= 'A' && *it <= 'Z') ||
970          (*it >= 'a' && *it <= 'z') ||
971          (*it >= '0' && *it <= '9'))
972        Res += *it;
973      else
974        Res += "_" + utostr((unsigned) *it) + "_";
975    }
976  }
977
978  return Res;
979}
980
981ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
982  ClassInfo *&Entry = TokenClasses[Token];
983
984  if (!Entry) {
985    Entry = new ClassInfo();
986    Entry->Kind = ClassInfo::Token;
987    Entry->ClassName = "Token";
988    Entry->Name = "MCK_" + getEnumNameForToken(Token);
989    Entry->ValueName = Token;
990    Entry->PredicateMethod = "<invalid>";
991    Entry->RenderMethod = "<invalid>";
992    Entry->ParserMethod = "";
993    Entry->DiagnosticType = "";
994    Classes.push_back(Entry);
995  }
996
997  return Entry;
998}
999
1000ClassInfo *
1001AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1002                                int SubOpIdx) {
1003  Record *Rec = OI.Rec;
1004  if (SubOpIdx != -1)
1005    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1006  return getOperandClass(Rec, SubOpIdx);
1007}
1008
1009ClassInfo *
1010AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1011  if (Rec->isSubClassOf("RegisterOperand")) {
1012    // RegisterOperand may have an associated ParserMatchClass. If it does,
1013    // use it, else just fall back to the underlying register class.
1014    const RecordVal *R = Rec->getValue("ParserMatchClass");
1015    if (R == 0 || R->getValue() == 0)
1016      PrintFatalError("Record `" + Rec->getName() +
1017        "' does not have a ParserMatchClass!\n");
1018
1019    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1020      Record *MatchClass = DI->getDef();
1021      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1022        return CI;
1023    }
1024
1025    // No custom match class. Just use the register class.
1026    Record *ClassRec = Rec->getValueAsDef("RegClass");
1027    if (!ClassRec)
1028      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1029                    "' has no associated register class!\n");
1030    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1031      return CI;
1032    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1033  }
1034
1035
1036  if (Rec->isSubClassOf("RegisterClass")) {
1037    if (ClassInfo *CI = RegisterClassClasses[Rec])
1038      return CI;
1039    PrintFatalError(Rec->getLoc(), "register class has no class info!");
1040  }
1041
1042  if (!Rec->isSubClassOf("Operand"))
1043    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1044                  "' does not derive from class Operand!\n");
1045  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1046  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1047    return CI;
1048
1049  PrintFatalError(Rec->getLoc(), "operand has no match class!");
1050}
1051
1052void AsmMatcherInfo::
1053buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
1054  const std::vector<CodeGenRegister*> &Registers =
1055    Target.getRegBank().getRegisters();
1056  ArrayRef<CodeGenRegisterClass*> RegClassList =
1057    Target.getRegBank().getRegClasses();
1058
1059  // The register sets used for matching.
1060  std::set<RegisterSet> RegisterSets;
1061
1062  // Gather the defined sets.
1063  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
1064       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
1065    RegisterSets.insert(RegisterSet(
1066        (*it)->getOrder().begin(), (*it)->getOrder().end()));
1067
1068  // Add any required singleton sets.
1069  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1070       ie = SingletonRegisters.end(); it != ie; ++it) {
1071    Record *Rec = *it;
1072    RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1073  }
1074
1075  // Introduce derived sets where necessary (when a register does not determine
1076  // a unique register set class), and build the mapping of registers to the set
1077  // they should classify to.
1078  std::map<Record*, RegisterSet> RegisterMap;
1079  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
1080         ie = Registers.end(); it != ie; ++it) {
1081    const CodeGenRegister &CGR = **it;
1082    // Compute the intersection of all sets containing this register.
1083    RegisterSet ContainingSet;
1084
1085    for (std::set<RegisterSet>::iterator it = RegisterSets.begin(),
1086           ie = RegisterSets.end(); it != ie; ++it) {
1087      if (!it->count(CGR.TheDef))
1088        continue;
1089
1090      if (ContainingSet.empty()) {
1091        ContainingSet = *it;
1092        continue;
1093      }
1094
1095      RegisterSet Tmp;
1096      std::swap(Tmp, ContainingSet);
1097      std::insert_iterator<RegisterSet> II(ContainingSet,
1098                                           ContainingSet.begin());
1099      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
1100    }
1101
1102    if (!ContainingSet.empty()) {
1103      RegisterSets.insert(ContainingSet);
1104      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1105    }
1106  }
1107
1108  // Construct the register classes.
1109  std::map<RegisterSet, ClassInfo*> RegisterSetClasses;
1110  unsigned Index = 0;
1111  for (std::set<RegisterSet>::iterator it = RegisterSets.begin(),
1112         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
1113    ClassInfo *CI = new ClassInfo();
1114    CI->Kind = ClassInfo::RegisterClass0 + Index;
1115    CI->ClassName = "Reg" + utostr(Index);
1116    CI->Name = "MCK_Reg" + utostr(Index);
1117    CI->ValueName = "";
1118    CI->PredicateMethod = ""; // unused
1119    CI->RenderMethod = "addRegOperands";
1120    CI->Registers = *it;
1121    // FIXME: diagnostic type.
1122    CI->DiagnosticType = "";
1123    Classes.push_back(CI);
1124    RegisterSetClasses.insert(std::make_pair(*it, CI));
1125  }
1126
1127  // Find the superclasses; we could compute only the subgroup lattice edges,
1128  // but there isn't really a point.
1129  for (std::set<RegisterSet>::iterator it = RegisterSets.begin(),
1130         ie = RegisterSets.end(); it != ie; ++it) {
1131    ClassInfo *CI = RegisterSetClasses[*it];
1132    for (std::set<RegisterSet>::iterator it2 = RegisterSets.begin(),
1133           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1134      if (*it != *it2 &&
1135          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1136        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1137  }
1138
1139  // Name the register classes which correspond to a user defined RegisterClass.
1140  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1141       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1142    const CodeGenRegisterClass &RC = **it;
1143    // Def will be NULL for non-user defined register classes.
1144    Record *Def = RC.getDef();
1145    if (!Def)
1146      continue;
1147    ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1148                                                   RC.getOrder().end())];
1149    if (CI->ValueName.empty()) {
1150      CI->ClassName = RC.getName();
1151      CI->Name = "MCK_" + RC.getName();
1152      CI->ValueName = RC.getName();
1153    } else
1154      CI->ValueName = CI->ValueName + "," + RC.getName();
1155
1156    RegisterClassClasses.insert(std::make_pair(Def, CI));
1157  }
1158
1159  // Populate the map for individual registers.
1160  for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1161         ie = RegisterMap.end(); it != ie; ++it)
1162    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1163
1164  // Name the register classes which correspond to singleton registers.
1165  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1166         ie = SingletonRegisters.end(); it != ie; ++it) {
1167    Record *Rec = *it;
1168    ClassInfo *CI = RegisterClasses[Rec];
1169    assert(CI && "Missing singleton register class info!");
1170
1171    if (CI->ValueName.empty()) {
1172      CI->ClassName = Rec->getName();
1173      CI->Name = "MCK_" + Rec->getName();
1174      CI->ValueName = Rec->getName();
1175    } else
1176      CI->ValueName = CI->ValueName + "," + Rec->getName();
1177  }
1178}
1179
1180void AsmMatcherInfo::buildOperandClasses() {
1181  std::vector<Record*> AsmOperands =
1182    Records.getAllDerivedDefinitions("AsmOperandClass");
1183
1184  // Pre-populate AsmOperandClasses map.
1185  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1186         ie = AsmOperands.end(); it != ie; ++it)
1187    AsmOperandClasses[*it] = new ClassInfo();
1188
1189  unsigned Index = 0;
1190  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1191         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1192    ClassInfo *CI = AsmOperandClasses[*it];
1193    CI->Kind = ClassInfo::UserClass0 + Index;
1194
1195    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1196    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1197      DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
1198      if (!DI) {
1199        PrintError((*it)->getLoc(), "Invalid super class reference!");
1200        continue;
1201      }
1202
1203      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1204      if (!SC)
1205        PrintError((*it)->getLoc(), "Invalid super class reference!");
1206      else
1207        CI->SuperClasses.push_back(SC);
1208    }
1209    CI->ClassName = (*it)->getValueAsString("Name");
1210    CI->Name = "MCK_" + CI->ClassName;
1211    CI->ValueName = (*it)->getName();
1212
1213    // Get or construct the predicate method name.
