gtest-internal.h revision 57f7dafcb769852a21870148e91535421c45d037
1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31//
32// The Google C++ Testing Framework (Google Test)
33//
34// This header file declares functions and macros used internally by
35// Google Test.  They are subject to change without notice.
36
37#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40#include "gtest/internal/gtest-port.h"
41
42#if GTEST_OS_LINUX
43# include <stdlib.h>
44# include <sys/types.h>
45# include <sys/wait.h>
46# include <unistd.h>
47#endif  // GTEST_OS_LINUX
48
49#include <ctype.h>
50#include <string.h>
51#include <iomanip>
52#include <limits>
53#include <set>
54
55#include "gtest/internal/gtest-string.h"
56#include "gtest/internal/gtest-filepath.h"
57#include "gtest/internal/gtest-type-util.h"
58
59#if !GTEST_NO_LLVM_RAW_OSTREAM
60#include "llvm/Support/raw_os_ostream.h"
61#endif
62
63// Due to C++ preprocessor weirdness, we need double indirection to
64// concatenate two tokens when one of them is __LINE__.  Writing
65//
66//   foo ## __LINE__
67//
68// will result in the token foo__LINE__, instead of foo followed by
69// the current line number.  For more details, see
70// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
71#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
72#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
73
74// Google Test defines the testing::Message class to allow construction of
75// test messages via the << operator.  The idea is that anything
76// streamable to std::ostream can be streamed to a testing::Message.
77// This allows a user to use his own types in Google Test assertions by
78// overloading the << operator.
79//
80// util/gtl/stl_logging-inl.h overloads << for STL containers.  These
81// overloads cannot be defined in the std namespace, as that will be
82// undefined behavior.  Therefore, they are defined in the global
83// namespace instead.
84//
85// C++'s symbol lookup rule (i.e. Koenig lookup) says that these
86// overloads are visible in either the std namespace or the global
87// namespace, but not other namespaces, including the testing
88// namespace which Google Test's Message class is in.
89//
90// To allow STL containers (and other types that has a << operator
91// defined in the global namespace) to be used in Google Test assertions,
92// testing::Message must access the custom << operator from the global
93// namespace.  Hence this helper function.
94//
95// Note: Jeffrey Yasskin suggested an alternative fix by "using
96// ::operator<<;" in the definition of Message's operator<<.  That fix
97// doesn't require a helper function, but unfortunately doesn't
98// compile with MSVC.
99
100// LLVM INTERNAL CHANGE: To allow operator<< to work with both
101// std::ostreams and LLVM's raw_ostreams, we define a special
102// std::ostream with an implicit conversion to raw_ostream& and stream
103// to that.  This causes the compiler to prefer std::ostream overloads
104// but still find raw_ostream& overloads.
105#if !GTEST_NO_LLVM_RAW_OSTREAM
106namespace llvm {
107class convertible_fwd_ostream : public std::ostream {
108  raw_os_ostream ros_;
109
110public:
111  convertible_fwd_ostream(std::ostream& os)
112    : std::ostream(os.rdbuf()), ros_(*this) {}
113  operator raw_ostream&() { return ros_; }
114};
115}
116template <typename T>
117inline void GTestStreamToHelper(std::ostream* os, const T& val) {
118  llvm::convertible_fwd_ostream cos(*os);
119  cos << val;
120}
121#else
122template <typename T>
123inline void GTestStreamToHelper(std::ostream* os, const T& val) {
124  *os << val;
125}
126#endif
127
128class ProtocolMessage;
129namespace proto2 { class Message; }
130
131namespace testing {
132
133// Forward declarations.
134
135class AssertionResult;                 // Result of an assertion.
136class Message;                         // Represents a failure message.
137class Test;                            // Represents a test.
138class TestInfo;                        // Information about a test.
139class TestPartResult;                  // Result of a test part.
140class UnitTest;                        // A collection of test cases.
141
142template <typename T>
143::std::string PrintToString(const T& value);
144
145namespace internal {
146
147struct TraceInfo;                      // Information about a trace point.
148class ScopedTrace;                     // Implements scoped trace.
149class TestInfoImpl;                    // Opaque implementation of TestInfo
150class UnitTestImpl;                    // Opaque implementation of UnitTest
151
152// How many times InitGoogleTest() has been called.
153extern int g_init_gtest_count;
154
155// The text used in failure messages to indicate the start of the
156// stack trace.
157GTEST_API_ extern const char kStackTraceMarker[];
158
159// A secret type that Google Test users don't know about.  It has no
160// definition on purpose.  Therefore it's impossible to create a
161// Secret object, which is what we want.
162class Secret;
163
164// Two overloaded helpers for checking at compile time whether an
165// expression is a null pointer literal (i.e. NULL or any 0-valued
166// compile-time integral constant).  Their return values have
167// different sizes, so we can use sizeof() to test which version is
168// picked by the compiler.  These helpers have no implementations, as
169// we only need their signatures.
170//
171// Given IsNullLiteralHelper(x), the compiler will pick the first
172// version if x can be implicitly converted to Secret*, and pick the
173// second version otherwise.  Since Secret is a secret and incomplete
174// type, the only expression a user can write that has type Secret* is
175// a null pointer literal.  Therefore, we know that x is a null
176// pointer literal if and only if the first version is picked by the
177// compiler.
