1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008  VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37#include "pipe/p_context.h"
38#include "util/u_debug.h"
39#include "pipe/p_defines.h"
40#include "util/u_inlines.h"
41#include "pipe/p_shader_tokens.h"
42#include "pipe/p_state.h"
43
44#include "util/u_format.h"
45#include "util/u_memory.h"
46#include "util/u_draw_quad.h"
47#include "util/u_gen_mipmap.h"
48#include "util/u_simple_shaders.h"
49#include "util/u_math.h"
50#include "util/u_texture.h"
51#include "util/u_half.h"
52#include "util/u_surface.h"
53
54#include "cso_cache/cso_context.h"
55
56
57struct gen_mipmap_state
58{
59   struct pipe_context *pipe;
60   struct cso_context *cso;
61
62   struct pipe_blend_state blend_keep_color, blend_write_color;
63   struct pipe_depth_stencil_alpha_state dsa_keep_depth, dsa_write_depth;
64   struct pipe_rasterizer_state rasterizer;
65   struct pipe_sampler_state sampler;
66   struct pipe_vertex_element velem[2];
67
68   void *vs;
69
70   /** Not all are used, but simplifies code */
71   void *fs_color[TGSI_TEXTURE_COUNT];
72   void *fs_depth[TGSI_TEXTURE_COUNT];
73
74   struct pipe_resource *vbuf;  /**< quad vertices */
75   unsigned vbuf_slot;
76
77   float vertices[4][2][4];   /**< vertex/texcoords for quad */
78};
79
80
81
82enum dtype
83{
84   DTYPE_UBYTE,
85   DTYPE_UBYTE_3_3_2,
86   DTYPE_USHORT,
87   DTYPE_USHORT_4_4_4_4,
88   DTYPE_USHORT_5_6_5,
89   DTYPE_USHORT_1_5_5_5_REV,
90   DTYPE_UINT,
91   DTYPE_FLOAT,
92   DTYPE_HALF_FLOAT
93};
94
95
96typedef uint16_t half_float;
97
98
99/**
100 * \name Support macros for do_row and do_row_3d
101 *
102 * The macro madness is here for two reasons.  First, it compacts the code
103 * slightly.  Second, it makes it much easier to adjust the specifics of the
104 * filter to tune the rounding characteristics.
105 */
106/*@{*/
107#define DECLARE_ROW_POINTERS(t, e) \
108      const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
109      const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
110      const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
111      const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
112      t(*dst)[e] = (t(*)[e]) dstRow
113
114#define DECLARE_ROW_POINTERS0(t) \
115      const t *rowA = (const t *) srcRowA; \
116      const t *rowB = (const t *) srcRowB; \
117      const t *rowC = (const t *) srcRowC; \
118      const t *rowD = (const t *) srcRowD; \
119      t *dst = (t *) dstRow
120
121#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
122   ((unsigned) Aj + (unsigned) Ak \
123    + (unsigned) Bj + (unsigned) Bk \
124    + (unsigned) Cj + (unsigned) Ck \
125    + (unsigned) Dj + (unsigned) Dk \
126    + 4) >> 3
127
128#define FILTER_3D(e) \
129   do { \
130      dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
131                                rowB[j][e], rowB[k][e], \
132                                rowC[j][e], rowC[k][e], \
133                                rowD[j][e], rowD[k][e]); \
134   } while(0)
135
136#define FILTER_F_3D(e) \
137   do { \
138      dst[i][e] = (rowA[j][e] + rowA[k][e] \
139                   + rowB[j][e] + rowB[k][e] \
140                   + rowC[j][e] + rowC[k][e] \
141                   + rowD[j][e] + rowD[k][e]) * 0.125F; \
142   } while(0)
143
144#define FILTER_HF_3D(e) \
145   do { \
146      const float aj = util_half_to_float(rowA[j][e]); \
147      const float ak = util_half_to_float(rowA[k][e]); \
148      const float bj = util_half_to_float(rowB[j][e]); \
149      const float bk = util_half_to_float(rowB[k][e]); \
150      const float cj = util_half_to_float(rowC[j][e]); \
151      const float ck = util_half_to_float(rowC[k][e]); \
152      const float dj = util_half_to_float(rowD[j][e]); \
153      const float dk = util_half_to_float(rowD[k][e]); \
154      dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
155                                      * 0.125F); \
156   } while(0)
157/*@}*/
158
159
160/**
161 * Average together two rows of a source image to produce a single new
162 * row in the dest image.  It's legal for the two source rows to point
163 * to the same data.  The source width must be equal to either the
164 * dest width or two times the dest width.
165 * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
166 * \param comps  number of components per pixel (1..4)
167 */
168static void
169do_row(enum dtype datatype, uint comps, int srcWidth,
170       const void *srcRowA, const void *srcRowB,
171       int dstWidth, void *dstRow)
172{
173   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
174   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
175
176   assert(comps >= 1);
177   assert(comps <= 4);
178
179   /* This assertion is no longer valid with non-power-of-2 textures
180   assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
181   */
182
183   if (datatype == DTYPE_UBYTE && comps == 4) {
184      uint i, j, k;
185      const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
186      const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
187      ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
188      for (i = j = 0, k = k0; i < (uint) dstWidth;
189           i++, j += colStride, k += colStride) {
190         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
191         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
192         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
193         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
194      }
195   }
196   else if (datatype == DTYPE_UBYTE && comps == 3) {
197      uint i, j, k;
198      const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
199      const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
200      ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
201      for (i = j = 0, k = k0; i < (uint) dstWidth;
202           i++, j += colStride, k += colStride) {
203         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
204         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
205         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
206      }
207   }
208   else if (datatype == DTYPE_UBYTE && comps == 2) {
209      uint i, j, k;
210      const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
211      const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
212      ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
213      for (i = j = 0, k = k0; i < (uint) dstWidth;
214           i++, j += colStride, k += colStride) {
215         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
216         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
217      }
218   }
219   else if (datatype == DTYPE_UBYTE && comps == 1) {
220      uint i, j, k;
221      const ubyte *rowA = (const ubyte *) srcRowA;
222      const ubyte *rowB = (const ubyte *) srcRowB;
223      ubyte *dst = (ubyte *) dstRow;
224      for (i = j = 0, k = k0; i < (uint) dstWidth;
225           i++, j += colStride, k += colStride) {
226         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
227      }
228   }
229
230   else if (datatype == DTYPE_USHORT && comps == 4) {
231      uint i, j, k;
232      const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
233      const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
234      ushort(*dst)[4] = (ushort(*)[4]) dstRow;
235      for (i = j = 0, k = k0; i < (uint) dstWidth;
236           i++, j += colStride, k += colStride) {
237         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
238         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
239         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
240         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
241      }
242   }
243   else if (datatype == DTYPE_USHORT && comps == 3) {
244      uint i, j, k;
245      const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
246      const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
247      ushort(*dst)[3] = (ushort(*)[3]) dstRow;
248      for (i = j = 0, k = k0; i < (uint) dstWidth;
249           i++, j += colStride, k += colStride) {
250         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
251         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
252         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
253      }
254   }
255   else if (datatype == DTYPE_USHORT && comps == 2) {
256      uint i, j, k;
