1//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenTarget.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/MC/MCFixedLenDisassembler.h"
22#include "llvm/Support/DataTypes.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/FormattedStream.h"
25#include "llvm/Support/LEB128.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/TableGen/Error.h"
28#include "llvm/TableGen/Record.h"
29#include <map>
30#include <string>
31#include <vector>
32
33using namespace llvm;
34
35#define DEBUG_TYPE "decoder-emitter"
36
37namespace {
38struct EncodingField {
39  unsigned Base, Width, Offset;
40  EncodingField(unsigned B, unsigned W, unsigned O)
41    : Base(B), Width(W), Offset(O) { }
42};
43
44struct OperandInfo {
45  std::vector<EncodingField> Fields;
46  std::string Decoder;
47
48  OperandInfo(std::string D)
49    : Decoder(D) { }
50
51  void addField(unsigned Base, unsigned Width, unsigned Offset) {
52    Fields.push_back(EncodingField(Base, Width, Offset));
53  }
54
55  unsigned numFields() const { return Fields.size(); }
56
57  typedef std::vector<EncodingField>::const_iterator const_iterator;
58
59  const_iterator begin() const { return Fields.begin(); }
60  const_iterator end() const   { return Fields.end();   }
61};
62
63typedef std::vector<uint8_t> DecoderTable;
64typedef uint32_t DecoderFixup;
65typedef std::vector<DecoderFixup> FixupList;
66typedef std::vector<FixupList> FixupScopeList;
67typedef SetVector<std::string> PredicateSet;
68typedef SetVector<std::string> DecoderSet;
69struct DecoderTableInfo {
70  DecoderTable Table;
71  FixupScopeList FixupStack;
72  PredicateSet Predicates;
73  DecoderSet Decoders;
74};
75
76} // End anonymous namespace
77
78namespace {
79class FixedLenDecoderEmitter {
80  const std::vector<const CodeGenInstruction*> *NumberedInstructions;
81public:
82
83  // Defaults preserved here for documentation, even though they aren't
84  // strictly necessary given the way that this is currently being called.
85  FixedLenDecoderEmitter(RecordKeeper &R,
86                         std::string PredicateNamespace,
87                         std::string GPrefix  = "if (",
88                         std::string GPostfix = " == MCDisassembler::Fail)"
89                         " return MCDisassembler::Fail;",
90                         std::string ROK      = "MCDisassembler::Success",
91                         std::string RFail    = "MCDisassembler::Fail",
92                         std::string L        = "") :
93    Target(R),
94    PredicateNamespace(PredicateNamespace),
95    GuardPrefix(GPrefix), GuardPostfix(GPostfix),
96    ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
97
98  // Emit the decoder state machine table.
99  void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
100                 unsigned Indentation, unsigned BitWidth,
101                 StringRef Namespace) const;
102  void emitPredicateFunction(formatted_raw_ostream &OS,
103                             PredicateSet &Predicates,
104                             unsigned Indentation) const;
105  void emitDecoderFunction(formatted_raw_ostream &OS,
106                           DecoderSet &Decoders,
107                           unsigned Indentation) const;
108
109  // run - Output the code emitter
110  void run(raw_ostream &o);
111
112private:
113  CodeGenTarget Target;
114public:
115  std::string PredicateNamespace;
116  std::string GuardPrefix, GuardPostfix;
117  std::string ReturnOK, ReturnFail;
118  std::string Locals;
119};
120} // End anonymous namespace
121
122// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
123// for a bit value.
124//
125// BIT_UNFILTERED is used as the init value for a filter position.  It is used
126// only for filter processings.
127typedef enum {
128  BIT_TRUE,      // '1'
129  BIT_FALSE,     // '0'
130  BIT_UNSET,     // '?'
131  BIT_UNFILTERED // unfiltered
132} bit_value_t;
133
134static bool ValueSet(bit_value_t V) {
135  return (V == BIT_TRUE || V == BIT_FALSE);
136}
137static bool ValueNotSet(bit_value_t V) {
138  return (V == BIT_UNSET);
139}
140static int Value(bit_value_t V) {
141  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
142}
143static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
144  if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
145    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
146
147  // The bit is uninitialized.
148  return BIT_UNSET;
149}
150// Prints the bit value for each position.
151static void dumpBits(raw_ostream &o, const BitsInit &bits) {
152  for (unsigned index = bits.getNumBits(); index > 0; --index) {
153    switch (bitFromBits(bits, index - 1)) {
154    case BIT_TRUE:
155      o << "1";
156      break;
157    case BIT_FALSE:
158      o << "0";
159      break;
160    case BIT_UNSET:
161      o << "_";
162      break;
163    default:
164      llvm_unreachable("unexpected return value from bitFromBits");
165    }
166  }
167}
168
169static BitsInit &getBitsField(const Record &def, const char *str) {
170  BitsInit *bits = def.getValueAsBitsInit(str);
171  return *bits;
172}
173
174// Forward declaration.
175namespace {
176class FilterChooser;
177} // End anonymous namespace
178
179// Representation of the instruction to work on.
180typedef std::vector<bit_value_t> insn_t;
181
182/// Filter - Filter works with FilterChooser to produce the decoding tree for
183/// the ISA.
184///
185/// It is useful to think of a Filter as governing the switch stmts of the
186/// decoding tree in a certain level.  Each case stmt delegates to an inferior
187/// FilterChooser to decide what further decoding logic to employ, or in another
188/// words, what other remaining bits to look at.  The FilterChooser eventually
189/// chooses a best Filter to do its job.
190///
191/// This recursive scheme ends when the number of Opcodes assigned to the
192/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
193/// the Filter/FilterChooser combo does not know how to distinguish among the
194/// Opcodes assigned.
195///
196/// An example of a conflict is
197///
198/// Conflict:
199///                     111101000.00........00010000....
200///                     111101000.00........0001........
201///                     1111010...00........0001........
202///                     1111010...00....................
203///                     1111010.........................
204///                     1111............................
205///                     ................................
206///     VST4q8a         111101000_00________00010000____
207///     VST4q8b         111101000_00________00010000____
208///
209/// The Debug output shows the path that the decoding tree follows to reach the
210/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
211/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
212///
213/// The encoding info in the .td files does not specify this meta information,
214/// which could have been used by the decoder to resolve the conflict.  The
215/// decoder could try to decode the even/odd register numbering and assign to
216/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
217/// version and return the Opcode since the two have the same Asm format string.
218namespace {
219class Filter {
220protected:
221  const FilterChooser *Owner;// points to the FilterChooser who owns this filter
222  unsigned StartBit; // the starting bit position
223  unsigned NumBits; // number of bits to filter
224  bool Mixed; // a mixed region contains both set and unset bits
225
226  // Map of well-known segment value to the set of uid's with that value.
227  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
228
229  // Set of uid's with non-constant segment values.
230  std::vector<unsigned> VariableInstructions;
231
232  // Map of well-known segment value to its delegate.
233  std::map<unsigned, const FilterChooser*> FilterChooserMap;
234
235  // Number of instructions which fall under FilteredInstructions category.
236  unsigned NumFiltered;
237
238  // Keeps track of the last opcode in the filtered bucket.
239  unsigned LastOpcFiltered;
240
241public:
242  unsigned getNumFiltered() const { return NumFiltered; }
243  unsigned getSingletonOpc() const {
244    assert(NumFiltered == 1);
245    return LastOpcFiltered;
246  }
247  // Return the filter chooser for the group of instructions without constant
248  // segment values.
249  const FilterChooser &getVariableFC() const {
250    assert(NumFiltered == 1);
251    assert(FilterChooserMap.size() == 1);
252    return *(FilterChooserMap.find((unsigned)-1)->second);
253  }
254
255  Filter(const Filter &f);
256  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
257
258  ~Filter();
259
260  // Divides the decoding task into sub tasks and delegates them to the
261  // inferior FilterChooser's.
262  //
263  // A special case arises when there's only one entry in the filtered
264  // instructions.  In order to unambiguously decode the singleton, we need to
265  // match the remaining undecoded encoding bits against the singleton.
266  void recurse();
267
268  // Emit table entries to decode instructions given a segment or segments of
269  // bits.
270  void emitTableEntry(DecoderTableInfo &TableInfo) const;
271
272  // Returns the number of fanout produced by the filter.  More fanout implies
273  // the filter distinguishes more categories of instructions.
274  unsigned usefulness() const;
275}; // End of class Filter
276} // End anonymous namespace
277
278// These are states of our finite state machines used in FilterChooser's
279// filterProcessor() which produces the filter candidates to use.
280typedef enum {
281  ATTR_NONE,
282  ATTR_FILTERED,
283  ATTR_ALL_SET,
284  ATTR_ALL_UNSET,
285  ATTR_MIXED
286} bitAttr_t;
287
288/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
289/// in order to perform the decoding of instructions at the current level.
290///
291/// Decoding proceeds from the top down.  Based on the well-known encoding bits
292/// of instructions available, FilterChooser builds up the possible Filters that
293/// can further the task of decoding by distinguishing among the remaining
294/// candidate instructions.
295///
296/// Once a filter has been chosen, it is called upon to divide the decoding task
297/// into sub-tasks and delegates them to its inferior FilterChoosers for further
298/// processings.
299///
300/// It is useful to think of a Filter as governing the switch stmts of the
301/// decoding tree.  And each case is delegated to an inferior FilterChooser to
302/// decide what further remaining bits to look at.
303namespace {
304class FilterChooser {
305protected:
306  friend class Filter;
307
308  // Vector of codegen instructions to choose our filter.
