u_gen_mipmap.c revision bdb0ad77c20653d01570a4ce44f4200a97fb5f11
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008  VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37#include "pipe/p_context.h"
38#include "util/u_debug.h"
39#include "pipe/p_defines.h"
40#include "util/u_inlines.h"
41#include "pipe/p_shader_tokens.h"
42#include "pipe/p_state.h"
43
44#include "util/u_format.h"
45#include "util/u_memory.h"
46#include "util/u_draw_quad.h"
47#include "util/u_gen_mipmap.h"
48#include "util/u_simple_shaders.h"
49#include "util/u_math.h"
50#include "util/u_texture.h"
51#include "util/u_half.h"
52#include "util/u_surface.h"
53
54#include "cso_cache/cso_context.h"
55
56
57struct gen_mipmap_state
58{
59   struct pipe_context *pipe;
60   struct cso_context *cso;
61
62   struct pipe_blend_state blend;
63   struct pipe_depth_stencil_alpha_state depthstencil;
64   struct pipe_rasterizer_state rasterizer;
65   struct pipe_sampler_state sampler;
66   struct pipe_vertex_element velem[2];
67
68   void *vs;
69   void *fs[TGSI_TEXTURE_COUNT]; /**< Not all are used, but simplifies code */
70
71   struct pipe_resource *vbuf;  /**< quad vertices */
72   unsigned vbuf_slot;
73
74   float vertices[4][2][4];   /**< vertex/texcoords for quad */
75};
76
77
78
79enum dtype
80{
81   DTYPE_UBYTE,
82   DTYPE_UBYTE_3_3_2,
83   DTYPE_USHORT,
84   DTYPE_USHORT_4_4_4_4,
85   DTYPE_USHORT_5_6_5,
86   DTYPE_USHORT_1_5_5_5_REV,
87   DTYPE_UINT,
88   DTYPE_FLOAT,
89   DTYPE_HALF_FLOAT
90};
91
92
93typedef uint16_t half_float;
94
95
96/**
97 * \name Support macros for do_row and do_row_3d
98 *
99 * The macro madness is here for two reasons.  First, it compacts the code
100 * slightly.  Second, it makes it much easier to adjust the specifics of the
101 * filter to tune the rounding characteristics.
102 */
103/*@{*/
104#define DECLARE_ROW_POINTERS(t, e) \
105      const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
106      const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
107      const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
108      const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
109      t(*dst)[e] = (t(*)[e]) dstRow
110
111#define DECLARE_ROW_POINTERS0(t) \
112      const t *rowA = (const t *) srcRowA; \
113      const t *rowB = (const t *) srcRowB; \
114      const t *rowC = (const t *) srcRowC; \
115      const t *rowD = (const t *) srcRowD; \
116      t *dst = (t *) dstRow
117
118#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
119   ((unsigned) Aj + (unsigned) Ak \
120    + (unsigned) Bj + (unsigned) Bk \
121    + (unsigned) Cj + (unsigned) Ck \
122    + (unsigned) Dj + (unsigned) Dk \
123    + 4) >> 3
124
125#define FILTER_3D(e) \
126   do { \
127      dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
128                                rowB[j][e], rowB[k][e], \
129                                rowC[j][e], rowC[k][e], \
130                                rowD[j][e], rowD[k][e]); \
131   } while(0)
132
133#define FILTER_F_3D(e) \
134   do { \
135      dst[i][e] = (rowA[j][e] + rowA[k][e] \
136                   + rowB[j][e] + rowB[k][e] \
137                   + rowC[j][e] + rowC[k][e] \
138                   + rowD[j][e] + rowD[k][e]) * 0.125F; \
139   } while(0)
140
141#define FILTER_HF_3D(e) \
142   do { \
143      const float aj = util_half_to_float(rowA[j][e]); \
144      const float ak = util_half_to_float(rowA[k][e]); \
145      const float bj = util_half_to_float(rowB[j][e]); \
146      const float bk = util_half_to_float(rowB[k][e]); \
147      const float cj = util_half_to_float(rowC[j][e]); \
148      const float ck = util_half_to_float(rowC[k][e]); \
149      const float dj = util_half_to_float(rowD[j][e]); \
150      const float dk = util_half_to_float(rowD[k][e]); \
151      dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
152                                      * 0.125F); \
153   } while(0)
154/*@}*/
155
156
157/**
158 * Average together two rows of a source image to produce a single new
159 * row in the dest image.  It's legal for the two source rows to point
160 * to the same data.  The source width must be equal to either the
161 * dest width or two times the dest width.