178char IsNullLiteralHelper(Secret* p);
179char (&IsNullLiteralHelper(...))[2];  // NOLINT
180
181// A compile-time bool constant that is true if and only if x is a
182// null pointer literal (i.e. NULL or any 0-valued compile-time
183// integral constant).
184#ifdef GTEST_ELLIPSIS_NEEDS_POD_
185// We lose support for NULL detection where the compiler doesn't like
186// passing non-POD classes through ellipsis (...).
187# define GTEST_IS_NULL_LITERAL_(x) false
188#else
189# define GTEST_IS_NULL_LITERAL_(x) \
190    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
191#endif  // GTEST_ELLIPSIS_NEEDS_POD_
192
193// Appends the user-supplied message to the Google-Test-generated message.
194GTEST_API_ String AppendUserMessage(const String& gtest_msg,
195                                    const Message& user_msg);
196
197// A helper class for creating scoped traces in user programs.
198class GTEST_API_ ScopedTrace {
199 public:
200  // The c'tor pushes the given source file location and message onto
201  // a trace stack maintained by Google Test.
202  ScopedTrace(const char* file, int line, const Message& message);
203
204  // The d'tor pops the info pushed by the c'tor.
205  //
206  // Note that the d'tor is not virtual in order to be efficient.
207  // Don't inherit from ScopedTrace!
208  ~ScopedTrace();
209
210 private:
211  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
212} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
213                            // c'tor and d'tor.  Therefore it doesn't
214                            // need to be used otherwise.
215
216// Converts a streamable value to a String.  A NULL pointer is
217// converted to "(null)".  When the input value is a ::string,
218// ::std::string, ::wstring, or ::std::wstring object, each NUL
219// character in it is replaced with "\\0".
220// Declared here but defined in gtest.h, so that it has access
221// to the definition of the Message class, required by the ARM
222// compiler.
223template <typename T>
224String StreamableToString(const T& streamable);
225
226// The Symbian compiler has a bug that prevents it from selecting the
227// correct overload of FormatForComparisonFailureMessage (see below)
228// unless we pass the first argument by reference.  If we do that,
229// however, Visual Age C++ 10.1 generates a compiler error.  Therefore
230// we only apply the work-around for Symbian.
231#if defined(__SYMBIAN32__)
232# define GTEST_CREF_WORKAROUND_ const&
233#else
234# define GTEST_CREF_WORKAROUND_
235#endif
236
237// When this operand is a const char* or char*, if the other operand
238// is a ::std::string or ::string, we print this operand as a C string
239// rather than a pointer (we do the same for wide strings); otherwise
240// we print it as a pointer to be safe.
241
242// This internal macro is used to avoid duplicated code.
243#define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
244inline String FormatForComparisonFailureMessage(\
245    operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
246    const operand2_type& /*operand2*/) {\
247  return operand1_printer(str);\
248}\
249inline String FormatForComparisonFailureMessage(\
250    const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
251    const operand2_type& /*operand2*/) {\
252  return operand1_printer(str);\
253}
254
255GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
256#if GTEST_HAS_STD_WSTRING
257GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
258#endif  // GTEST_HAS_STD_WSTRING
259
260#if GTEST_HAS_GLOBAL_STRING
261GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
262#endif  // GTEST_HAS_GLOBAL_STRING
263#if GTEST_HAS_GLOBAL_WSTRING
264GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
265#endif  // GTEST_HAS_GLOBAL_WSTRING
266
267#undef GTEST_FORMAT_IMPL_
268
269// The next four overloads handle the case where the operand being
270// printed is a char/wchar_t pointer and the other operand is not a
271// string/wstring object.  In such cases, we just print the operand as
272// a pointer to be safe.
273#define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
274  template <typename T>                                             \
275  String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
276                                           const T&) { \
277    return PrintToString(static_cast<const void*>(p));              \
278  }
279
280GTEST_FORMAT_CHAR_PTR_IMPL_(char)
281GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
282GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
283GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
284
285#undef GTEST_FORMAT_CHAR_PTR_IMPL_
286
287// Constructs and returns the message for an equality assertion
288// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
289//
290// The first four parameters are the expressions used in the assertion
291// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
292// where foo is 5 and bar is 6, we have:
293//
294//   expected_expression: "foo"
295//   actual_expression:   "bar"
296//   expected_value:      "5"
297//   actual_value:        "6"
298//
299// The ignoring_case parameter is true iff the assertion is a
300// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
301// be inserted into the message.
302GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
303                                     const char* actual_expression,
304                                     const String& expected_value,
305                                     const String& actual_value,
306                                     bool ignoring_case);
307
308// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
309GTEST_API_ String GetBoolAssertionFailureMessage(
310    const AssertionResult& assertion_result,
311    const char* expression_text,
312    const char* actual_predicate_value,
313    const char* expected_predicate_value);
314
315// This template class represents an IEEE floating-point number
316// (either single-precision or double-precision, depending on the
317// template parameters).