1214    Init *PMName = (*it)->getValueInit("PredicateMethod");
1215    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1216      CI->PredicateMethod = SI->getValue();
1217    } else {
1218      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1219      CI->PredicateMethod = "is" + CI->ClassName;
1220    }
1221
1222    // Get or construct the render method name.
1223    Init *RMName = (*it)->getValueInit("RenderMethod");
1224    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1225      CI->RenderMethod = SI->getValue();
1226    } else {
1227      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1228      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1229    }
1230
1231    // Get the parse method name or leave it as empty.
1232    Init *PRMName = (*it)->getValueInit("ParserMethod");
1233    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1234      CI->ParserMethod = SI->getValue();
1235
1236    // Get the diagnostic type or leave it as empty.
1237    // Get the parse method name or leave it as empty.
1238    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
1239    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1240      CI->DiagnosticType = SI->getValue();
1241
1242    AsmOperandClasses[*it] = CI;
1243    Classes.push_back(CI);
1244  }
1245}
1246
1247AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1248                               CodeGenTarget &target,
1249                               RecordKeeper &records)
1250  : Records(records), AsmParser(asmParser), Target(target) {
1251}
1252
1253/// buildOperandMatchInfo - Build the necessary information to handle user
1254/// defined operand parsing methods.
1255void AsmMatcherInfo::buildOperandMatchInfo() {
1256
1257  /// Map containing a mask with all operands indices that can be found for
1258  /// that class inside a instruction.
1259  typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy;
1260  OpClassMaskTy OpClassMask;
1261
1262  for (std::vector<MatchableInfo*>::const_iterator it =
1263       Matchables.begin(), ie = Matchables.end();
1264       it != ie; ++it) {
1265    MatchableInfo &II = **it;
1266    OpClassMask.clear();
1267
1268    // Keep track of all operands of this instructions which belong to the
1269    // same class.
1270    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1271      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1272      if (Op.Class->ParserMethod.empty())
1273        continue;
1274      unsigned &OperandMask = OpClassMask[Op.Class];
1275      OperandMask |= (1 << i);
1276    }
1277
1278    // Generate operand match info for each mnemonic/operand class pair.
1279    for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
1280         iie = OpClassMask.end(); iit != iie; ++iit) {
1281      unsigned OpMask = iit->second;
1282      ClassInfo *CI = iit->first;
1283      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
1284    }
1285  }
1286}
1287
1288void AsmMatcherInfo::buildInfo() {
1289  // Build information about all of the AssemblerPredicates.
1290  std::vector<Record*> AllPredicates =
1291    Records.getAllDerivedDefinitions("Predicate");
1292  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1293    Record *Pred = AllPredicates[i];
1294    // Ignore predicates that are not intended for the assembler.
1295    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1296      continue;
1297
1298    if (Pred->getName().empty())
1299      PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1300
1301    unsigned FeatureNo = SubtargetFeatures.size();
1302    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1303    assert(FeatureNo < 32 && "Too many subtarget features!");
1304  }
1305
1306  // Parse the instructions; we need to do this first so that we can gather the
1307  // singleton register classes.
1308  SmallPtrSet<Record*, 16> SingletonRegisters;
1309  unsigned VariantCount = Target.getAsmParserVariantCount();
1310  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1311    Record *AsmVariant = Target.getAsmParserVariant(VC);
1312    std::string CommentDelimiter =
1313      AsmVariant->getValueAsString("CommentDelimiter");
1314    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1315    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1316
1317    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1318           E = Target.inst_end(); I != E; ++I) {
1319      const CodeGenInstruction &CGI = **I;
1320
1321      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1322      // filter the set of instructions we consider.
1323      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1324        continue;
1325
1326      // Ignore "codegen only" instructions.
1327      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1328        continue;
1329
1330      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1331
1332      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1333
1334      // Ignore instructions which shouldn't be matched and diagnose invalid
1335      // instruction definitions with an error.
1336      if (!II->validate(CommentDelimiter, true))
1337        continue;
1338
1339      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1340      //
1341      // FIXME: This is a total hack.
1342      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1343          StringRef(II->TheDef->getName()).endswith("_Int"))
1344        continue;
1345
1346      Matchables.push_back(II.take());
1347    }
1348
1349    // Parse all of the InstAlias definitions and stick them in the list of
1350    // matchables.
1351    std::vector<Record*> AllInstAliases =
1352      Records.getAllDerivedDefinitions("InstAlias");
1353    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1354      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1355
1356      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1357      // filter the set of instruction aliases we consider, based on the target
1358      // instruction.
1359      if (!StringRef(Alias->ResultInst->TheDef->getName())
1360            .startswith( MatchPrefix))
1361        continue;
1362
1363      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1364
1365      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1366
1367      // Validate the alias definitions.
1368      II->validate(CommentDelimiter, false);
1369
1370      Matchables.push_back(II.take());
1371    }
1372  }
1373
1374  // Build info for the register classes.
1375  buildRegisterClasses(SingletonRegisters);
1376
1377  // Build info for the user defined assembly operand classes.
1378  buildOperandClasses();
1379
1380  // Build the information about matchables, now that we have fully formed
1381  // classes.
1382  std::vector<MatchableInfo*> NewMatchables;
1383  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1384         ie = Matchables.end(); it != ie; ++it) {
1385    MatchableInfo *II = *it;
1386
1387    // Parse the tokens after the mnemonic.
1388    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1389    // don't precompute the loop bound.
1390    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1391      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1392      StringRef Token = Op.Token;
1393
1394      // Check for singleton registers.
1395      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1396        Op.Class = RegisterClasses[RegRecord];
1397        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1398               "Unexpected class for singleton register");
1399        continue;
1400      }
1401
1402      // Check for simple tokens.
1403      if (Token[0] != '$') {
1404        Op.Class = getTokenClass(Token);
1405        continue;
1406      }
1407
1408      if (Token.size() > 1 && isdigit(Token[1])) {
1409        Op.Class = getTokenClass(Token);
1410        continue;
1411      }
1412
1413      // Otherwise this is an operand reference.
1414      StringRef OperandName;
1415      if (Token[1] == '{')
1416        OperandName = Token.substr(2, Token.size() - 3);
1417      else
1418        OperandName = Token.substr(1);
1419
1420      if (II->DefRec.is<const CodeGenInstruction*>())
1421        buildInstructionOperandReference(II, OperandName, i);
1422      else
1423        buildAliasOperandReference(II, OperandName, Op);
1424    }
1425
1426    if (II->DefRec.is<const CodeGenInstruction*>()) {
1427      II->buildInstructionResultOperands();
1428      // If the instruction has a two-operand alias, build up the
1429      // matchable here. We'll add them in bulk at the end to avoid
1430      // confusing this loop.
1431      std::string Constraint =
1432        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1433      if (Constraint != "") {
1434        // Start by making a copy of the original matchable.
1435        OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
1436
1437        // Adjust it to be a two-operand alias.
1438        AliasII->formTwoOperandAlias(Constraint);
1439
1440        // Add the alias to the matchables list.
1441        NewMatchables.push_back(AliasII.take());
1442      }
1443    } else
1444      II->buildAliasResultOperands();
1445  }
1446  if (!NewMatchables.empty())
1447    Matchables.insert(Matchables.end(), NewMatchables.begin(),
1448                      NewMatchables.end());
1449
1450  // Process token alias definitions and set up the associated superclass
1451  // information.
1452  std::vector<Record*> AllTokenAliases =
1453    Records.getAllDerivedDefinitions("TokenAlias");
1454  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1455    Record *Rec = AllTokenAliases[i];
1456    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1457    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1458    if (FromClass == ToClass)
1459      PrintFatalError(Rec->getLoc(),
1460                    "error: Destination value identical to source value.");
1461    FromClass->SuperClasses.push_back(ToClass);
1462  }
1463
1464  // Reorder classes so that classes precede super classes.
1465  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1466}
1467
1468/// buildInstructionOperandReference - The specified operand is a reference to a
1469/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1470void AsmMatcherInfo::
1471buildInstructionOperandReference(MatchableInfo *II,
1472                                 StringRef OperandName,
1473                                 unsigned AsmOpIdx) {
1474  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1475  const CGIOperandList &Operands = CGI.Operands;
1476  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1477
1478  // Map this token to an operand.
1479  unsigned Idx;
1480  if (!Operands.hasOperandNamed(OperandName, Idx))
1481    PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1482                  OperandName.str() + "'");
1483
1484  // If the instruction operand has multiple suboperands, but the parser
1485  // match class for the asm operand is still the default "ImmAsmOperand",
1486  // then handle each suboperand separately.