309  const std::vector<const CodeGenInstruction*> &AllInstructions;
310
311  // Vector of uid's for this filter chooser to work on.
312  const std::vector<unsigned> &Opcodes;
313
314  // Lookup table for the operand decoding of instructions.
315  const std::map<unsigned, std::vector<OperandInfo> > &Operands;
316
317  // Vector of candidate filters.
318  std::vector<Filter> Filters;
319
320  // Array of bit values passed down from our parent.
321  // Set to all BIT_UNFILTERED's for Parent == NULL.
322  std::vector<bit_value_t> FilterBitValues;
323
324  // Links to the FilterChooser above us in the decoding tree.
325  const FilterChooser *Parent;
326
327  // Index of the best filter from Filters.
328  int BestIndex;
329
330  // Width of instructions
331  unsigned BitWidth;
332
333  // Parent emitter
334  const FixedLenDecoderEmitter *Emitter;
335
336public:
337  FilterChooser(const FilterChooser &FC)
338    : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
339      Operands(FC.Operands), Filters(FC.Filters),
340      FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
341      BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
342      Emitter(FC.Emitter) { }
343
344  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
345                const std::vector<unsigned> &IDs,
346                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
347                unsigned BW,
348                const FixedLenDecoderEmitter *E)
349    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
350      Parent(nullptr), BestIndex(-1), BitWidth(BW), Emitter(E) {
351    for (unsigned i = 0; i < BitWidth; ++i)
352      FilterBitValues.push_back(BIT_UNFILTERED);
353
354    doFilter();
355  }
356
357  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
358                const std::vector<unsigned> &IDs,
359                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
360                const std::vector<bit_value_t> &ParentFilterBitValues,
361                const FilterChooser &parent)
362    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
363      Filters(), FilterBitValues(ParentFilterBitValues),
364      Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
365      Emitter(parent.Emitter) {
366    doFilter();
367  }
368
369  unsigned getBitWidth() const { return BitWidth; }
370
371protected:
372  // Populates the insn given the uid.
373  void insnWithID(insn_t &Insn, unsigned Opcode) const {
374    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
375
376    // We may have a SoftFail bitmask, which specifies a mask where an encoding
377    // may differ from the value in "Inst" and yet still be valid, but the
378    // disassembler should return SoftFail instead of Success.
379    //
380    // This is used for marking UNPREDICTABLE instructions in the ARM world.
381    BitsInit *SFBits =
382      AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
383
384    for (unsigned i = 0; i < BitWidth; ++i) {
385      if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
386        Insn.push_back(BIT_UNSET);
387      else
388        Insn.push_back(bitFromBits(Bits, i));
389    }
390  }
391
392  // Returns the record name.
393  const std::string &nameWithID(unsigned Opcode) const {
394    return AllInstructions[Opcode]->TheDef->getName();
395  }
396
397  // Populates the field of the insn given the start position and the number of
398  // consecutive bits to scan for.
399  //
400  // Returns false if there exists any uninitialized bit value in the range.
401  // Returns true, otherwise.
402  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
403                     unsigned NumBits) const;
404
405  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
406  /// filter array as a series of chars.
407  void dumpFilterArray(raw_ostream &o,
408                       const std::vector<bit_value_t> & filter) const;
409
410  /// dumpStack - dumpStack traverses the filter chooser chain and calls
411  /// dumpFilterArray on each filter chooser up to the top level one.
412  void dumpStack(raw_ostream &o, const char *prefix) const;
413
414  Filter &bestFilter() {
415    assert(BestIndex != -1 && "BestIndex not set");
416    return Filters[BestIndex];
417  }
418
419  // Called from Filter::recurse() when singleton exists.  For debug purpose.
420  void SingletonExists(unsigned Opc) const;
421
422  bool PositionFiltered(unsigned i) const {
423    return ValueSet(FilterBitValues[i]);
424  }
425
426  // Calculates the island(s) needed to decode the instruction.
427  // This returns a lit of undecoded bits of an instructions, for example,
428  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
429  // decoded bits in order to verify that the instruction matches the Opcode.
430  unsigned getIslands(std::vector<unsigned> &StartBits,
431                      std::vector<unsigned> &EndBits,
432                      std::vector<uint64_t> &FieldVals,
433                      const insn_t &Insn) const;
434
435  // Emits code to check the Predicates member of an instruction are true.
436  // Returns true if predicate matches were emitted, false otherwise.
437  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
438                          unsigned Opc) const;
439
440  bool doesOpcodeNeedPredicate(unsigned Opc) const;
441  unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
442  void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
443                               unsigned Opc) const;
444
445  void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
446                              unsigned Opc) const;
447
448  // Emits table entries to decode the singleton.
449  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
450                               unsigned Opc) const;
451
452  // Emits code to decode the singleton, and then to decode the rest.
453  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
454                               const Filter &Best) const;
455
456  void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
457                        const OperandInfo &OpInfo) const;
458
459  void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
460  unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
461
462  // Assign a single filter and run with it.
463  void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
464
465  // reportRegion is a helper function for filterProcessor to mark a region as
466  // eligible for use as a filter region.
467  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
468                    bool AllowMixed);
469
470  // FilterProcessor scans the well-known encoding bits of the instructions and
471  // builds up a list of candidate filters.  It chooses the best filter and
472  // recursively descends down the decoding tree.
473  bool filterProcessor(bool AllowMixed, bool Greedy = true);
474
475  // Decides on the best configuration of filter(s) to use in order to decode
476  // the instructions.  A conflict of instructions may occur, in which case we
477  // dump the conflict set to the standard error.
478  void doFilter();
479
480public:
481  // emitTableEntries - Emit state machine entries to decode our share of
482  // instructions.
483  void emitTableEntries(DecoderTableInfo &TableInfo) const;
484};
485} // End anonymous namespace
486
487///////////////////////////
488//                       //
489// Filter Implementation //
490//                       //
491///////////////////////////
492
493Filter::Filter(const Filter &f)
494  : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
495    FilteredInstructions(f.FilteredInstructions),
496    VariableInstructions(f.VariableInstructions),
497    FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
498    LastOpcFiltered(f.LastOpcFiltered) {
499}
500
501Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
502               bool mixed)
503  : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
504  assert(StartBit + NumBits - 1 < Owner->BitWidth);
505
506  NumFiltered = 0;
507  LastOpcFiltered = 0;
508
509  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
510    insn_t Insn;
511
512    // Populates the insn given the uid.
513    Owner->insnWithID(Insn, Owner->Opcodes[i]);
514
515    uint64_t Field;
516    // Scans the segment for possibly well-specified encoding bits.
517    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
518
519    if (ok) {
520      // The encoding bits are well-known.  Lets add the uid of the
521      // instruction into the bucket keyed off the constant field value.
522      LastOpcFiltered = Owner->Opcodes[i];
523      FilteredInstructions[Field].push_back(LastOpcFiltered);
524      ++NumFiltered;
525    } else {
526      // Some of the encoding bit(s) are unspecified.  This contributes to
527      // one additional member of "Variable" instructions.
528      VariableInstructions.push_back(Owner->Opcodes[i]);
529    }
530  }
531
532  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
533         && "Filter returns no instruction categories");
534}
535
536Filter::~Filter() {
537  std::map<unsigned, const FilterChooser*>::iterator filterIterator;
538  for (filterIterator = FilterChooserMap.begin();
539       filterIterator != FilterChooserMap.end();
540       filterIterator++) {
541    delete filterIterator->second;
542  }
543}
544
545// Divides the decoding task into sub tasks and delegates them to the
546// inferior FilterChooser's.
547//
548// A special case arises when there's only one entry in the filtered
549// instructions.  In order to unambiguously decode the singleton, we need to
550// match the remaining undecoded encoding bits against the singleton.
551void Filter::recurse() {
552  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
553
554  // Starts by inheriting our parent filter chooser's filter bit values.
555  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
556
557  if (VariableInstructions.size()) {
558    // Conservatively marks each segment position as BIT_UNSET.
559    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
560      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
561
562    // Delegates to an inferior filter chooser for further processing on this
563    // group of instructions whose segment values are variable.
564    FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
565                              (unsigned)-1,
566                              new FilterChooser(Owner->AllInstructions,
567                                                VariableInstructions,
568                                                Owner->Operands,
569                                                BitValueArray,
570                                                *Owner)
571                              ));
572  }
573
574  // No need to recurse for a singleton filtered instruction.
575  // See also Filter::emit*().
576  if (getNumFiltered() == 1) {
577    //Owner->SingletonExists(LastOpcFiltered);
578    assert(FilterChooserMap.size() == 1);
579    return;
580  }
581
582  // Otherwise, create sub choosers.
583  for (mapIterator = FilteredInstructions.begin();
584       mapIterator != FilteredInstructions.end();
585       mapIterator++) {
586
587    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
588    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
589      if (mapIterator->first & (1ULL << bitIndex))
590        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
591      else
592        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
593    }
594
595    // Delegates to an inferior filter chooser for further processing on this
596    // category of instructions.
597    FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
598                              mapIterator->first,
599                              new FilterChooser(Owner->AllInstructions,
600                                                mapIterator->second,
601                                                Owner->Operands,
602                                                BitValueArray,
603                                                *Owner)
604                              ));
605  }
606}
607
608static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
609                               uint32_t DestIdx) {
610  // Any NumToSkip fixups in the current scope can resolve to the
611  // current location.