257      const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
258      const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
259      ushort(*dst)[2] = (ushort(*)[2]) dstRow;
260      for (i = j = 0, k = k0; i < (uint) dstWidth;
261           i++, j += colStride, k += colStride) {
262         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
263         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
264      }
265   }
266   else if (datatype == DTYPE_USHORT && comps == 1) {
267      uint i, j, k;
268      const ushort *rowA = (const ushort *) srcRowA;
269      const ushort *rowB = (const ushort *) srcRowB;
270      ushort *dst = (ushort *) dstRow;
271      for (i = j = 0, k = k0; i < (uint) dstWidth;
272           i++, j += colStride, k += colStride) {
273         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
274      }
275   }
276
277   else if (datatype == DTYPE_FLOAT && comps == 4) {
278      uint i, j, k;
279      const float(*rowA)[4] = (const float(*)[4]) srcRowA;
280      const float(*rowB)[4] = (const float(*)[4]) srcRowB;
281      float(*dst)[4] = (float(*)[4]) dstRow;
282      for (i = j = 0, k = k0; i < (uint) dstWidth;
283           i++, j += colStride, k += colStride) {
284         dst[i][0] = (rowA[j][0] + rowA[k][0] +
285                      rowB[j][0] + rowB[k][0]) * 0.25F;
286         dst[i][1] = (rowA[j][1] + rowA[k][1] +
287                      rowB[j][1] + rowB[k][1]) * 0.25F;
288         dst[i][2] = (rowA[j][2] + rowA[k][2] +
289                      rowB[j][2] + rowB[k][2]) * 0.25F;
290         dst[i][3] = (rowA[j][3] + rowA[k][3] +
291                      rowB[j][3] + rowB[k][3]) * 0.25F;
292      }
293   }
294   else if (datatype == DTYPE_FLOAT && comps == 3) {
295      uint i, j, k;
296      const float(*rowA)[3] = (const float(*)[3]) srcRowA;
297      const float(*rowB)[3] = (const float(*)[3]) srcRowB;
298      float(*dst)[3] = (float(*)[3]) dstRow;
299      for (i = j = 0, k = k0; i < (uint) dstWidth;
300           i++, j += colStride, k += colStride) {
301         dst[i][0] = (rowA[j][0] + rowA[k][0] +
302                      rowB[j][0] + rowB[k][0]) * 0.25F;
303         dst[i][1] = (rowA[j][1] + rowA[k][1] +
304                      rowB[j][1] + rowB[k][1]) * 0.25F;
305         dst[i][2] = (rowA[j][2] + rowA[k][2] +
306                      rowB[j][2] + rowB[k][2]) * 0.25F;
307      }
308   }
309   else if (datatype == DTYPE_FLOAT && comps == 2) {
310      uint i, j, k;
311      const float(*rowA)[2] = (const float(*)[2]) srcRowA;
312      const float(*rowB)[2] = (const float(*)[2]) srcRowB;
313      float(*dst)[2] = (float(*)[2]) dstRow;
314      for (i = j = 0, k = k0; i < (uint) dstWidth;
315           i++, j += colStride, k += colStride) {
316         dst[i][0] = (rowA[j][0] + rowA[k][0] +
317                      rowB[j][0] + rowB[k][0]) * 0.25F;
318         dst[i][1] = (rowA[j][1] + rowA[k][1] +
319                      rowB[j][1] + rowB[k][1]) * 0.25F;
320      }
321   }
322   else if (datatype == DTYPE_FLOAT && comps == 1) {
323      uint i, j, k;
324      const float *rowA = (const float *) srcRowA;
325      const float *rowB = (const float *) srcRowB;
326      float *dst = (float *) dstRow;
327      for (i = j = 0, k = k0; i < (uint) dstWidth;
328           i++, j += colStride, k += colStride) {
329         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
330      }
331   }
332
333   else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
334      uint i, j, k, comp;
335      const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
336      const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
337      half_float(*dst)[4] = (half_float(*)[4]) dstRow;
338      for (i = j = 0, k = k0; i < (uint) dstWidth;
339           i++, j += colStride, k += colStride) {
340         for (comp = 0; comp < 4; comp++) {
341            float aj, ak, bj, bk;
342            aj = util_half_to_float(rowA[j][comp]);
343            ak = util_half_to_float(rowA[k][comp]);
344            bj = util_half_to_float(rowB[j][comp]);
345            bk = util_half_to_float(rowB[k][comp]);
346            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
347         }
348      }
349   }
350   else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
351      uint i, j, k, comp;
352      const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
353      const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
354      half_float(*dst)[3] = (half_float(*)[3]) dstRow;
355      for (i = j = 0, k = k0; i < (uint) dstWidth;
356           i++, j += colStride, k += colStride) {
357         for (comp = 0; comp < 3; comp++) {
358            float aj, ak, bj, bk;
359            aj = util_half_to_float(rowA[j][comp]);
360            ak = util_half_to_float(rowA[k][comp]);
361            bj = util_half_to_float(rowB[j][comp]);
362            bk = util_half_to_float(rowB[k][comp]);
363            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
364         }
365      }
366   }
367   else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
368      uint i, j, k, comp;
369      const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
370      const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
371      half_float(*dst)[2] = (half_float(*)[2]) dstRow;
372      for (i = j = 0, k = k0; i < (uint) dstWidth;
373           i++, j += colStride, k += colStride) {
374         for (comp = 0; comp < 2; comp++) {
375            float aj, ak, bj, bk;
376            aj = util_half_to_float(rowA[j][comp]);
377            ak = util_half_to_float(rowA[k][comp]);
378            bj = util_half_to_float(rowB[j][comp]);
379            bk = util_half_to_float(rowB[k][comp]);
380            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
381         }
382      }
383   }
384   else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
385      uint i, j, k;
386      const half_float *rowA = (const half_float *) srcRowA;
387      const half_float *rowB = (const half_float *) srcRowB;
388      half_float *dst = (half_float *) dstRow;
389      for (i = j = 0, k = k0; i < (uint) dstWidth;
390           i++, j += colStride, k += colStride) {
391         float aj, ak, bj, bk;
392         aj = util_half_to_float(rowA[j]);
393         ak = util_half_to_float(rowA[k]);
394         bj = util_half_to_float(rowB[j]);
395         bk = util_half_to_float(rowB[k]);
396         dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
397      }
398   }
399
400   else if (datatype == DTYPE_UINT && comps == 1) {
401      uint i, j, k;
402      const uint *rowA = (const uint *) srcRowA;
403      const uint *rowB = (const uint *) srcRowB;
404      uint *dst = (uint *) dstRow;
405      for (i = j = 0, k = k0; i < (uint) dstWidth;
406           i++, j += colStride, k += colStride) {
407         dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
408      }
409   }
410
411   else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
412      uint i, j, k;
413      const ushort *rowA = (const ushort *) srcRowA;
414      const ushort *rowB = (const ushort *) srcRowB;
415      ushort *dst = (ushort *) dstRow;
416      for (i = j = 0, k = k0; i < (uint) dstWidth;
417           i++, j += colStride, k += colStride) {
418         const int rowAr0 = rowA[j] & 0x1f;
419         const int rowAr1 = rowA[k] & 0x1f;
420         const int rowBr0 = rowB[j] & 0x1f;
421         const int rowBr1 = rowB[k] & 0x1f;
422         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
423         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
424         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
425         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
426         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
427         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
428         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
429         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
430         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
431         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
432         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
433         dst[i] = (blue << 11) | (green << 5) | red;
434      }
435   }
436   else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
437      uint i, j, k;
438      const ushort *rowA = (const ushort *) srcRowA;
439      const ushort *rowB = (const ushort *) srcRowB;