1487  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1488    Record *Rec = Operands[Idx].Rec;
1489    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1490    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1491    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1492      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1493      StringRef Token = Op->Token; // save this in case Op gets moved
1494      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1495        MatchableInfo::AsmOperand NewAsmOp(Token);
1496        NewAsmOp.SubOpIdx = SI;
1497        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1498      }
1499      // Replace Op with first suboperand.
1500      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1501      Op->SubOpIdx = 0;
1502    }
1503  }
1504
1505  // Set up the operand class.
1506  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1507
1508  // If the named operand is tied, canonicalize it to the untied operand.
1509  // For example, something like:
1510  //   (outs GPR:$dst), (ins GPR:$src)
1511  // with an asmstring of
1512  //   "inc $src"
1513  // we want to canonicalize to:
1514  //   "inc $dst"
1515  // so that we know how to provide the $dst operand when filling in the result.
1516  int OITied = -1;
1517  if (Operands[Idx].MINumOperands == 1)
1518    OITied = Operands[Idx].getTiedRegister();
1519  if (OITied != -1) {
1520    // The tied operand index is an MIOperand index, find the operand that
1521    // contains it.
1522    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1523    OperandName = Operands[Idx.first].Name;
1524    Op->SubOpIdx = Idx.second;
1525  }
1526
1527  Op->SrcOpName = OperandName;
1528}
1529
1530/// buildAliasOperandReference - When parsing an operand reference out of the
1531/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1532/// operand reference is by looking it up in the result pattern definition.
1533void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1534                                                StringRef OperandName,
1535                                                MatchableInfo::AsmOperand &Op) {
1536  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1537
1538  // Set up the operand class.
1539  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1540    if (CGA.ResultOperands[i].isRecord() &&
1541        CGA.ResultOperands[i].getName() == OperandName) {
1542      // It's safe to go with the first one we find, because CodeGenInstAlias
1543      // validates that all operands with the same name have the same record.
1544      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1545      // Use the match class from the Alias definition, not the
1546      // destination instruction, as we may have an immediate that's
1547      // being munged by the match class.
1548      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1549                                 Op.SubOpIdx);
1550      Op.SrcOpName = OperandName;
1551      return;
1552    }
1553
1554  PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1555                OperandName.str() + "'");
1556}
1557
1558void MatchableInfo::buildInstructionResultOperands() {
1559  const CodeGenInstruction *ResultInst = getResultInst();
1560
1561  // Loop over all operands of the result instruction, determining how to
1562  // populate them.
1563  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1564    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1565
1566    // If this is a tied operand, just copy from the previously handled operand.
1567    int TiedOp = -1;
1568    if (OpInfo.MINumOperands == 1)
1569      TiedOp = OpInfo.getTiedRegister();
1570    if (TiedOp != -1) {
1571      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1572      continue;
1573    }
1574
1575    // Find out what operand from the asmparser this MCInst operand comes from.
1576    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1577    if (OpInfo.Name.empty() || SrcOperand == -1) {
1578      // This may happen for operands that are tied to a suboperand of a
1579      // complex operand.  Simply use a dummy value here; nobody should
1580      // use this operand slot.
1581      // FIXME: The long term goal is for the MCOperand list to not contain
1582      // tied operands at all.
1583      ResOperands.push_back(ResOperand::getImmOp(0));
1584      continue;
1585    }
1586
1587    // Check if the one AsmOperand populates the entire operand.
1588    unsigned NumOperands = OpInfo.MINumOperands;
1589    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1590      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1591      continue;
1592    }
1593
1594    // Add a separate ResOperand for each suboperand.
1595    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1596      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1597             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1598             "unexpected AsmOperands for suboperands");
1599      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1600    }
1601  }
1602}
1603
1604void MatchableInfo::buildAliasResultOperands() {
1605  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1606  const CodeGenInstruction *ResultInst = getResultInst();
1607
1608  // Loop over all operands of the result instruction, determining how to
1609  // populate them.
1610  unsigned AliasOpNo = 0;
1611  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1612  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1613    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1614
1615    // If this is a tied operand, just copy from the previously handled operand.
1616    int TiedOp = -1;
1617    if (OpInfo->MINumOperands == 1)
1618      TiedOp = OpInfo->getTiedRegister();
1619    if (TiedOp != -1) {
1620      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1621      continue;
1622    }
1623
1624    // Handle all the suboperands for this operand.
1625    const std::string &OpName = OpInfo->Name;
1626    for ( ; AliasOpNo <  LastOpNo &&
1627            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1628      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1629
1630      // Find out what operand from the asmparser that this MCInst operand
1631      // comes from.
1632      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1633      case CodeGenInstAlias::ResultOperand::K_Record: {
1634        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1635        int SrcOperand = findAsmOperand(Name, SubIdx);
1636        if (SrcOperand == -1)
1637          PrintFatalError(TheDef->getLoc(), "Instruction '" +
1638                        TheDef->getName() + "' has operand '" + OpName +
1639                        "' that doesn't appear in asm string!");
1640        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1641        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1642                                                        NumOperands));
1643        break;
1644      }
1645      case CodeGenInstAlias::ResultOperand::K_Imm: {
1646        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1647        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1648        break;
1649      }
1650      case CodeGenInstAlias::ResultOperand::K_Reg: {
1651        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1652        ResOperands.push_back(ResOperand::getRegOp(Reg));
1653        break;
1654      }
1655      }
1656    }
1657  }
1658}
1659
1660static unsigned getConverterOperandID(const std::string &Name,
1661                                      SetVector<std::string> &Table,
1662                                      bool &IsNew) {
1663  IsNew = Table.insert(Name);
1664
1665  unsigned ID = IsNew ? Table.size() - 1 :
1666    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1667
1668  assert(ID < Table.size());
1669
1670  return ID;
1671}
1672
1673
1674static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1675                             std::vector<MatchableInfo*> &Infos,
1676                             raw_ostream &OS) {
1677  SetVector<std::string> OperandConversionKinds;
1678  SetVector<std::string> InstructionConversionKinds;
1679  std::vector<std::vector<uint8_t> > ConversionTable;
1680  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1681
1682  // TargetOperandClass - This is the target's operand class, like X86Operand.
1683  std::string TargetOperandClass = Target.getName() + "Operand";
1684
1685  // Write the convert function to a separate stream, so we can drop it after
1686  // the enum. We'll build up the conversion handlers for the individual
1687  // operand types opportunistically as we encounter them.
1688  std::string ConvertFnBody;
1689  raw_string_ostream CvtOS(ConvertFnBody);
1690  // Start the unified conversion function.
1691  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1692        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1693        << "unsigned Opcode,\n"
1694        << "                const SmallVectorImpl<MCParsedAsmOperand*"
1695        << "> &Operands) {\n"
1696        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1697        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1698        << "  Inst.setOpcode(Opcode);\n"
1699        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1700        << "    switch (*p) {\n"
1701        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1702        << "    case CVT_Reg:\n"
1703        << "      static_cast<" << TargetOperandClass
1704        << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
1705        << "      break;\n"
1706        << "    case CVT_Tied:\n"
1707        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1708        << "      break;\n";
1709
1710  std::string OperandFnBody;
1711  raw_string_ostream OpOS(OperandFnBody);
1712  // Start the operand number lookup function.
1713  OpOS << "void " << Target.getName() << ClassName << "::\n"
1714       << "convertToMapAndConstraints(unsigned Kind,\n";
1715  OpOS.indent(27);
1716  OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n"
1717       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1718       << "  unsigned NumMCOperands = 0;\n"
1719       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1720       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1721       << "    switch (*p) {\n"
1722       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1723       << "    case CVT_Reg:\n"
1724       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1725       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
1726       << "      ++NumMCOperands;\n"
1727       << "      break;\n"
1728       << "    case CVT_Tied:\n"
1729       << "      ++NumMCOperands;\n"
1730       << "      break;\n";
1731
1732  // Pre-populate the operand conversion kinds with the standard always
1733  // available entries.
1734  OperandConversionKinds.insert("CVT_Done");
1735  OperandConversionKinds.insert("CVT_Reg");
1736  OperandConversionKinds.insert("CVT_Tied");
1737  enum { CVT_Done, CVT_Reg, CVT_Tied };
1738
1739  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1740         ie = Infos.end(); it != ie; ++it) {
1741    MatchableInfo &II = **it;
1742
1743    // Check if we have a custom match function.
1744    std::string AsmMatchConverter =
1745      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1746    if (!AsmMatchConverter.empty()) {
1747      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1748      II.ConversionFnKind = Signature;
1749
1750      // Check if we have already generated this signature.