612  for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
613                                         E = Fixups.rend();
614       I != E; ++I) {
615    // Calculate the distance from the byte following the fixup entry byte
616    // to the destination. The Target is calculated from after the 16-bit
617    // NumToSkip entry itself, so subtract two  from the displacement here
618    // to account for that.
619    uint32_t FixupIdx = *I;
620    uint32_t Delta = DestIdx - FixupIdx - 2;
621    // Our NumToSkip entries are 16-bits. Make sure our table isn't too
622    // big.
623    assert(Delta < 65536U && "disassembler decoding table too large!");
624    Table[FixupIdx] = (uint8_t)Delta;
625    Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
626  }
627}
628
629// Emit table entries to decode instructions given a segment or segments
630// of bits.
631void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
632  TableInfo.Table.push_back(MCD::OPC_ExtractField);
633  TableInfo.Table.push_back(StartBit);
634  TableInfo.Table.push_back(NumBits);
635
636  // A new filter entry begins a new scope for fixup resolution.
637  TableInfo.FixupStack.push_back(FixupList());
638
639  std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
640
641  DecoderTable &Table = TableInfo.Table;
642
643  size_t PrevFilter = 0;
644  bool HasFallthrough = false;
645  for (filterIterator = FilterChooserMap.begin();
646       filterIterator != FilterChooserMap.end();
647       filterIterator++) {
648    // Field value -1 implies a non-empty set of variable instructions.
649    // See also recurse().
650    if (filterIterator->first == (unsigned)-1) {
651      HasFallthrough = true;
652
653      // Each scope should always have at least one filter value to check
654      // for.
655      assert(PrevFilter != 0 && "empty filter set!");
656      FixupList &CurScope = TableInfo.FixupStack.back();
657      // Resolve any NumToSkip fixups in the current scope.
658      resolveTableFixups(Table, CurScope, Table.size());
659      CurScope.clear();
660      PrevFilter = 0;  // Don't re-process the filter's fallthrough.
661    } else {
662      Table.push_back(MCD::OPC_FilterValue);
663      // Encode and emit the value to filter against.
664      uint8_t Buffer[8];
665      unsigned Len = encodeULEB128(filterIterator->first, Buffer);
666      Table.insert(Table.end(), Buffer, Buffer + Len);
667      // Reserve space for the NumToSkip entry. We'll backpatch the value
668      // later.
669      PrevFilter = Table.size();
670      Table.push_back(0);
671      Table.push_back(0);
672    }
673
674    // We arrive at a category of instructions with the same segment value.
675    // Now delegate to the sub filter chooser for further decodings.
676    // The case may fallthrough, which happens if the remaining well-known
677    // encoding bits do not match exactly.
678    filterIterator->second->emitTableEntries(TableInfo);
679
680    // Now that we've emitted the body of the handler, update the NumToSkip
681    // of the filter itself to be able to skip forward when false. Subtract
682    // two as to account for the width of the NumToSkip field itself.
683    if (PrevFilter) {
684      uint32_t NumToSkip = Table.size() - PrevFilter - 2;
685      assert(NumToSkip < 65536U && "disassembler decoding table too large!");
686      Table[PrevFilter] = (uint8_t)NumToSkip;
687      Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
688    }
689  }
690
691  // Any remaining unresolved fixups bubble up to the parent fixup scope.
692  assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
693  FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
694  FixupScopeList::iterator Dest = Source - 1;
695  Dest->insert(Dest->end(), Source->begin(), Source->end());
696  TableInfo.FixupStack.pop_back();
697
698  // If there is no fallthrough, then the final filter should get fixed
699  // up according to the enclosing scope rather than the current position.
700  if (!HasFallthrough)
701    TableInfo.FixupStack.back().push_back(PrevFilter);
702}
703
704// Returns the number of fanout produced by the filter.  More fanout implies
705// the filter distinguishes more categories of instructions.
706unsigned Filter::usefulness() const {
707  if (VariableInstructions.size())
708    return FilteredInstructions.size();
709  else
710    return FilteredInstructions.size() + 1;
711}
712
713//////////////////////////////////
714//                              //
715// Filterchooser Implementation //
716//                              //
717//////////////////////////////////
718
719// Emit the decoder state machine table.
720void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
721                                       DecoderTable &Table,
722                                       unsigned Indentation,
723                                       unsigned BitWidth,
724                                       StringRef Namespace) const {
725  OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
726    << BitWidth << "[] = {\n";
727
728  Indentation += 2;
729
730  // FIXME: We may be able to use the NumToSkip values to recover
731  // appropriate indentation levels.
732  DecoderTable::const_iterator I = Table.begin();
733  DecoderTable::const_iterator E = Table.end();
734  while (I != E) {
735    assert (I < E && "incomplete decode table entry!");
736
737    uint64_t Pos = I - Table.begin();
738    OS << "/* " << Pos << " */";
739    OS.PadToColumn(12);
740
741    switch (*I) {
742    default:
743      PrintFatalError("invalid decode table opcode");
744    case MCD::OPC_ExtractField: {
745      ++I;
746      unsigned Start = *I++;
747      unsigned Len = *I++;
748      OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
749        << Len << ",  // Inst{";
750      if (Len > 1)
751        OS << (Start + Len - 1) << "-";
752      OS << Start << "} ...\n";
753      break;
754    }
755    case MCD::OPC_FilterValue: {
756      ++I;
757      OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
758      // The filter value is ULEB128 encoded.
759      while (*I >= 128)
760        OS << utostr(*I++) << ", ";
761      OS << utostr(*I++) << ", ";
762
763      // 16-bit numtoskip value.
764      uint8_t Byte = *I++;
765      uint32_t NumToSkip = Byte;
766      OS << utostr(Byte) << ", ";
767      Byte = *I++;
768      OS << utostr(Byte) << ", ";
769      NumToSkip |= Byte << 8;
770      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
771      break;
772    }
773    case MCD::OPC_CheckField: {
774      ++I;
775      unsigned Start = *I++;
776      unsigned Len = *I++;
777      OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
778        << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
779      // ULEB128 encoded field value.
780      for (; *I >= 128; ++I)
781        OS << utostr(*I) << ", ";
782      OS << utostr(*I++) << ", ";
783      // 16-bit numtoskip value.
784      uint8_t Byte = *I++;
785      uint32_t NumToSkip = Byte;
786      OS << utostr(Byte) << ", ";
787      Byte = *I++;
788      OS << utostr(Byte) << ", ";
789      NumToSkip |= Byte << 8;
790      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
791      break;
792    }
793    case MCD::OPC_CheckPredicate: {
794      ++I;
795      OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
796      for (; *I >= 128; ++I)
797        OS << utostr(*I) << ", ";
798      OS << utostr(*I++) << ", ";
799
800      // 16-bit numtoskip value.
801      uint8_t Byte = *I++;
802      uint32_t NumToSkip = Byte;
803      OS << utostr(Byte) << ", ";
804      Byte = *I++;
805      OS << utostr(Byte) << ", ";
806      NumToSkip |= Byte << 8;
807      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
808      break;
809    }
810    case MCD::OPC_Decode: {
811      ++I;
812      // Extract the ULEB128 encoded Opcode to a buffer.
813      uint8_t Buffer[8], *p = Buffer;
814      while ((*p++ = *I++) >= 128)
815        assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
816               && "ULEB128 value too large!");
817      // Decode the Opcode value.
818      unsigned Opc = decodeULEB128(Buffer);
819      OS.indent(Indentation) << "MCD::OPC_Decode, ";
820      for (p = Buffer; *p >= 128; ++p)
821        OS << utostr(*p) << ", ";
822      OS << utostr(*p) << ", ";
823
824      // Decoder index.
825      for (; *I >= 128; ++I)
826        OS << utostr(*I) << ", ";
827      OS << utostr(*I++) << ", ";
828
829      OS << "// Opcode: "
830         << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
831      break;
832    }
833    case MCD::OPC_SoftFail: {
834      ++I;
835      OS.indent(Indentation) << "MCD::OPC_SoftFail";
836      // Positive mask
837      uint64_t Value = 0;
838      unsigned Shift = 0;
839      do {
840        OS << ", " << utostr(*I);
841        Value += (*I & 0x7f) << Shift;
842        Shift += 7;
843      } while (*I++ >= 128);
844      if (Value > 127)
845        OS << " /* 0x" << utohexstr(Value) << " */";
846      // Negative mask
847      Value = 0;
848      Shift = 0;
849      do {
850        OS << ", " << utostr(*I);
851        Value += (*I & 0x7f) << Shift;
852        Shift += 7;
853      } while (*I++ >= 128);
854      if (Value > 127)
855        OS << " /* 0x" << utohexstr(Value) << " */";
856      OS << ",\n";
857      break;
858    }
859    case MCD::OPC_Fail: {
860      ++I;
861      OS.indent(Indentation) << "MCD::OPC_Fail,\n";
862      break;
863    }
864    }
865  }
866  OS.indent(Indentation) << "0\n";
867
868  Indentation -= 2;
869
870  OS.indent(Indentation) << "};\n\n";
871}
872
873void FixedLenDecoderEmitter::
874emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
875                      unsigned Indentation) const {
876  // The predicate function is just a big switch statement based on the
877  // input predicate index.
878  OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
879    << "uint64_t Bits) {\n";
880  Indentation += 2;
881  if (!Predicates.empty()) {
882    OS.indent(Indentation) << "switch (Idx) {\n";
883    OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
884    unsigned Index = 0;
885    for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end();
886         I != E; ++I, ++Index) {
887      OS.indent(Indentation) << "case " << Index << ":\n";
888      OS.indent(Indentation+2) << "return (" << *I << ");\n";
889    }
890    OS.indent(Indentation) << "}\n";
891  } else {
892    // No case statement to emit
893    OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
894  }
895  Indentation -= 2;
896  OS.indent(Indentation) << "}\n\n";
897}
898
899void FixedLenDecoderEmitter::
900emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
901                    unsigned Indentation) const {
902  // The decoder function is just a big switch statement based on the
903  // input decoder index.
