CodeGenDAGPatterns.cpp revision d24479730a8790d82c4859dc477bc2416d7a6bda
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/Streams.h"
20#include <set>
21#include <algorithm>
22using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25// Helpers for working with extended types.
26
27/// FilterVTs - Filter a list of VT's according to a predicate.
28///
29template<typename T>
30static std::vector<MVT::SimpleValueType>
31FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
32  std::vector<MVT::SimpleValueType> Result;
33  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
34    if (Filter(InVTs[i]))
35      Result.push_back(InVTs[i]);
36  return Result;
37}
38
39template<typename T>
40static std::vector<unsigned char>
41FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
42  std::vector<unsigned char> Result;
43  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
44    if (Filter((MVT::SimpleValueType)InVTs[i]))
45      Result.push_back(InVTs[i]);
46  return Result;
47}
48
49static std::vector<unsigned char>
50ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
51  std::vector<unsigned char> Result;
52  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
53    Result.push_back(InVTs[i]);
54  return Result;
55}
56
57static inline bool isInteger(MVT::SimpleValueType VT) {
58  return MVT(VT).isInteger();
59}
60
61static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
62  return MVT(VT).isFloatingPoint();
63}
64
65static inline bool isVector(MVT::SimpleValueType VT) {
66  return MVT(VT).isVector();
67}
68
69static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
70                             const std::vector<unsigned char> &RHS) {
71  if (LHS.size() > RHS.size()) return false;
72  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
73    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
74      return false;
75  return true;
76}
77
78/// isExtIntegerVT - Return true if the specified extended value type vector
79/// contains isInt or an integer value type.
80namespace llvm {
81namespace EMVT {
82bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
83  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
84  return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
85}
86
87/// isExtFloatingPointVT - Return true if the specified extended value type
88/// vector contains isFP or a FP value type.
89bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
90  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
91  return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
92}
93} // end namespace EMVT.
94} // end namespace llvm.
95
96
97/// Dependent variable map for CodeGenDAGPattern variant generation
98typedef std::map<std::string, int> DepVarMap;
99
100/// Const iterator shorthand for DepVarMap
101typedef DepVarMap::const_iterator DepVarMap_citer;
102
103namespace {
104void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
105  if (N->isLeaf()) {
106    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
107      DepMap[N->getName()]++;
108    }
109  } else {
110    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
111      FindDepVarsOf(N->getChild(i), DepMap);
112  }
113}
114
115//! Find dependent variables within child patterns
116/*!
117 */
118void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
119  DepVarMap depcounts;
120  FindDepVarsOf(N, depcounts);
121  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
122    if (i->second > 1) {            // std::pair<std::string, int>
123      DepVars.insert(i->first);
124    }
125  }
126}
127
128//! Dump the dependent variable set:
129void DumpDepVars(MultipleUseVarSet &DepVars) {
130  if (DepVars.empty()) {
131    DOUT << "<empty set>";
132  } else {
133    DOUT << "[ ";
134    for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
135         i != e; ++i) {
136      DOUT << (*i) << " ";
137    }
138    DOUT << "]";
139  }
140}
141}
142
143//===----------------------------------------------------------------------===//
144// PatternToMatch implementation
145//
146
147/// getPredicateCheck - Return a single string containing all of this
148/// pattern's predicates concatenated with "&&" operators.
149///
150std::string PatternToMatch::getPredicateCheck() const {
151  std::string PredicateCheck;
152  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
153    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
154      Record *Def = Pred->getDef();
155      if (!Def->isSubClassOf("Predicate")) {
156#ifndef NDEBUG
157        Def->dump();
158#endif
159        assert(0 && "Unknown predicate type!");
160      }
161      if (!PredicateCheck.empty())
162        PredicateCheck += " && ";
163      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
164    }
165  }
166
167  return PredicateCheck;
168}
169
170//===----------------------------------------------------------------------===//
171// SDTypeConstraint implementation
172//
173
174SDTypeConstraint::SDTypeConstraint(Record *R) {
175  OperandNo = R->getValueAsInt("OperandNum");
176
177  if (R->isSubClassOf("SDTCisVT")) {
178    ConstraintType = SDTCisVT;
179    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
180  } else if (R->isSubClassOf("SDTCisPtrTy")) {
181    ConstraintType = SDTCisPtrTy;
182  } else if (R->isSubClassOf("SDTCisInt")) {
183    ConstraintType = SDTCisInt;
184  } else if (R->isSubClassOf("SDTCisFP")) {
185    ConstraintType = SDTCisFP;
186  } else if (R->isSubClassOf("SDTCisSameAs")) {
187    ConstraintType = SDTCisSameAs;
188    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
189  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
190    ConstraintType = SDTCisVTSmallerThanOp;
191    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
192      R->getValueAsInt("OtherOperandNum");
193  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
194    ConstraintType = SDTCisOpSmallerThanOp;
195    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
196      R->getValueAsInt("BigOperandNum");
197  } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
198    ConstraintType = SDTCisIntVectorOfSameSize;
199    x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
200      R->getValueAsInt("OtherOpNum");
201  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
202    ConstraintType = SDTCisEltOfVec;
203    x.SDTCisEltOfVec_Info.OtherOperandNum =
204      R->getValueAsInt("OtherOpNum");
205  } else {
206    cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
207    exit(1);
208  }
209}
210
211/// getOperandNum - Return the node corresponding to operand #OpNo in tree
212/// N, which has NumResults results.
213TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
214                                                 TreePatternNode *N,
215                                                 unsigned NumResults) const {
216  assert(NumResults <= 1 &&
217         "We only work with nodes with zero or one result so far!");
218
219  if (OpNo >= (NumResults + N->getNumChildren())) {
220    cerr << "Invalid operand number " << OpNo << " ";
221    N->dump();
222    cerr << '\n';
223    exit(1);
224  }
225
226  if (OpNo < NumResults)
227    return N;  // FIXME: need value #
228  else
229    return N->getChild(OpNo-NumResults);
230}
231
232/// ApplyTypeConstraint - Given a node in a pattern, apply this type
233/// constraint to the nodes operands.  This returns true if it makes a
234/// change, false otherwise.  If a type contradiction is found, throw an
235/// exception.
236bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
237                                           const SDNodeInfo &NodeInfo,
238                                           TreePattern &TP) const {
239  unsigned NumResults = NodeInfo.getNumResults();
240  assert(NumResults <= 1 &&
241         "We only work with nodes with zero or one result so far!");
242
243  // Check that the number of operands is sane.  Negative operands -> varargs.
244  if (NodeInfo.getNumOperands() >= 0) {
245    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
246      TP.error(N->getOperator()->getName() + " node requires exactly " +
247               itostr(NodeInfo.getNumOperands()) + " operands!");
248  }
249
250  const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
251
252  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
253
254  switch (ConstraintType) {
255  default: assert(0 && "Unknown constraint type!");
256  case SDTCisVT:
257    // Operand must be a particular type.
258    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
259  case SDTCisPtrTy: {
260    // Operand must be same as target pointer type.
261    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
262  }
263  case SDTCisInt: {
264    // If there is only one integer type supported, this must be it.
265    std::vector<MVT::SimpleValueType> IntVTs =
266      FilterVTs(CGT.getLegalValueTypes(), isInteger);
267
268    // If we found exactly one supported integer type, apply it.
269    if (IntVTs.size() == 1)
270      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
271    return NodeToApply->UpdateNodeType(EMVT::isInt, TP);
272  }
273  case SDTCisFP: {
274    // If there is only one FP type supported, this must be it.
275    std::vector<MVT::SimpleValueType> FPVTs =
276      FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
277
278    // If we found exactly one supported FP type, apply it.
279    if (FPVTs.size() == 1)
280      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
281    return NodeToApply->UpdateNodeType(EMVT::isFP, TP);
282  }
283  case SDTCisSameAs: {
284    TreePatternNode *OtherNode =
285      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
286    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
287           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
288  }
289  case SDTCisVTSmallerThanOp: {
290    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
291    // have an integer type that is smaller than the VT.
292    if (!NodeToApply->isLeaf() ||
293        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
294        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
295               ->isSubClassOf("ValueType"))
296      TP.error(N->getOperator()->getName() + " expects a VT operand!");
297    MVT::SimpleValueType VT =
298     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
299    if (!isInteger(VT))
300      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
301
302    TreePatternNode *OtherNode =
303      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
304
305    // It must be integer.
306    bool MadeChange = false;
307    MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP);
308
309    // This code only handles nodes that have one type set.  Assert here so
310    // that we can change this if we ever need to deal with multiple value
311    // types at this point.
312    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
313    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
314      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
315    return false;
316  }
317  case SDTCisOpSmallerThanOp: {
318    TreePatternNode *BigOperand =
319      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
320
321    // Both operands must be integer or FP, but we don't care which.
322    bool MadeChange = false;
323
324    // This code does not currently handle nodes which have multiple types,
325    // where some types are integer, and some are fp.  Assert that this is not
326    // the case.
327    assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
328             EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
329           !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
330             EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
331           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
332    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
333      MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP);
334    else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
335      MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP);
336    if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
337      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP);
338    else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
339      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP);
340
341    std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
342
343    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
344      VTs = FilterVTs(VTs, isInteger);
345    } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
346      VTs = FilterVTs(VTs, isFloatingPoint);
347    } else {
348      VTs.clear();
349    }
350
351    switch (VTs.size()) {
352    default:         // Too many VT's to pick from.
353    case 0: break;   // No info yet.
354    case 1:
355      // Only one VT of this flavor.  Cannot ever satisify the constraints.
356      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
357    case 2:
358      // If we have exactly two possible types, the little operand must be the
359      // small one, the big operand should be the big one.  Common with
360      // float/double for example.