1751      if (!InstructionConversionKinds.insert(Signature))
1752        continue;
1753
1754      // Remember this converter for the kind enum.
1755      unsigned KindID = OperandConversionKinds.size();
1756      OperandConversionKinds.insert("CVT_" +
1757                                    getEnumNameForToken(AsmMatchConverter));
1758
1759      // Add the converter row for this instruction.
1760      ConversionTable.push_back(std::vector<uint8_t>());
1761      ConversionTable.back().push_back(KindID);
1762      ConversionTable.back().push_back(CVT_Done);
1763
1764      // Add the handler to the conversion driver function.
1765      CvtOS << "    case CVT_"
1766            << getEnumNameForToken(AsmMatchConverter) << ":\n"
1767            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1768            << "      break;\n";
1769
1770      // FIXME: Handle the operand number lookup for custom match functions.
1771      continue;
1772    }
1773
1774    // Build the conversion function signature.
1775    std::string Signature = "Convert";
1776
1777    std::vector<uint8_t> ConversionRow;
1778
1779    // Compute the convert enum and the case body.
1780    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
1781
1782    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1783      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1784
1785      // Generate code to populate each result operand.
1786      switch (OpInfo.Kind) {
1787      case MatchableInfo::ResOperand::RenderAsmOperand: {
1788        // This comes from something we parsed.
1789        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1790
1791        // Registers are always converted the same, don't duplicate the
1792        // conversion function based on them.
1793        Signature += "__";
1794        std::string Class;
1795        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1796        Signature += Class;
1797        Signature += utostr(OpInfo.MINumOperands);
1798        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1799
1800        // Add the conversion kind, if necessary, and get the associated ID
1801        // the index of its entry in the vector).
1802        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1803                                     Op.Class->RenderMethod);
1804        Name = getEnumNameForToken(Name);
1805
1806        bool IsNewConverter = false;
1807        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1808                                            IsNewConverter);
1809
1810        // Add the operand entry to the instruction kind conversion row.
1811        ConversionRow.push_back(ID);
1812        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1813
1814        if (!IsNewConverter)
1815          break;
1816
1817        // This is a new operand kind. Add a handler for it to the
1818        // converter driver.
1819        CvtOS << "    case " << Name << ":\n"
1820              << "      static_cast<" << TargetOperandClass
1821              << "*>(Operands[*(p + 1)])->"
1822              << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
1823              << ");\n"
1824              << "      break;\n";
1825
1826        // Add a handler for the operand number lookup.
1827        OpOS << "    case " << Name << ":\n"
1828             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1829
1830        if (Op.Class->isRegisterClass())
1831          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
1832        else
1833          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
1834        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1835             << "      break;\n";
1836        break;
1837      }
1838      case MatchableInfo::ResOperand::TiedOperand: {
1839        // If this operand is tied to a previous one, just copy the MCInst
1840        // operand from the earlier one.We can only tie single MCOperand values.
1841        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1842        unsigned TiedOp = OpInfo.TiedOperandNum;
1843        assert(i > TiedOp && "Tied operand precedes its target!");
1844        Signature += "__Tie" + utostr(TiedOp);
1845        ConversionRow.push_back(CVT_Tied);
1846        ConversionRow.push_back(TiedOp);
1847        break;
1848      }
1849      case MatchableInfo::ResOperand::ImmOperand: {
1850        int64_t Val = OpInfo.ImmVal;
1851        std::string Ty = "imm_" + itostr(Val);
1852        Signature += "__" + Ty;
1853
1854        std::string Name = "CVT_" + Ty;
1855        bool IsNewConverter = false;
1856        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1857                                            IsNewConverter);
1858        // Add the operand entry to the instruction kind conversion row.
1859        ConversionRow.push_back(ID);
1860        ConversionRow.push_back(0);
1861
1862        if (!IsNewConverter)
1863          break;
1864
1865        CvtOS << "    case " << Name << ":\n"
1866              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1867              << "      break;\n";
1868
1869        OpOS << "    case " << Name << ":\n"
1870             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1871             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
1872             << "      ++NumMCOperands;\n"
1873             << "      break;\n";
1874        break;
1875      }
1876      case MatchableInfo::ResOperand::RegOperand: {
1877        std::string Reg, Name;
1878        if (OpInfo.Register == 0) {
1879          Name = "reg0";
1880          Reg = "0";
1881        } else {
1882          Reg = getQualifiedName(OpInfo.Register);
1883          Name = "reg" + OpInfo.Register->getName();
1884        }
1885        Signature += "__" + Name;
1886        Name = "CVT_" + Name;
1887        bool IsNewConverter = false;
1888        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1889                                            IsNewConverter);
1890        // Add the operand entry to the instruction kind conversion row.
1891        ConversionRow.push_back(ID);
1892        ConversionRow.push_back(0);
1893
1894        if (!IsNewConverter)
1895          break;
1896        CvtOS << "    case " << Name << ":\n"
1897              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1898              << "      break;\n";
1899
1900        OpOS << "    case " << Name << ":\n"
1901             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1902             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1903             << "      ++NumMCOperands;\n"
1904             << "      break;\n";
1905      }
1906      }
1907    }
1908
1909    // If there were no operands, add to the signature to that effect
1910    if (Signature == "Convert")
1911      Signature += "_NoOperands";
1912
1913    II.ConversionFnKind = Signature;
1914
1915    // Save the signature. If we already have it, don't add a new row
1916    // to the table.
1917    if (!InstructionConversionKinds.insert(Signature))
1918      continue;
1919
1920    // Add the row to the table.
1921    ConversionTable.push_back(ConversionRow);
1922  }
1923
1924  // Finish up the converter driver function.
1925  CvtOS << "    }\n  }\n}\n\n";
1926
1927  // Finish up the operand number lookup function.
1928  OpOS << "    }\n  }\n}\n\n";
1929
1930  OS << "namespace {\n";
1931
1932  // Output the operand conversion kind enum.
1933  OS << "enum OperatorConversionKind {\n";
1934  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1935    OS << "  " << OperandConversionKinds[i] << ",\n";
1936  OS << "  CVT_NUM_CONVERTERS\n";
1937  OS << "};\n\n";
1938
1939  // Output the instruction conversion kind enum.
1940  OS << "enum InstructionConversionKind {\n";
1941  for (SetVector<std::string>::const_iterator
1942         i = InstructionConversionKinds.begin(),
1943         e = InstructionConversionKinds.end(); i != e; ++i)
1944    OS << "  " << *i << ",\n";
1945  OS << "  CVT_NUM_SIGNATURES\n";
1946  OS << "};\n\n";
1947
1948
1949  OS << "} // end anonymous namespace\n\n";
1950
1951  // Output the conversion table.
1952  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1953     << MaxRowLength << "] = {\n";
1954
1955  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1956    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1957    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1958    OS << "  { ";
1959    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1960      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1961         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1962    OS << "CVT_Done },\n";
1963  }
1964
1965  OS << "};\n\n";
1966
1967  // Spit out the conversion driver function.
1968  OS << CvtOS.str();
1969
1970  // Spit out the operand number lookup function.
1971  OS << OpOS.str();
1972}
1973
1974/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1975static void emitMatchClassEnumeration(CodeGenTarget &Target,
1976                                      std::vector<ClassInfo*> &Infos,
1977                                      raw_ostream &OS) {
1978  OS << "namespace {\n\n";
1979
1980  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1981     << "/// instruction matching.\n";
1982  OS << "enum MatchClassKind {\n";
1983  OS << "  InvalidMatchClass = 0,\n";
1984  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1985         ie = Infos.end(); it != ie; ++it) {
1986    ClassInfo &CI = **it;
1987    OS << "  " << CI.Name << ", // ";
1988    if (CI.Kind == ClassInfo::Token) {
1989      OS << "'" << CI.ValueName << "'\n";
1990    } else if (CI.isRegisterClass()) {
1991      if (!CI.ValueName.empty())
1992        OS << "register class '" << CI.ValueName << "'\n";
1993      else
1994        OS << "derived register class\n";
1995    } else {
1996      OS << "user defined class '" << CI.ValueName << "'\n";
1997    }
1998  }
1999  OS << "  NumMatchClassKinds\n";
2000  OS << "};\n\n";
2001
2002  OS << "}\n\n";
2003}
2004
2005/// emitValidateOperandClass - Emit the function to validate an operand class.
2006static void emitValidateOperandClass(AsmMatcherInfo &Info,
2007                                     raw_ostream &OS) {
2008  OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
2009     << "MatchClassKind Kind) {\n";
2010  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
2011     << Info.Target.getName() << "Operand*)GOp;\n";
2012
2013  // The InvalidMatchClass is not to match any operand.