904  OS.indent(Indentation) << "template<typename InsnType>\n";
905  OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
906    << " unsigned Idx, InsnType insn, MCInst &MI,\n";
907  OS.indent(Indentation) << "                                   uint64_t "
908    << "Address, const void *Decoder) {\n";
909  Indentation += 2;
910  OS.indent(Indentation) << "InsnType tmp;\n";
911  OS.indent(Indentation) << "switch (Idx) {\n";
912  OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
913  unsigned Index = 0;
914  for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end();
915       I != E; ++I, ++Index) {
916    OS.indent(Indentation) << "case " << Index << ":\n";
917    OS << *I;
918    OS.indent(Indentation+2) << "return S;\n";
919  }
920  OS.indent(Indentation) << "}\n";
921  Indentation -= 2;
922  OS.indent(Indentation) << "}\n\n";
923}
924
925// Populates the field of the insn given the start position and the number of
926// consecutive bits to scan for.
927//
928// Returns false if and on the first uninitialized bit value encountered.
929// Returns true, otherwise.
930bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
931                                  unsigned StartBit, unsigned NumBits) const {
932  Field = 0;
933
934  for (unsigned i = 0; i < NumBits; ++i) {
935    if (Insn[StartBit + i] == BIT_UNSET)
936      return false;
937
938    if (Insn[StartBit + i] == BIT_TRUE)
939      Field = Field | (1ULL << i);
940  }
941
942  return true;
943}
944
945/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
946/// filter array as a series of chars.
947void FilterChooser::dumpFilterArray(raw_ostream &o,
948                                 const std::vector<bit_value_t> &filter) const {
949  for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
950    switch (filter[bitIndex - 1]) {
951    case BIT_UNFILTERED:
952      o << ".";
953      break;
954    case BIT_UNSET:
955      o << "_";
956      break;
957    case BIT_TRUE:
958      o << "1";
959      break;
960    case BIT_FALSE:
961      o << "0";
962      break;
963    }
964  }
965}
966
967/// dumpStack - dumpStack traverses the filter chooser chain and calls
968/// dumpFilterArray on each filter chooser up to the top level one.
969void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
970  const FilterChooser *current = this;
971
972  while (current) {
973    o << prefix;
974    dumpFilterArray(o, current->FilterBitValues);
975    o << '\n';
976    current = current->Parent;
977  }
978}
979
980// Called from Filter::recurse() when singleton exists.  For debug purpose.
981void FilterChooser::SingletonExists(unsigned Opc) const {
982  insn_t Insn0;
983  insnWithID(Insn0, Opc);
984
985  errs() << "Singleton exists: " << nameWithID(Opc)
986         << " with its decoding dominating ";
987  for (unsigned i = 0; i < Opcodes.size(); ++i) {
988    if (Opcodes[i] == Opc) continue;
989    errs() << nameWithID(Opcodes[i]) << ' ';
990  }
991  errs() << '\n';
992
993  dumpStack(errs(), "\t\t");
994  for (unsigned i = 0; i < Opcodes.size(); ++i) {
995    const std::string &Name = nameWithID(Opcodes[i]);
996
997    errs() << '\t' << Name << " ";
998    dumpBits(errs(),
999             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1000    errs() << '\n';
1001  }
1002}
1003
1004// Calculates the island(s) needed to decode the instruction.
1005// This returns a list of undecoded bits of an instructions, for example,
1006// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1007// decoded bits in order to verify that the instruction matches the Opcode.
1008unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1009                                   std::vector<unsigned> &EndBits,
1010                                   std::vector<uint64_t> &FieldVals,
1011                                   const insn_t &Insn) const {
1012  unsigned Num, BitNo;
1013  Num = BitNo = 0;
1014
1015  uint64_t FieldVal = 0;
1016
1017  // 0: Init
1018  // 1: Water (the bit value does not affect decoding)
1019  // 2: Island (well-known bit value needed for decoding)
1020  int State = 0;
1021  int Val = -1;
1022
1023  for (unsigned i = 0; i < BitWidth; ++i) {
1024    Val = Value(Insn[i]);
1025    bool Filtered = PositionFiltered(i);
1026    switch (State) {
1027    default: llvm_unreachable("Unreachable code!");
1028    case 0:
1029    case 1:
1030      if (Filtered || Val == -1)
1031        State = 1; // Still in Water
1032      else {
1033        State = 2; // Into the Island
1034        BitNo = 0;
1035        StartBits.push_back(i);
1036        FieldVal = Val;
1037      }
1038      break;
1039    case 2:
1040      if (Filtered || Val == -1) {
1041        State = 1; // Into the Water
1042        EndBits.push_back(i - 1);
1043        FieldVals.push_back(FieldVal);
1044        ++Num;
1045      } else {
1046        State = 2; // Still in Island
1047        ++BitNo;
1048        FieldVal = FieldVal | Val << BitNo;
1049      }
1050      break;
1051    }
1052  }
1053  // If we are still in Island after the loop, do some housekeeping.
1054  if (State == 2) {
1055    EndBits.push_back(BitWidth - 1);
1056    FieldVals.push_back(FieldVal);
1057    ++Num;
1058  }
1059
1060  assert(StartBits.size() == Num && EndBits.size() == Num &&
1061         FieldVals.size() == Num);
1062  return Num;
1063}
1064
1065void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1066                                     const OperandInfo &OpInfo) const {
1067  const std::string &Decoder = OpInfo.Decoder;
1068
1069  if (OpInfo.numFields() == 1) {
1070    OperandInfo::const_iterator OI = OpInfo.begin();
1071    o.indent(Indentation) << "tmp = fieldFromInstruction"
1072                          << "(insn, " << OI->Base << ", " << OI->Width
1073                          << ");\n";
1074  } else {
1075    o.indent(Indentation) << "tmp = 0;\n";
1076    for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
1077         OI != OE; ++OI) {
1078      o.indent(Indentation) << "tmp |= (fieldFromInstruction"
1079                            << "(insn, " << OI->Base << ", " << OI->Width
1080                            << ") << " << OI->Offset << ");\n";
1081    }
1082  }
1083
1084  if (Decoder != "")
1085    o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1086                          << "(MI, tmp, Address, Decoder)"
1087                          << Emitter->GuardPostfix << "\n";
1088  else
1089    o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
1090
1091}
1092
1093void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1094                                unsigned Opc) const {
1095  std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
1096    Operands.find(Opc);
1097  const std::vector<OperandInfo>& InsnOperands = OpIter->second;
1098  for (std::vector<OperandInfo>::const_iterator
1099       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
1100    // If a custom instruction decoder was specified, use that.
1101    if (I->numFields() == 0 && I->Decoder.size()) {
1102      OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder
1103        << "(MI, insn, Address, Decoder)"
1104        << Emitter->GuardPostfix << "\n";
1105      break;
1106    }
1107
1108    emitBinaryParser(OS, Indentation, *I);
1109  }
1110}
1111
1112unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1113                                        unsigned Opc) const {
1114  // Build up the predicate string.
1115  SmallString<256> Decoder;
1116  // FIXME: emitDecoder() function can take a buffer directly rather than
1117  // a stream.
1118  raw_svector_ostream S(Decoder);
1119  unsigned I = 4;
1120  emitDecoder(S, I, Opc);
1121  S.flush();
1122
1123  // Using the full decoder string as the key value here is a bit
1124  // heavyweight, but is effective. If the string comparisons become a
1125  // performance concern, we can implement a mangling of the predicate
1126  // data easilly enough with a map back to the actual string. That's
1127  // overkill for now, though.
1128
1129  // Make sure the predicate is in the table.
1130  Decoders.insert(Decoder.str());
1131  // Now figure out the index for when we write out the table.
1132  DecoderSet::const_iterator P = std::find(Decoders.begin(),
1133                                           Decoders.end(),
1134                                           Decoder.str());
1135  return (unsigned)(P - Decoders.begin());
1136}
1137
1138static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1139                                     const std::string &PredicateNamespace) {
1140  if (str[0] == '!')
1141    o << "!(Bits & " << PredicateNamespace << "::"
1142      << str.slice(1,str.size()) << ")";
1143  else
1144    o << "(Bits & " << PredicateNamespace << "::" << str << ")";
1145}
1146
1147bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1148                                       unsigned Opc) const {
1149  ListInit *Predicates =
1150    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1151  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1152    Record *Pred = Predicates->getElementAsRecord(i);
1153    if (!Pred->getValue("AssemblerMatcherPredicate"))
1154      continue;
1155
1156    std::string P = Pred->getValueAsString("AssemblerCondString");
1157
1158    if (!P.length())
1159      continue;
1160
1161    if (i != 0)
1162      o << " && ";
1163
1164    StringRef SR(P);
1165    std::pair<StringRef, StringRef> pairs = SR.split(',');
1166    while (pairs.second.size()) {
1167      emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1168      o << " && ";
1169      pairs = pairs.second.split(',');
1170    }
1171    emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1172  }
1173  return Predicates->getSize() > 0;
1174}
1175
1176bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1177  ListInit *Predicates =
1178    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1179  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1180    Record *Pred = Predicates->getElementAsRecord(i);
1181    if (!Pred->getValue("AssemblerMatcherPredicate"))
1182      continue;
1183
1184    std::string P = Pred->getValueAsString("AssemblerCondString");
1185
1186    if (!P.length())
1187      continue;
1188
1189    return true;
1190  }
1191  return false;
1192}
1193
1194unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1195                                          StringRef Predicate) const {
1196  // Using the full predicate string as the key value here is a bit
1197  // heavyweight, but is effective. If the string comparisons become a
1198  // performance concern, we can implement a mangling of the predicate
1199  // data easilly enough with a map back to the actual string. That's
1200  // overkill for now, though.