361      assert(VTs[0] < VTs[1] && "Should be sorted!");
362      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
363      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
364      break;
365    }
366    return MadeChange;
367  }
368  case SDTCisIntVectorOfSameSize: {
369    TreePatternNode *OtherOperand =
370      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
371                    N, NumResults);
372    if (OtherOperand->hasTypeSet()) {
373      if (!isVector(OtherOperand->getTypeNum(0)))
374        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
375      MVT IVT = OtherOperand->getTypeNum(0);
376      unsigned NumElements = IVT.getVectorNumElements();
377      IVT = MVT::getIntVectorWithNumElements(NumElements);
378      return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
379    }
380    return false;
381  }
382  case SDTCisEltOfVec: {
383    TreePatternNode *OtherOperand =
384      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
385                    N, NumResults);
386    if (OtherOperand->hasTypeSet()) {
387      if (!isVector(OtherOperand->getTypeNum(0)))
388        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
389      MVT IVT = OtherOperand->getTypeNum(0);
390      IVT = IVT.getVectorElementType();
391      return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
392    }
393    return false;
394  }
395  }
396  return false;
397}
398
399//===----------------------------------------------------------------------===//
400// SDNodeInfo implementation
401//
402SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
403  EnumName    = R->getValueAsString("Opcode");
404  SDClassName = R->getValueAsString("SDClass");
405  Record *TypeProfile = R->getValueAsDef("TypeProfile");
406  NumResults = TypeProfile->getValueAsInt("NumResults");
407  NumOperands = TypeProfile->getValueAsInt("NumOperands");
408
409  // Parse the properties.
410  Properties = 0;
411  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
412  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
413    if (PropList[i]->getName() == "SDNPCommutative") {
414      Properties |= 1 << SDNPCommutative;
415    } else if (PropList[i]->getName() == "SDNPAssociative") {
416      Properties |= 1 << SDNPAssociative;
417    } else if (PropList[i]->getName() == "SDNPHasChain") {
418      Properties |= 1 << SDNPHasChain;
419    } else if (PropList[i]->getName() == "SDNPOutFlag") {
420      Properties |= 1 << SDNPOutFlag;
421    } else if (PropList[i]->getName() == "SDNPInFlag") {
422      Properties |= 1 << SDNPInFlag;
423    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
424      Properties |= 1 << SDNPOptInFlag;
425    } else if (PropList[i]->getName() == "SDNPMayStore") {
426      Properties |= 1 << SDNPMayStore;
427    } else if (PropList[i]->getName() == "SDNPMayLoad") {
428      Properties |= 1 << SDNPMayLoad;
429    } else if (PropList[i]->getName() == "SDNPSideEffect") {
430      Properties |= 1 << SDNPSideEffect;
431    } else if (PropList[i]->getName() == "SDNPMemOperand") {
432      Properties |= 1 << SDNPMemOperand;
433    } else {
434      cerr << "Unknown SD Node property '" << PropList[i]->getName()
435           << "' on node '" << R->getName() << "'!\n";
436      exit(1);
437    }
438  }
439
440
441  // Parse the type constraints.
442  std::vector<Record*> ConstraintList =
443    TypeProfile->getValueAsListOfDefs("Constraints");
444  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
445}
446
447//===----------------------------------------------------------------------===//
448// TreePatternNode implementation
449//
450
451TreePatternNode::~TreePatternNode() {
452#if 0 // FIXME: implement refcounted tree nodes!
453  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
454    delete getChild(i);
455#endif
456}
457
458/// UpdateNodeType - Set the node type of N to VT if VT contains
459/// information.  If N already contains a conflicting type, then throw an
460/// exception.  This returns true if any information was updated.
461///
462bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
463                                     TreePattern &TP) {
464  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
465
466  if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
467    return false;
468  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
469    setTypes(ExtVTs);
470    return true;
471  }
472
473  if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
474    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
475        ExtVTs[0] == EMVT::isInt)
476      return false;
477    if (EMVT::isExtIntegerInVTs(ExtVTs)) {
478      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
479      if (FVTs.size()) {
480        setTypes(ExtVTs);
481        return true;
482      }
483    }
484  }
485
486  if ((ExtVTs[0] == EMVT::isInt || ExtVTs[0] == MVT::iAny) &&
487      EMVT::isExtIntegerInVTs(getExtTypes())) {
488    assert(hasTypeSet() && "should be handled above!");
489    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
490    if (getExtTypes() == FVTs)
491      return false;
492    setTypes(FVTs);
493    return true;
494  }
495  if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
496      EMVT::isExtIntegerInVTs(getExtTypes())) {
497    //assert(hasTypeSet() && "should be handled above!");
498    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
499    if (getExtTypes() == FVTs)
500      return false;
501    if (FVTs.size()) {
502      setTypes(FVTs);
503      return true;
504    }
505  }
506  if ((ExtVTs[0] == EMVT::isFP || ExtVTs[0] == MVT::fAny) &&
507      EMVT::isExtFloatingPointInVTs(getExtTypes())) {
508    assert(hasTypeSet() && "should be handled above!");
509    std::vector<unsigned char> FVTs =
510      FilterEVTs(getExtTypes(), isFloatingPoint);
511    if (getExtTypes() == FVTs)
512      return false;
513    setTypes(FVTs);
514    return true;
515  }
516
517  // If we know this is an int or fp type, and we are told it is a specific one,
518  // take the advice.
519  //
520  // Similarly, we should probably set the type here to the intersection of
521  // {isInt|isFP} and ExtVTs
522  if (((getExtTypeNum(0) == EMVT::isInt || getExtTypeNum(0) == MVT::iAny) &&
523       EMVT::isExtIntegerInVTs(ExtVTs)) ||
524      ((getExtTypeNum(0) == EMVT::isFP || getExtTypeNum(0) == MVT::fAny) &&
525       EMVT::isExtFloatingPointInVTs(ExtVTs))) {
526    setTypes(ExtVTs);
527    return true;
528  }
529  if (getExtTypeNum(0) == EMVT::isInt &&
530      (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
531    setTypes(ExtVTs);
532    return true;
533  }
534
535  if (isLeaf()) {
536    dump();
537    cerr << " ";
538    TP.error("Type inference contradiction found in node!");
539  } else {
540    TP.error("Type inference contradiction found in node " +
541             getOperator()->getName() + "!");
542  }
543  return true; // unreachable
544}
545
546
547void TreePatternNode::print(std::ostream &OS) const {
548  if (isLeaf()) {
549    OS << *getLeafValue();
550  } else {
551    OS << "(" << getOperator()->getName();
552  }
553
554  // FIXME: At some point we should handle printing all the value types for
555  // nodes that are multiply typed.
556  switch (getExtTypeNum(0)) {
557  case MVT::Other: OS << ":Other"; break;
558  case EMVT::isInt: OS << ":isInt"; break;
559  case EMVT::isFP : OS << ":isFP"; break;
560  case EMVT::isUnknown: ; /*OS << ":?";*/ break;
561  case MVT::iPTR:  OS << ":iPTR"; break;
562  case MVT::iPTRAny:  OS << ":iPTRAny"; break;
563  default: {
564    std::string VTName = llvm::getName(getTypeNum(0));
565    // Strip off MVT:: prefix if present.
566    if (VTName.substr(0,5) == "MVT::")
567      VTName = VTName.substr(5);
568    OS << ":" << VTName;
569    break;
570  }
571  }
572
573  if (!isLeaf()) {
574    if (getNumChildren() != 0) {
575      OS << " ";
576      getChild(0)->print(OS);
577      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
578        OS << ", ";
579        getChild(i)->print(OS);
580      }
581    }
582    OS << ")";
583  }
584
585  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
586    OS << "<<P:" << PredicateFns[i] << ">>";
587  if (TransformFn)
588    OS << "<<X:" << TransformFn->getName() << ">>";
589  if (!getName().empty())
590    OS << ":$" << getName();
591
592}
593void TreePatternNode::dump() const {
594  print(*cerr.stream());
595}
596
597/// isIsomorphicTo - Return true if this node is recursively
598/// isomorphic to the specified node.  For this comparison, the node's
599/// entire state is considered. The assigned name is ignored, since
600/// nodes with differing names are considered isomorphic. However, if
601/// the assigned name is present in the dependent variable set, then
602/// the assigned name is considered significant and the node is
603/// isomorphic if the names match.
604bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
605                                     const MultipleUseVarSet &DepVars) const {
606  if (N == this) return true;
607  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
608      getPredicateFns() != N->getPredicateFns() ||
609      getTransformFn() != N->getTransformFn())
610    return false;
611
612  if (isLeaf()) {
613    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
614      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
615        return ((DI->getDef() == NDI->getDef())
616                && (DepVars.find(getName()) == DepVars.end()
617                    || getName() == N->getName()));
618      }
619    }
620    return getLeafValue() == N->getLeafValue();
621  }
622
623  if (N->getOperator() != getOperator() ||
624      N->getNumChildren() != getNumChildren()) return false;
625  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
626    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
627      return false;
628  return true;
629}
630
631/// clone - Make a copy of this tree and all of its children.
632///
633TreePatternNode *TreePatternNode::clone() const {
634  TreePatternNode *New;
635  if (isLeaf()) {
636    New = new TreePatternNode(getLeafValue());
637  } else {
638    std::vector<TreePatternNode*> CChildren;
639    CChildren.reserve(Children.size());
640    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
641      CChildren.push_back(getChild(i)->clone());
642    New = new TreePatternNode(getOperator(), CChildren);
643  }
644  New->setName(getName());
645  New->setTypes(getExtTypes());
646  New->setPredicateFns(getPredicateFns());
647  New->setTransformFn(getTransformFn());
648  return New;
649}
650
651/// SubstituteFormalArguments - Replace the formal arguments in this tree
652/// with actual values specified by ArgMap.