440      ushort *dst = (ushort *) dstRow;
441      for (i = j = 0, k = k0; i < (uint) dstWidth;
442           i++, j += colStride, k += colStride) {
443         const int rowAr0 = rowA[j] & 0xf;
444         const int rowAr1 = rowA[k] & 0xf;
445         const int rowBr0 = rowB[j] & 0xf;
446         const int rowBr1 = rowB[k] & 0xf;
447         const int rowAg0 = (rowA[j] >> 4) & 0xf;
448         const int rowAg1 = (rowA[k] >> 4) & 0xf;
449         const int rowBg0 = (rowB[j] >> 4) & 0xf;
450         const int rowBg1 = (rowB[k] >> 4) & 0xf;
451         const int rowAb0 = (rowA[j] >> 8) & 0xf;
452         const int rowAb1 = (rowA[k] >> 8) & 0xf;
453         const int rowBb0 = (rowB[j] >> 8) & 0xf;
454         const int rowBb1 = (rowB[k] >> 8) & 0xf;
455         const int rowAa0 = (rowA[j] >> 12) & 0xf;
456         const int rowAa1 = (rowA[k] >> 12) & 0xf;
457         const int rowBa0 = (rowB[j] >> 12) & 0xf;
458         const int rowBa1 = (rowB[k] >> 12) & 0xf;
459         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
460         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
461         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
462         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
463         dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
464      }
465   }
466   else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
467      uint i, j, k;
468      const ushort *rowA = (const ushort *) srcRowA;
469      const ushort *rowB = (const ushort *) srcRowB;
470      ushort *dst = (ushort *) dstRow;
471      for (i = j = 0, k = k0; i < (uint) dstWidth;
472           i++, j += colStride, k += colStride) {
473         const int rowAr0 = rowA[j] & 0x1f;
474         const int rowAr1 = rowA[k] & 0x1f;
475         const int rowBr0 = rowB[j] & 0x1f;
476         const int rowBr1 = rowB[k] & 0x1f;
477         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
478         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
479         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
480         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
481         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
482         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
483         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
484         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
485         const int rowAa0 = (rowA[j] >> 15) & 0x1;
486         const int rowAa1 = (rowA[k] >> 15) & 0x1;
487         const int rowBa0 = (rowB[j] >> 15) & 0x1;
488         const int rowBa1 = (rowB[k] >> 15) & 0x1;
489         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
490         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
491         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
492         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
493         dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
494      }
495   }
496   else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
497      uint i, j, k;
498      const ubyte *rowA = (const ubyte *) srcRowA;
499      const ubyte *rowB = (const ubyte *) srcRowB;
500      ubyte *dst = (ubyte *) dstRow;
501      for (i = j = 0, k = k0; i < (uint) dstWidth;
502           i++, j += colStride, k += colStride) {
503         const int rowAr0 = rowA[j] & 0x3;
504         const int rowAr1 = rowA[k] & 0x3;
505         const int rowBr0 = rowB[j] & 0x3;
506         const int rowBr1 = rowB[k] & 0x3;
507         const int rowAg0 = (rowA[j] >> 2) & 0x7;
508         const int rowAg1 = (rowA[k] >> 2) & 0x7;
509         const int rowBg0 = (rowB[j] >> 2) & 0x7;
510         const int rowBg1 = (rowB[k] >> 2) & 0x7;
511         const int rowAb0 = (rowA[j] >> 5) & 0x7;
512         const int rowAb1 = (rowA[k] >> 5) & 0x7;
513         const int rowBb0 = (rowB[j] >> 5) & 0x7;
514         const int rowBb1 = (rowB[k] >> 5) & 0x7;
515         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
516         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
517         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
518         dst[i] = (blue << 5) | (green << 2) | red;
519      }
520   }
521   else {
522      debug_printf("bad format in do_row()");
523   }
524}
525
526
527/**
528 * Average together four rows of a source image to produce a single new
529 * row in the dest image.  It's legal for the two source rows to point
530 * to the same data.  The source width must be equal to either the
531 * dest width or two times the dest width.
532 *
533 * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
534 *                  \c GL_FLOAT, etc.
535 * \param comps     number of components per pixel (1..4)
536 * \param srcWidth  Width of a row in the source data
537 * \param srcRowA   Pointer to one of the rows of source data
538 * \param srcRowB   Pointer to one of the rows of source data
539 * \param srcRowC   Pointer to one of the rows of source data
540 * \param srcRowD   Pointer to one of the rows of source data
541 * \param dstWidth  Width of a row in the destination data
542 * \param srcRowA   Pointer to the row of destination data
543 */
544static void
545do_row_3D(enum dtype datatype, uint comps, int srcWidth,
546          const void *srcRowA, const void *srcRowB,
547          const void *srcRowC, const void *srcRowD,
548          int dstWidth, void *dstRow)
549{
550   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
551   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
552   uint i, j, k;
553
554   assert(comps >= 1);
555   assert(comps <= 4);
556
557   if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
558      DECLARE_ROW_POINTERS(ubyte, 4);
559
560      for (i = j = 0, k = k0; i < (uint) dstWidth;
561           i++, j += colStride, k += colStride) {
562         FILTER_3D(0);
563         FILTER_3D(1);
564         FILTER_3D(2);
565         FILTER_3D(3);
566      }
567   }
568   else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
569      DECLARE_ROW_POINTERS(ubyte, 3);
570
571      for (i = j = 0, k = k0; i < (uint) dstWidth;
572           i++, j += colStride, k += colStride) {
573         FILTER_3D(0);
574         FILTER_3D(1);
575         FILTER_3D(2);
576      }
577   }
578   else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
579      DECLARE_ROW_POINTERS(ubyte, 2);
580
581      for (i = j = 0, k = k0; i < (uint) dstWidth;
582           i++, j += colStride, k += colStride) {
583         FILTER_3D(0);
584         FILTER_3D(1);
585      }
586   }
587   else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
588      DECLARE_ROW_POINTERS(ubyte, 1);
589
590      for (i = j = 0, k = k0; i < (uint) dstWidth;
591           i++, j += colStride, k += colStride) {
592         FILTER_3D(0);
593      }
594   }
595   else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
596      DECLARE_ROW_POINTERS(ushort, 4);
597
598      for (i = j = 0, k = k0; i < (uint) dstWidth;
599           i++, j += colStride, k += colStride) {
600         FILTER_3D(0);
601         FILTER_3D(1);
602         FILTER_3D(2);
603         FILTER_3D(3);
604      }
605   }
606   else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
607      DECLARE_ROW_POINTERS(ushort, 3);
608
609      for (i = j = 0, k = k0; i < (uint) dstWidth;
610           i++, j += colStride, k += colStride) {
611         FILTER_3D(0);
612         FILTER_3D(1);
613         FILTER_3D(2);
614      }
615   }
616   else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
617      DECLARE_ROW_POINTERS(ushort, 2);
618
619      for (i = j = 0, k = k0; i < (uint) dstWidth;
620           i++, j += colStride, k += colStride) {
621         FILTER_3D(0);
622         FILTER_3D(1);
623      }
624   }
625   else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
626      DECLARE_ROW_POINTERS(ushort, 1);
627
628      for (i = j = 0, k = k0; i < (uint) dstWidth;
629           i++, j += colStride, k += colStride) {
630         FILTER_3D(0);
631      }
632   }
633   else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
634      DECLARE_ROW_POINTERS(float, 4);
635
636      for (i = j = 0, k = k0; i < (uint) dstWidth;
637           i++, j += colStride, k += colStride) {
638         FILTER_F_3D(0);
639         FILTER_F_3D(1);
640         FILTER_F_3D(2);
641         FILTER_F_3D(3);
642      }
643   }
644   else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