1201
1202  // Make sure the predicate is in the table.
1203  TableInfo.Predicates.insert(Predicate.str());
1204  // Now figure out the index for when we write out the table.
1205  PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
1206                                             TableInfo.Predicates.end(),
1207                                             Predicate.str());
1208  return (unsigned)(P - TableInfo.Predicates.begin());
1209}
1210
1211void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1212                                            unsigned Opc) const {
1213  if (!doesOpcodeNeedPredicate(Opc))
1214    return;
1215
1216  // Build up the predicate string.
1217  SmallString<256> Predicate;
1218  // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1219  // than a stream.
1220  raw_svector_ostream PS(Predicate);
1221  unsigned I = 0;
1222  emitPredicateMatch(PS, I, Opc);
1223
1224  // Figure out the index into the predicate table for the predicate just
1225  // computed.
1226  unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1227  SmallString<16> PBytes;
1228  raw_svector_ostream S(PBytes);
1229  encodeULEB128(PIdx, S);
1230  S.flush();
1231
1232  TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1233  // Predicate index
1234  for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1235    TableInfo.Table.push_back(PBytes[i]);
1236  // Push location for NumToSkip backpatching.
1237  TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1238  TableInfo.Table.push_back(0);
1239  TableInfo.Table.push_back(0);
1240}
1241
1242void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1243                                           unsigned Opc) const {
1244  BitsInit *SFBits =
1245    AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
1246  if (!SFBits) return;
1247  BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
1248
1249  APInt PositiveMask(BitWidth, 0ULL);
1250  APInt NegativeMask(BitWidth, 0ULL);
1251  for (unsigned i = 0; i < BitWidth; ++i) {
1252    bit_value_t B = bitFromBits(*SFBits, i);
1253    bit_value_t IB = bitFromBits(*InstBits, i);
1254
1255    if (B != BIT_TRUE) continue;
1256
1257    switch (IB) {
1258    case BIT_FALSE:
1259      // The bit is meant to be false, so emit a check to see if it is true.
1260      PositiveMask.setBit(i);
1261      break;
1262    case BIT_TRUE:
1263      // The bit is meant to be true, so emit a check to see if it is false.
1264      NegativeMask.setBit(i);
1265      break;
1266    default:
1267      // The bit is not set; this must be an error!
1268      StringRef Name = AllInstructions[Opc]->TheDef->getName();
1269      errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
1270             << " is set but Inst{" << i << "} is unset!\n"
1271             << "  - You can only mark a bit as SoftFail if it is fully defined"
1272             << " (1/0 - not '?') in Inst\n";
1273      return;
1274    }
1275  }
1276
1277  bool NeedPositiveMask = PositiveMask.getBoolValue();
1278  bool NeedNegativeMask = NegativeMask.getBoolValue();
1279
1280  if (!NeedPositiveMask && !NeedNegativeMask)
1281    return;
1282
1283  TableInfo.Table.push_back(MCD::OPC_SoftFail);
1284
1285  SmallString<16> MaskBytes;
1286  raw_svector_ostream S(MaskBytes);
1287  if (NeedPositiveMask) {
1288    encodeULEB128(PositiveMask.getZExtValue(), S);
1289    S.flush();
1290    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1291      TableInfo.Table.push_back(MaskBytes[i]);
1292  } else
1293    TableInfo.Table.push_back(0);
1294  if (NeedNegativeMask) {
1295    MaskBytes.clear();
1296    S.resync();
1297    encodeULEB128(NegativeMask.getZExtValue(), S);
1298    S.flush();
1299    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1300      TableInfo.Table.push_back(MaskBytes[i]);
1301  } else
1302    TableInfo.Table.push_back(0);
1303}
1304
1305// Emits table entries to decode the singleton.
1306void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1307                                            unsigned Opc) const {
1308  std::vector<unsigned> StartBits;
1309  std::vector<unsigned> EndBits;
1310  std::vector<uint64_t> FieldVals;
1311  insn_t Insn;
1312  insnWithID(Insn, Opc);
1313
1314  // Look for islands of undecoded bits of the singleton.
1315  getIslands(StartBits, EndBits, FieldVals, Insn);
1316
1317  unsigned Size = StartBits.size();
1318
1319  // Emit the predicate table entry if one is needed.
1320  emitPredicateTableEntry(TableInfo, Opc);
1321
1322  // Check any additional encoding fields needed.
1323  for (unsigned I = Size; I != 0; --I) {
1324    unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1325    TableInfo.Table.push_back(MCD::OPC_CheckField);
1326    TableInfo.Table.push_back(StartBits[I-1]);
1327    TableInfo.Table.push_back(NumBits);
1328    uint8_t Buffer[8], *p;
1329    encodeULEB128(FieldVals[I-1], Buffer);
1330    for (p = Buffer; *p >= 128 ; ++p)
1331      TableInfo.Table.push_back(*p);
1332    TableInfo.Table.push_back(*p);
1333    // Push location for NumToSkip backpatching.
1334    TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1335    // The fixup is always 16-bits, so go ahead and allocate the space
1336    // in the table so all our relative position calculations work OK even
1337    // before we fully resolve the real value here.
1338    TableInfo.Table.push_back(0);
1339    TableInfo.Table.push_back(0);
1340  }
1341
1342  // Check for soft failure of the match.
1343  emitSoftFailTableEntry(TableInfo, Opc);
1344
1345  TableInfo.Table.push_back(MCD::OPC_Decode);
1346  uint8_t Buffer[8], *p;
1347  encodeULEB128(Opc, Buffer);
1348  for (p = Buffer; *p >= 128 ; ++p)
1349    TableInfo.Table.push_back(*p);
1350  TableInfo.Table.push_back(*p);
1351
1352  unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
1353  SmallString<16> Bytes;
1354  raw_svector_ostream S(Bytes);
1355  encodeULEB128(DIdx, S);
1356  S.flush();
1357
1358  // Decoder index
1359  for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1360    TableInfo.Table.push_back(Bytes[i]);
1361}
1362
1363// Emits table entries to decode the singleton, and then to decode the rest.
1364void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1365                                            const Filter &Best) const {
1366  unsigned Opc = Best.getSingletonOpc();
1367
1368  // complex singletons need predicate checks from the first singleton
1369  // to refer forward to the variable filterchooser that follows.
1370  TableInfo.FixupStack.push_back(FixupList());
1371
1372  emitSingletonTableEntry(TableInfo, Opc);
1373
1374  resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1375                     TableInfo.Table.size());
1376  TableInfo.FixupStack.pop_back();
1377
1378  Best.getVariableFC().emitTableEntries(TableInfo);
1379}
1380
1381
1382// Assign a single filter and run with it.  Top level API client can initialize
1383// with a single filter to start the filtering process.
1384void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1385                                    bool mixed) {
1386  Filters.clear();
1387  Filter F(*this, startBit, numBit, true);
1388  Filters.push_back(F);
1389  BestIndex = 0; // Sole Filter instance to choose from.
1390  bestFilter().recurse();
1391}
1392
1393// reportRegion is a helper function for filterProcessor to mark a region as
1394// eligible for use as a filter region.
1395void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1396                                 unsigned BitIndex, bool AllowMixed) {
1397  if (RA == ATTR_MIXED && AllowMixed)
1398    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1399  else if (RA == ATTR_ALL_SET && !AllowMixed)
1400    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1401}
1402
1403// FilterProcessor scans the well-known encoding bits of the instructions and
1404// builds up a list of candidate filters.  It chooses the best filter and
1405// recursively descends down the decoding tree.
1406bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1407  Filters.clear();
1408  BestIndex = -1;
1409  unsigned numInstructions = Opcodes.size();
1410
1411  assert(numInstructions && "Filter created with no instructions");
1412
1413  // No further filtering is necessary.
1414  if (numInstructions == 1)
1415    return true;
1416
1417  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1418  // instructions is 3.
1419  if (AllowMixed && !Greedy) {
1420    assert(numInstructions == 3);
1421
1422    for (unsigned i = 0; i < Opcodes.size(); ++i) {
1423      std::vector<unsigned> StartBits;
1424      std::vector<unsigned> EndBits;
1425      std::vector<uint64_t> FieldVals;
1426      insn_t Insn;
1427
1428      insnWithID(Insn, Opcodes[i]);
1429
1430      // Look for islands of undecoded bits of any instruction.
1431      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1432        // Found an instruction with island(s).  Now just assign a filter.
1433        runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1434        return true;
1435      }
1436    }
1437  }
1438
1439  unsigned BitIndex;
1440
1441  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1442  // The automaton consumes the corresponding bit from each
1443  // instruction.
1444  //
1445  //   Input symbols: 0, 1, and _ (unset).
1446  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1447  //   Initial state: NONE.