653void TreePatternNode::
654SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
655  if (isLeaf()) return;
656
657  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
658    TreePatternNode *Child = getChild(i);
659    if (Child->isLeaf()) {
660      Init *Val = Child->getLeafValue();
661      if (dynamic_cast<DefInit*>(Val) &&
662          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
663        // We found a use of a formal argument, replace it with its value.
664        TreePatternNode *NewChild = ArgMap[Child->getName()];
665        assert(NewChild && "Couldn't find formal argument!");
666        assert((Child->getPredicateFns().empty() ||
667                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
668               "Non-empty child predicate clobbered!");
669        setChild(i, NewChild);
670      }
671    } else {
672      getChild(i)->SubstituteFormalArguments(ArgMap);
673    }
674  }
675}
676
677
678/// InlinePatternFragments - If this pattern refers to any pattern
679/// fragments, inline them into place, giving us a pattern without any
680/// PatFrag references.
681TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
682  if (isLeaf()) return this;  // nothing to do.
683  Record *Op = getOperator();
684
685  if (!Op->isSubClassOf("PatFrag")) {
686    // Just recursively inline children nodes.
687    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
688      TreePatternNode *Child = getChild(i);
689      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
690
691      assert((Child->getPredicateFns().empty() ||
692              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
693             "Non-empty child predicate clobbered!");
694
695      setChild(i, NewChild);
696    }
697    return this;
698  }
699
700  // Otherwise, we found a reference to a fragment.  First, look up its
701  // TreePattern record.
702  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
703
704  // Verify that we are passing the right number of operands.
705  if (Frag->getNumArgs() != Children.size())
706    TP.error("'" + Op->getName() + "' fragment requires " +
707             utostr(Frag->getNumArgs()) + " operands!");
708
709  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
710
711  std::string Code = Op->getValueAsCode("Predicate");
712  if (!Code.empty())
713    FragTree->addPredicateFn("Predicate_"+Op->getName());
714
715  // Resolve formal arguments to their actual value.
716  if (Frag->getNumArgs()) {
717    // Compute the map of formal to actual arguments.
718    std::map<std::string, TreePatternNode*> ArgMap;
719    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
720      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
721
722    FragTree->SubstituteFormalArguments(ArgMap);
723  }
724
725  FragTree->setName(getName());
726  FragTree->UpdateNodeType(getExtTypes(), TP);
727
728  // Transfer in the old predicates.
729  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
730    FragTree->addPredicateFn(getPredicateFns()[i]);
731
732  // Get a new copy of this fragment to stitch into here.
733  //delete this;    // FIXME: implement refcounting!
734
735  // The fragment we inlined could have recursive inlining that is needed.  See
736  // if there are any pattern fragments in it and inline them as needed.
737  return FragTree->InlinePatternFragments(TP);
738}
739
740/// getImplicitType - Check to see if the specified record has an implicit
741/// type which should be applied to it.  This infer the type of register
742/// references from the register file information, for example.
743///
744static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
745                                      TreePattern &TP) {
746  // Some common return values
747  std::vector<unsigned char> Unknown(1, EMVT::isUnknown);
748  std::vector<unsigned char> Other(1, MVT::Other);
749
750  // Check to see if this is a register or a register class...
751  if (R->isSubClassOf("RegisterClass")) {
752    if (NotRegisters)
753      return Unknown;
754    const CodeGenRegisterClass &RC =
755      TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
756    return ConvertVTs(RC.getValueTypes());
757  } else if (R->isSubClassOf("PatFrag")) {
758    // Pattern fragment types will be resolved when they are inlined.
759    return Unknown;
760  } else if (R->isSubClassOf("Register")) {
761    if (NotRegisters)
762      return Unknown;
763    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
764    return T.getRegisterVTs(R);
765  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
766    // Using a VTSDNode or CondCodeSDNode.
767    return Other;
768  } else if (R->isSubClassOf("ComplexPattern")) {
769    if (NotRegisters)
770      return Unknown;
771    std::vector<unsigned char>
772    ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
773    return ComplexPat;
774  } else if (R->getName() == "ptr_rc") {
775    Other[0] = MVT::iPTR;
776    return Other;
777  } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
778             R->getName() == "zero_reg") {
779    // Placeholder.
780    return Unknown;
781  }
782
783  TP.error("Unknown node flavor used in pattern: " + R->getName());
784  return Other;
785}
786
787
788/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
789/// CodeGenIntrinsic information for it, otherwise return a null pointer.
790const CodeGenIntrinsic *TreePatternNode::
791getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
792  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
793      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
794      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
795    return 0;
796
797  unsigned IID =
798    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
799  return &CDP.getIntrinsicInfo(IID);
800}
801
802/// isCommutativeIntrinsic - Return true if the node corresponds to a
803/// commutative intrinsic.
804bool
805TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
806  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
807    return Int->isCommutative;
808  return false;
809}
810
811
812/// ApplyTypeConstraints - Apply all of the type constraints relevant to
813/// this node and its children in the tree.  This returns true if it makes a
814/// change, false otherwise.  If a type contradiction is found, throw an
815/// exception.
816bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
817  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
818  if (isLeaf()) {
819    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
820      // If it's a regclass or something else known, include the type.
821      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
822    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
823      // Int inits are always integers. :)
824      bool MadeChange = UpdateNodeType(EMVT::isInt, TP);
825
826      if (hasTypeSet()) {
827        // At some point, it may make sense for this tree pattern to have
828        // multiple types.  Assert here that it does not, so we revisit this
829        // code when appropriate.
830        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
831        MVT::SimpleValueType VT = getTypeNum(0);
832        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
833          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
834
835        VT = getTypeNum(0);
836        if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
837          unsigned Size = MVT(VT).getSizeInBits();
838          // Make sure that the value is representable for this type.
839          if (Size < 32) {
840            int Val = (II->getValue() << (32-Size)) >> (32-Size);
841            if (Val != II->getValue()) {
842              // If sign-extended doesn't fit, does it fit as unsigned?
843              unsigned ValueMask;
844              unsigned UnsignedVal;
845              ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
846              UnsignedVal = unsigned(II->getValue());
847
848              if ((ValueMask & UnsignedVal) != UnsignedVal) {
849                TP.error("Integer value '" + itostr(II->getValue())+
850                         "' is out of range for type '" +
851                         getEnumName(getTypeNum(0)) + "'!");
852              }
853            }
854         }
855       }
856      }
857
858      return MadeChange;
859    }
860    return false;
861  }
862
863  // special handling for set, which isn't really an SDNode.
864  if (getOperator()->getName() == "set") {
865    assert (getNumChildren() >= 2 && "Missing RHS of a set?");
866    unsigned NC = getNumChildren();
867    bool MadeChange = false;
868    for (unsigned i = 0; i < NC-1; ++i) {
869      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
870      MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
871
872      // Types of operands must match.
873      MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
874                                                TP);
875      MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
876                                                   TP);
877      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
878    }
879    return MadeChange;
880  } else if (getOperator()->getName() == "implicit" ||
881             getOperator()->getName() == "parallel") {
882    bool MadeChange = false;
883    for (unsigned i = 0; i < getNumChildren(); ++i)
884      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
885    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
886    return MadeChange;
887  } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
888    bool MadeChange = false;
889
890    // Apply the result type to the node.
891    unsigned NumRetVTs = Int->IS.RetVTs.size();
892    unsigned NumParamVTs = Int->IS.ParamVTs.size();
893
894    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
895      MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
896
897    if (getNumChildren() != NumParamVTs + NumRetVTs)
898      TP.error("Intrinsic '" + Int->Name + "' expects " +
899               utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
900               utostr(getNumChildren() - 1) + " operands!");
901
902    // Apply type info to the intrinsic ID.
903    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
904
905    for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
906      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
907      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
908      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
909    }
910    return MadeChange;
911  } else if (getOperator()->isSubClassOf("SDNode")) {
912    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
913
914    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
915    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
916      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
917    // Branch, etc. do not produce results and top-level forms in instr pattern
918    // must have void types.
919    if (NI.getNumResults() == 0)
920      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
921
922    // If this is a vector_shuffle operation, apply types to the build_vector
923    // operation.  The types of the integers don't matter, but this ensures they
924    // won't get checked.
925    if (getOperator()->getName() == "vector_shuffle" &&
926        getChild(2)->getOperator()->getName() == "build_vector") {
927      TreePatternNode *BV = getChild(2);
928      const std::vector<MVT::SimpleValueType> &LegalVTs
929        = CDP.getTargetInfo().getLegalValueTypes();
930      MVT::SimpleValueType LegalIntVT = MVT::Other;
931      for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
932        if (isInteger(LegalVTs[i]) && !isVector(LegalVTs[i])) {
933          LegalIntVT = LegalVTs[i];
934          break;
935        }
936      assert(LegalIntVT != MVT::Other && "No legal integer VT?");
937
938      for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
939        MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
940    }
941    return MadeChange;
942  } else if (getOperator()->isSubClassOf("Instruction")) {
943    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
944    bool MadeChange = false;
945    unsigned NumResults = Inst.getNumResults();
946
947    assert(NumResults <= 1 &&
948           "Only supports zero or one result instrs!");
949
950    CodeGenInstruction &InstInfo =
951      CDP.getTargetInfo().getInstruction(getOperator()->getName());
952    // Apply the result type to the node
953    if (NumResults == 0 || InstInfo.NumDefs == 0) {
954      MadeChange = UpdateNodeType(MVT::isVoid, TP);
955    } else {
956      Record *ResultNode = Inst.getResult(0);
957
958      if (ResultNode->getName() == "ptr_rc") {
959        std::vector<unsigned char> VT;
960        VT.push_back(MVT::iPTR);
961        MadeChange = UpdateNodeType(VT, TP);
962      } else if (ResultNode->getName() == "unknown") {
963        std::vector<unsigned char> VT;
964        VT.push_back(EMVT::isUnknown);
965        MadeChange = UpdateNodeType(VT, TP);
966      } else {
967        assert(ResultNode->isSubClassOf("RegisterClass") &&
968               "Operands should be register classes!");
969
970        const CodeGenRegisterClass &RC =
971          CDP.getTargetInfo().getRegisterClass(ResultNode);
972        MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
973      }
974    }
975
976    unsigned ChildNo = 0;
977    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
978      Record *OperandNode = Inst.getOperand(i);
979
980      // If the instruction expects a predicate or optional def operand, we
981      // codegen this by setting the operand to it's default value if it has a
982      // non-empty DefaultOps field.