2014  OS << "  if (Kind == InvalidMatchClass)\n";
2015  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2016
2017  // Check for Token operands first.
2018  // FIXME: Use a more specific diagnostic type.
2019  OS << "  if (Operand.isToken())\n";
2020  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2021     << "             MCTargetAsmParser::Match_Success :\n"
2022     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2023
2024  // Check the user classes. We don't care what order since we're only
2025  // actually matching against one of them.
2026  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
2027         ie = Info.Classes.end(); it != ie; ++it) {
2028    ClassInfo &CI = **it;
2029
2030    if (!CI.isUserClass())
2031      continue;
2032
2033    OS << "  // '" << CI.ClassName << "' class\n";
2034    OS << "  if (Kind == " << CI.Name << ") {\n";
2035    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2036    OS << "      return MCTargetAsmParser::Match_Success;\n";
2037    if (!CI.DiagnosticType.empty())
2038      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2039         << CI.DiagnosticType << ";\n";
2040    OS << "  }\n\n";
2041  }
2042
2043  // Check for register operands, including sub-classes.
2044  OS << "  if (Operand.isReg()) {\n";
2045  OS << "    MatchClassKind OpKind;\n";
2046  OS << "    switch (Operand.getReg()) {\n";
2047  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2048  for (AsmMatcherInfo::RegisterClassesTy::iterator
2049         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
2050       it != ie; ++it)
2051    OS << "    case " << Info.Target.getName() << "::"
2052       << it->first->getName() << ": OpKind = " << it->second->Name
2053       << "; break;\n";
2054  OS << "    }\n";
2055  OS << "    return isSubclass(OpKind, Kind) ? "
2056     << "MCTargetAsmParser::Match_Success :\n                             "
2057     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2058
2059  // Generic fallthrough match failure case for operands that don't have
2060  // specialized diagnostic types.
2061  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2062  OS << "}\n\n";
2063}
2064
2065/// emitIsSubclass - Emit the subclass predicate function.
2066static void emitIsSubclass(CodeGenTarget &Target,
2067                           std::vector<ClassInfo*> &Infos,
2068                           raw_ostream &OS) {
2069  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2070  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2071  OS << "  if (A == B)\n";
2072  OS << "    return true;\n\n";
2073
2074  std::string OStr;
2075  raw_string_ostream SS(OStr);
2076  unsigned Count = 0;
2077  SS << "  switch (A) {\n";
2078  SS << "  default:\n";
2079  SS << "    return false;\n";
2080  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2081         ie = Infos.end(); it != ie; ++it) {
2082    ClassInfo &A = **it;
2083
2084    std::vector<StringRef> SuperClasses;
2085    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2086         ie = Infos.end(); it != ie; ++it) {
2087      ClassInfo &B = **it;
2088
2089      if (&A != &B && A.isSubsetOf(B))
2090        SuperClasses.push_back(B.Name);
2091    }
2092
2093    if (SuperClasses.empty())
2094      continue;
2095    ++Count;
2096
2097    SS << "\n  case " << A.Name << ":\n";
2098
2099    if (SuperClasses.size() == 1) {
2100      SS << "    return B == " << SuperClasses.back().str() << ";\n";
2101      continue;
2102    }
2103
2104    if (!SuperClasses.empty()) {
2105      SS << "    switch (B) {\n";
2106      SS << "    default: return false;\n";
2107      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2108        SS << "    case " << SuperClasses[i].str() << ": return true;\n";
2109      SS << "    }\n";
2110    } else {
2111      // No case statement to emit
2112      SS << "    return false;\n";
2113    }
2114  }
2115  SS << "  }\n";
2116
2117  // If there were case statements emitted into the string stream, write them
2118  // to the output stream, otherwise write the default.
2119  if (Count)
2120    OS << SS.str();
2121  else
2122    OS << "  return false;\n";
2123
2124  OS << "}\n\n";
2125}
2126
2127/// emitMatchTokenString - Emit the function to match a token string to the
2128/// appropriate match class value.
2129static void emitMatchTokenString(CodeGenTarget &Target,
2130                                 std::vector<ClassInfo*> &Infos,
2131                                 raw_ostream &OS) {
2132  // Construct the match list.
2133  std::vector<StringMatcher::StringPair> Matches;
2134  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2135         ie = Infos.end(); it != ie; ++it) {
2136    ClassInfo &CI = **it;
2137
2138    if (CI.Kind == ClassInfo::Token)
2139      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
2140                                                  "return " + CI.Name + ";"));
2141  }
2142
2143  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2144
2145  StringMatcher("Name", Matches, OS).Emit();
2146
2147  OS << "  return InvalidMatchClass;\n";
2148  OS << "}\n\n";
2149}
2150
2151/// emitMatchRegisterName - Emit the function to match a string to the target
2152/// specific register enum.
2153static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2154                                  raw_ostream &OS) {
2155  // Construct the match list.
2156  std::vector<StringMatcher::StringPair> Matches;
2157  const std::vector<CodeGenRegister*> &Regs =
2158    Target.getRegBank().getRegisters();
2159  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2160    const CodeGenRegister *Reg = Regs[i];
2161    if (Reg->TheDef->getValueAsString("AsmName").empty())
2162      continue;
2163
2164    Matches.push_back(StringMatcher::StringPair(
2165                                     Reg->TheDef->getValueAsString("AsmName"),
2166                                     "return " + utostr(Reg->EnumValue) + ";"));
2167  }
2168
2169  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2170
2171  StringMatcher("Name", Matches, OS).Emit();
2172
2173  OS << "  return 0;\n";
2174  OS << "}\n\n";
2175}
2176
2177/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2178/// definitions.
2179static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2180                                                raw_ostream &OS) {
2181  OS << "// Flags for subtarget features that participate in "
2182     << "instruction matching.\n";
2183  OS << "enum SubtargetFeatureFlag {\n";
2184  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2185         it = Info.SubtargetFeatures.begin(),
2186         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2187    SubtargetFeatureInfo &SFI = *it->second;
2188    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
2189  }
2190  OS << "  Feature_None = 0\n";
2191  OS << "};\n\n";
2192}
2193
2194/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2195static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2196  // Get the set of diagnostic types from all of the operand classes.
2197  std::set<StringRef> Types;
2198  for (std::map<Record*, ClassInfo*>::const_iterator
2199       I = Info.AsmOperandClasses.begin(),
2200       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2201    if (!I->second->DiagnosticType.empty())
2202      Types.insert(I->second->DiagnosticType);
2203  }
2204
2205  if (Types.empty()) return;
2206
2207  // Now emit the enum entries.
2208  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2209       I != E; ++I)
2210    OS << "  Match_" << *I << ",\n";
2211  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2212}
2213
2214/// emitGetSubtargetFeatureName - Emit the helper function to get the
2215/// user-level name for a subtarget feature.
2216static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2217  OS << "// User-level names for subtarget features that participate in\n"
2218     << "// instruction matching.\n"
2219     << "static const char *getSubtargetFeatureName(unsigned Val) {\n";
2220  if (!Info.SubtargetFeatures.empty()) {
2221    OS << "  switch(Val) {\n";
2222    for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2223           it = Info.SubtargetFeatures.begin(),
2224           ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2225      SubtargetFeatureInfo &SFI = *it->second;
2226      // FIXME: Totally just a placeholder name to get the algorithm working.
2227      OS << "  case " << SFI.getEnumName() << ": return \""
2228         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2229    }
2230    OS << "  default: return \"(unknown)\";\n";
2231    OS << "  }\n";
2232  } else {
2233    // Nothing to emit, so skip the switch
2234    OS << "  return \"(unknown)\";\n";
2235  }
2236  OS << "}\n\n";
2237}
2238
2239/// emitComputeAvailableFeatures - Emit the function to compute the list of
2240/// available features given a subtarget.