318//
319// The purpose of this class is to do more sophisticated number
320// comparison.  (Due to round-off error, etc, it's very unlikely that
321// two floating-points will be equal exactly.  Hence a naive
322// comparison by the == operation often doesn't work.)
323//
324// Format of IEEE floating-point:
325//
326//   The most-significant bit being the leftmost, an IEEE
327//   floating-point looks like
328//
329//     sign_bit exponent_bits fraction_bits
330//
331//   Here, sign_bit is a single bit that designates the sign of the
332//   number.
333//
334//   For float, there are 8 exponent bits and 23 fraction bits.
335//
336//   For double, there are 11 exponent bits and 52 fraction bits.
337//
338//   More details can be found at
339//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
340//
341// Template parameter:
342//
343//   RawType: the raw floating-point type (either float or double)
344template <typename RawType>
345class FloatingPoint {
346 public:
347  // Defines the unsigned integer type that has the same size as the
348  // floating point number.
349  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
350
351  // Constants.
352
353  // # of bits in a number.
354  static const size_t kBitCount = 8*sizeof(RawType);
355
356  // # of fraction bits in a number.
357  static const size_t kFractionBitCount =
358    std::numeric_limits<RawType>::digits - 1;
359
360  // # of exponent bits in a number.
361  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
362
363  // The mask for the sign bit.
364  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
365
366  // The mask for the fraction bits.
367  static const Bits kFractionBitMask =
368    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
369
370  // The mask for the exponent bits.
371  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
372
373  // How many ULP's (Units in the Last Place) we want to tolerate when
374  // comparing two numbers.  The larger the value, the more error we
375  // allow.  A 0 value means that two numbers must be exactly the same
376  // to be considered equal.
377  //
378  // The maximum error of a single floating-point operation is 0.5
379  // units in the last place.  On Intel CPU's, all floating-point
380  // calculations are done with 80-bit precision, while double has 64
381  // bits.  Therefore, 4 should be enough for ordinary use.
382  //
383  // See the following article for more details on ULP:
384  // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
385  static const size_t kMaxUlps = 4;
386
387  // Constructs a FloatingPoint from a raw floating-point number.
388  //
389  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
390  // around may change its bits, although the new value is guaranteed
391  // to be also a NAN.  Therefore, don't expect this constructor to
392  // preserve the bits in x when x is a NAN.
393  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
394
395  // Static methods
396
397  // Reinterprets a bit pattern as a floating-point number.
398  //
399  // This function is needed to test the AlmostEquals() method.
400  static RawType ReinterpretBits(const Bits bits) {
401    FloatingPoint fp(0);
402    fp.u_.bits_ = bits;
403    return fp.u_.value_;
404  }
405
406  // Returns the floating-point number that represent positive infinity.
407  static RawType Infinity() {
408    return ReinterpretBits(kExponentBitMask);
409  }
410
411  // Non-static methods
412
413  // Returns the bits that represents this number.
414  const Bits &bits() const { return u_.bits_; }
415
416  // Returns the exponent bits of this number.
417  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
418
419  // Returns the fraction bits of this number.
420  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
421
422  // Returns the sign bit of this number.
423  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
424
425  // Returns true iff this is NAN (not a number).
426  bool is_nan() const {
427    // It's a NAN if the exponent bits are all ones and the fraction
428    // bits are not entirely zeros.
429    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
430  }
431
432  // Returns true iff this number is at most kMaxUlps ULP's away from
433  // rhs.  In particular, this function:
434  //
435  //   - returns false if either number is (or both are) NAN.
436  //   - treats really large numbers as almost equal to infinity.
437  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
438  bool AlmostEquals(const FloatingPoint& rhs) const {
439    // The IEEE standard says that any comparison operation involving
440    // a NAN must return false.
441    if (is_nan() || rhs.is_nan()) return false;
442
443    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
444        <= kMaxUlps;
445  }
446
447 private:
448  // The data type used to store the actual floating-point number.
449  union FloatingPointUnion {
450    RawType value_;  // The raw floating-point number.
451    Bits bits_;      // The bits that represent the number.
452  };
453
454  // Converts an integer from the sign-and-magnitude representation to
455  // the biased representation.  More precisely, let N be 2 to the
456  // power of (kBitCount - 1), an integer x is represented by the
457  // unsigned number x + N.
458  //
459  // For instance,
460  //
461  //   -N + 1 (the most negative number representable using
462  //          sign-and-magnitude) is represented by 1;
463  //   0      is represented by N; and
464  //   N - 1  (the biggest number representable using
465  //          sign-and-magnitude) is represented by 2N - 1.
466  //
467  // Read http://en.wikipedia.org/wiki/Signed_number_representations
468  // for more details on signed number representations.
469  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
470    if (kSignBitMask & sam) {
471      // sam represents a negative number.
472      return ~sam + 1;
473    } else {
474      // sam represents a positive number.
475      return kSignBitMask | sam;
476    }
477  }
478
479  // Given two numbers in the sign-and-magnitude representation,
480  // returns the distance between them as an unsigned number.