983      if ((OperandNode->isSubClassOf("PredicateOperand") ||
984           OperandNode->isSubClassOf("OptionalDefOperand")) &&
985          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
986        continue;
987
988      // Verify that we didn't run out of provided operands.
989      if (ChildNo >= getNumChildren())
990        TP.error("Instruction '" + getOperator()->getName() +
991                 "' expects more operands than were provided.");
992
993      MVT::SimpleValueType VT;
994      TreePatternNode *Child = getChild(ChildNo++);
995      if (OperandNode->isSubClassOf("RegisterClass")) {
996        const CodeGenRegisterClass &RC =
997          CDP.getTargetInfo().getRegisterClass(OperandNode);
998        MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
999      } else if (OperandNode->isSubClassOf("Operand")) {
1000        VT = getValueType(OperandNode->getValueAsDef("Type"));
1001        MadeChange |= Child->UpdateNodeType(VT, TP);
1002      } else if (OperandNode->getName() == "ptr_rc") {
1003        MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
1004      } else if (OperandNode->getName() == "unknown") {
1005        MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP);
1006      } else {
1007        assert(0 && "Unknown operand type!");
1008        abort();
1009      }
1010      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1011    }
1012
1013    if (ChildNo != getNumChildren())
1014      TP.error("Instruction '" + getOperator()->getName() +
1015               "' was provided too many operands!");
1016
1017    return MadeChange;
1018  } else {
1019    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1020
1021    // Node transforms always take one operand.
1022    if (getNumChildren() != 1)
1023      TP.error("Node transform '" + getOperator()->getName() +
1024               "' requires one operand!");
1025
1026    // If either the output or input of the xform does not have exact
1027    // type info. We assume they must be the same. Otherwise, it is perfectly
1028    // legal to transform from one type to a completely different type.
1029    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1030      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
1031      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
1032      return MadeChange;
1033    }
1034    return false;
1035  }
1036}
1037
1038/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1039/// RHS of a commutative operation, not the on LHS.
1040static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1041  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1042    return true;
1043  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1044    return true;
1045  return false;
1046}
1047
1048
1049/// canPatternMatch - If it is impossible for this pattern to match on this
1050/// target, fill in Reason and return false.  Otherwise, return true.  This is
1051/// used as a santity check for .td files (to prevent people from writing stuff
1052/// that can never possibly work), and to prevent the pattern permuter from
1053/// generating stuff that is useless.
1054bool TreePatternNode::canPatternMatch(std::string &Reason,
1055                                      const CodeGenDAGPatterns &CDP) {
1056  if (isLeaf()) return true;
1057
1058  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1059    if (!getChild(i)->canPatternMatch(Reason, CDP))
1060      return false;
1061
1062  // If this is an intrinsic, handle cases that would make it not match.  For
1063  // example, if an operand is required to be an immediate.
1064  if (getOperator()->isSubClassOf("Intrinsic")) {
1065    // TODO:
1066    return true;
1067  }
1068
1069  // If this node is a commutative operator, check that the LHS isn't an
1070  // immediate.
1071  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1072  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1073  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1074    // Scan all of the operands of the node and make sure that only the last one
1075    // is a constant node, unless the RHS also is.
1076    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1077      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1078      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1079        if (OnlyOnRHSOfCommutative(getChild(i))) {
1080          Reason="Immediate value must be on the RHS of commutative operators!";
1081          return false;
1082        }
1083    }
1084  }
1085
1086  return true;
1087}
1088
1089//===----------------------------------------------------------------------===//
1090// TreePattern implementation
1091//
1092
1093TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1094                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1095   isInputPattern = isInput;
1096   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1097     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
1098}
1099
1100TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1101                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1102  isInputPattern = isInput;
1103  Trees.push_back(ParseTreePattern(Pat));
1104}
1105
1106TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1107                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1108  isInputPattern = isInput;
1109  Trees.push_back(Pat);
1110}
1111
1112
1113
1114void TreePattern::error(const std::string &Msg) const {
1115  dump();
1116  throw "In " + TheRecord->getName() + ": " + Msg;
1117}
1118
1119TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
1120  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1121  if (!OpDef) error("Pattern has unexpected operator type!");
1122  Record *Operator = OpDef->getDef();
1123
1124  if (Operator->isSubClassOf("ValueType")) {
1125    // If the operator is a ValueType, then this must be "type cast" of a leaf
1126    // node.
1127    if (Dag->getNumArgs() != 1)
1128      error("Type cast only takes one operand!");
1129
1130    Init *Arg = Dag->getArg(0);
1131    TreePatternNode *New;
1132    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
1133      Record *R = DI->getDef();
1134      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1135        Dag->setArg(0, new DagInit(DI,
1136                                std::vector<std::pair<Init*, std::string> >()));
1137        return ParseTreePattern(Dag);
1138      }
1139      New = new TreePatternNode(DI);
1140    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1141      New = ParseTreePattern(DI);
1142    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1143      New = new TreePatternNode(II);
1144      if (!Dag->getArgName(0).empty())
1145        error("Constant int argument should not have a name!");
1146    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1147      // Turn this into an IntInit.
1148      Init *II = BI->convertInitializerTo(new IntRecTy());
1149      if (II == 0 || !dynamic_cast<IntInit*>(II))
1150        error("Bits value must be constants!");
1151
1152      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
1153      if (!Dag->getArgName(0).empty())
1154        error("Constant int argument should not have a name!");
1155    } else {
1156      Arg->dump();
1157      error("Unknown leaf value for tree pattern!");
1158      return 0;
1159    }
1160
1161    // Apply the type cast.
1162    New->UpdateNodeType(getValueType(Operator), *this);
1163    New->setName(Dag->getArgName(0));
1164    return New;
1165  }
1166
1167  // Verify that this is something that makes sense for an operator.
1168  if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
1169      !Operator->isSubClassOf("Instruction") &&
1170      !Operator->isSubClassOf("SDNodeXForm") &&
1171      !Operator->isSubClassOf("Intrinsic") &&
1172      Operator->getName() != "set" &&
1173      Operator->getName() != "implicit" &&
1174      Operator->getName() != "parallel")
1175    error("Unrecognized node '" + Operator->getName() + "'!");
1176
1177  //  Check to see if this is something that is illegal in an input pattern.
1178  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
1179                         Operator->isSubClassOf("SDNodeXForm")))
1180    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1181
1182  std::vector<TreePatternNode*> Children;
1183
1184  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
1185    Init *Arg = Dag->getArg(i);
1186    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1187      Children.push_back(ParseTreePattern(DI));
1188      if (Children.back()->getName().empty())
1189        Children.back()->setName(Dag->getArgName(i));
1190    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
1191      Record *R = DefI->getDef();
1192      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1193      // TreePatternNode if its own.
1194      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1195        Dag->setArg(i, new DagInit(DefI,
1196                              std::vector<std::pair<Init*, std::string> >()));
1197        --i;  // Revisit this node...
1198      } else {
1199        TreePatternNode *Node = new TreePatternNode(DefI);
1200        Node->setName(Dag->getArgName(i));
1201        Children.push_back(Node);
1202
1203        // Input argument?
1204        if (R->getName() == "node") {
1205          if (Dag->getArgName(i).empty())
1206            error("'node' argument requires a name to match with operand list");
1207          Args.push_back(Dag->getArgName(i));
1208        }
1209      }
1210    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1211      TreePatternNode *Node = new TreePatternNode(II);
1212      if (!Dag->getArgName(i).empty())
1213        error("Constant int argument should not have a name!");
1214      Children.push_back(Node);
1215    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1216      // Turn this into an IntInit.
1217      Init *II = BI->convertInitializerTo(new IntRecTy());
1218      if (II == 0 || !dynamic_cast<IntInit*>(II))
1219        error("Bits value must be constants!");
1220
1221      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1222      if (!Dag->getArgName(i).empty())
1223        error("Constant int argument should not have a name!");
1224      Children.push_back(Node);
1225    } else {
1226      cerr << '"';
1227      Arg->dump();
1228      cerr << "\": ";
1229      error("Unknown leaf value for tree pattern!");
1230    }
1231  }
1232
1233  // If the operator is an intrinsic, then this is just syntactic sugar for for
1234  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1235  // convert the intrinsic name to a number.
1236  if (Operator->isSubClassOf("Intrinsic")) {
1237    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1238    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1239
1240    // If this intrinsic returns void, it must have side-effects and thus a
1241    // chain.
1242    if (Int.IS.RetVTs[0] == MVT::isVoid) {
1243      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1244    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1245      // Has side-effects, requires chain.
1246      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1247    } else {
1248      // Otherwise, no chain.
1249      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1250    }
1251
1252    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1253    Children.insert(Children.begin(), IIDNode);
1254  }
1255
1256  return new TreePatternNode(Operator, Children);
1257}
1258
1259/// InferAllTypes - Infer/propagate as many types throughout the expression
1260/// patterns as possible.  Return true if all types are infered, false
1261/// otherwise.  Throw an exception if a type contradiction is found.