645      DECLARE_ROW_POINTERS(float, 3);
646
647      for (i = j = 0, k = k0; i < (uint) dstWidth;
648           i++, j += colStride, k += colStride) {
649         FILTER_F_3D(0);
650         FILTER_F_3D(1);
651         FILTER_F_3D(2);
652      }
653   }
654   else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
655      DECLARE_ROW_POINTERS(float, 2);
656
657      for (i = j = 0, k = k0; i < (uint) dstWidth;
658           i++, j += colStride, k += colStride) {
659         FILTER_F_3D(0);
660         FILTER_F_3D(1);
661      }
662   }
663   else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
664      DECLARE_ROW_POINTERS(float, 1);
665
666      for (i = j = 0, k = k0; i < (uint) dstWidth;
667           i++, j += colStride, k += colStride) {
668         FILTER_F_3D(0);
669      }
670   }
671   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
672      DECLARE_ROW_POINTERS(half_float, 4);
673
674      for (i = j = 0, k = k0; i < (uint) dstWidth;
675           i++, j += colStride, k += colStride) {
676         FILTER_HF_3D(0);
677         FILTER_HF_3D(1);
678         FILTER_HF_3D(2);
679         FILTER_HF_3D(3);
680      }
681   }
682   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
683      DECLARE_ROW_POINTERS(half_float, 4);
684
685      for (i = j = 0, k = k0; i < (uint) dstWidth;
686           i++, j += colStride, k += colStride) {
687         FILTER_HF_3D(0);
688         FILTER_HF_3D(1);
689         FILTER_HF_3D(2);
690      }
691   }
692   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
693      DECLARE_ROW_POINTERS(half_float, 4);
694
695      for (i = j = 0, k = k0; i < (uint) dstWidth;
696           i++, j += colStride, k += colStride) {
697         FILTER_HF_3D(0);
698         FILTER_HF_3D(1);
699      }
700   }
701   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
702      DECLARE_ROW_POINTERS(half_float, 4);
703
704      for (i = j = 0, k = k0; i < (uint) dstWidth;
705           i++, j += colStride, k += colStride) {
706         FILTER_HF_3D(0);
707      }
708   }
709   else if ((datatype == DTYPE_UINT) && (comps == 1)) {
710      const uint *rowA = (const uint *) srcRowA;
711      const uint *rowB = (const uint *) srcRowB;
712      const uint *rowC = (const uint *) srcRowC;
713      const uint *rowD = (const uint *) srcRowD;
714      float *dst = (float *) dstRow;
715
716      for (i = j = 0, k = k0; i < (uint) dstWidth;
717           i++, j += colStride, k += colStride) {
718         const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
719                               + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
720                               + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
721                               + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
722         dst[i] = (float)((double) tmp * 0.125);
723      }
724   }
725   else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
726      DECLARE_ROW_POINTERS0(ushort);
727
728      for (i = j = 0, k = k0; i < (uint) dstWidth;
729           i++, j += colStride, k += colStride) {
730         const int rowAr0 = rowA[j] & 0x1f;
731         const int rowAr1 = rowA[k] & 0x1f;
732         const int rowBr0 = rowB[j] & 0x1f;
733         const int rowBr1 = rowB[k] & 0x1f;
734         const int rowCr0 = rowC[j] & 0x1f;
735         const int rowCr1 = rowC[k] & 0x1f;
736         const int rowDr0 = rowD[j] & 0x1f;
737         const int rowDr1 = rowD[k] & 0x1f;
738         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
739         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
740         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
741         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
742         const int rowCg0 = (rowC[j] >> 5) & 0x3f;
743         const int rowCg1 = (rowC[k] >> 5) & 0x3f;
744         const int rowDg0 = (rowD[j] >> 5) & 0x3f;
745         const int rowDg1 = (rowD[k] >> 5) & 0x3f;
746         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
747         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
748         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
749         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
750         const int rowCb0 = (rowC[j] >> 11) & 0x1f;
751         const int rowCb1 = (rowC[k] >> 11) & 0x1f;
752         const int rowDb0 = (rowD[j] >> 11) & 0x1f;
753         const int rowDb1 = (rowD[k] >> 11) & 0x1f;
754         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
755                                       rowCr0, rowCr1, rowDr0, rowDr1);
756         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
757                                       rowCg0, rowCg1, rowDg0, rowDg1);
758         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
759                                       rowCb0, rowCb1, rowDb0, rowDb1);
760         dst[i] = (b << 11) | (g << 5) | r;
761      }
762   }
763   else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
764      DECLARE_ROW_POINTERS0(ushort);
765
766      for (i = j = 0, k = k0; i < (uint) dstWidth;
767           i++, j += colStride, k += colStride) {
768         const int rowAr0 = rowA[j] & 0xf;
769         const int rowAr1 = rowA[k] & 0xf;
770         const int rowBr0 = rowB[j] & 0xf;
771         const int rowBr1 = rowB[k] & 0xf;
772         const int rowCr0 = rowC[j] & 0xf;
773         const int rowCr1 = rowC[k] & 0xf;
774         const int rowDr0 = rowD[j] & 0xf;
775         const int rowDr1 = rowD[k] & 0xf;
776         const int rowAg0 = (rowA[j] >> 4) & 0xf;
777         const int rowAg1 = (rowA[k] >> 4) & 0xf;
778         const int rowBg0 = (rowB[j] >> 4) & 0xf;
779         const int rowBg1 = (rowB[k] >> 4) & 0xf;
780         const int rowCg0 = (rowC[j] >> 4) & 0xf;
781         const int rowCg1 = (rowC[k] >> 4) & 0xf;
782         const int rowDg0 = (rowD[j] >> 4) & 0xf;
783         const int rowDg1 = (rowD[k] >> 4) & 0xf;
784         const int rowAb0 = (rowA[j] >> 8) & 0xf;
785         const int rowAb1 = (rowA[k] >> 8) & 0xf;
786         const int rowBb0 = (rowB[j] >> 8) & 0xf;
787         const int rowBb1 = (rowB[k] >> 8) & 0xf;
788         const int rowCb0 = (rowC[j] >> 8) & 0xf;
789         const int rowCb1 = (rowC[k] >> 8) & 0xf;
790         const int rowDb0 = (rowD[j] >> 8) & 0xf;
791         const int rowDb1 = (rowD[k] >> 8) & 0xf;
792         const int rowAa0 = (rowA[j] >> 12) & 0xf;
793         const int rowAa1 = (rowA[k] >> 12) & 0xf;
794         const int rowBa0 = (rowB[j] >> 12) & 0xf;
795         const int rowBa1 = (rowB[k] >> 12) & 0xf;
796         const int rowCa0 = (rowC[j] >> 12) & 0xf;
797         const int rowCa1 = (rowC[k] >> 12) & 0xf;
798         const int rowDa0 = (rowD[j] >> 12) & 0xf;
799         const int rowDa1 = (rowD[k] >> 12) & 0xf;
800         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
801                                       rowCr0, rowCr1, rowDr0, rowDr1);
802         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
803                                       rowCg0, rowCg1, rowDg0, rowDg1);
804         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
805                                       rowCb0, rowCb1, rowDb0, rowDb1);
806         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
807                                       rowCa0, rowCa1, rowDa0, rowDa1);
808
809         dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
810      }
811   }
812   else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
813      DECLARE_ROW_POINTERS0(ushort);
814
815      for (i = j = 0, k = k0; i < (uint) dstWidth;
816           i++, j += colStride, k += colStride) {
817         const int rowAr0 = rowA[j] & 0x1f;
818         const int rowAr1 = rowA[k] & 0x1f;
819         const int rowBr0 = rowB[j] & 0x1f;
820         const int rowBr1 = rowB[k] & 0x1f;
821         const int rowCr0 = rowC[j] & 0x1f;
822         const int rowCr1 = rowC[k] & 0x1f;
823         const int rowDr0 = rowD[j] & 0x1f;
824         const int rowDr1 = rowD[k] & 0x1f;
825         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
826         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
827         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
828         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
829         const int rowCg0 = (rowC[j] >> 5) & 0x1f;
830         const int rowCg1 = (rowC[k] >> 5) & 0x1f;
831         const int rowDg0 = (rowD[j] >> 5) & 0x1f;