481  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
482                                                     const Bits &sam2) {
483    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
484    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
485    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
486  }
487
488  FloatingPointUnion u_;
489};
490
491// Typedefs the instances of the FloatingPoint template class that we
492// care to use.
493typedef FloatingPoint<float> Float;
494typedef FloatingPoint<double> Double;
495
496// In order to catch the mistake of putting tests that use different
497// test fixture classes in the same test case, we need to assign
498// unique IDs to fixture classes and compare them.  The TypeId type is
499// used to hold such IDs.  The user should treat TypeId as an opaque
500// type: the only operation allowed on TypeId values is to compare
501// them for equality using the == operator.
502typedef const void* TypeId;
503
504template <typename T>
505class TypeIdHelper {
506 public:
507  // dummy_ must not have a const type.  Otherwise an overly eager
508  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
509  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
510  static bool dummy_;
511};
512
513template <typename T>
514bool TypeIdHelper<T>::dummy_ = false;
515
516// GetTypeId<T>() returns the ID of type T.  Different values will be
517// returned for different types.  Calling the function twice with the
518// same type argument is guaranteed to return the same ID.
519template <typename T>
520TypeId GetTypeId() {
521  // The compiler is required to allocate a different
522  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
523  // the template.  Therefore, the address of dummy_ is guaranteed to
524  // be unique.
525  return &(TypeIdHelper<T>::dummy_);
526}
527
528// Returns the type ID of ::testing::Test.  Always call this instead
529// of GetTypeId< ::testing::Test>() to get the type ID of
530// ::testing::Test, as the latter may give the wrong result due to a
531// suspected linker bug when compiling Google Test as a Mac OS X
532// framework.
533GTEST_API_ TypeId GetTestTypeId();
534
535// Defines the abstract factory interface that creates instances
536// of a Test object.
537class TestFactoryBase {
538 public:
539  virtual ~TestFactoryBase() {}
540
541  // Creates a test instance to run. The instance is both created and destroyed
542  // within TestInfoImpl::Run()
543  virtual Test* CreateTest() = 0;
544
545 protected:
546  TestFactoryBase() {}
547
548 private:
549  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
550};
551
552// This class provides implementation of TeastFactoryBase interface.
553// It is used in TEST and TEST_F macros.
554template <class TestClass>
555class TestFactoryImpl : public TestFactoryBase {
556 public:
557  virtual Test* CreateTest() { return new TestClass; }
558};
559
560#if GTEST_OS_WINDOWS
561
562// Predicate-formatters for implementing the HRESULT checking macros
563// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
564// We pass a long instead of HRESULT to avoid causing an
565// include dependency for the HRESULT type.
566GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
567                                            long hr);  // NOLINT
568GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
569                                            long hr);  // NOLINT
570
571#endif  // GTEST_OS_WINDOWS
572
573// Types of SetUpTestCase() and TearDownTestCase() functions.
574typedef void (*SetUpTestCaseFunc)();
575typedef void (*TearDownTestCaseFunc)();
576
577// Creates a new TestInfo object and registers it with Google Test;
578// returns the created object.
579//
580// Arguments:
581//
582//   test_case_name:   name of the test case
583//   name:             name of the test
584//   type_param        the name of the test's type parameter, or NULL if
585//                     this is not  a typed or a type-parameterized test.
586//   value_param       text representation of the test's value parameter,
587//                     or NULL if this is not a type-parameterized test.
588//   fixture_class_id: ID of the test fixture class
589//   set_up_tc:        pointer to the function that sets up the test case
590//   tear_down_tc:     pointer to the function that tears down the test case
591//   factory:          pointer to the factory that creates a test object.
592//                     The newly created TestInfo instance will assume
593//                     ownership of the factory object.
594GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
595    const char* test_case_name, const char* name,
596    const char* type_param,
597    const char* value_param,
598    TypeId fixture_class_id,
599    SetUpTestCaseFunc set_up_tc,
600    TearDownTestCaseFunc tear_down_tc,
601    TestFactoryBase* factory);
602
603// If *pstr starts with the given prefix, modifies *pstr to be right
604// past the prefix and returns true; otherwise leaves *pstr unchanged
605// and returns false.  None of pstr, *pstr, and prefix can be NULL.
606GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
607
608#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
609
610// State of the definition of a type-parameterized test case.
611class GTEST_API_ TypedTestCasePState {
612 public:
613  TypedTestCasePState() : registered_(false) {}
614
615  // Adds the given test name to defined_test_names_ and return true
616  // if the test case hasn't been registered; otherwise aborts the
617  // program.
618  bool AddTestName(const char* file, int line, const char* case_name,
619                   const char* test_name) {
620    if (registered_) {
621      fprintf(stderr, "%s Test %s must be defined before "
622              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
623              FormatFileLocation(file, line).c_str(), test_name, case_name);
624      fflush(stderr);
625      posix::Abort();
626    }
627    defined_test_names_.insert(test_name);
628    return true;
629  }
630
631  // Verifies that registered_tests match the test names in
632  // defined_test_names_; returns registered_tests if successful, or
633  // aborts the program otherwise.