1262bool TreePattern::InferAllTypes() {
1263  bool MadeChange = true;
1264  while (MadeChange) {
1265    MadeChange = false;
1266    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1267      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1268  }
1269
1270  bool HasUnresolvedTypes = false;
1271  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1272    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1273  return !HasUnresolvedTypes;
1274}
1275
1276void TreePattern::print(std::ostream &OS) const {
1277  OS << getRecord()->getName();
1278  if (!Args.empty()) {
1279    OS << "(" << Args[0];
1280    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1281      OS << ", " << Args[i];
1282    OS << ")";
1283  }
1284  OS << ": ";
1285
1286  if (Trees.size() > 1)
1287    OS << "[\n";
1288  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1289    OS << "\t";
1290    Trees[i]->print(OS);
1291    OS << "\n";
1292  }
1293
1294  if (Trees.size() > 1)
1295    OS << "]\n";
1296}
1297
1298void TreePattern::dump() const { print(*cerr.stream()); }
1299
1300//===----------------------------------------------------------------------===//
1301// CodeGenDAGPatterns implementation
1302//
1303
1304// FIXME: REMOVE OSTREAM ARGUMENT
1305CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
1306  Intrinsics = LoadIntrinsics(Records, false);
1307  TgtIntrinsics = LoadIntrinsics(Records, true);
1308  ParseNodeInfo();
1309  ParseNodeTransforms();
1310  ParseComplexPatterns();
1311  ParsePatternFragments();
1312  ParseDefaultOperands();
1313  ParseInstructions();
1314  ParsePatterns();
1315
1316  // Generate variants.  For example, commutative patterns can match
1317  // multiple ways.  Add them to PatternsToMatch as well.
1318  GenerateVariants();
1319
1320  // Infer instruction flags.  For example, we can detect loads,
1321  // stores, and side effects in many cases by examining an
1322  // instruction's pattern.
1323  InferInstructionFlags();
1324}
1325
1326CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1327  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1328       E = PatternFragments.end(); I != E; ++I)
1329    delete I->second;
1330}
1331
1332
1333Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
1334  Record *N = Records.getDef(Name);
1335  if (!N || !N->isSubClassOf("SDNode")) {
1336    cerr << "Error getting SDNode '" << Name << "'!\n";
1337    exit(1);
1338  }
1339  return N;
1340}
1341
1342// Parse all of the SDNode definitions for the target, populating SDNodes.
1343void CodeGenDAGPatterns::ParseNodeInfo() {
1344  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1345  while (!Nodes.empty()) {
1346    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1347    Nodes.pop_back();
1348  }
1349
1350  // Get the buildin intrinsic nodes.
1351  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
1352  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
1353  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1354}
1355
1356/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1357/// map, and emit them to the file as functions.
1358void CodeGenDAGPatterns::ParseNodeTransforms() {
1359  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1360  while (!Xforms.empty()) {
1361    Record *XFormNode = Xforms.back();
1362    Record *SDNode = XFormNode->getValueAsDef("Opcode");
1363    std::string Code = XFormNode->getValueAsCode("XFormFunction");
1364    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
1365
1366    Xforms.pop_back();
1367  }
1368}
1369
1370void CodeGenDAGPatterns::ParseComplexPatterns() {
1371  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1372  while (!AMs.empty()) {
1373    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1374    AMs.pop_back();
1375  }
1376}
1377
1378
1379/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1380/// file, building up the PatternFragments map.  After we've collected them all,
1381/// inline fragments together as necessary, so that there are no references left
1382/// inside a pattern fragment to a pattern fragment.
1383///
1384void CodeGenDAGPatterns::ParsePatternFragments() {
1385  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1386
1387  // First step, parse all of the fragments.
1388  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1389    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1390    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1391    PatternFragments[Fragments[i]] = P;
1392
1393    // Validate the argument list, converting it to set, to discard duplicates.
1394    std::vector<std::string> &Args = P->getArgList();
1395    std::set<std::string> OperandsSet(Args.begin(), Args.end());
1396
1397    if (OperandsSet.count(""))
1398      P->error("Cannot have unnamed 'node' values in pattern fragment!");
1399
1400    // Parse the operands list.
1401    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1402    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1403    // Special cases: ops == outs == ins. Different names are used to
1404    // improve readibility.
1405    if (!OpsOp ||
1406        (OpsOp->getDef()->getName() != "ops" &&
1407         OpsOp->getDef()->getName() != "outs" &&
1408         OpsOp->getDef()->getName() != "ins"))
1409      P->error("Operands list should start with '(ops ... '!");
1410
1411    // Copy over the arguments.
1412    Args.clear();
1413    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1414      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1415          static_cast<DefInit*>(OpsList->getArg(j))->
1416          getDef()->getName() != "node")
1417        P->error("Operands list should all be 'node' values.");
1418      if (OpsList->getArgName(j).empty())
1419        P->error("Operands list should have names for each operand!");
1420      if (!OperandsSet.count(OpsList->getArgName(j)))
1421        P->error("'" + OpsList->getArgName(j) +
1422                 "' does not occur in pattern or was multiply specified!");
1423      OperandsSet.erase(OpsList->getArgName(j));
1424      Args.push_back(OpsList->getArgName(j));
1425    }
1426
1427    if (!OperandsSet.empty())
1428      P->error("Operands list does not contain an entry for operand '" +
1429               *OperandsSet.begin() + "'!");
1430
1431    // If there is a code init for this fragment, keep track of the fact that
1432    // this fragment uses it.
1433    std::string Code = Fragments[i]->getValueAsCode("Predicate");
1434    if (!Code.empty())
1435      P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
1436
1437    // If there is a node transformation corresponding to this, keep track of
1438    // it.
1439    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1440    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
1441      P->getOnlyTree()->setTransformFn(Transform);
1442  }
1443
1444  // Now that we've parsed all of the tree fragments, do a closure on them so
1445  // that there are not references to PatFrags left inside of them.
1446  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1447    TreePattern *ThePat = PatternFragments[Fragments[i]];
1448    ThePat->InlinePatternFragments();
1449
1450    // Infer as many types as possible.  Don't worry about it if we don't infer
1451    // all of them, some may depend on the inputs of the pattern.
1452    try {
1453      ThePat->InferAllTypes();
1454    } catch (...) {
1455      // If this pattern fragment is not supported by this target (no types can
1456      // satisfy its constraints), just ignore it.  If the bogus pattern is
1457      // actually used by instructions, the type consistency error will be
1458      // reported there.
1459    }
1460
1461    // If debugging, print out the pattern fragment result.
1462    DEBUG(ThePat->dump());
1463  }
1464}
1465
1466void CodeGenDAGPatterns::ParseDefaultOperands() {
1467  std::vector<Record*> DefaultOps[2];
1468  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1469  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1470
1471  // Find some SDNode.
1472  assert(!SDNodes.empty() && "No SDNodes parsed?");
1473  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1474
1475  for (unsigned iter = 0; iter != 2; ++iter) {
1476    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1477      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1478
1479      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1480      // SomeSDnode so that we can parse this.
1481      std::vector<std::pair<Init*, std::string> > Ops;
1482      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1483        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1484                                     DefaultInfo->getArgName(op)));
1485      DagInit *DI = new DagInit(SomeSDNode, Ops);
1486
1487      // Create a TreePattern to parse this.
1488      TreePattern P(DefaultOps[iter][i], DI, false, *this);
1489      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1490
1491      // Copy the operands over into a DAGDefaultOperand.
1492      DAGDefaultOperand DefaultOpInfo;
1493
1494      TreePatternNode *T = P.getTree(0);
1495      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1496        TreePatternNode *TPN = T->getChild(op);
1497        while (TPN->ApplyTypeConstraints(P, false))
1498          /* Resolve all types */;
1499
1500        if (TPN->ContainsUnresolvedType()) {
1501          if (iter == 0)
1502            throw "Value #" + utostr(i) + " of PredicateOperand '" +
1503              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1504          else
1505            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1506              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1507        }
1508        DefaultOpInfo.DefaultOps.push_back(TPN);
1509      }
1510
1511      // Insert it into the DefaultOperands map so we can find it later.
1512      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1513    }
1514  }
1515}
1516
1517/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1518/// instruction input.  Return true if this is a real use.
1519static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1520                      std::map<std::string, TreePatternNode*> &InstInputs,
1521                      std::vector<Record*> &InstImpInputs) {
1522  // No name -> not interesting.
1523  if (Pat->getName().empty()) {
1524    if (Pat->isLeaf()) {
1525      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1526      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1527        I->error("Input " + DI->getDef()->getName() + " must be named!");
1528      else if (DI && DI->getDef()->isSubClassOf("Register"))
1529        InstImpInputs.push_back(DI->getDef());
1530        ;
1531    }
1532    return false;
1533  }
1534
1535  Record *Rec;
1536  if (Pat->isLeaf()) {
1537    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1538    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1539    Rec = DI->getDef();
1540  } else {
1541    assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1542    Rec = Pat->getOperator();
1543  }
1544
1545  // SRCVALUE nodes are ignored.
1546  if (Rec->getName() == "srcvalue")
1547    return false;
1548
1549  TreePatternNode *&Slot = InstInputs[Pat->getName()];
1550  if (!Slot) {
1551    Slot = Pat;
1552  } else {
1553    Record *SlotRec;
1554    if (Slot->isLeaf()) {
1555      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1556    } else {
1557      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1558      SlotRec = Slot->getOperator();
1559    }
1560
1561    // Ensure that the inputs agree if we've already seen this input.
1562    if (Rec != SlotRec)
1563      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1564    if (Slot->getExtTypes() != Pat->getExtTypes())
1565      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1566  }
1567  return true;
1568}
1569
1570/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1571/// part of "I", the instruction), computing the set of inputs and outputs of
1572/// the pattern.  Report errors if we see anything naughty.