2241static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2242                                         raw_ostream &OS) {
2243  std::string ClassName =
2244    Info.AsmParser->getValueAsString("AsmParserClassName");
2245
2246  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
2247     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2248  OS << "  unsigned Features = 0;\n";
2249  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2250         it = Info.SubtargetFeatures.begin(),
2251         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2252    SubtargetFeatureInfo &SFI = *it->second;
2253
2254    OS << "  if (";
2255    std::string CondStorage =
2256      SFI.TheDef->getValueAsString("AssemblerCondString");
2257    StringRef Conds = CondStorage;
2258    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2259    bool First = true;
2260    do {
2261      if (!First)
2262        OS << " && ";
2263
2264      bool Neg = false;
2265      StringRef Cond = Comma.first;
2266      if (Cond[0] == '!') {
2267        Neg = true;
2268        Cond = Cond.substr(1);
2269      }
2270
2271      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2272      if (Neg)
2273        OS << " == 0";
2274      else
2275        OS << " != 0";
2276      OS << ")";
2277
2278      if (Comma.second.empty())
2279        break;
2280
2281      First = false;
2282      Comma = Comma.second.split(',');
2283    } while (true);
2284
2285    OS << ")\n";
2286    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2287  }
2288  OS << "  return Features;\n";
2289  OS << "}\n\n";
2290}
2291
2292static std::string GetAliasRequiredFeatures(Record *R,
2293                                            const AsmMatcherInfo &Info) {
2294  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2295  std::string Result;
2296  unsigned NumFeatures = 0;
2297  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2298    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2299
2300    if (F == 0)
2301      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2302                    "' is not marked as an AssemblerPredicate!");
2303
2304    if (NumFeatures)
2305      Result += '|';
2306
2307    Result += F->getEnumName();
2308    ++NumFeatures;
2309  }
2310
2311  if (NumFeatures > 1)
2312    Result = '(' + Result + ')';
2313  return Result;
2314}
2315
2316static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2317                                     std::vector<Record*> &Aliases,
2318                                     unsigned Indent = 0,
2319                                  StringRef AsmParserVariantName = StringRef()){
2320  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2321  // iteration order of the map is stable.
2322  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2323
2324  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2325    Record *R = Aliases[i];
2326    // FIXME: Allow AssemblerVariantName to be a comma separated list.
2327    std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2328    if (AsmVariantName != AsmParserVariantName)
2329      continue;
2330    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2331  }
2332  if (AliasesFromMnemonic.empty())
2333    return;
2334
2335  // Process each alias a "from" mnemonic at a time, building the code executed
2336  // by the string remapper.
2337  std::vector<StringMatcher::StringPair> Cases;
2338  for (std::map<std::string, std::vector<Record*> >::iterator
2339       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2340       I != E; ++I) {
2341    const std::vector<Record*> &ToVec = I->second;
2342
2343    // Loop through each alias and emit code that handles each case.  If there
2344    // are two instructions without predicates, emit an error.  If there is one,
2345    // emit it last.
2346    std::string MatchCode;
2347    int AliasWithNoPredicate = -1;
2348
2349    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2350      Record *R = ToVec[i];
2351      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2352
2353      // If this unconditionally matches, remember it for later and diagnose
2354      // duplicates.
2355      if (FeatureMask.empty()) {
2356        if (AliasWithNoPredicate != -1) {
2357          // We can't have two aliases from the same mnemonic with no predicate.
2358          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2359                     "two MnemonicAliases with the same 'from' mnemonic!");
2360          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2361        }
2362
2363        AliasWithNoPredicate = i;
2364        continue;
2365      }
2366      if (R->getValueAsString("ToMnemonic") == I->first)
2367        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2368
2369      if (!MatchCode.empty())
2370        MatchCode += "else ";
2371      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2372      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2373    }
2374
2375    if (AliasWithNoPredicate != -1) {
2376      Record *R = ToVec[AliasWithNoPredicate];
2377      if (!MatchCode.empty())
2378        MatchCode += "else\n  ";
2379      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2380    }
2381
2382    MatchCode += "return;";
2383
2384    Cases.push_back(std::make_pair(I->first, MatchCode));
2385  }
2386  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2387}
2388
2389/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2390/// emit a function for them and return true, otherwise return false.
2391static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2392                                CodeGenTarget &Target) {
2393  // Ignore aliases when match-prefix is set.
2394  if (!MatchPrefix.empty())
2395    return false;
2396
2397  std::vector<Record*> Aliases =
2398    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2399  if (Aliases.empty()) return false;
2400
2401  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2402    "unsigned Features, unsigned VariantID) {\n";
2403  OS << "  switch (VariantID) {\n";
2404  unsigned VariantCount = Target.getAsmParserVariantCount();
2405  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2406    Record *AsmVariant = Target.getAsmParserVariant(VC);
2407    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2408    std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2409    OS << "    case " << AsmParserVariantNo << ":\n";
2410    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2411                             AsmParserVariantName);
2412    OS << "    break;\n";
2413  }
2414  OS << "  }\n";
2415
2416  // Emit aliases that apply to all variants.
2417  emitMnemonicAliasVariant(OS, Info, Aliases);
2418
2419  OS << "}\n\n";
2420
2421  return true;
2422}
2423
2424static const char *getMinimalTypeForRange(uint64_t Range) {
2425  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2426  if (Range > 0xFFFF)
2427    return "uint32_t";
2428  if (Range > 0xFF)
2429    return "uint16_t";
2430  return "uint8_t";
2431}
2432
2433static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2434                              const AsmMatcherInfo &Info, StringRef ClassName,
2435                              StringToOffsetTable &StringTable,
2436                              unsigned MaxMnemonicIndex) {
2437  unsigned MaxMask = 0;
2438  for (std::vector<OperandMatchEntry>::const_iterator it =
2439       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2440       it != ie; ++it) {
2441    MaxMask |= it->OperandMask;
2442  }
2443
2444  // Emit the static custom operand parsing table;
2445  OS << "namespace {\n";
2446  OS << "  struct OperandMatchEntry {\n";
2447  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2448               << " RequiredFeatures;\n";
2449  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2450               << " Mnemonic;\n";
2451  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2452               << " Class;\n";
2453  OS << "    " << getMinimalTypeForRange(MaxMask)
2454               << " OperandMask;\n\n";
2455  OS << "    StringRef getMnemonic() const {\n";
2456  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2457  OS << "                       MnemonicTable[Mnemonic]);\n";
2458  OS << "    }\n";
2459  OS << "  };\n\n";
2460
2461  OS << "  // Predicate for searching for an opcode.\n";
2462  OS << "  struct LessOpcodeOperand {\n";
2463  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2464  OS << "      return LHS.getMnemonic()  < RHS;\n";
2465  OS << "    }\n";
2466  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2467  OS << "      return LHS < RHS.getMnemonic();\n";
2468  OS << "    }\n";
2469  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2470  OS << " const OperandMatchEntry &RHS) {\n";
2471  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2472  OS << "    }\n";
2473  OS << "  };\n";
2474
2475  OS << "} // end anonymous namespace.\n\n";
2476
2477  OS << "static const OperandMatchEntry OperandMatchTable["
2478     << Info.OperandMatchInfo.size() << "] = {\n";
2479
2480  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2481  for (std::vector<OperandMatchEntry>::const_iterator it =
2482       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2483       it != ie; ++it) {
2484    const OperandMatchEntry &OMI = *it;
2485    const MatchableInfo &II = *OMI.MI;
2486
2487    OS << "  { ";
2488
2489    // Write the required features mask.
2490    if (!II.RequiredFeatures.empty()) {
2491      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2492        if (i) OS << "|";
2493        OS << II.RequiredFeatures[i]->getEnumName();
2494      }
2495    } else
2496      OS << "0";
2497
2498    // Store a pascal-style length byte in the mnemonic.
2499    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2500    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2501       << " /* " << II.Mnemonic << " */, ";
2502
2503    OS << OMI.CI->Name;
2504
2505    OS << ", " << OMI.OperandMask;
2506    OS << " /* ";
2507    bool printComma = false;
2508    for (int i = 0, e = 31; i !=e; ++i)
2509      if (OMI.OperandMask & (1 << i)) {
2510        if (printComma)
2511          OS << ", ";
2512        OS << i;
2513        printComma = true;
2514      }
2515    OS << " */";
2516
2517    OS << " },\n";
2518  }
2519  OS << "};\n\n";
2520
2521  // Emit the operand class switch to call the correct custom parser for
2522  // the found operand class.
2523  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2524     << Target.getName() << ClassName << "::\n"
2525     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2526     << " &Operands,\n                      unsigned MCK) {\n\n"
2527     << "  switch(MCK) {\n";
2528
2529  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2530       ie = Info.Classes.end(); it != ie; ++it) {
2531    ClassInfo *CI = *it;
2532    if (CI->ParserMethod.empty())
2533      continue;
2534    OS << "  case " << CI->Name << ":\n"
2535       << "    return " << CI->ParserMethod << "(Operands);\n";
2536  }
2537
2538  OS << "  default:\n";
2539  OS << "    return MatchOperand_NoMatch;\n";
2540  OS << "  }\n";
2541  OS << "  return MatchOperand_NoMatch;\n";
2542  OS << "}\n\n";
2543
2544  // Emit the static custom operand parser. This code is very similar with
2545  // the other matcher. Also use MatchResultTy here just in case we go for
2546  // a better error handling.