634  const char* VerifyRegisteredTestNames(
635      const char* file, int line, const char* registered_tests);
636
637 private:
638  bool registered_;
639  ::std::set<const char*> defined_test_names_;
640};
641
642// Skips to the first non-space char after the first comma in 'str';
643// returns NULL if no comma is found in 'str'.
644inline const char* SkipComma(const char* str) {
645  const char* comma = strchr(str, ',');
646  if (comma == NULL) {
647    return NULL;
648  }
649  while (IsSpace(*(++comma))) {}
650  return comma;
651}
652
653// Returns the prefix of 'str' before the first comma in it; returns
654// the entire string if it contains no comma.
655inline String GetPrefixUntilComma(const char* str) {
656  const char* comma = strchr(str, ',');
657  return comma == NULL ? String(str) : String(str, comma - str);
658}
659
660// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
661// registers a list of type-parameterized tests with Google Test.  The
662// return value is insignificant - we just need to return something
663// such that we can call this function in a namespace scope.
664//
665// Implementation note: The GTEST_TEMPLATE_ macro declares a template
666// template parameter.  It's defined in gtest-type-util.h.
667template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
668class TypeParameterizedTest {
669 public:
670  // 'index' is the index of the test in the type list 'Types'
671  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
672  // Types).  Valid values for 'index' are [0, N - 1] where N is the
673  // length of Types.
674  static bool Register(const char* prefix, const char* case_name,
675                       const char* test_names, int index) {
676    typedef typename Types::Head Type;
677    typedef Fixture<Type> FixtureClass;
678    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
679
680    // First, registers the first type-parameterized test in the type
681    // list.
682    MakeAndRegisterTestInfo(
683        String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
684                       case_name, index).c_str(),
685        GetPrefixUntilComma(test_names).c_str(),
686        GetTypeName<Type>().c_str(),
687        NULL,  // No value parameter.
688        GetTypeId<FixtureClass>(),
689        TestClass::SetUpTestCase,
690        TestClass::TearDownTestCase,
691        new TestFactoryImpl<TestClass>);
692
693    // Next, recurses (at compile time) with the tail of the type list.
694    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
695        ::Register(prefix, case_name, test_names, index + 1);
696  }
697};
698
699// The base case for the compile time recursion.
700template <GTEST_TEMPLATE_ Fixture, class TestSel>
701class TypeParameterizedTest<Fixture, TestSel, Types0> {
702 public:
703  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
704                       const char* /*test_names*/, int /*index*/) {
705    return true;
706  }
707};
708
709// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
710// registers *all combinations* of 'Tests' and 'Types' with Google
711// Test.  The return value is insignificant - we just need to return
712// something such that we can call this function in a namespace scope.
713template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
714class TypeParameterizedTestCase {
715 public:
716  static bool Register(const char* prefix, const char* case_name,
717                       const char* test_names) {
718    typedef typename Tests::Head Head;
719
720    // First, register the first test in 'Test' for each type in 'Types'.
721    TypeParameterizedTest<Fixture, Head, Types>::Register(
722        prefix, case_name, test_names, 0);
723
724    // Next, recurses (at compile time) with the tail of the test list.
725    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
726        ::Register(prefix, case_name, SkipComma(test_names));
727  }
728};
729
730// The base case for the compile time recursion.
731template <GTEST_TEMPLATE_ Fixture, typename Types>
732class TypeParameterizedTestCase<Fixture, Templates0, Types> {
733 public:
734  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
735                       const char* /*test_names*/) {
736    return true;
737  }
738};
739
740#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
741
742// Returns the current OS stack trace as a String.
743//
744// The maximum number of stack frames to be included is specified by
745// the gtest_stack_trace_depth flag.  The skip_count parameter
746// specifies the number of top frames to be skipped, which doesn't
747// count against the number of frames to be included.
748//
749// For example, if Foo() calls Bar(), which in turn calls
750// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
751// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
752GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
753                                                  int skip_count);
754
755// Helpers for suppressing warnings on unreachable code or constant
756// condition.
757
758// Always returns true.
759GTEST_API_ bool AlwaysTrue();
760
761// Always returns false.
762inline bool AlwaysFalse() { return !AlwaysTrue(); }
763
764// Helper for suppressing false warning from Clang on a const char*
765// variable declared in a conditional expression always being NULL in
766// the else branch.
767struct GTEST_API_ ConstCharPtr {
768  ConstCharPtr(const char* str) : value(str) {}
769  operator bool() const { return true; }
770  const char* value;
771};
772
773// A simple Linear Congruential Generator for generating random
774// numbers with a uniform distribution.  Unlike rand() and srand(), it
775// doesn't use global state (and therefore can't interfere with user
776// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
777// but it's good enough for our purposes.
778class GTEST_API_ Random {
779 public:
780  static const UInt32 kMaxRange = 1u << 31;
781
782  explicit Random(UInt32 seed) : state_(seed) {}
783
784  void Reseed(UInt32 seed) { state_ = seed; }
785
786  // Generates a random number from [0, range).  Crashes if 'range' is
787  // 0 or greater than kMaxRange.
788  UInt32 Generate(UInt32 range);
789
790 private:
791  UInt32 state_;
792  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
793};
794
795// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
796// compiler error iff T1 and T2 are different types.