1448  //
1449  // (NONE) ------- [01] -> (ALL_SET)
1450  // (NONE) ------- _ ----> (ALL_UNSET)
1451  // (ALL_SET) ---- [01] -> (ALL_SET)
1452  // (ALL_SET) ---- _ ----> (MIXED)
1453  // (ALL_UNSET) -- [01] -> (MIXED)
1454  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1455  // (MIXED) ------ . ----> (MIXED)
1456  // (FILTERED)---- . ----> (FILTERED)
1457
1458  std::vector<bitAttr_t> bitAttrs;
1459
1460  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1461  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1462  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1463    if (FilterBitValues[BitIndex] == BIT_TRUE ||
1464        FilterBitValues[BitIndex] == BIT_FALSE)
1465      bitAttrs.push_back(ATTR_FILTERED);
1466    else
1467      bitAttrs.push_back(ATTR_NONE);
1468
1469  for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1470    insn_t insn;
1471
1472    insnWithID(insn, Opcodes[InsnIndex]);
1473
1474    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1475      switch (bitAttrs[BitIndex]) {
1476      case ATTR_NONE:
1477        if (insn[BitIndex] == BIT_UNSET)
1478          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1479        else
1480          bitAttrs[BitIndex] = ATTR_ALL_SET;
1481        break;
1482      case ATTR_ALL_SET:
1483        if (insn[BitIndex] == BIT_UNSET)
1484          bitAttrs[BitIndex] = ATTR_MIXED;
1485        break;
1486      case ATTR_ALL_UNSET:
1487        if (insn[BitIndex] != BIT_UNSET)
1488          bitAttrs[BitIndex] = ATTR_MIXED;
1489        break;
1490      case ATTR_MIXED:
1491      case ATTR_FILTERED:
1492        break;
1493      }
1494    }
1495  }
1496
1497  // The regionAttr automaton consumes the bitAttrs automatons' state,
1498  // lowest-to-highest.
1499  //
1500  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1501  //   States:        NONE, ALL_SET, MIXED
1502  //   Initial state: NONE
1503  //
1504  // (NONE) ----- F --> (NONE)
1505  // (NONE) ----- S --> (ALL_SET)     ; and set region start
1506  // (NONE) ----- U --> (NONE)
1507  // (NONE) ----- M --> (MIXED)       ; and set region start
1508  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1509  // (ALL_SET) -- S --> (ALL_SET)
1510  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1511  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1512  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1513  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1514  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1515  // (MIXED) ---- M --> (MIXED)
1516
1517  bitAttr_t RA = ATTR_NONE;
1518  unsigned StartBit = 0;
1519
1520  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1521    bitAttr_t bitAttr = bitAttrs[BitIndex];
1522
1523    assert(bitAttr != ATTR_NONE && "Bit without attributes");
1524
1525    switch (RA) {
1526    case ATTR_NONE:
1527      switch (bitAttr) {
1528      case ATTR_FILTERED:
1529        break;
1530      case ATTR_ALL_SET:
1531        StartBit = BitIndex;
1532        RA = ATTR_ALL_SET;
1533        break;
1534      case ATTR_ALL_UNSET:
1535        break;
1536      case ATTR_MIXED:
1537        StartBit = BitIndex;
1538        RA = ATTR_MIXED;
1539        break;
1540      default:
1541        llvm_unreachable("Unexpected bitAttr!");
1542      }
1543      break;
1544    case ATTR_ALL_SET:
1545      switch (bitAttr) {
1546      case ATTR_FILTERED:
1547        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1548        RA = ATTR_NONE;
1549        break;
1550      case ATTR_ALL_SET:
1551        break;
1552      case ATTR_ALL_UNSET:
1553        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1554        RA = ATTR_NONE;
1555        break;
1556      case ATTR_MIXED:
1557        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1558        StartBit = BitIndex;
1559        RA = ATTR_MIXED;
1560        break;
1561      default:
1562        llvm_unreachable("Unexpected bitAttr!");
1563      }
1564      break;
1565    case ATTR_MIXED:
1566      switch (bitAttr) {
1567      case ATTR_FILTERED:
1568        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1569        StartBit = BitIndex;
1570        RA = ATTR_NONE;
1571        break;
1572      case ATTR_ALL_SET:
1573        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1574        StartBit = BitIndex;
1575        RA = ATTR_ALL_SET;
1576        break;
1577      case ATTR_ALL_UNSET:
1578        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1579        RA = ATTR_NONE;
1580        break;
1581      case ATTR_MIXED:
1582        break;
1583      default:
1584        llvm_unreachable("Unexpected bitAttr!");
1585      }
1586      break;
1587    case ATTR_ALL_UNSET:
1588      llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1589    case ATTR_FILTERED:
1590      llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1591    }
1592  }
1593
1594  // At the end, if we're still in ALL_SET or MIXED states, report a region
1595  switch (RA) {
1596  case ATTR_NONE:
1597    break;
1598  case ATTR_FILTERED:
1599    break;
1600  case ATTR_ALL_SET:
1601    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1602    break;
1603  case ATTR_ALL_UNSET:
1604    break;
1605  case ATTR_MIXED:
1606    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1607    break;
1608  }
1609
1610  // We have finished with the filter processings.  Now it's time to choose
1611  // the best performing filter.
1612  BestIndex = 0;
1613  bool AllUseless = true;
1614  unsigned BestScore = 0;
1615
1616  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1617    unsigned Usefulness = Filters[i].usefulness();
1618
1619    if (Usefulness)
1620      AllUseless = false;
1621
1622    if (Usefulness > BestScore) {
1623      BestIndex = i;
1624      BestScore = Usefulness;
1625    }
1626  }
1627
1628  if (!AllUseless)
1629    bestFilter().recurse();
1630
1631  return !AllUseless;
1632} // end of FilterChooser::filterProcessor(bool)
1633
1634// Decides on the best configuration of filter(s) to use in order to decode
1635// the instructions.  A conflict of instructions may occur, in which case we
1636// dump the conflict set to the standard error.
1637void FilterChooser::doFilter() {
1638  unsigned Num = Opcodes.size();
1639  assert(Num && "FilterChooser created with no instructions");
1640
1641  // Try regions of consecutive known bit values first.
1642  if (filterProcessor(false))
1643    return;
1644
1645  // Then regions of mixed bits (both known and unitialized bit values allowed).
1646  if (filterProcessor(true))
1647    return;
1648
1649  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1650  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1651  // well-known encoding pattern.  In such case, we backtrack and scan for the
1652  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1653  if (Num == 3 && filterProcessor(true, false))
1654    return;
1655
1656  // If we come to here, the instruction decoding has failed.
1657  // Set the BestIndex to -1 to indicate so.
1658  BestIndex = -1;
1659}
1660
1661// emitTableEntries - Emit state machine entries to decode our share of
1662// instructions.
1663void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1664  if (Opcodes.size() == 1) {
1665    // There is only one instruction in the set, which is great!
1666    // Call emitSingletonDecoder() to see whether there are any remaining
1667    // encodings bits.
1668    emitSingletonTableEntry(TableInfo, Opcodes[0]);
1669    return;
1670  }
1671
1672  // Choose the best filter to do the decodings!
1673  if (BestIndex != -1) {
1674    const Filter &Best = Filters[BestIndex];
1675    if (Best.getNumFiltered() == 1)
1676      emitSingletonTableEntry(TableInfo, Best);
1677    else
1678      Best.emitTableEntry(TableInfo);
1679    return;
1680  }
1681
1682  // We don't know how to decode these instructions!  Dump the
1683  // conflict set and bail.
1684
1685  // Print out useful conflict information for postmortem analysis.
1686  errs() << "Decoding Conflict:\n";
1687
1688  dumpStack(errs(), "\t\t");
1689
1690  for (unsigned i = 0; i < Opcodes.size(); ++i) {
1691    const std::string &Name = nameWithID(Opcodes[i]);
1692
1693    errs() << '\t' << Name << " ";
1694    dumpBits(errs(),
1695             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1696    errs() << '\n';
1697  }
1698}
1699
1700static bool populateInstruction(CodeGenTarget &Target,
1701                       const CodeGenInstruction &CGI, unsigned Opc,
1702                       std::map<unsigned, std::vector<OperandInfo> > &Operands){
1703  const Record &Def = *CGI.TheDef;
1704  // If all the bit positions are not specified; do not decode this instruction.
1705  // We are bound to fail!  For proper disassembly, the well-known encoding bits
1706  // of the instruction must be fully specified.
1707
1708  BitsInit &Bits = getBitsField(Def, "Inst");
1709  if (Bits.allInComplete()) return false;
1710
1711  std::vector<OperandInfo> InsnOperands;
1712
1713  // If the instruction has specified a custom decoding hook, use that instead
1714  // of trying to auto-generate the decoder.
1715  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1716  if (InstDecoder != "") {
1717    InsnOperands.push_back(OperandInfo(InstDecoder));
1718    Operands[Opc] = InsnOperands;
1719    return true;
1720  }
1721
1722  // Generate a description of the operand of the instruction that we know
1723  // how to decode automatically.
1724  // FIXME: We'll need to have a way to manually override this as needed.
1725
1726  // Gather the outputs/inputs of the instruction, so we can find their
1727  // positions in the encoding.  This assumes for now that they appear in the
1728  // MCInst in the order that they're listed.
1729  std::vector<std::pair<Init*, std::string> > InOutOperands;
1730  DagInit *Out  = Def.getValueAsDag("OutOperandList");
1731  DagInit *In  = Def.getValueAsDag("InOperandList");
1732  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1733    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1734  for (unsigned i = 0; i < In->getNumArgs(); ++i)
1735    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1736
1737  // Search for tied operands, so that we can correctly instantiate
1738  // operands that are not explicitly represented in the encoding.