1573void CodeGenDAGPatterns::
1574FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1575                            std::map<std::string, TreePatternNode*> &InstInputs,
1576                            std::map<std::string, TreePatternNode*>&InstResults,
1577                            std::vector<Record*> &InstImpInputs,
1578                            std::vector<Record*> &InstImpResults) {
1579  if (Pat->isLeaf()) {
1580    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1581    if (!isUse && Pat->getTransformFn())
1582      I->error("Cannot specify a transform function for a non-input value!");
1583    return;
1584  } else if (Pat->getOperator()->getName() == "implicit") {
1585    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1586      TreePatternNode *Dest = Pat->getChild(i);
1587      if (!Dest->isLeaf())
1588        I->error("implicitly defined value should be a register!");
1589
1590      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1591      if (!Val || !Val->getDef()->isSubClassOf("Register"))
1592        I->error("implicitly defined value should be a register!");
1593      InstImpResults.push_back(Val->getDef());
1594    }
1595    return;
1596  } else if (Pat->getOperator()->getName() != "set") {
1597    // If this is not a set, verify that the children nodes are not void typed,
1598    // and recurse.
1599    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1600      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1601        I->error("Cannot have void nodes inside of patterns!");
1602      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1603                                  InstImpInputs, InstImpResults);
1604    }
1605
1606    // If this is a non-leaf node with no children, treat it basically as if
1607    // it were a leaf.  This handles nodes like (imm).
1608    bool isUse = false;
1609    if (Pat->getNumChildren() == 0)
1610      isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1611
1612    if (!isUse && Pat->getTransformFn())
1613      I->error("Cannot specify a transform function for a non-input value!");
1614    return;
1615  }
1616
1617  // Otherwise, this is a set, validate and collect instruction results.
1618  if (Pat->getNumChildren() == 0)
1619    I->error("set requires operands!");
1620
1621  if (Pat->getTransformFn())
1622    I->error("Cannot specify a transform function on a set node!");
1623
1624  // Check the set destinations.
1625  unsigned NumDests = Pat->getNumChildren()-1;
1626  for (unsigned i = 0; i != NumDests; ++i) {
1627    TreePatternNode *Dest = Pat->getChild(i);
1628    if (!Dest->isLeaf())
1629      I->error("set destination should be a register!");
1630
1631    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1632    if (!Val)
1633      I->error("set destination should be a register!");
1634
1635    if (Val->getDef()->isSubClassOf("RegisterClass") ||
1636        Val->getDef()->getName() == "ptr_rc") {
1637      if (Dest->getName().empty())
1638        I->error("set destination must have a name!");
1639      if (InstResults.count(Dest->getName()))
1640        I->error("cannot set '" + Dest->getName() +"' multiple times");
1641      InstResults[Dest->getName()] = Dest;
1642    } else if (Val->getDef()->isSubClassOf("Register")) {
1643      InstImpResults.push_back(Val->getDef());
1644    } else {
1645      I->error("set destination should be a register!");
1646    }
1647  }
1648
1649  // Verify and collect info from the computation.
1650  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1651                              InstInputs, InstResults,
1652                              InstImpInputs, InstImpResults);
1653}
1654
1655//===----------------------------------------------------------------------===//
1656// Instruction Analysis
1657//===----------------------------------------------------------------------===//
1658
1659class InstAnalyzer {
1660  const CodeGenDAGPatterns &CDP;
1661  bool &mayStore;
1662  bool &mayLoad;
1663  bool &HasSideEffects;
1664public:
1665  InstAnalyzer(const CodeGenDAGPatterns &cdp,
1666               bool &maystore, bool &mayload, bool &hse)
1667    : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
1668  }
1669
1670  /// Analyze - Analyze the specified instruction, returning true if the
1671  /// instruction had a pattern.
1672  bool Analyze(Record *InstRecord) {
1673    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
1674    if (Pattern == 0) {
1675      HasSideEffects = 1;
1676      return false;  // No pattern.
1677    }
1678
1679    // FIXME: Assume only the first tree is the pattern. The others are clobber
1680    // nodes.
1681    AnalyzeNode(Pattern->getTree(0));
1682    return true;
1683  }
1684
1685private:
1686  void AnalyzeNode(const TreePatternNode *N) {
1687    if (N->isLeaf()) {
1688      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1689        Record *LeafRec = DI->getDef();
1690        // Handle ComplexPattern leaves.
1691        if (LeafRec->isSubClassOf("ComplexPattern")) {
1692          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
1693          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
1694          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
1695          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1696        }
1697      }
1698      return;
1699    }
1700
1701    // Analyze children.
1702    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1703      AnalyzeNode(N->getChild(i));
1704
1705    // Ignore set nodes, which are not SDNodes.
1706    if (N->getOperator()->getName() == "set")
1707      return;
1708
1709    // Get information about the SDNode for the operator.
1710    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
1711
1712    // Notice properties of the node.
1713    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
1714    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
1715    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1716
1717    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
1718      // If this is an intrinsic, analyze it.
1719      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
1720        mayLoad = true;// These may load memory.
1721
1722      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
1723        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
1724
1725      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
1726        // WriteMem intrinsics can have other strange effects.
1727        HasSideEffects = true;
1728    }
1729  }
1730
1731};
1732
1733static void InferFromPattern(const CodeGenInstruction &Inst,
1734                             bool &MayStore, bool &MayLoad,
1735                             bool &HasSideEffects,
1736                             const CodeGenDAGPatterns &CDP) {
1737  MayStore = MayLoad = HasSideEffects = false;
1738
1739  bool HadPattern =
1740    InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
1741
1742  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
1743  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
1744    // If we decided that this is a store from the pattern, then the .td file
1745    // entry is redundant.
1746    if (MayStore)
1747      fprintf(stderr,
1748              "Warning: mayStore flag explicitly set on instruction '%s'"
1749              " but flag already inferred from pattern.\n",
1750              Inst.TheDef->getName().c_str());
1751    MayStore = true;
1752  }
1753
1754  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
1755    // If we decided that this is a load from the pattern, then the .td file
1756    // entry is redundant.
1757    if (MayLoad)
1758      fprintf(stderr,
1759              "Warning: mayLoad flag explicitly set on instruction '%s'"
1760              " but flag already inferred from pattern.\n",
1761              Inst.TheDef->getName().c_str());
1762    MayLoad = true;
1763  }
1764
1765  if (Inst.neverHasSideEffects) {
1766    if (HadPattern)
1767      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
1768              "which already has a pattern\n", Inst.TheDef->getName().c_str());
1769    HasSideEffects = false;
1770  }
1771
1772  if (Inst.hasSideEffects) {
1773    if (HasSideEffects)
1774      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
1775              "which already inferred this.\n", Inst.TheDef->getName().c_str());
1776    HasSideEffects = true;
1777  }
1778}
1779
1780/// ParseInstructions - Parse all of the instructions, inlining and resolving
1781/// any fragments involved.  This populates the Instructions list with fully
1782/// resolved instructions.
1783void CodeGenDAGPatterns::ParseInstructions() {
1784  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1785
1786  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1787    ListInit *LI = 0;
1788
1789    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1790      LI = Instrs[i]->getValueAsListInit("Pattern");
1791
1792    // If there is no pattern, only collect minimal information about the
1793    // instruction for its operand list.  We have to assume that there is one
1794    // result, as we have no detailed info.
1795    if (!LI || LI->getSize() == 0) {
1796      std::vector<Record*> Results;
1797      std::vector<Record*> Operands;
1798
1799      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1800
1801      if (InstInfo.OperandList.size() != 0) {
1802        if (InstInfo.NumDefs == 0) {
1803          // These produce no results
1804          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1805            Operands.push_back(InstInfo.OperandList[j].Rec);
1806        } else {
1807          // Assume the first operand is the result.
1808          Results.push_back(InstInfo.OperandList[0].Rec);
1809
1810          // The rest are inputs.
1811          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1812            Operands.push_back(InstInfo.OperandList[j].Rec);
1813        }
1814      }
1815
1816      // Create and insert the instruction.
1817      std::vector<Record*> ImpResults;
1818      std::vector<Record*> ImpOperands;
1819      Instructions.insert(std::make_pair(Instrs[i],
1820                          DAGInstruction(0, Results, Operands, ImpResults,
1821                                         ImpOperands)));
1822      continue;  // no pattern.
1823    }
1824
1825    // Parse the instruction.
1826    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1827    // Inline pattern fragments into it.
1828    I->InlinePatternFragments();
1829
1830    // Infer as many types as possible.  If we cannot infer all of them, we can
1831    // never do anything with this instruction pattern: report it to the user.
1832    if (!I->InferAllTypes())
1833      I->error("Could not infer all types in pattern!");
1834
1835    // InstInputs - Keep track of all of the inputs of the instruction, along
1836    // with the record they are declared as.
1837    std::map<std::string, TreePatternNode*> InstInputs;
1838
1839    // InstResults - Keep track of all the virtual registers that are 'set'
1840    // in the instruction, including what reg class they are.
1841    std::map<std::string, TreePatternNode*> InstResults;
1842
1843    std::vector<Record*> InstImpInputs;
1844    std::vector<Record*> InstImpResults;
1845
1846    // Verify that the top-level forms in the instruction are of void type, and
1847    // fill in the InstResults map.
1848    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1849      TreePatternNode *Pat = I->getTree(j);
1850      if (Pat->getExtTypeNum(0) != MVT::isVoid)
1851        I->error("Top-level forms in instruction pattern should have"
1852                 " void types");
1853
1854      // Find inputs and outputs, and verify the structure of the uses/defs.
1855      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1856                                  InstImpInputs, InstImpResults);
1857    }
1858
1859    // Now that we have inputs and outputs of the pattern, inspect the operands
1860    // list for the instruction.  This determines the order that operands are
1861    // added to the machine instruction the node corresponds to.
1862    unsigned NumResults = InstResults.size();
1863
1864    // Parse the operands list from the (ops) list, validating it.