162 * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
163 * \param comps  number of components per pixel (1..4)
164 */
165static void
166do_row(enum dtype datatype, uint comps, int srcWidth,
167       const void *srcRowA, const void *srcRowB,
168       int dstWidth, void *dstRow)
169{
170   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
171   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
172
173   assert(comps >= 1);
174   assert(comps <= 4);
175
176   /* This assertion is no longer valid with non-power-of-2 textures
177   assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
178   */
179
180   if (datatype == DTYPE_UBYTE && comps == 4) {
181      uint i, j, k;
182      const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
183      const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
184      ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
185      for (i = j = 0, k = k0; i < (uint) dstWidth;
186           i++, j += colStride, k += colStride) {
187         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
188         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
189         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
190         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
191      }
192   }
193   else if (datatype == DTYPE_UBYTE && comps == 3) {
194      uint i, j, k;
195      const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
196      const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
197      ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
198      for (i = j = 0, k = k0; i < (uint) dstWidth;
199           i++, j += colStride, k += colStride) {
200         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
201         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
202         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
203      }
204   }
205   else if (datatype == DTYPE_UBYTE && comps == 2) {
206      uint i, j, k;
207      const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
208      const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
209      ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
210      for (i = j = 0, k = k0; i < (uint) dstWidth;
211           i++, j += colStride, k += colStride) {
212         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
213         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
214      }
215   }
216   else if (datatype == DTYPE_UBYTE && comps == 1) {
217      uint i, j, k;
218      const ubyte *rowA = (const ubyte *) srcRowA;
219      const ubyte *rowB = (const ubyte *) srcRowB;
220      ubyte *dst = (ubyte *) dstRow;
221      for (i = j = 0, k = k0; i < (uint) dstWidth;
222           i++, j += colStride, k += colStride) {
223         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
224      }
225   }
226
227   else if (datatype == DTYPE_USHORT && comps == 4) {
228      uint i, j, k;
229      const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
230      const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
231      ushort(*dst)[4] = (ushort(*)[4]) dstRow;
232      for (i = j = 0, k = k0; i < (uint) dstWidth;
233           i++, j += colStride, k += colStride) {
234         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
235         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
236         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
237         dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
238      }
239   }
240   else if (datatype == DTYPE_USHORT && comps == 3) {
241      uint i, j, k;
242      const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
243      const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
244      ushort(*dst)[3] = (ushort(*)[3]) dstRow;
245      for (i = j = 0, k = k0; i < (uint) dstWidth;
246           i++, j += colStride, k += colStride) {
247         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
248         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
249         dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
250      }
251   }
252   else if (datatype == DTYPE_USHORT && comps == 2) {
253      uint i, j, k;
254      const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
255      const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
256      ushort(*dst)[2] = (ushort(*)[2]) dstRow;
257      for (i = j = 0, k = k0; i < (uint) dstWidth;
258           i++, j += colStride, k += colStride) {
259         dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
260         dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
261      }
262   }
263   else if (datatype == DTYPE_USHORT && comps == 1) {
264      uint i, j, k;
265      const ushort *rowA = (const ushort *) srcRowA;
266      const ushort *rowB = (const ushort *) srcRowB;
267      ushort *dst = (ushort *) dstRow;
268      for (i = j = 0, k = k0; i < (uint) dstWidth;
269           i++, j += colStride, k += colStride) {
270         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
271      }
272   }
273
274   else if (datatype == DTYPE_FLOAT && comps == 4) {
275      uint i, j, k;
276      const float(*rowA)[4] = (const float(*)[4]) srcRowA;
277      const float(*rowB)[4] = (const float(*)[4]) srcRowB;
278      float(*dst)[4] = (float(*)[4]) dstRow;
279      for (i = j = 0, k = k0; i < (uint) dstWidth;
280           i++, j += colStride, k += colStride) {
281         dst[i][0] = (rowA[j][0] + rowA[k][0] +
282                      rowB[j][0] + rowB[k][0]) * 0.25F;
283         dst[i][1] = (rowA[j][1] + rowA[k][1] +
284                      rowB[j][1] + rowB[k][1]) * 0.25F;
285         dst[i][2] = (rowA[j][2] + rowA[k][2] +
286                      rowB[j][2] + rowB[k][2]) * 0.25F;
287         dst[i][3] = (rowA[j][3] + rowA[k][3] +
288                      rowB[j][3] + rowB[k][3]) * 0.25F;
289      }
290   }
291   else if (datatype == DTYPE_FLOAT && comps == 3) {
292      uint i, j, k;
293      const float(*rowA)[3] = (const float(*)[3]) srcRowA;
294      const float(*rowB)[3] = (const float(*)[3]) srcRowB;
295      float(*dst)[3] = (float(*)[3]) dstRow;
296      for (i = j = 0, k = k0; i < (uint) dstWidth;
297           i++, j += colStride, k += colStride) {
298         dst[i][0] = (rowA[j][0] + rowA[k][0] +
299                      rowB[j][0] + rowB[k][0]) * 0.25F;
300         dst[i][1] = (rowA[j][1] + rowA[k][1] +
301                      rowB[j][1] + rowB[k][1]) * 0.25F;
302         dst[i][2] = (rowA[j][2] + rowA[k][2] +