797template <typename T1, typename T2>
798struct CompileAssertTypesEqual;
799
800template <typename T>
801struct CompileAssertTypesEqual<T, T> {
802};
803
804// Removes the reference from a type if it is a reference type,
805// otherwise leaves it unchanged.  This is the same as
806// tr1::remove_reference, which is not widely available yet.
807template <typename T>
808struct RemoveReference { typedef T type; };  // NOLINT
809template <typename T>
810struct RemoveReference<T&> { typedef T type; };  // NOLINT
811
812// A handy wrapper around RemoveReference that works when the argument
813// T depends on template parameters.
814#define GTEST_REMOVE_REFERENCE_(T) \
815    typename ::testing::internal::RemoveReference<T>::type
816
817// Removes const from a type if it is a const type, otherwise leaves
818// it unchanged.  This is the same as tr1::remove_const, which is not
819// widely available yet.
820template <typename T>
821struct RemoveConst { typedef T type; };  // NOLINT
822template <typename T>
823struct RemoveConst<const T> { typedef T type; };  // NOLINT
824
825// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
826// definition to fail to remove the const in 'const int[3]' and 'const
827// char[3][4]'.  The following specialization works around the bug.
828// However, it causes trouble with GCC and thus needs to be
829// conditionally compiled.
830#if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
831template <typename T, size_t N>
832struct RemoveConst<const T[N]> {
833  typedef typename RemoveConst<T>::type type[N];
834};
835#endif
836
837// A handy wrapper around RemoveConst that works when the argument
838// T depends on template parameters.
839#define GTEST_REMOVE_CONST_(T) \
840    typename ::testing::internal::RemoveConst<T>::type
841
842// Turns const U&, U&, const U, and U all into U.
843#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
844    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
845
846// Adds reference to a type if it is not a reference type,
847// otherwise leaves it unchanged.  This is the same as
848// tr1::add_reference, which is not widely available yet.
849template <typename T>
850struct AddReference { typedef T& type; };  // NOLINT
851template <typename T>
852struct AddReference<T&> { typedef T& type; };  // NOLINT
853
854// A handy wrapper around AddReference that works when the argument T
855// depends on template parameters.
856#define GTEST_ADD_REFERENCE_(T) \
857    typename ::testing::internal::AddReference<T>::type
858
859// Adds a reference to const on top of T as necessary.  For example,
860// it transforms
861//
862//   char         ==> const char&
863//   const char   ==> const char&
864//   char&        ==> const char&
865//   const char&  ==> const char&
866//
867// The argument T must depend on some template parameters.
868#define GTEST_REFERENCE_TO_CONST_(T) \
869    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
870
871// ImplicitlyConvertible<From, To>::value is a compile-time bool
872// constant that's true iff type From can be implicitly converted to
873// type To.
874template <typename From, typename To>
875class ImplicitlyConvertible {
876 private:
877  // We need the following helper functions only for their types.
878  // They have no implementations.
879
880  // MakeFrom() is an expression whose type is From.  We cannot simply
881  // use From(), as the type From may not have a public default
882  // constructor.
883  static From MakeFrom();
884
885  // These two functions are overloaded.  Given an expression
886  // Helper(x), the compiler will pick the first version if x can be
887  // implicitly converted to type To; otherwise it will pick the
888  // second version.
889  //
890  // The first version returns a value of size 1, and the second
891  // version returns a value of size 2.  Therefore, by checking the
892  // size of Helper(x), which can be done at compile time, we can tell
893  // which version of Helper() is used, and hence whether x can be
894  // implicitly converted to type To.
895  static char Helper(To);
896  static char (&Helper(...))[2];  // NOLINT
897
898  // We have to put the 'public' section after the 'private' section,
899  // or MSVC refuses to compile the code.
900 public:
901  // MSVC warns about implicitly converting from double to int for
902  // possible loss of data, so we need to temporarily disable the
903  // warning.
904#ifdef _MSC_VER
905# pragma warning(push)          // Saves the current warning state.
906# pragma warning(disable:4244)  // Temporarily disables warning 4244.
907
908  static const bool value =
909      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
910# pragma warning(pop)           // Restores the warning state.
911#elif defined(__BORLANDC__)
912  // C++Builder cannot use member overload resolution during template
913  // instantiation.  The simplest workaround is to use its C++0x type traits
914  // functions (C++Builder 2009 and above only).
915  static const bool value = __is_convertible(From, To);
916#else
917  static const bool value =
918      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
919#endif  // _MSV_VER
920};
921template <typename From, typename To>
922const bool ImplicitlyConvertible<From, To>::value;
923
924// IsAProtocolMessage<T>::value is a compile-time bool constant that's
925// true iff T is type ProtocolMessage, proto2::Message, or a subclass
926// of those.