1739  std::map<std::string, std::string> TiedNames;
1740  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1741    int tiedTo = CGI.Operands[i].getTiedRegister();
1742    if (tiedTo != -1) {
1743      std::pair<unsigned, unsigned> SO =
1744        CGI.Operands.getSubOperandNumber(tiedTo);
1745      TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
1746      TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
1747    }
1748  }
1749
1750  std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
1751  std::set<std::string> NumberedInsnOperandsNoTie;
1752  if (Target.getInstructionSet()->
1753        getValueAsBit("decodePositionallyEncodedOperands")) {
1754    const std::vector<RecordVal> &Vals = Def.getValues();
1755    unsigned NumberedOp = 0;
1756
1757    std::set<unsigned> NamedOpIndices;
1758    if (Target.getInstructionSet()->
1759         getValueAsBit("noNamedPositionallyEncodedOperands"))
1760      // Collect the set of operand indices that might correspond to named
1761      // operand, and skip these when assigning operands based on position.
1762      for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1763        unsigned OpIdx;
1764        if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1765          continue;
1766
1767        NamedOpIndices.insert(OpIdx);
1768      }
1769
1770    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1771      // Ignore fixed fields in the record, we're looking for values like:
1772      //    bits<5> RST = { ?, ?, ?, ?, ? };
1773      if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
1774        continue;
1775
1776      // Determine if Vals[i] actually contributes to the Inst encoding.
1777      unsigned bi = 0;
1778      for (; bi < Bits.getNumBits(); ++bi) {
1779        VarInit *Var = nullptr;
1780        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1781        if (BI)
1782          Var = dyn_cast<VarInit>(BI->getBitVar());
1783        else
1784          Var = dyn_cast<VarInit>(Bits.getBit(bi));
1785
1786        if (Var && Var->getName() == Vals[i].getName())
1787          break;
1788      }
1789
1790      if (bi == Bits.getNumBits())
1791        continue;
1792
1793      // Skip variables that correspond to explicitly-named operands.
1794      unsigned OpIdx;
1795      if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1796        continue;
1797
1798      // Get the bit range for this operand:
1799      unsigned bitStart = bi++, bitWidth = 1;
1800      for (; bi < Bits.getNumBits(); ++bi) {
1801        VarInit *Var = nullptr;
1802        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1803        if (BI)
1804          Var = dyn_cast<VarInit>(BI->getBitVar());
1805        else
1806          Var = dyn_cast<VarInit>(Bits.getBit(bi));
1807
1808        if (!Var)
1809          break;
1810
1811        if (Var->getName() != Vals[i].getName())
1812          break;
1813
1814        ++bitWidth;
1815      }
1816
1817      unsigned NumberOps = CGI.Operands.size();
1818      while (NumberedOp < NumberOps &&
1819             (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1820              (NamedOpIndices.size() && NamedOpIndices.count(
1821                CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1822        ++NumberedOp;
1823
1824      OpIdx = NumberedOp++;
1825
1826      // OpIdx now holds the ordered operand number of Vals[i].
1827      std::pair<unsigned, unsigned> SO =
1828        CGI.Operands.getSubOperandNumber(OpIdx);
1829      const std::string &Name = CGI.Operands[SO.first].Name;
1830
1831      DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
1832                      Name << "(" << SO.first << ", " << SO.second << ") => " <<
1833                      Vals[i].getName() << "\n");
1834
1835      std::string Decoder = "";
1836      Record *TypeRecord = CGI.Operands[SO.first].Rec;
1837
1838      RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1839      StringInit *String = DecoderString ?
1840        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1841      if (String && String->getValue() != "")
1842        Decoder = String->getValue();
1843
1844      if (Decoder == "" &&
1845          CGI.Operands[SO.first].MIOperandInfo &&
1846          CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1847        Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1848                      getArg(SO.second);
1849        if (TypedInit *TI = cast<TypedInit>(Arg)) {
1850          RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1851          TypeRecord = Type->getRecord();
1852        }
1853      }
1854
1855      bool isReg = false;
1856      if (TypeRecord->isSubClassOf("RegisterOperand"))
1857        TypeRecord = TypeRecord->getValueAsDef("RegClass");
1858      if (TypeRecord->isSubClassOf("RegisterClass")) {
1859        Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1860        isReg = true;
1861      } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1862        Decoder = "DecodePointerLikeRegClass" +
1863                  utostr(TypeRecord->getValueAsInt("RegClassKind"));
1864        isReg = true;
1865      }
1866
1867      DecoderString = TypeRecord->getValue("DecoderMethod");
1868      String = DecoderString ?
1869        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1870      if (!isReg && String && String->getValue() != "")
1871        Decoder = String->getValue();
1872
1873      OperandInfo OpInfo(Decoder);
1874      OpInfo.addField(bitStart, bitWidth, 0);
1875
1876      NumberedInsnOperands[Name].push_back(OpInfo);
1877
1878      // FIXME: For complex operands with custom decoders we can't handle tied
1879      // sub-operands automatically. Skip those here and assume that this is
1880      // fixed up elsewhere.
1881      if (CGI.Operands[SO.first].MIOperandInfo &&
1882          CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
1883          String && String->getValue() != "")
1884        NumberedInsnOperandsNoTie.insert(Name);
1885    }
1886  }
1887
1888  // For each operand, see if we can figure out where it is encoded.
1889  for (std::vector<std::pair<Init*, std::string> >::const_iterator
1890       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1891    if (!NumberedInsnOperands[NI->second].empty()) {
1892      InsnOperands.insert(InsnOperands.end(),
1893                          NumberedInsnOperands[NI->second].begin(),
1894                          NumberedInsnOperands[NI->second].end());
1895      continue;
1896    } else if (!NumberedInsnOperands[TiedNames[NI->second]].empty()) {
1897      if (!NumberedInsnOperandsNoTie.count(TiedNames[NI->second])) {
1898        // Figure out to which (sub)operand we're tied.
1899        unsigned i = CGI.Operands.getOperandNamed(TiedNames[NI->second]);
1900        int tiedTo = CGI.Operands[i].getTiedRegister();
1901        if (tiedTo == -1) {
1902          i = CGI.Operands.getOperandNamed(NI->second);
1903          tiedTo = CGI.Operands[i].getTiedRegister();
1904        }
1905
1906        if (tiedTo != -1) {
1907          std::pair<unsigned, unsigned> SO =
1908            CGI.Operands.getSubOperandNumber(tiedTo);
1909
1910          InsnOperands.push_back(NumberedInsnOperands[TiedNames[NI->second]]
1911                                   [SO.second]);
1912        }
1913      }
1914      continue;
1915    }
1916
1917    std::string Decoder = "";
1918
1919    // At this point, we can locate the field, but we need to know how to
1920    // interpret it.  As a first step, require the target to provide callbacks
1921    // for decoding register classes.
1922    // FIXME: This need to be extended to handle instructions with custom
1923    // decoder methods, and operands with (simple) MIOperandInfo's.
1924    TypedInit *TI = cast<TypedInit>(NI->first);
1925    RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
1926    Record *TypeRecord = Type->getRecord();
1927    bool isReg = false;
1928    if (TypeRecord->isSubClassOf("RegisterOperand"))
1929      TypeRecord = TypeRecord->getValueAsDef("RegClass");
1930    if (TypeRecord->isSubClassOf("RegisterClass")) {
1931      Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1932      isReg = true;
1933    } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1934      Decoder = "DecodePointerLikeRegClass" +
1935                utostr(TypeRecord->getValueAsInt("RegClassKind"));
1936      isReg = true;
1937    }
1938
1939    RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1940    StringInit *String = DecoderString ?
1941      dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1942    if (!isReg && String && String->getValue() != "")
1943      Decoder = String->getValue();
1944
1945    OperandInfo OpInfo(Decoder);
1946    unsigned Base = ~0U;
1947    unsigned Width = 0;
1948    unsigned Offset = 0;
1949
1950    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1951      VarInit *Var = nullptr;
1952      VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1953      if (BI)
1954        Var = dyn_cast<VarInit>(BI->getBitVar());
1955      else
1956        Var = dyn_cast<VarInit>(Bits.getBit(bi));
1957
1958      if (!Var) {
1959        if (Base != ~0U) {
1960          OpInfo.addField(Base, Width, Offset);
1961          Base = ~0U;
1962          Width = 0;
1963          Offset = 0;
1964        }
1965        continue;
1966      }
1967
1968      if (Var->getName() != NI->second &&
1969          Var->getName() != TiedNames[NI->second]) {
1970        if (Base != ~0U) {
1971          OpInfo.addField(Base, Width, Offset);
1972          Base = ~0U;
1973          Width = 0;
1974          Offset = 0;
1975        }
1976        continue;
1977      }
1978
1979      if (Base == ~0U) {
1980        Base = bi;
1981        Width = 1;
1982        Offset = BI ? BI->getBitNum() : 0;
1983      } else if (BI && BI->getBitNum() != Offset + Width) {
1984        OpInfo.addField(Base, Width, Offset);
1985        Base = bi;
1986        Width = 1;
1987        Offset = BI->getBitNum();
1988      } else {
1989        ++Width;
1990      }
1991    }
1992
1993    if (Base != ~0U)
1994      OpInfo.addField(Base, Width, Offset);
1995
1996    if (OpInfo.numFields() > 0)
1997      InsnOperands.push_back(OpInfo);
1998  }
1999
2000  Operands[Opc] = InsnOperands;
2001
2002
2003#if 0
2004  DEBUG({
2005      // Dumps the instruction encoding bits.