1865    assert(I->getArgList().empty() && "Args list should still be empty here!");
1866    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1867
1868    // Check that all of the results occur first in the list.
1869    std::vector<Record*> Results;
1870    TreePatternNode *Res0Node = NULL;
1871    for (unsigned i = 0; i != NumResults; ++i) {
1872      if (i == CGI.OperandList.size())
1873        I->error("'" + InstResults.begin()->first +
1874                 "' set but does not appear in operand list!");
1875      const std::string &OpName = CGI.OperandList[i].Name;
1876
1877      // Check that it exists in InstResults.
1878      TreePatternNode *RNode = InstResults[OpName];
1879      if (RNode == 0)
1880        I->error("Operand $" + OpName + " does not exist in operand list!");
1881
1882      if (i == 0)
1883        Res0Node = RNode;
1884      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1885      if (R == 0)
1886        I->error("Operand $" + OpName + " should be a set destination: all "
1887                 "outputs must occur before inputs in operand list!");
1888
1889      if (CGI.OperandList[i].Rec != R)
1890        I->error("Operand $" + OpName + " class mismatch!");
1891
1892      // Remember the return type.
1893      Results.push_back(CGI.OperandList[i].Rec);
1894
1895      // Okay, this one checks out.
1896      InstResults.erase(OpName);
1897    }
1898
1899    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
1900    // the copy while we're checking the inputs.
1901    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1902
1903    std::vector<TreePatternNode*> ResultNodeOperands;
1904    std::vector<Record*> Operands;
1905    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1906      CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1907      const std::string &OpName = Op.Name;
1908      if (OpName.empty())
1909        I->error("Operand #" + utostr(i) + " in operands list has no name!");
1910
1911      if (!InstInputsCheck.count(OpName)) {
1912        // If this is an predicate operand or optional def operand with an
1913        // DefaultOps set filled in, we can ignore this.  When we codegen it,
1914        // we will do so as always executed.
1915        if (Op.Rec->isSubClassOf("PredicateOperand") ||
1916            Op.Rec->isSubClassOf("OptionalDefOperand")) {
1917          // Does it have a non-empty DefaultOps field?  If so, ignore this
1918          // operand.
1919          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1920            continue;
1921        }
1922        I->error("Operand $" + OpName +
1923                 " does not appear in the instruction pattern");
1924      }
1925      TreePatternNode *InVal = InstInputsCheck[OpName];
1926      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
1927
1928      if (InVal->isLeaf() &&
1929          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1930        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1931        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1932          I->error("Operand $" + OpName + "'s register class disagrees"
1933                   " between the operand and pattern");
1934      }
1935      Operands.push_back(Op.Rec);
1936
1937      // Construct the result for the dest-pattern operand list.
1938      TreePatternNode *OpNode = InVal->clone();
1939
1940      // No predicate is useful on the result.
1941      OpNode->clearPredicateFns();
1942
1943      // Promote the xform function to be an explicit node if set.
1944      if (Record *Xform = OpNode->getTransformFn()) {
1945        OpNode->setTransformFn(0);
1946        std::vector<TreePatternNode*> Children;
1947        Children.push_back(OpNode);
1948        OpNode = new TreePatternNode(Xform, Children);
1949      }
1950
1951      ResultNodeOperands.push_back(OpNode);
1952    }
1953
1954    if (!InstInputsCheck.empty())
1955      I->error("Input operand $" + InstInputsCheck.begin()->first +
1956               " occurs in pattern but not in operands list!");
1957
1958    TreePatternNode *ResultPattern =
1959      new TreePatternNode(I->getRecord(), ResultNodeOperands);
1960    // Copy fully inferred output node type to instruction result pattern.
1961    if (NumResults > 0)
1962      ResultPattern->setTypes(Res0Node->getExtTypes());
1963
1964    // Create and insert the instruction.
1965    // FIXME: InstImpResults and InstImpInputs should not be part of
1966    // DAGInstruction.
1967    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1968    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1969
1970    // Use a temporary tree pattern to infer all types and make sure that the
1971    // constructed result is correct.  This depends on the instruction already
1972    // being inserted into the Instructions map.
1973    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1974    Temp.InferAllTypes();
1975
1976    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1977    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1978
1979    DEBUG(I->dump());
1980  }
1981
1982  // If we can, convert the instructions to be patterns that are matched!
1983  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1984       E = Instructions.end(); II != E; ++II) {
1985    DAGInstruction &TheInst = II->second;
1986    const TreePattern *I = TheInst.getPattern();
1987    if (I == 0) continue;  // No pattern.
1988
1989    // FIXME: Assume only the first tree is the pattern. The others are clobber
1990    // nodes.
1991    TreePatternNode *Pattern = I->getTree(0);
1992    TreePatternNode *SrcPattern;
1993    if (Pattern->getOperator()->getName() == "set") {
1994      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1995    } else{
1996      // Not a set (store or something?)
1997      SrcPattern = Pattern;
1998    }
1999
2000    std::string Reason;
2001    if (!SrcPattern->canPatternMatch(Reason, *this))
2002      I->error("Instruction can never match: " + Reason);
2003
2004    Record *Instr = II->first;
2005    TreePatternNode *DstPattern = TheInst.getResultPattern();
2006    PatternsToMatch.
2007      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
2008                               SrcPattern, DstPattern, TheInst.getImpResults(),
2009                               Instr->getValueAsInt("AddedComplexity")));
2010  }
2011}
2012
2013
2014void CodeGenDAGPatterns::InferInstructionFlags() {
2015  std::map<std::string, CodeGenInstruction> &InstrDescs =
2016    Target.getInstructions();
2017  for (std::map<std::string, CodeGenInstruction>::iterator
2018         II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
2019    CodeGenInstruction &InstInfo = II->second;
2020    // Determine properties of the instruction from its pattern.
2021    bool MayStore, MayLoad, HasSideEffects;
2022    InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
2023    InstInfo.mayStore = MayStore;
2024    InstInfo.mayLoad = MayLoad;
2025    InstInfo.hasSideEffects = HasSideEffects;
2026  }
2027}
2028
2029void CodeGenDAGPatterns::ParsePatterns() {
2030  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2031
2032  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2033    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
2034    DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
2035    Record *Operator = OpDef->getDef();
2036    TreePattern *Pattern;
2037    if (Operator->getName() != "parallel")
2038      Pattern = new TreePattern(Patterns[i], Tree, true, *this);
2039    else {
2040      std::vector<Init*> Values;
2041      for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
2042        Values.push_back(Tree->getArg(j));
2043      ListInit *LI = new ListInit(Values);
2044      Pattern = new TreePattern(Patterns[i], LI, true, *this);
2045    }
2046
2047    // Inline pattern fragments into it.
2048    Pattern->InlinePatternFragments();
2049
2050    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
2051    if (LI->getSize() == 0) continue;  // no pattern.
2052
2053    // Parse the instruction.
2054    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
2055
2056    // Inline pattern fragments into it.
2057    Result->InlinePatternFragments();
2058
2059    if (Result->getNumTrees() != 1)
2060      Result->error("Cannot handle instructions producing instructions "
2061                    "with temporaries yet!");
2062
2063    bool IterateInference;
2064    bool InferredAllPatternTypes, InferredAllResultTypes;
2065    do {
2066      // Infer as many types as possible.  If we cannot infer all of them, we
2067      // can never do anything with this pattern: report it to the user.
2068      InferredAllPatternTypes = Pattern->InferAllTypes();
2069
2070      // Infer as many types as possible.  If we cannot infer all of them, we
2071      // can never do anything with this pattern: report it to the user.
2072      InferredAllResultTypes = Result->InferAllTypes();
2073
2074      // Apply the type of the result to the source pattern.  This helps us
2075      // resolve cases where the input type is known to be a pointer type (which
2076      // is considered resolved), but the result knows it needs to be 32- or
2077      // 64-bits.  Infer the other way for good measure.
2078      IterateInference = Pattern->getTree(0)->
2079        UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
2080      IterateInference |= Result->getTree(0)->
2081        UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
2082    } while (IterateInference);
2083
2084    // Verify that we inferred enough types that we can do something with the
2085    // pattern and result.  If these fire the user has to add type casts.
2086    if (!InferredAllPatternTypes)
2087      Pattern->error("Could not infer all types in pattern!");
2088    if (!InferredAllResultTypes)
2089      Result->error("Could not infer all types in pattern result!");
2090
2091    // Validate that the input pattern is correct.
2092    std::map<std::string, TreePatternNode*> InstInputs;
2093    std::map<std::string, TreePatternNode*> InstResults;
2094    std::vector<Record*> InstImpInputs;
2095    std::vector<Record*> InstImpResults;
2096    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2097      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2098                                  InstInputs, InstResults,
2099                                  InstImpInputs, InstImpResults);
2100
2101    // Promote the xform function to be an explicit node if set.
2102    TreePatternNode *DstPattern = Result->getOnlyTree();
2103    std::vector<TreePatternNode*> ResultNodeOperands;
2104    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2105      TreePatternNode *OpNode = DstPattern->getChild(ii);
2106      if (Record *Xform = OpNode->getTransformFn()) {
2107        OpNode->setTransformFn(0);
2108        std::vector<TreePatternNode*> Children;
2109        Children.push_back(OpNode);
2110        OpNode = new TreePatternNode(Xform, Children);
2111      }
2112      ResultNodeOperands.push_back(OpNode);
2113    }
2114    DstPattern = Result->getOnlyTree();
2115    if (!DstPattern->isLeaf())
2116      DstPattern = new TreePatternNode(DstPattern->getOperator(),
2117                                       ResultNodeOperands);
2118    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
2119    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
2120    Temp.InferAllTypes();
2121
2122    std::string Reason;
2123    if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
2124      Pattern->error("Pattern can never match: " + Reason);
2125
2126    PatternsToMatch.
2127      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
2128                               Pattern->getTree(0),
2129                               Temp.getOnlyTree(), InstImpResults,
2130                               Patterns[i]->getValueAsInt("AddedComplexity")));
2131  }
2132}
2133
2134/// CombineChildVariants - Given a bunch of permutations of each child of the
2135/// 'operator' node, put them together in all possible ways.