832         const int rowDg1 = (rowD[k] >> 5) & 0x1f;
833         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
834         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
835         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
836         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
837         const int rowCb0 = (rowC[j] >> 10) & 0x1f;
838         const int rowCb1 = (rowC[k] >> 10) & 0x1f;
839         const int rowDb0 = (rowD[j] >> 10) & 0x1f;
840         const int rowDb1 = (rowD[k] >> 10) & 0x1f;
841         const int rowAa0 = (rowA[j] >> 15) & 0x1;
842         const int rowAa1 = (rowA[k] >> 15) & 0x1;
843         const int rowBa0 = (rowB[j] >> 15) & 0x1;
844         const int rowBa1 = (rowB[k] >> 15) & 0x1;
845         const int rowCa0 = (rowC[j] >> 15) & 0x1;
846         const int rowCa1 = (rowC[k] >> 15) & 0x1;
847         const int rowDa0 = (rowD[j] >> 15) & 0x1;
848         const int rowDa1 = (rowD[k] >> 15) & 0x1;
849         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
850                                       rowCr0, rowCr1, rowDr0, rowDr1);
851         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
852                                       rowCg0, rowCg1, rowDg0, rowDg1);
853         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
854                                       rowCb0, rowCb1, rowDb0, rowDb1);
855         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
856                                       rowCa0, rowCa1, rowDa0, rowDa1);
857
858         dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
859      }
860   }
861   else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
862      DECLARE_ROW_POINTERS0(ushort);
863
864      for (i = j = 0, k = k0; i < (uint) dstWidth;
865           i++, j += colStride, k += colStride) {
866         const int rowAr0 = rowA[j] & 0x3;
867         const int rowAr1 = rowA[k] & 0x3;
868         const int rowBr0 = rowB[j] & 0x3;
869         const int rowBr1 = rowB[k] & 0x3;
870         const int rowCr0 = rowC[j] & 0x3;
871         const int rowCr1 = rowC[k] & 0x3;
872         const int rowDr0 = rowD[j] & 0x3;
873         const int rowDr1 = rowD[k] & 0x3;
874         const int rowAg0 = (rowA[j] >> 2) & 0x7;
875         const int rowAg1 = (rowA[k] >> 2) & 0x7;
876         const int rowBg0 = (rowB[j] >> 2) & 0x7;
877         const int rowBg1 = (rowB[k] >> 2) & 0x7;
878         const int rowCg0 = (rowC[j] >> 2) & 0x7;
879         const int rowCg1 = (rowC[k] >> 2) & 0x7;
880         const int rowDg0 = (rowD[j] >> 2) & 0x7;
881         const int rowDg1 = (rowD[k] >> 2) & 0x7;
882         const int rowAb0 = (rowA[j] >> 5) & 0x7;
883         const int rowAb1 = (rowA[k] >> 5) & 0x7;
884         const int rowBb0 = (rowB[j] >> 5) & 0x7;
885         const int rowBb1 = (rowB[k] >> 5) & 0x7;
886         const int rowCb0 = (rowC[j] >> 5) & 0x7;
887         const int rowCb1 = (rowC[k] >> 5) & 0x7;
888         const int rowDb0 = (rowD[j] >> 5) & 0x7;
889         const int rowDb1 = (rowD[k] >> 5) & 0x7;
890         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
891                                       rowCr0, rowCr1, rowDr0, rowDr1);
892         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
893                                       rowCg0, rowCg1, rowDg0, rowDg1);
894         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
895                                       rowCb0, rowCb1, rowDb0, rowDb1);
896         dst[i] = (b << 5) | (g << 2) | r;
897      }
898   }
899   else {
900      debug_printf("bad format in do_row_3D()");
901   }
902}
903
904
905
906static void
907format_to_type_comps(enum pipe_format pformat,
908                     enum dtype *datatype, uint *comps)
909{
910   /* XXX I think this could be implemented in terms of the pf_*() functions */
911   switch (pformat) {
912   case PIPE_FORMAT_B8G8R8A8_UNORM:
913   case PIPE_FORMAT_B8G8R8X8_UNORM:
914   case PIPE_FORMAT_A8R8G8B8_UNORM:
915   case PIPE_FORMAT_X8R8G8B8_UNORM:
916   case PIPE_FORMAT_A8B8G8R8_SRGB:
917   case PIPE_FORMAT_X8B8G8R8_SRGB:
918   case PIPE_FORMAT_B8G8R8A8_SRGB:
919   case PIPE_FORMAT_B8G8R8X8_SRGB:
920   case PIPE_FORMAT_A8R8G8B8_SRGB:
921   case PIPE_FORMAT_X8R8G8B8_SRGB:
922   case PIPE_FORMAT_R8G8B8_SRGB:
923      *datatype = DTYPE_UBYTE;
924      *comps = 4;
925      return;
926   case PIPE_FORMAT_B5G5R5X1_UNORM:
927   case PIPE_FORMAT_B5G5R5A1_UNORM:
928      *datatype = DTYPE_USHORT_1_5_5_5_REV;
929      *comps = 4;
930      return;
931   case PIPE_FORMAT_B4G4R4A4_UNORM:
932      *datatype = DTYPE_USHORT_4_4_4_4;
933      *comps = 4;
934      return;
935   case PIPE_FORMAT_B5G6R5_UNORM:
936      *datatype = DTYPE_USHORT_5_6_5;
937      *comps = 3;
938      return;
939   case PIPE_FORMAT_L8_UNORM:
940   case PIPE_FORMAT_L8_SRGB:
941   case PIPE_FORMAT_A8_UNORM:
942   case PIPE_FORMAT_I8_UNORM:
943      *datatype = DTYPE_UBYTE;
944      *comps = 1;
945      return;
946   case PIPE_FORMAT_L8A8_UNORM:
947   case PIPE_FORMAT_L8A8_SRGB:
948      *datatype = DTYPE_UBYTE;
949      *comps = 2;
950      return;
951   default:
952      assert(0);
953      *datatype = DTYPE_UBYTE;
954      *comps = 0;
955      break;
956   }
957}
958
959
960static void
961reduce_1d(enum pipe_format pformat,
962          int srcWidth, const ubyte *srcPtr,
963          int dstWidth, ubyte *dstPtr)
964{
965   enum dtype datatype;
966   uint comps;
967
968   format_to_type_comps(pformat, &datatype, &comps);
969
970   /* we just duplicate the input row, kind of hack, saves code */
971   do_row(datatype, comps,
972          srcWidth, srcPtr, srcPtr,
973          dstWidth, dstPtr);
974}
975
976
977/**
978 * Strides are in bytes.  If zero, it'll be computed as width * bpp.
979 */
980static void
981reduce_2d(enum pipe_format pformat,
982          int srcWidth, int srcHeight,
983          int srcRowStride, const ubyte *srcPtr,
984          int dstWidth, int dstHeight,
985          int dstRowStride, ubyte *dstPtr)
986{
987   enum dtype datatype;
988   uint comps;
989   const int bpt = util_format_get_blocksize(pformat);
990   const ubyte *srcA, *srcB;
991   ubyte *dst;
992   int row;
993
994   format_to_type_comps(pformat, &datatype, &comps);
995
996   if (!srcRowStride)
997      srcRowStride = bpt * srcWidth;
998
999   if (!dstRowStride)
1000      dstRowStride = bpt * dstWidth;
1001
1002   /* Compute src and dst pointers */
1003   srcA = srcPtr;
1004   if (srcHeight > 1)
1005      srcB = srcA + srcRowStride;
1006   else
1007      srcB = srcA;
1008   dst = dstPtr;
1009
1010   for (row = 0; row < dstHeight; row++) {
1011      do_row(datatype, comps,
1012             srcWidth, srcA, srcB,
1013             dstWidth, dst);
1014      srcA += 2 * srcRowStride;
1015      srcB += 2 * srcRowStride;
1016      dst += dstRowStride;
1017   }
1018}
1019
1020
1021static void
1022reduce_3d(enum pipe_format pformat,
1023          int srcWidth, int srcHeight, int srcDepth,
1024          int srcRowStride, int srcImageStride, const ubyte *srcPtr,
1025          int dstWidth, int dstHeight, int dstDepth,
1026          int dstRowStride, int dstImageStride, ubyte *dstPtr)
1027{
1028   const int bpt = util_format_get_blocksize(pformat);
1029   int img, row;
1030   int srcImageOffset, srcRowOffset;
1031   enum dtype datatype;
1032   uint comps;
1033
1034   format_to_type_comps(pformat, &datatype, &comps);
1035
1036   /* XXX I think we should rather assert those strides */
1037   if (!srcImageStride)
1038      srcImageStride = srcWidth * srcHeight * bpt;
1039   if (!dstImageStride)
1040      dstImageStride = dstWidth * dstHeight * bpt;
1041
1042   if (!srcRowStride)
1043      srcRowStride = srcWidth * bpt;
1044   if (!dstRowStride)
1045      dstRowStride = dstWidth * bpt;
1046
1047   /* Offset between adjacent src images to be averaged together */
1048   srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
1049
1050   /* Offset between adjacent src rows to be averaged together */
1051   srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1052
1053   /*
1054    * Need to average together up to 8 src pixels for each dest pixel.
1055    * Break that down into 3 operations:
1056    *   1. take two rows from source image and average them together.
1057    *   2. take two rows from next source image and average them together.
1058    *   3. take the two averaged rows and average them for the final dst row.