2006      dumpBits(errs(), Bits);
2007
2008      errs() << '\n';
2009
2010      // Dumps the list of operand info.
2011      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2012        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2013        const std::string &OperandName = Info.Name;
2014        const Record &OperandDef = *Info.Rec;
2015
2016        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2017      }
2018    });
2019#endif
2020
2021  return true;
2022}
2023
2024// emitFieldFromInstruction - Emit the templated helper function
2025// fieldFromInstruction().
2026static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2027  OS << "// Helper function for extracting fields from encoded instructions.\n"
2028     << "template<typename InsnType>\n"
2029   << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
2030     << "                                     unsigned numBits) {\n"
2031     << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
2032     << "           \"Instruction field out of bounds!\");\n"
2033     << "    InsnType fieldMask;\n"
2034     << "    if (numBits == sizeof(InsnType)*8)\n"
2035     << "      fieldMask = (InsnType)(-1LL);\n"
2036     << "    else\n"
2037     << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2038     << "    return (insn & fieldMask) >> startBit;\n"
2039     << "}\n\n";
2040}
2041
2042// emitDecodeInstruction - Emit the templated helper function
2043// decodeInstruction().
2044static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2045  OS << "template<typename InsnType>\n"
2046     << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
2047     << "                                      InsnType insn, uint64_t Address,\n"
2048     << "                                      const void *DisAsm,\n"
2049     << "                                      const MCSubtargetInfo &STI) {\n"
2050     << "  uint64_t Bits = STI.getFeatureBits();\n"
2051     << "\n"
2052     << "  const uint8_t *Ptr = DecodeTable;\n"
2053     << "  uint32_t CurFieldValue = 0;\n"
2054     << "  DecodeStatus S = MCDisassembler::Success;\n"
2055     << "  for (;;) {\n"
2056     << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2057     << "    switch (*Ptr) {\n"
2058     << "    default:\n"
2059     << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2060     << "      return MCDisassembler::Fail;\n"
2061     << "    case MCD::OPC_ExtractField: {\n"
2062     << "      unsigned Start = *++Ptr;\n"
2063     << "      unsigned Len = *++Ptr;\n"
2064     << "      ++Ptr;\n"
2065     << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2066     << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
2067     << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2068     << "      break;\n"
2069     << "    }\n"
2070     << "    case MCD::OPC_FilterValue: {\n"
2071     << "      // Decode the field value.\n"
2072     << "      unsigned Len;\n"
2073     << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2074     << "      Ptr += Len;\n"
2075     << "      // NumToSkip is a plain 16-bit integer.\n"
2076     << "      unsigned NumToSkip = *Ptr++;\n"
2077     << "      NumToSkip |= (*Ptr++) << 8;\n"
2078     << "\n"
2079     << "      // Perform the filter operation.\n"
2080     << "      if (Val != CurFieldValue)\n"
2081     << "        Ptr += NumToSkip;\n"
2082     << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
2083     << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
2084     << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
2085     << "\n"
2086     << "      break;\n"
2087     << "    }\n"
2088     << "    case MCD::OPC_CheckField: {\n"
2089     << "      unsigned Start = *++Ptr;\n"
2090     << "      unsigned Len = *++Ptr;\n"
2091     << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2092     << "      // Decode the field value.\n"
2093     << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2094     << "      Ptr += Len;\n"
2095     << "      // NumToSkip is a plain 16-bit integer.\n"
2096     << "      unsigned NumToSkip = *Ptr++;\n"
2097     << "      NumToSkip |= (*Ptr++) << 8;\n"
2098     << "\n"
2099     << "      // If the actual and expected values don't match, skip.\n"
2100     << "      if (ExpectedValue != FieldValue)\n"
2101     << "        Ptr += NumToSkip;\n"
2102     << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
2103     << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
2104     << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
2105     << "                   << ExpectedValue << \": \"\n"
2106     << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2107     << "      break;\n"
2108     << "    }\n"
2109     << "    case MCD::OPC_CheckPredicate: {\n"
2110     << "      unsigned Len;\n"
2111     << "      // Decode the Predicate Index value.\n"
2112     << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2113     << "      Ptr += Len;\n"
2114     << "      // NumToSkip is a plain 16-bit integer.\n"
2115     << "      unsigned NumToSkip = *Ptr++;\n"
2116     << "      NumToSkip |= (*Ptr++) << 8;\n"
2117     << "      // Check the predicate.\n"
2118     << "      bool Pred;\n"
2119     << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2120     << "        Ptr += NumToSkip;\n"
2121     << "      (void)Pred;\n"
2122     << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
2123     << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2124     << "\n"
2125     << "      break;\n"
2126     << "    }\n"
2127     << "    case MCD::OPC_Decode: {\n"
2128     << "      unsigned Len;\n"
2129     << "      // Decode the Opcode value.\n"
2130     << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2131     << "      Ptr += Len;\n"
2132     << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2133     << "      Ptr += Len;\n"
2134     << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2135     << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
2136     << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
2137     << "\n"
2138     << "      MI.setOpcode(Opc);\n"
2139     << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
2140     << "    }\n"
2141     << "    case MCD::OPC_SoftFail: {\n"
2142     << "      // Decode the mask values.\n"
2143     << "      unsigned Len;\n"
2144     << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2145     << "      Ptr += Len;\n"
2146     << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2147     << "      Ptr += Len;\n"
2148     << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2149     << "      if (Fail)\n"
2150     << "        S = MCDisassembler::SoftFail;\n"
2151     << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
2152     << "      break;\n"
2153     << "    }\n"
2154     << "    case MCD::OPC_Fail: {\n"
2155     << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2156     << "      return MCDisassembler::Fail;\n"
2157     << "    }\n"
2158     << "    }\n"
2159     << "  }\n"
2160     << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
2161     << "}\n\n";
2162}
2163
2164// Emits disassembler code for instruction decoding.
2165void FixedLenDecoderEmitter::run(raw_ostream &o) {
2166  formatted_raw_ostream OS(o);
2167  OS << "#include \"llvm/MC/MCInst.h\"\n";
2168  OS << "#include \"llvm/Support/Debug.h\"\n";
2169  OS << "#include \"llvm/Support/DataTypes.h\"\n";
2170  OS << "#include \"llvm/Support/LEB128.h\"\n";
2171  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2172  OS << "#include <assert.h>\n";
2173  OS << '\n';
2174  OS << "namespace llvm {\n\n";
2175
2176  emitFieldFromInstruction(OS);
2177
2178  Target.reverseBitsForLittleEndianEncoding();
2179
2180  // Parameterize the decoders based on namespace and instruction width.
2181  NumberedInstructions = &Target.getInstructionsByEnumValue();
2182  std::map<std::pair<std::string, unsigned>,
2183           std::vector<unsigned> > OpcMap;
2184  std::map<unsigned, std::vector<OperandInfo> > Operands;
2185
2186  for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
2187    const CodeGenInstruction *Inst = NumberedInstructions->at(i);
2188    const Record *Def = Inst->TheDef;
2189    unsigned Size = Def->getValueAsInt("Size");
2190    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2191        Def->getValueAsBit("isPseudo") ||
2192        Def->getValueAsBit("isAsmParserOnly") ||
2193        Def->getValueAsBit("isCodeGenOnly"))
2194      continue;
2195
2196    std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
2197
2198    if (Size) {
2199      if (populateInstruction(Target, *Inst, i, Operands)) {
2200        OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
2201      }
2202    }
2203  }
2204
2205  DecoderTableInfo TableInfo;
2206  for (std::map<std::pair<std::string, unsigned>,
2207                std::vector<unsigned> >::const_iterator
2208       I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
2209    // Emit the decoder for this namespace+width combination.
2210    FilterChooser FC(*NumberedInstructions, I->second, Operands,
2211                     8*I->first.second, this);
2212
2213    // The decode table is cleared for each top level decoder function. The
2214    // predicates and decoders themselves, however, are shared across all
2215    // decoders to give more opportunities for uniqueing.
2216    TableInfo.Table.clear();
2217    TableInfo.FixupStack.clear();
2218    TableInfo.Table.reserve(16384);
2219    TableInfo.FixupStack.push_back(FixupList());
2220    FC.emitTableEntries(TableInfo);
2221    // Any NumToSkip fixups in the top level scope can resolve to the
2222    // OPC_Fail at the end of the table.
2223    assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2224    // Resolve any NumToSkip fixups in the current scope.
2225    resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2226                       TableInfo.Table.size());
2227    TableInfo.FixupStack.clear();
2228
2229    TableInfo.Table.push_back(MCD::OPC_Fail);
2230
2231    // Print the table to the output stream.
2232    emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first);
2233    OS.flush();
2234  }
2235
2236  // Emit the predicate function.
2237  emitPredicateFunction(OS, TableInfo.Predicates, 0);
2238
2239  // Emit the decoder function.
2240  emitDecoderFunction(OS, TableInfo.Decoders, 0);
2241
2242  // Emit the main entry point for the decoder, decodeInstruction().
2243  emitDecodeInstruction(OS);
2244
2245  OS << "\n} // End llvm namespace\n";
2246}
2247
2248namespace llvm {
2249
2250void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2251                         std::string PredicateNamespace,
2252                         std::string GPrefix,
2253                         std::string GPostfix,
2254                         std::string ROK,
2255                         std::string RFail,
2256                         std::string L) {
2257  FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2258                         ROK, RFail, L).run(OS);
2259}
2260
2261} // End llvm namespace
2262