927template <typename T>
928struct IsAProtocolMessage
929    : public bool_constant<
930  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
931  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
932};
933
934// When the compiler sees expression IsContainerTest<C>(0), if C is an
935// STL-style container class, the first overload of IsContainerTest
936// will be viable (since both C::iterator* and C::const_iterator* are
937// valid types and NULL can be implicitly converted to them).  It will
938// be picked over the second overload as 'int' is a perfect match for
939// the type of argument 0.  If C::iterator or C::const_iterator is not
940// a valid type, the first overload is not viable, and the second
941// overload will be picked.  Therefore, we can determine whether C is
942// a container class by checking the type of IsContainerTest<C>(0).
943// The value of the expression is insignificant.
944//
945// Note that we look for both C::iterator and C::const_iterator.  The
946// reason is that C++ injects the name of a class as a member of the
947// class itself (e.g. you can refer to class iterator as either
948// 'iterator' or 'iterator::iterator').  If we look for C::iterator
949// only, for example, we would mistakenly think that a class named
950// iterator is an STL container.
951//
952// Also note that the simpler approach of overloading
953// IsContainerTest(typename C::const_iterator*) and
954// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
955typedef int IsContainer;
956template <class C>
957IsContainer IsContainerTest(int /* dummy */,
958                            typename C::iterator* /* it */ = NULL,
959                            typename C::const_iterator* /* const_it */ = NULL) {
960  return 0;
961}
962
963typedef char IsNotContainer;
964template <class C>
965IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
966
967// EnableIf<condition>::type is void when 'Cond' is true, and
968// undefined when 'Cond' is false.  To use SFINAE to make a function
969// overload only apply when a particular expression is true, add
970// "typename EnableIf<expression>::type* = 0" as the last parameter.
971template<bool> struct EnableIf;
972template<> struct EnableIf<true> { typedef void type; };  // NOLINT
973
974// Utilities for native arrays.
975
976// ArrayEq() compares two k-dimensional native arrays using the
977// elements' operator==, where k can be any integer >= 0.  When k is
978// 0, ArrayEq() degenerates into comparing a single pair of values.
979
980template <typename T, typename U>
981bool ArrayEq(const T* lhs, size_t size, const U* rhs);
982
983// This generic version is used when k is 0.
984template <typename T, typename U>
985inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
986
987// This overload is used when k >= 1.
988template <typename T, typename U, size_t N>
989inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
990  return internal::ArrayEq(lhs, N, rhs);
991}
992
993// This helper reduces code bloat.  If we instead put its logic inside
994// the previous ArrayEq() function, arrays with different sizes would
995// lead to different copies of the template code.
996template <typename T, typename U>
997bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
998  for (size_t i = 0; i != size; i++) {
999    if (!internal::ArrayEq(lhs[i], rhs[i]))
1000      return false;
1001  }
1002  return true;
1003}
1004
1005// Finds the first element in the iterator range [begin, end) that
1006// equals elem.  Element may be a native array type itself.
1007template <typename Iter, typename Element>
1008Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1009  for (Iter it = begin; it != end; ++it) {
1010    if (internal::ArrayEq(*it, elem))
1011      return it;
1012  }
1013  return end;
1014}
1015
1016// CopyArray() copies a k-dimensional native array using the elements'
1017// operator=, where k can be any integer >= 0.  When k is 0,
1018// CopyArray() degenerates into copying a single value.
1019
1020template <typename T, typename U>
1021void CopyArray(const T* from, size_t size, U* to);
1022
1023// This generic version is used when k is 0.
1024template <typename T, typename U>
1025inline void CopyArray(const T& from, U* to) { *to = from; }
1026
1027// This overload is used when k >= 1.
1028template <typename T, typename U, size_t N>
1029inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1030  internal::CopyArray(from, N, *to);
1031}
1032
1033// This helper reduces code bloat.  If we instead put its logic inside
1034// the previous CopyArray() function, arrays with different sizes
1035// would lead to different copies of the template code.
1036template <typename T, typename U>
1037void CopyArray(const T* from, size_t size, U* to) {
1038  for (size_t i = 0; i != size; i++) {
1039    internal::CopyArray(from[i], to + i);
1040  }
1041}
1042
1043// The relation between an NativeArray object (see below) and the
1044// native array it represents.
1045enum RelationToSource {
1046  kReference,  // The NativeArray references the native array.
1047  kCopy        // The NativeArray makes a copy of the native array and
1048               // owns the copy.
1049};
1050
1051// Adapts a native array to a read-only STL-style container.  Instead
1052// of the complete STL container concept, this adaptor only implements
1053// members useful for Google Mock's container matchers.  New members
1054// should be added as needed.  To simplify the implementation, we only
1055// support Element being a raw type (i.e. having no top-level const or
1056// reference modifier).  It's the client's responsibility to satisfy
1057// this requirement.  Element can be an array type itself (hence
1058// multi-dimensional arrays are supported).
1059template <typename Element>
1060class NativeArray {
1061 public:
1062  // STL-style container typedefs.
1063  typedef Element value_type;
1064  typedef Element* iterator;
1065  typedef const Element* const_iterator;
1066
1067  // Constructs from a native array.
1068  NativeArray(const Element* array, size_t count, RelationToSource relation) {
1069    Init(array, count, relation);
1070  }
1071
1072  // Copy constructor.
1073  NativeArray(const NativeArray& rhs) {
1074    Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1075  }
1076
1077  ~NativeArray() {
1078    // Ensures that the user doesn't instantiate NativeArray with a
1079    // const or reference type.