1059    */
1060
1061   /*
1062   printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1063          srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1064   */
1065
1066   for (img = 0; img < dstDepth; img++) {
1067      /* first source image pointer */
1068      const ubyte *imgSrcA = srcPtr
1069         + img * (srcImageStride + srcImageOffset);
1070      /* second source image pointer */
1071      const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1072      /* address of the dest image */
1073      ubyte *imgDst = dstPtr + img * dstImageStride;
1074
1075      /* setup the four source row pointers and the dest row pointer */
1076      const ubyte *srcImgARowA = imgSrcA;
1077      const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1078      const ubyte *srcImgBRowA = imgSrcB;
1079      const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1080      ubyte *dstImgRow = imgDst;
1081
1082      for (row = 0; row < dstHeight; row++) {
1083         do_row_3D(datatype, comps, srcWidth,
1084                   srcImgARowA, srcImgARowB,
1085                   srcImgBRowA, srcImgBRowB,
1086                   dstWidth, dstImgRow);
1087
1088         /* advance to next rows */
1089         srcImgARowA += srcRowStride + srcRowOffset;
1090         srcImgARowB += srcRowStride + srcRowOffset;
1091         srcImgBRowA += srcRowStride + srcRowOffset;
1092         srcImgBRowB += srcRowStride + srcRowOffset;
1093         dstImgRow += dstImageStride;
1094      }
1095   }
1096}
1097
1098
1099
1100
1101static void
1102make_1d_mipmap(struct gen_mipmap_state *ctx,
1103               struct pipe_resource *pt,
1104               uint layer, uint baseLevel, uint lastLevel)
1105{
1106   struct pipe_context *pipe = ctx->pipe;
1107   uint dstLevel;
1108
1109   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1110      const uint srcLevel = dstLevel - 1;
1111      struct pipe_transfer *srcTrans, *dstTrans;
1112      void *srcMap, *dstMap;
1113
1114      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1115                                   PIPE_TRANSFER_READ, 0, 0,
1116                                   u_minify(pt->width0, srcLevel),
1117                                   u_minify(pt->height0, srcLevel));
1118      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1119                                   PIPE_TRANSFER_WRITE, 0, 0,
1120                                   u_minify(pt->width0, dstLevel),
1121                                   u_minify(pt->height0, dstLevel));
1122
1123      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1124      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1125
1126      reduce_1d(pt->format,
1127                srcTrans->box.width, srcMap,
1128                dstTrans->box.width, dstMap);
1129
1130      pipe->transfer_unmap(pipe, srcTrans);
1131      pipe->transfer_unmap(pipe, dstTrans);
1132
1133      pipe->transfer_destroy(pipe, srcTrans);
1134      pipe->transfer_destroy(pipe, dstTrans);
1135   }
1136}
1137
1138
1139static void
1140make_2d_mipmap(struct gen_mipmap_state *ctx,
1141               struct pipe_resource *pt,
1142               uint layer, uint baseLevel, uint lastLevel)
1143{
1144   struct pipe_context *pipe = ctx->pipe;
1145   uint dstLevel;
1146
1147   assert(util_format_get_blockwidth(pt->format) == 1);
1148   assert(util_format_get_blockheight(pt->format) == 1);
1149
1150   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1151      const uint srcLevel = dstLevel - 1;
1152      struct pipe_transfer *srcTrans, *dstTrans;
1153      ubyte *srcMap, *dstMap;
1154
1155      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1156                                   PIPE_TRANSFER_READ, 0, 0,
1157                                   u_minify(pt->width0, srcLevel),
1158                                   u_minify(pt->height0, srcLevel));
1159      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1160                                   PIPE_TRANSFER_WRITE, 0, 0,
1161                                   u_minify(pt->width0, dstLevel),
1162                                   u_minify(pt->height0, dstLevel));
1163
1164      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1165      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1166
1167      reduce_2d(pt->format,
1168                srcTrans->box.width, srcTrans->box.height,
1169                srcTrans->stride, srcMap,
1170                dstTrans->box.width, dstTrans->box.height,
1171                dstTrans->stride, dstMap);
1172
1173      pipe->transfer_unmap(pipe, srcTrans);
1174      pipe->transfer_unmap(pipe, dstTrans);
1175
1176      pipe->transfer_destroy(pipe, srcTrans);
1177      pipe->transfer_destroy(pipe, dstTrans);
1178   }
1179}
1180
1181
1182/* XXX looks a bit more like it could work now but need to test */
1183static void
1184make_3d_mipmap(struct gen_mipmap_state *ctx,
1185               struct pipe_resource *pt,
1186               uint face, uint baseLevel, uint lastLevel)
1187{
1188   struct pipe_context *pipe = ctx->pipe;
1189   uint dstLevel;
1190   struct pipe_box src_box, dst_box;
1191
1192   assert(util_format_get_blockwidth(pt->format) == 1);
1193   assert(util_format_get_blockheight(pt->format) == 1);
1194
1195   src_box.x = src_box.y = src_box.z = 0;
1196   dst_box.x = dst_box.y = dst_box.z = 0;
1197
1198   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1199      const uint srcLevel = dstLevel - 1;
1200      struct pipe_transfer *srcTrans, *dstTrans;
1201      ubyte *srcMap, *dstMap;
1202      struct pipe_box src_box, dst_box;
1203      src_box.width = u_minify(pt->width0, srcLevel);
1204      src_box.height = u_minify(pt->height0, srcLevel);
1205      src_box.depth = u_minify(pt->depth0, srcLevel);
1206      dst_box.width = u_minify(pt->width0, dstLevel);
1207      dst_box.height = u_minify(pt->height0, dstLevel);
1208      dst_box.depth = u_minify(pt->depth0, dstLevel);
1209
1210      srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
1211                                    PIPE_TRANSFER_READ,
1212                                    &src_box);
1213      dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
1214                                    PIPE_TRANSFER_WRITE,
1215                                    &dst_box);
1216
1217      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1218      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1219
1220      reduce_3d(pt->format,
1221                srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
1222                srcTrans->stride, srcTrans->layer_stride, srcMap,
1223                dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
1224                dstTrans->stride, dstTrans->layer_stride, dstMap);
1225
1226      pipe->transfer_unmap(pipe, srcTrans);
1227      pipe->transfer_unmap(pipe, dstTrans);
1228
1229      pipe->transfer_destroy(pipe, srcTrans);
1230      pipe->transfer_destroy(pipe, dstTrans);
1231   }
1232}
1233
1234
1235static void
1236fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1237                    struct pipe_resource *pt,
1238                    uint layer, uint baseLevel, uint lastLevel)
1239{
1240   switch (pt->target) {
1241   case PIPE_TEXTURE_1D:
1242      make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1243      break;
1244   case PIPE_TEXTURE_2D:
1245   case PIPE_TEXTURE_RECT:
1246   case PIPE_TEXTURE_CUBE:
1247      make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1248      break;
1249   case PIPE_TEXTURE_3D:
1250      make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1251      break;
1252   default:
1253      assert(0);
1254   }
1255}
1256
1257
1258/**
1259 * Create a mipmap generation context.
1260 * The idea is to create one of these and re-use it each time we need to
1261 * generate a mipmap.