2547  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2548     << Target.getName() << ClassName << "::\n"
2549     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2550     << " &Operands,\n                       StringRef Mnemonic) {\n";
2551
2552  // Emit code to get the available features.
2553  OS << "  // Get the current feature set.\n";
2554  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2555
2556  OS << "  // Get the next operand index.\n";
2557  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2558
2559  // Emit code to search the table.
2560  OS << "  // Search the table.\n";
2561  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2562  OS << " MnemonicRange =\n";
2563  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2564     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2565     << "                     LessOpcodeOperand());\n\n";
2566
2567  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2568  OS << "    return MatchOperand_NoMatch;\n\n";
2569
2570  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2571     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2572
2573  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2574  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2575
2576  // Emit check that the required features are available.
2577  OS << "    // check if the available features match\n";
2578  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2579     << "!= it->RequiredFeatures) {\n";
2580  OS << "      continue;\n";
2581  OS << "    }\n\n";
2582
2583  // Emit check to ensure the operand number matches.
2584  OS << "    // check if the operand in question has a custom parser.\n";
2585  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2586  OS << "      continue;\n\n";
2587
2588  // Emit call to the custom parser method
2589  OS << "    // call custom parse method to handle the operand\n";
2590  OS << "    OperandMatchResultTy Result = ";
2591  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2592  OS << "    if (Result != MatchOperand_NoMatch)\n";
2593  OS << "      return Result;\n";
2594  OS << "  }\n\n";
2595
2596  OS << "  // Okay, we had no match.\n";
2597  OS << "  return MatchOperand_NoMatch;\n";
2598  OS << "}\n\n";
2599}
2600
2601void AsmMatcherEmitter::run(raw_ostream &OS) {
2602  CodeGenTarget Target(Records);
2603  Record *AsmParser = Target.getAsmParser();
2604  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2605
2606  // Compute the information on the instructions to match.
2607  AsmMatcherInfo Info(AsmParser, Target, Records);
2608  Info.buildInfo();
2609
2610  // Sort the instruction table using the partial order on classes. We use
2611  // stable_sort to ensure that ambiguous instructions are still
2612  // deterministically ordered.
2613  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2614                   less_ptr<MatchableInfo>());
2615
2616  DEBUG_WITH_TYPE("instruction_info", {
2617      for (std::vector<MatchableInfo*>::iterator
2618             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2619           it != ie; ++it)
2620        (*it)->dump();
2621    });
2622
2623  // Check for ambiguous matchables.
2624  DEBUG_WITH_TYPE("ambiguous_instrs", {
2625    unsigned NumAmbiguous = 0;
2626    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2627      for (unsigned j = i + 1; j != e; ++j) {
2628        MatchableInfo &A = *Info.Matchables[i];
2629        MatchableInfo &B = *Info.Matchables[j];
2630
2631        if (A.couldMatchAmbiguouslyWith(B)) {
2632          errs() << "warning: ambiguous matchables:\n";
2633          A.dump();
2634          errs() << "\nis incomparable with:\n";
2635          B.dump();
2636          errs() << "\n\n";
2637          ++NumAmbiguous;
2638        }
2639      }
2640    }
2641    if (NumAmbiguous)
2642      errs() << "warning: " << NumAmbiguous
2643             << " ambiguous matchables!\n";
2644  });
2645
2646  // Compute the information on the custom operand parsing.
2647  Info.buildOperandMatchInfo();
2648
2649  // Write the output.
2650
2651  // Information for the class declaration.
2652  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2653  OS << "#undef GET_ASSEMBLER_HEADER\n";
2654  OS << "  // This should be included into the middle of the declaration of\n";
2655  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2656  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2657  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2658     << "unsigned Opcode,\n"
2659     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2660     << "&Operands);\n";
2661  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2662  OS << "           const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n";
2663  OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
2664  OS << "  unsigned MatchInstructionImpl(\n";
2665  OS.indent(27);
2666  OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
2667     << "                                MCInst &Inst,\n"
2668     << "                                unsigned &ErrorInfo,"
2669     << " bool matchingInlineAsm,\n"
2670     << "                                unsigned VariantID = 0);\n";
2671
2672  if (Info.OperandMatchInfo.size()) {
2673    OS << "\n  enum OperandMatchResultTy {\n";
2674    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2675    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2676    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2677    OS << "  };\n";
2678    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2679    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2680    OS << "    StringRef Mnemonic);\n";
2681
2682    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2683    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2684    OS << "    unsigned MCK);\n\n";
2685  }
2686
2687  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2688
2689  // Emit the operand match diagnostic enum names.
2690  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2691  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2692  emitOperandDiagnosticTypes(Info, OS);
2693  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2694
2695
2696  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2697  OS << "#undef GET_REGISTER_MATCHER\n\n";
2698
2699  // Emit the subtarget feature enumeration.
2700  emitSubtargetFeatureFlagEnumeration(Info, OS);
2701
2702  // Emit the function to match a register name to number.
2703  // This should be omitted for Mips target
2704  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2705    emitMatchRegisterName(Target, AsmParser, OS);
2706
2707  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2708
2709  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2710  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2711
2712  // Generate the helper function to get the names for subtarget features.
2713  emitGetSubtargetFeatureName(Info, OS);
2714
2715  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2716
2717  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2718  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2719
2720  // Generate the function that remaps for mnemonic aliases.
2721  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2722
2723  // Generate the convertToMCInst function to convert operands into an MCInst.
2724  // Also, generate the convertToMapAndConstraints function for MS-style inline
2725  // assembly.  The latter doesn't actually generate a MCInst.
2726  emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2727
2728  // Emit the enumeration for classes which participate in matching.
2729  emitMatchClassEnumeration(Target, Info.Classes, OS);
2730
2731  // Emit the routine to match token strings to their match class.
2732  emitMatchTokenString(Target, Info.Classes, OS);
2733
2734  // Emit the subclass predicate routine.
2735  emitIsSubclass(Target, Info.Classes, OS);
2736
2737  // Emit the routine to validate an operand against a match class.
2738  emitValidateOperandClass(Info, OS);
2739
2740  // Emit the available features compute function.
2741  emitComputeAvailableFeatures(Info, OS);
2742
2743
2744  StringToOffsetTable StringTable;
2745
2746  size_t MaxNumOperands = 0;
2747  unsigned MaxMnemonicIndex = 0;
2748  for (std::vector<MatchableInfo*>::const_iterator it =
2749         Info.Matchables.begin(), ie = Info.Matchables.end();
2750       it != ie; ++it) {
2751    MatchableInfo &II = **it;
2752    MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
2753
2754    // Store a pascal-style length byte in the mnemonic.
2755    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2756    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2757                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
2758  }
2759
2760  OS << "static const char *const MnemonicTable =\n";
2761  StringTable.EmitString(OS);
2762  OS << ";\n\n";
2763
2764  // Emit the static match table; unused classes get initalized to 0 which is
2765  // guaranteed to be InvalidMatchClass.
2766  //
2767  // FIXME: We can reduce the size of this table very easily. First, we change
2768  // it so that store the kinds in separate bit-fields for each index, which
2769  // only needs to be the max width used for classes at that index (we also need
2770  // to reject based on this during classification). If we then make sure to
2771  // order the match kinds appropriately (putting mnemonics last), then we
2772  // should only end up using a few bits for each class, especially the ones
2773  // following the mnemonic.
2774  OS << "namespace {\n";
2775  OS << "  struct MatchEntry {\n";
2776  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2777               << " Mnemonic;\n";
2778  OS << "    uint16_t Opcode;\n";
2779  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2780               << " ConvertFn;\n";
2781  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2782               << " RequiredFeatures;\n";
2783  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2784               << " Classes[" << MaxNumOperands << "];\n";
2785  OS << "    StringRef getMnemonic() const {\n";
2786  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2787  OS << "                       MnemonicTable[Mnemonic]);\n";
2788  OS << "    }\n";
2789  OS << "  };\n\n";
2790
2791  OS << "  // Predicate for searching for an opcode.\n";
2792  OS << "  struct LessOpcode {\n";
2793  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2794  OS << "      return LHS.getMnemonic() < RHS;\n";
2795  OS << "    }\n";
2796  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2797  OS << "      return LHS < RHS.getMnemonic();\n";
2798  OS << "    }\n";
2799  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2800  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2801  OS << "    }\n";
2802  OS << "  };\n";
2803
2804  OS << "} // end anonymous namespace.\n\n";
2805
2806  unsigned VariantCount = Target.getAsmParserVariantCount();
2807  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2808    Record *AsmVariant = Target.getAsmParserVariant(VC);
2809    std::string CommentDelimiter =
2810      AsmVariant->getValueAsString("CommentDelimiter");
2811    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2812    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2813
2814    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
2815
2816    for (std::vector<MatchableInfo*>::const_iterator it =
2817         Info.Matchables.begin(), ie = Info.Matchables.end();
2818         it != ie; ++it) {
2819      MatchableInfo &II = **it;
2820      if (II.AsmVariantID != AsmVariantNo)
2821        continue;
2822
2823      // Store a pascal-style length byte in the mnemonic.