2136static void CombineChildVariants(TreePatternNode *Orig,
2137               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
2138                                 std::vector<TreePatternNode*> &OutVariants,
2139                                 CodeGenDAGPatterns &CDP,
2140                                 const MultipleUseVarSet &DepVars) {
2141  // Make sure that each operand has at least one variant to choose from.
2142  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2143    if (ChildVariants[i].empty())
2144      return;
2145
2146  // The end result is an all-pairs construction of the resultant pattern.
2147  std::vector<unsigned> Idxs;
2148  Idxs.resize(ChildVariants.size());
2149  bool NotDone;
2150  do {
2151#ifndef NDEBUG
2152    if (DebugFlag && !Idxs.empty()) {
2153      cerr << Orig->getOperator()->getName() << ": Idxs = [ ";
2154        for (unsigned i = 0; i < Idxs.size(); ++i) {
2155          cerr << Idxs[i] << " ";
2156      }
2157      cerr << "]\n";
2158    }
2159#endif
2160    // Create the variant and add it to the output list.
2161    std::vector<TreePatternNode*> NewChildren;
2162    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2163      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
2164    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
2165
2166    // Copy over properties.
2167    R->setName(Orig->getName());
2168    R->setPredicateFns(Orig->getPredicateFns());
2169    R->setTransformFn(Orig->getTransformFn());
2170    R->setTypes(Orig->getExtTypes());
2171
2172    // If this pattern cannot match, do not include it as a variant.
2173    std::string ErrString;
2174    if (!R->canPatternMatch(ErrString, CDP)) {
2175      delete R;
2176    } else {
2177      bool AlreadyExists = false;
2178
2179      // Scan to see if this pattern has already been emitted.  We can get
2180      // duplication due to things like commuting:
2181      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2182      // which are the same pattern.  Ignore the dups.
2183      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
2184        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
2185          AlreadyExists = true;
2186          break;
2187        }
2188
2189      if (AlreadyExists)
2190        delete R;
2191      else
2192        OutVariants.push_back(R);
2193    }
2194
2195    // Increment indices to the next permutation by incrementing the
2196    // indicies from last index backward, e.g., generate the sequence
2197    // [0, 0], [0, 1], [1, 0], [1, 1].
2198    int IdxsIdx;
2199    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2200      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
2201        Idxs[IdxsIdx] = 0;
2202      else
2203        break;
2204    }
2205    NotDone = (IdxsIdx >= 0);
2206  } while (NotDone);
2207}
2208
2209/// CombineChildVariants - A helper function for binary operators.
2210///
2211static void CombineChildVariants(TreePatternNode *Orig,
2212                                 const std::vector<TreePatternNode*> &LHS,
2213                                 const std::vector<TreePatternNode*> &RHS,
2214                                 std::vector<TreePatternNode*> &OutVariants,
2215                                 CodeGenDAGPatterns &CDP,
2216                                 const MultipleUseVarSet &DepVars) {
2217  std::vector<std::vector<TreePatternNode*> > ChildVariants;
2218  ChildVariants.push_back(LHS);
2219  ChildVariants.push_back(RHS);
2220  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
2221}
2222
2223
2224static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
2225                                     std::vector<TreePatternNode *> &Children) {
2226  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2227  Record *Operator = N->getOperator();
2228
2229  // Only permit raw nodes.
2230  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
2231      N->getTransformFn()) {
2232    Children.push_back(N);
2233    return;
2234  }
2235
2236  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
2237    Children.push_back(N->getChild(0));
2238  else
2239    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
2240
2241  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
2242    Children.push_back(N->getChild(1));
2243  else
2244    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
2245}
2246
2247/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2248/// the (potentially recursive) pattern by using algebraic laws.
2249///
2250static void GenerateVariantsOf(TreePatternNode *N,
2251                               std::vector<TreePatternNode*> &OutVariants,
2252                               CodeGenDAGPatterns &CDP,
2253                               const MultipleUseVarSet &DepVars) {
2254  // We cannot permute leaves.
2255  if (N->isLeaf()) {
2256    OutVariants.push_back(N);
2257    return;
2258  }
2259
2260  // Look up interesting info about the node.
2261  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
2262
2263  // If this node is associative, reassociate.
2264  if (NodeInfo.hasProperty(SDNPAssociative)) {
2265    // Reassociate by pulling together all of the linked operators
2266    std::vector<TreePatternNode*> MaximalChildren;
2267    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
2268
2269    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
2270    // permutations.
2271    if (MaximalChildren.size() == 3) {
2272      // Find the variants of all of our maximal children.
2273      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
2274      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
2275      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
2276      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
2277
2278      // There are only two ways we can permute the tree:
2279      //   (A op B) op C    and    A op (B op C)
2280      // Within these forms, we can also permute A/B/C.
2281
2282      // Generate legal pair permutations of A/B/C.
2283      std::vector<TreePatternNode*> ABVariants;
2284      std::vector<TreePatternNode*> BAVariants;
2285      std::vector<TreePatternNode*> ACVariants;
2286      std::vector<TreePatternNode*> CAVariants;
2287      std::vector<TreePatternNode*> BCVariants;
2288      std::vector<TreePatternNode*> CBVariants;
2289      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
2290      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
2291      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
2292      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
2293      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
2294      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
2295
2296      // Combine those into the result: (x op x) op x
2297      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
2298      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
2299      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
2300      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
2301      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
2302      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
2303
2304      // Combine those into the result: x op (x op x)
2305      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
2306      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
2307      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
2308      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
2309      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
2310      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
2311      return;
2312    }
2313  }
2314
2315  // Compute permutations of all children.
2316  std::vector<std::vector<TreePatternNode*> > ChildVariants;
2317  ChildVariants.resize(N->getNumChildren());
2318  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2319    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
2320
2321  // Build all permutations based on how the children were formed.
2322  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
2323
2324  // If this node is commutative, consider the commuted order.
2325  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
2326  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2327    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
2328           "Commutative but doesn't have 2 children!");
2329    // Don't count children which are actually register references.
2330    unsigned NC = 0;
2331    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2332      TreePatternNode *Child = N->getChild(i);
2333      if (Child->isLeaf())
2334        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2335          Record *RR = DI->getDef();
2336          if (RR->isSubClassOf("Register"))
2337            continue;
2338        }
2339      NC++;
2340    }
2341    // Consider the commuted order.
2342    if (isCommIntrinsic) {
2343      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
2344      // operands are the commutative operands, and there might be more operands
2345      // after those.
2346      assert(NC >= 3 &&
2347             "Commutative intrinsic should have at least 3 childrean!");
2348      std::vector<std::vector<TreePatternNode*> > Variants;
2349      Variants.push_back(ChildVariants[0]); // Intrinsic id.
2350      Variants.push_back(ChildVariants[2]);
2351      Variants.push_back(ChildVariants[1]);
2352      for (unsigned i = 3; i != NC; ++i)
2353        Variants.push_back(ChildVariants[i]);
2354      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
2355    } else if (NC == 2)
2356      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
2357                           OutVariants, CDP, DepVars);
2358  }
2359}
2360
2361
2362// GenerateVariants - Generate variants.  For example, commutative patterns can
2363// match multiple ways.  Add them to PatternsToMatch as well.
2364void CodeGenDAGPatterns::GenerateVariants() {
2365  DOUT << "Generating instruction variants.\n";
2366
2367  // Loop over all of the patterns we've collected, checking to see if we can
2368  // generate variants of the instruction, through the exploitation of
2369  // identities.  This permits the target to provide agressive matching without
2370  // the .td file having to contain tons of variants of instructions.
2371  //
2372  // Note that this loop adds new patterns to the PatternsToMatch list, but we
2373  // intentionally do not reconsider these.  Any variants of added patterns have
2374  // already been added.
2375  //
2376  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2377    MultipleUseVarSet             DepVars;
2378    std::vector<TreePatternNode*> Variants;
2379    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
2380    DOUT << "Dependent/multiply used variables: ";
2381    DEBUG(DumpDepVars(DepVars));
2382    DOUT << "\n";
2383    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
2384
2385    assert(!Variants.empty() && "Must create at least original variant!");
2386    Variants.erase(Variants.begin());  // Remove the original pattern.
2387
2388    if (Variants.empty())  // No variants for this pattern.
2389      continue;
2390
2391    DOUT << "FOUND VARIANTS OF: ";
2392    DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2393    DOUT << "\n";
2394
2395    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2396      TreePatternNode *Variant = Variants[v];
2397
2398      DOUT << "  VAR#" << v <<  ": ";
2399      DEBUG(Variant->dump());
2400      DOUT << "\n";
2401
2402      // Scan to see if an instruction or explicit pattern already matches this.
2403      bool AlreadyExists = false;
2404      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2405        // Check to see if this variant already exists.
2406        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
2407          DOUT << "  *** ALREADY EXISTS, ignoring variant.\n";
2408          AlreadyExists = true;
2409          break;
2410        }
2411      }
2412      // If we already have it, ignore the variant.
2413      if (AlreadyExists) continue;
2414
2415      // Otherwise, add it to the list of patterns we have.
2416      PatternsToMatch.
2417        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2418                                 Variant, PatternsToMatch[i].getDstPattern(),
2419                                 PatternsToMatch[i].getDstRegs(),
2420                                 PatternsToMatch[i].getAddedComplexity()));
2421    }
2422
2423    DOUT << "\n";
2424  }
2425}
2426
2427