1262 */
1263struct gen_mipmap_state *
1264util_create_gen_mipmap(struct pipe_context *pipe,
1265                       struct cso_context *cso)
1266{
1267   struct gen_mipmap_state *ctx;
1268   uint i;
1269
1270   ctx = CALLOC_STRUCT(gen_mipmap_state);
1271   if (!ctx)
1272      return NULL;
1273
1274   ctx->pipe = pipe;
1275   ctx->cso = cso;
1276
1277   /* disabled blending/masking */
1278   memset(&ctx->blend_keep_color, 0, sizeof(ctx->blend_keep_color));
1279   memset(&ctx->blend_write_color, 0, sizeof(ctx->blend_write_color));
1280   ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
1281
1282   /* no-op depth/stencil/alpha */
1283   memset(&ctx->dsa_keep_depth, 0, sizeof(ctx->dsa_keep_depth));
1284   memset(&ctx->dsa_write_depth, 0, sizeof(ctx->dsa_write_depth));
1285   ctx->dsa_write_depth.depth.enabled = 1;
1286   ctx->dsa_write_depth.depth.func = PIPE_FUNC_ALWAYS;
1287   ctx->dsa_write_depth.depth.writemask = 1;
1288
1289   /* rasterizer */
1290   memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1291   ctx->rasterizer.cull_face = PIPE_FACE_NONE;
1292   ctx->rasterizer.gl_rasterization_rules = 1;
1293   ctx->rasterizer.depth_clip = 1;
1294
1295   /* sampler state */
1296   memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1297   ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1298   ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1299   ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1300   ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1301   ctx->sampler.normalized_coords = 1;
1302
1303   /* vertex elements state */
1304   memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
1305   for (i = 0; i < 2; i++) {
1306      ctx->velem[i].src_offset = i * 4 * sizeof(float);
1307      ctx->velem[i].instance_divisor = 0;
1308      ctx->velem[i].vertex_buffer_index = 0;
1309      ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
1310   }
1311
1312   /* vertex data that doesn't change */
1313   for (i = 0; i < 4; i++) {
1314      ctx->vertices[i][0][2] = 0.0f; /* z */
1315      ctx->vertices[i][0][3] = 1.0f; /* w */
1316      ctx->vertices[i][1][3] = 1.0f; /* q */
1317   }
1318
1319   /* Note: the actual vertex buffer is allocated as needed below */
1320
1321   return ctx;
1322}
1323
1324
1325/**
1326 * Helper function to set the fragment shaders.
1327 */
1328static INLINE void
1329set_fragment_shader(struct gen_mipmap_state *ctx, uint type,
1330                    boolean output_depth)
1331{
1332   if (output_depth) {
1333      if (!ctx->fs_depth[type])
1334         ctx->fs_depth[type] =
1335            util_make_fragment_tex_shader_writedepth(ctx->pipe, type,
1336                                                     TGSI_INTERPOLATE_LINEAR);
1337
1338      cso_set_fragment_shader_handle(ctx->cso, ctx->fs_depth[type]);
1339   }
1340   else {
1341      if (!ctx->fs_color[type])
1342         ctx->fs_color[type] =
1343            util_make_fragment_tex_shader(ctx->pipe, type,
1344                                          TGSI_INTERPOLATE_LINEAR);
1345
1346      cso_set_fragment_shader_handle(ctx->cso, ctx->fs_color[type]);
1347   }
1348}
1349
1350
1351/**
1352 * Helper function to set the vertex shader.
1353 */
1354static INLINE void
1355set_vertex_shader(struct gen_mipmap_state *ctx)
1356{
1357   /* vertex shader - still required to provide the linkage between
1358    * fragment shader input semantics and vertex_element/buffers.
1359    */
1360   if (!ctx->vs)
1361   {
1362      const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1363                                      TGSI_SEMANTIC_GENERIC };
1364      const uint semantic_indexes[] = { 0, 0 };
1365      ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
1366                                                    semantic_names,
1367                                                    semantic_indexes);
1368   }
1369
1370   cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1371}
1372
1373
1374/**
1375 * Get next "slot" of vertex space in the vertex buffer.
1376 * We're allocating one large vertex buffer and using it piece by piece.
1377 */
1378static unsigned
1379get_next_slot(struct gen_mipmap_state *ctx)
1380{
1381   const unsigned max_slots = 4096 / sizeof ctx->vertices;
1382
1383   if (ctx->vbuf_slot >= max_slots) {
1384      pipe_resource_reference(&ctx->vbuf, NULL);
1385      ctx->vbuf_slot = 0;
1386   }
1387
1388   if (!ctx->vbuf) {
1389      ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1390                                     PIPE_BIND_VERTEX_BUFFER,
1391                                     PIPE_USAGE_STREAM,
1392                                     max_slots * sizeof ctx->vertices);
1393   }
1394
1395   return ctx->vbuf_slot++ * sizeof ctx->vertices;
1396}
1397
1398
1399static unsigned
1400set_vertex_data(struct gen_mipmap_state *ctx,
1401                enum pipe_texture_target tex_target,
1402                uint layer, float r)
1403{
1404   unsigned offset;
1405
1406   /* vert[0].position */
1407   ctx->vertices[0][0][0] = -1.0f; /*x*/
1408   ctx->vertices[0][0][1] = -1.0f; /*y*/
1409
1410   /* vert[1].position */
1411   ctx->vertices[1][0][0] = 1.0f;
1412   ctx->vertices[1][0][1] = -1.0f;
1413
1414   /* vert[2].position */
1415   ctx->vertices[2][0][0] = 1.0f;
1416   ctx->vertices[2][0][1] = 1.0f;
1417
1418   /* vert[3].position */
1419   ctx->vertices[3][0][0] = -1.0f;
1420   ctx->vertices[3][0][1] = 1.0f;
1421
1422   /* Setup vertex texcoords.  This is a little tricky for cube maps. */
1423   if (tex_target == PIPE_TEXTURE_CUBE) {
1424      static const float st[4][2] = {
1425         {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1426      };
1427
1428      util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
1429                                        &ctx->vertices[0][1][0], 8);
1430   }
1431   else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
1432      /* 1D texture array  */
1433      ctx->vertices[0][1][0] = 0.0f; /*s*/
1434      ctx->vertices[0][1][1] = r; /*t*/
1435      ctx->vertices[0][1][2] = 0.0f;    /*r*/
1436
1437      ctx->vertices[1][1][0] = 1.0f;
1438      ctx->vertices[1][1][1] = r;
1439      ctx->vertices[1][1][2] = 0.0f;
1440
1441      ctx->vertices[2][1][0] = 1.0f;
1442      ctx->vertices[2][1][1] = r;
1443      ctx->vertices[2][1][2] = 0.0f;
1444
1445      ctx->vertices[3][1][0] = 0.0f;
1446      ctx->vertices[3][1][1] = r;
1447      ctx->vertices[3][1][2] = 0.0f;
1448   } else {
1449      /* 1D/2D/3D/2D array */
1450      ctx->vertices[0][1][0] = 0.0f; /*s*/
1451      ctx->vertices[0][1][1] = 0.0f; /*t*/
1452      ctx->vertices[0][1][2] = r;    /*r*/
1453
1454      ctx->vertices[1][1][0] = 1.0f;
1455      ctx->vertices[1][1][1] = 0.0f;
1456      ctx->vertices[1][1][2] = r;
1457
1458      ctx->vertices[2][1][0] = 1.0f;
1459      ctx->vertices[2][1][1] = 1.0f;
1460      ctx->vertices[2][1][2] = r;
1461
1462      ctx->vertices[3][1][0] = 0.0f;
1463      ctx->vertices[3][1][1] = 1.0f;
1464      ctx->vertices[3][1][2] = r;
1465   }
1466
1467   offset = get_next_slot( ctx );
1468
1469   pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
1470                               offset, sizeof(ctx->vertices), ctx->vertices);
1471
1472   return offset;
1473}
1474
1475
1476
1477/**
1478 * Destroy a mipmap generation context
1479 */
1480void
1481util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1482{
1483   struct pipe_context *pipe = ctx->pipe;
1484   unsigned i;
1485
1486   for (i = 0; i < Elements(ctx->fs_color); i++)
1487      if (ctx->fs_color[i])
1488         pipe->delete_fs_state(pipe, ctx->fs_color[i]);
1489
1490   for (i = 0; i < Elements(ctx->fs_depth); i++)
1491      if (ctx->fs_depth[i])
1492         pipe->delete_fs_state(pipe, ctx->fs_depth[i]);
1493
1494   if (ctx->vs)
1495      pipe->delete_vs_state(pipe, ctx->vs);
1496
1497   pipe_resource_reference(&ctx->vbuf, NULL);
1498
1499   FREE(ctx);
1500}
1501
1502
1503/**
1504 * Generate mipmap images.  It's assumed all needed texture memory is
1505 * already allocated.