2824      std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2825      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2826         << " /* " << II.Mnemonic << " */, "
2827         << Target.getName() << "::"
2828         << II.getResultInst()->TheDef->getName() << ", "
2829         << II.ConversionFnKind << ", ";
2830
2831      // Write the required features mask.
2832      if (!II.RequiredFeatures.empty()) {
2833        for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2834          if (i) OS << "|";
2835          OS << II.RequiredFeatures[i]->getEnumName();
2836        }
2837      } else
2838        OS << "0";
2839
2840      OS << ", { ";
2841      for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2842        MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2843
2844        if (i) OS << ", ";
2845        OS << Op.Class->Name;
2846      }
2847      OS << " }, },\n";
2848    }
2849
2850    OS << "};\n\n";
2851  }
2852
2853  // A method to determine if a mnemonic is in the list.
2854  OS << "bool " << Target.getName() << ClassName << "::\n"
2855     << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2856  OS << "  // Find the appropriate table for this asm variant.\n";
2857  OS << "  const MatchEntry *Start, *End;\n";
2858  OS << "  switch (VariantID) {\n";
2859  OS << "  default: // unreachable\n";
2860  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2861    Record *AsmVariant = Target.getAsmParserVariant(VC);
2862    std::string CommentDelimiter =
2863      AsmVariant->getValueAsString("CommentDelimiter");
2864    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2865    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2866    OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
2867       << "; End = array_endof(MatchTable" << VC << "); break;\n";
2868  }
2869  OS << "  }\n";
2870  OS << "  // Search the table.\n";
2871  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2872  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
2873  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2874  OS << "}\n\n";
2875
2876  // Finally, build the match function.
2877  OS << "unsigned "
2878     << Target.getName() << ClassName << "::\n"
2879     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2880     << " &Operands,\n";
2881  OS << "                     MCInst &Inst,\n"
2882     << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
2883
2884  OS << "  // Eliminate obvious mismatches.\n";
2885  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2886  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2887  OS << "    return Match_InvalidOperand;\n";
2888  OS << "  }\n\n";
2889
2890  // Emit code to get the available features.
2891  OS << "  // Get the current feature set.\n";
2892  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2893
2894  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2895  OS << "  StringRef Mnemonic = ((" << Target.getName()
2896     << "Operand*)Operands[0])->getToken();\n\n";
2897
2898  if (HasMnemonicAliases) {
2899    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2900    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
2901  }
2902
2903  // Emit code to compute the class list for this operand vector.
2904  OS << "  // Some state to try to produce better error messages.\n";
2905  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2906  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2907  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2908  OS << "  unsigned MissingFeatures = ~0U;\n";
2909  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2910  OS << "  // wrong for all instances of the instruction.\n";
2911  OS << "  ErrorInfo = ~0U;\n";
2912
2913  // Emit code to search the table.
2914  OS << "  // Find the appropriate table for this asm variant.\n";
2915  OS << "  const MatchEntry *Start, *End;\n";
2916  OS << "  switch (VariantID) {\n";
2917  OS << "  default: // unreachable\n";
2918  for (unsigned VC = 0; VC != VariantCount; ++VC) {
2919    Record *AsmVariant = Target.getAsmParserVariant(VC);
2920    std::string CommentDelimiter =
2921      AsmVariant->getValueAsString("CommentDelimiter");
2922    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
2923    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2924    OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
2925       << "; End = array_endof(MatchTable" << VC << "); break;\n";
2926  }
2927  OS << "  }\n";
2928  OS << "  // Search the table.\n";
2929  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2930  OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
2931
2932  OS << "  // Return a more specific error code if no mnemonics match.\n";
2933  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2934  OS << "    return Match_MnemonicFail;\n\n";
2935
2936  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2937     << "*ie = MnemonicRange.second;\n";
2938  OS << "       it != ie; ++it) {\n";
2939
2940  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2941  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2942
2943  // Emit check that the subclasses match.
2944  OS << "    bool OperandsValid = true;\n";
2945  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2946  OS << "      if (i + 1 >= Operands.size()) {\n";
2947  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2948  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2949  OS << "        break;\n";
2950  OS << "      }\n";
2951  OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
2952  OS.indent(43);
2953  OS << "(MatchClassKind)it->Classes[i]);\n";
2954  OS << "      if (Diag == Match_Success)\n";
2955  OS << "        continue;\n";
2956  OS << "      // If the generic handler indicates an invalid operand\n";
2957  OS << "      // failure, check for a special case.\n";
2958  OS << "      if (Diag == Match_InvalidOperand) {\n";
2959  OS << "        Diag = validateTargetOperandClass(Operands[i+1],\n";
2960  OS.indent(43);
2961  OS << "(MatchClassKind)it->Classes[i]);\n";
2962  OS << "        if (Diag == Match_Success)\n";
2963  OS << "          continue;\n";
2964  OS << "      }\n";
2965  OS << "      // If this operand is broken for all of the instances of this\n";
2966  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2967  OS << "      // If we already had a match that only failed due to a\n";
2968  OS << "      // target predicate, that diagnostic is preferred.\n";
2969  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2970  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2971  OS << "        ErrorInfo = i+1;\n";
2972  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2973  OS << "        if (Diag != Match_InvalidOperand)\n";
2974  OS << "          RetCode = Diag;\n";
2975  OS << "      }\n";
2976  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2977  OS << "      OperandsValid = false;\n";
2978  OS << "      break;\n";
2979  OS << "    }\n\n";
2980
2981  OS << "    if (!OperandsValid) continue;\n";
2982
2983  // Emit check that the required features are available.
2984  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2985     << "!= it->RequiredFeatures) {\n";
2986  OS << "      HadMatchOtherThanFeatures = true;\n";
2987  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
2988        "~AvailableFeatures;\n";
2989  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
2990        "          CountPopulation_32(MissingFeatures))\n";
2991  OS << "        MissingFeatures = NewMissingFeatures;\n";
2992  OS << "      continue;\n";
2993  OS << "    }\n";
2994  OS << "\n";
2995  OS << "    if (matchingInlineAsm) {\n";
2996  OS << "      Inst.setOpcode(it->Opcode);\n";
2997  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2998  OS << "      return Match_Success;\n";
2999  OS << "    }\n\n";
3000  OS << "    // We have selected a definite instruction, convert the parsed\n"
3001     << "    // operands into the appropriate MCInst.\n";
3002  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3003  OS << "\n";
3004
3005  // Verify the instruction with the target-specific match predicate function.
3006  OS << "    // We have a potential match. Check the target predicate to\n"
3007     << "    // handle any context sensitive constraints.\n"
3008     << "    unsigned MatchResult;\n"
3009     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3010     << " Match_Success) {\n"
3011     << "      Inst.clear();\n"
3012     << "      RetCode = MatchResult;\n"
3013     << "      HadMatchOtherThanPredicate = true;\n"
3014     << "      continue;\n"
3015     << "    }\n\n";
3016
3017  // Call the post-processing function, if used.
3018  std::string InsnCleanupFn =
3019    AsmParser->getValueAsString("AsmParserInstCleanup");
3020  if (!InsnCleanupFn.empty())
3021    OS << "    " << InsnCleanupFn << "(Inst);\n";
3022
3023  OS << "    return Match_Success;\n";
3024  OS << "  }\n\n";
3025
3026  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3027  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3028  OS << "    return RetCode;\n\n";
3029  OS << "  // Missing feature matches return which features were missing\n";
3030  OS << "  ErrorInfo = MissingFeatures;\n";
3031  OS << "  return Match_MissingFeature;\n";
3032  OS << "}\n\n";
3033
3034  if (Info.OperandMatchInfo.size())
3035    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3036                             MaxMnemonicIndex);
3037
3038  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3039}
3040
3041namespace llvm {
3042
3043void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3044  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3045  AsmMatcherEmitter(RK).run(OS);
3046}
3047
3048} // End llvm namespace
3049