1080    static_cast<void>(StaticAssertTypeEqHelper<Element,
1081        GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1082    if (relation_to_source_ == kCopy)
1083      delete[] array_;
1084  }
1085
1086  // STL-style container methods.
1087  size_t size() const { return size_; }
1088  const_iterator begin() const { return array_; }
1089  const_iterator end() const { return array_ + size_; }
1090  bool operator==(const NativeArray& rhs) const {
1091    return size() == rhs.size() &&
1092        ArrayEq(begin(), size(), rhs.begin());
1093  }
1094
1095 private:
1096  // Initializes this object; makes a copy of the input array if
1097  // 'relation' is kCopy.
1098  void Init(const Element* array, size_t a_size, RelationToSource relation) {
1099    if (relation == kReference) {
1100      array_ = array;
1101    } else {
1102      Element* const copy = new Element[a_size];
1103      CopyArray(array, a_size, copy);
1104      array_ = copy;
1105    }
1106    size_ = a_size;
1107    relation_to_source_ = relation;
1108  }
1109
1110  const Element* array_;
1111  size_t size_;
1112  RelationToSource relation_to_source_;
1113
1114  GTEST_DISALLOW_ASSIGN_(NativeArray);
1115};
1116
1117}  // namespace internal
1118}  // namespace testing
1119
1120#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1121  ::testing::internal::AssertHelper(result_type, file, line, message) \
1122    = ::testing::Message()
1123
1124#define GTEST_MESSAGE_(message, result_type) \
1125  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1126
1127#define GTEST_FATAL_FAILURE_(message) \
1128  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1129
1130#define GTEST_NONFATAL_FAILURE_(message) \
1131  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1132
1133#define GTEST_SUCCESS_(message) \
1134  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1135
1136// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1137// statement if it returns or throws (or doesn't return or throw in some
1138// situations).
1139#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1140  if (::testing::internal::AlwaysTrue()) { statement; }
1141
1142#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1143  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1144  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1145    bool gtest_caught_expected = false; \
1146    try { \
1147      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1148    } \
1149    catch (expected_exception const&) { \
1150      gtest_caught_expected = true; \
1151    } \
1152    catch (...) { \
1153      gtest_msg.value = \
1154          "Expected: " #statement " throws an exception of type " \
1155          #expected_exception ".\n  Actual: it throws a different type."; \
1156      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1157    } \
1158    if (!gtest_caught_expected) { \
1159      gtest_msg.value = \
1160          "Expected: " #statement " throws an exception of type " \
1161          #expected_exception ".\n  Actual: it throws nothing."; \
1162      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1163    } \
1164  } else \
1165    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1166      fail(gtest_msg.value)
1167
1168#define GTEST_TEST_NO_THROW_(statement, fail) \
1169  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1170  if (::testing::internal::AlwaysTrue()) { \
1171    try { \
1172      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1173    } \
1174    catch (...) { \
1175      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1176    } \
1177  } else \
1178    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1179      fail("Expected: " #statement " doesn't throw an exception.\n" \
1180           "  Actual: it throws.")
1181
1182#define GTEST_TEST_ANY_THROW_(statement, fail) \
1183  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1184  if (::testing::internal::AlwaysTrue()) { \
1185    bool gtest_caught_any = false; \
1186    try { \
1187      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1188    } \
1189    catch (...) { \
1190      gtest_caught_any = true; \
1191    } \
1192    if (!gtest_caught_any) { \
1193      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1194    } \
1195  } else \
1196    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1197      fail("Expected: " #statement " throws an exception.\n" \
1198           "  Actual: it doesn't.")
1199
1200
1201// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1202// either a boolean expression or an AssertionResult. text is a textual
1203// represenation of expression as it was passed into the EXPECT_TRUE.
1204#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1205  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1206  if (const ::testing::AssertionResult gtest_ar_ = \
1207      ::testing::AssertionResult(expression)) \
1208    ; \
1209  else \
1210    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1211        gtest_ar_, text, #actual, #expected).c_str())
1212
1213#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1214  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1215  if (::testing::internal::AlwaysTrue()) { \
1216    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1217    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1218    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1219      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1220    } \
1221  } else \
1222    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1223      fail("Expected: " #statement " doesn't generate new fatal " \
1224           "failures in the current thread.\n" \
1225           "  Actual: it does.")
1226
1227// Expands to the name of the class that implements the given test.
1228#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1229  test_case_name##_##test_name##_Test
1230
1231// Helper macro for defining tests.
1232#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1233class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1234 public:\
1235  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1236 private:\
1237  virtual void TestBody();\
1238  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1239  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1240      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1241};\
1242\
1243::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1244  ::test_info_ =\
1245    ::testing::internal::MakeAndRegisterTestInfo(\
1246        #test_case_name, #test_name, NULL, NULL, \
1247        (parent_id), \
1248        parent_class::SetUpTestCase, \
1249        parent_class::TearDownTestCase, \
1250        new ::testing::internal::TestFactoryImpl<\
1251            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1252void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1253
1254#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1255