1506 *
1507 * \param psv  the sampler view to the texture to generate mipmap levels for
1508 * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1509 * \param baseLevel  the first mipmap level to use as a src
1510 * \param lastLevel  the last mipmap level to generate
1511 * \param filter  the minification filter used to generate mipmap levels with
1512 * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1513 */
1514void
1515util_gen_mipmap(struct gen_mipmap_state *ctx,
1516                struct pipe_sampler_view *psv,
1517                uint face, uint baseLevel, uint lastLevel, uint filter)
1518{
1519   struct pipe_context *pipe = ctx->pipe;
1520   struct pipe_screen *screen = pipe->screen;
1521   struct pipe_framebuffer_state fb;
1522   struct pipe_resource *pt = psv->texture;
1523   uint dstLevel;
1524   uint offset;
1525   uint type;
1526   boolean is_depth = util_format_is_depth_or_stencil(psv->format);
1527
1528   /* The texture object should have room for the levels which we're
1529    * about to generate.
1530    */
1531   assert(lastLevel <= pt->last_level);
1532
1533   /* If this fails, why are we here? */
1534   assert(lastLevel > baseLevel);
1535
1536   assert(filter == PIPE_TEX_FILTER_LINEAR ||
1537          filter == PIPE_TEX_FILTER_NEAREST);
1538
1539   switch (pt->target) {
1540   case PIPE_TEXTURE_1D:
1541      type = TGSI_TEXTURE_1D;
1542      break;
1543   case PIPE_TEXTURE_2D:
1544      type = TGSI_TEXTURE_2D;
1545      break;
1546   case PIPE_TEXTURE_3D:
1547      type = TGSI_TEXTURE_3D;
1548      break;
1549   case PIPE_TEXTURE_CUBE:
1550      type = TGSI_TEXTURE_CUBE;
1551      break;
1552   case PIPE_TEXTURE_1D_ARRAY:
1553      type = TGSI_TEXTURE_1D_ARRAY;
1554      break;
1555   case PIPE_TEXTURE_2D_ARRAY:
1556      type = TGSI_TEXTURE_2D_ARRAY;
1557      break;
1558   default:
1559      assert(0);
1560      type = TGSI_TEXTURE_2D;
1561   }
1562
1563   /* check if we can render in the texture's format */
1564   if (!screen->is_format_supported(screen, psv->format, pt->target,
1565                                    pt->nr_samples,
1566                                    is_depth ? PIPE_BIND_DEPTH_STENCIL :
1567                                               PIPE_BIND_RENDER_TARGET)) {
1568      fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1569      return;
1570   }
1571
1572   /* save state (restored below) */
1573   cso_save_blend(ctx->cso);
1574   cso_save_depth_stencil_alpha(ctx->cso);
1575   cso_save_rasterizer(ctx->cso);
1576   cso_save_sample_mask(ctx->cso);
1577   cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1578   cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1579   cso_save_stream_outputs(ctx->cso);
1580   cso_save_framebuffer(ctx->cso);
1581   cso_save_fragment_shader(ctx->cso);
1582   cso_save_vertex_shader(ctx->cso);
1583   cso_save_geometry_shader(ctx->cso);
1584   cso_save_viewport(ctx->cso);
1585   cso_save_vertex_elements(ctx->cso);
1586   cso_save_vertex_buffers(ctx->cso);
1587
1588   /* bind our state */
1589   cso_set_blend(ctx->cso, is_depth ? &ctx->blend_keep_color :
1590                                      &ctx->blend_write_color);
1591   cso_set_depth_stencil_alpha(ctx->cso, is_depth ? &ctx->dsa_write_depth :
1592                                                    &ctx->dsa_keep_depth);
1593   cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1594   cso_set_sample_mask(ctx->cso, ~0);
1595   cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
1596   cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
1597
1598   set_fragment_shader(ctx, type, is_depth);
1599   set_vertex_shader(ctx);
1600   cso_set_geometry_shader_handle(ctx->cso, NULL);
1601
1602   /* init framebuffer state */
1603   memset(&fb, 0, sizeof(fb));
1604
1605   /* set min/mag to same filter for faster sw speed */
1606   ctx->sampler.mag_img_filter = filter;
1607   ctx->sampler.min_img_filter = filter;
1608
1609   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1610      const uint srcLevel = dstLevel - 1;
1611      struct pipe_viewport_state vp;
1612      unsigned nr_layers, layer, i;
1613      float rcoord = 0.0f;
1614
1615      if (pt->target == PIPE_TEXTURE_3D)
1616         nr_layers = u_minify(pt->depth0, dstLevel);
1617      else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
1618	 nr_layers = pt->array_size;
1619      else
1620         nr_layers = 1;
1621
1622      for (i = 0; i < nr_layers; i++) {
1623         struct pipe_surface *surf, surf_templ;
1624         if (pt->target == PIPE_TEXTURE_3D) {
1625            /* in theory with geom shaders and driver with full layer support
1626               could do that in one go. */
1627            layer = i;
1628            /* XXX hmm really? */
1629            rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
1630         } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
1631	    layer = i;
1632	    rcoord = (float)layer;
1633	 } else
1634            layer = face;
1635
1636         memset(&surf_templ, 0, sizeof(surf_templ));
1637         u_surface_default_template(&surf_templ, pt,
1638                                    is_depth ? PIPE_BIND_DEPTH_STENCIL :
1639                                               PIPE_BIND_RENDER_TARGET);
1640         surf_templ.u.tex.level = dstLevel;
1641         surf_templ.u.tex.first_layer = layer;
1642         surf_templ.u.tex.last_layer = layer;
1643         surf = pipe->create_surface(pipe, pt, &surf_templ);
1644
1645         /*
1646          * Setup framebuffer / dest surface
1647          */
1648         if (is_depth) {
1649            fb.nr_cbufs = 0;
1650            fb.zsbuf = surf;
1651         }
1652         else {
1653            fb.nr_cbufs = 1;
1654            fb.cbufs[0] = surf;
1655         }
1656         fb.width = u_minify(pt->width0, dstLevel);
1657         fb.height = u_minify(pt->height0, dstLevel);
1658         cso_set_framebuffer(ctx->cso, &fb);
1659
1660         /* viewport */
1661         vp.scale[0] = 0.5f * fb.width;
1662         vp.scale[1] = 0.5f * fb.height;
1663         vp.scale[2] = 1.0f;
1664         vp.scale[3] = 1.0f;
1665         vp.translate[0] = 0.5f * fb.width;
1666         vp.translate[1] = 0.5f * fb.height;
1667         vp.translate[2] = 0.0f;
1668         vp.translate[3] = 0.0f;
1669         cso_set_viewport(ctx->cso, &vp);
1670
1671         /*
1672          * Setup sampler state
1673          * Note: we should only have to set the min/max LOD clamps to ensure
1674          * we grab texels from the right mipmap level.  But some hardware
1675          * has trouble with min clamping so we also set the lod_bias to
1676          * try to work around that.
1677          */
1678         ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1679         ctx->sampler.lod_bias = (float) srcLevel;
1680         cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
1681         cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
1682
1683         cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &psv);
1684
1685         /* quad coords in clip coords */
1686         offset = set_vertex_data(ctx,
1687                                  pt->target,
1688                                  face,
1689                                  rcoord);
1690
1691         util_draw_vertex_buffer(ctx->pipe,
1692                                 ctx->cso,
1693                                 ctx->vbuf,
1694                                 offset,
1695                                 PIPE_PRIM_TRIANGLE_FAN,
1696                                 4,  /* verts */
1697                                 2); /* attribs/vert */
1698
1699         /* need to signal that the texture has changed _after_ rendering to it */
1700         pipe_surface_reference( &surf, NULL );
1701      }
1702   }
1703
1704   /* restore state we changed */
1705   cso_restore_blend(ctx->cso);
1706   cso_restore_depth_stencil_alpha(ctx->cso);
1707   cso_restore_rasterizer(ctx->cso);
1708   cso_restore_sample_mask(ctx->cso);
1709   cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
1710   cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
1711   cso_restore_framebuffer(ctx->cso);
1712   cso_restore_fragment_shader(ctx->cso);
1713   cso_restore_vertex_shader(ctx->cso);
1714   cso_restore_geometry_shader(ctx->cso);
1715   cso_restore_viewport(ctx->cso);
1716   cso_restore_vertex_elements(ctx->cso);
1717   cso_restore_stream_outputs(ctx->cso);
1718   cso_restore_vertex_buffers(ctx->cso);
1719}
1720