303                      rowB[j][2] + rowB[k][2]) * 0.25F;
304      }
305   }
306   else if (datatype == DTYPE_FLOAT && comps == 2) {
307      uint i, j, k;
308      const float(*rowA)[2] = (const float(*)[2]) srcRowA;
309      const float(*rowB)[2] = (const float(*)[2]) srcRowB;
310      float(*dst)[2] = (float(*)[2]) dstRow;
311      for (i = j = 0, k = k0; i < (uint) dstWidth;
312           i++, j += colStride, k += colStride) {
313         dst[i][0] = (rowA[j][0] + rowA[k][0] +
314                      rowB[j][0] + rowB[k][0]) * 0.25F;
315         dst[i][1] = (rowA[j][1] + rowA[k][1] +
316                      rowB[j][1] + rowB[k][1]) * 0.25F;
317      }
318   }
319   else if (datatype == DTYPE_FLOAT && comps == 1) {
320      uint i, j, k;
321      const float *rowA = (const float *) srcRowA;
322      const float *rowB = (const float *) srcRowB;
323      float *dst = (float *) dstRow;
324      for (i = j = 0, k = k0; i < (uint) dstWidth;
325           i++, j += colStride, k += colStride) {
326         dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
327      }
328   }
329
330   else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
331      uint i, j, k, comp;
332      const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
333      const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
334      half_float(*dst)[4] = (half_float(*)[4]) dstRow;
335      for (i = j = 0, k = k0; i < (uint) dstWidth;
336           i++, j += colStride, k += colStride) {
337         for (comp = 0; comp < 4; comp++) {
338            float aj, ak, bj, bk;
339            aj = util_half_to_float(rowA[j][comp]);
340            ak = util_half_to_float(rowA[k][comp]);
341            bj = util_half_to_float(rowB[j][comp]);
342            bk = util_half_to_float(rowB[k][comp]);
343            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
344         }
345      }
346   }
347   else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
348      uint i, j, k, comp;
349      const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
350      const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
351      half_float(*dst)[3] = (half_float(*)[3]) dstRow;
352      for (i = j = 0, k = k0; i < (uint) dstWidth;
353           i++, j += colStride, k += colStride) {
354         for (comp = 0; comp < 3; comp++) {
355            float aj, ak, bj, bk;
356            aj = util_half_to_float(rowA[j][comp]);
357            ak = util_half_to_float(rowA[k][comp]);
358            bj = util_half_to_float(rowB[j][comp]);
359            bk = util_half_to_float(rowB[k][comp]);
360            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
361         }
362      }
363   }
364   else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
365      uint i, j, k, comp;
366      const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
367      const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
368      half_float(*dst)[2] = (half_float(*)[2]) dstRow;
369      for (i = j = 0, k = k0; i < (uint) dstWidth;
370           i++, j += colStride, k += colStride) {
371         for (comp = 0; comp < 2; comp++) {
372            float aj, ak, bj, bk;
373            aj = util_half_to_float(rowA[j][comp]);
374            ak = util_half_to_float(rowA[k][comp]);
375            bj = util_half_to_float(rowB[j][comp]);
376            bk = util_half_to_float(rowB[k][comp]);
377            dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
378         }
379      }
380   }
381   else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
382      uint i, j, k;
383      const half_float *rowA = (const half_float *) srcRowA;
384      const half_float *rowB = (const half_float *) srcRowB;
385      half_float *dst = (half_float *) dstRow;
386      for (i = j = 0, k = k0; i < (uint) dstWidth;
387           i++, j += colStride, k += colStride) {
388         float aj, ak, bj, bk;
389         aj = util_half_to_float(rowA[j]);
390         ak = util_half_to_float(rowA[k]);
391         bj = util_half_to_float(rowB[j]);
392         bk = util_half_to_float(rowB[k]);
393         dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
394      }
395   }
396
397   else if (datatype == DTYPE_UINT && comps == 1) {
398      uint i, j, k;
399      const uint *rowA = (const uint *) srcRowA;
400      const uint *rowB = (const uint *) srcRowB;
401      uint *dst = (uint *) dstRow;
402      for (i = j = 0, k = k0; i < (uint) dstWidth;
403           i++, j += colStride, k += colStride) {
404         dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
405      }
406   }
407
408   else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
409      uint i, j, k;
410      const ushort *rowA = (const ushort *) srcRowA;
411      const ushort *rowB = (const ushort *) srcRowB;
412      ushort *dst = (ushort *) dstRow;
413      for (i = j = 0, k = k0; i < (uint) dstWidth;
414           i++, j += colStride, k += colStride) {
415         const int rowAr0 = rowA[j] & 0x1f;
416         const int rowAr1 = rowA[k] & 0x1f;
417         const int rowBr0 = rowB[j] & 0x1f;
418         const int rowBr1 = rowB[k] & 0x1f;
419         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
420         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
421         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
422         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
423         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
424         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
425         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
426         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
427         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
428         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
429         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
430         dst[i] = (blue << 11) | (green << 5) | red;
431      }
432   }
433   else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
434      uint i, j, k;
435      const ushort *rowA = (const ushort *) srcRowA;
436      const ushort *rowB = (const ushort *) srcRowB;
437      ushort *dst = (ushort *) dstRow;
438      for (i = j = 0, k = k0; i < (uint) dstWidth;
439           i++, j += colStride, k += colStride) {
440         const int rowAr0 = rowA[j] & 0xf;
441         const int rowAr1 = rowA[k] & 0xf;
442         const int rowBr0 = rowB[j] & 0xf;
443         const int rowBr1 = rowB[k] & 0xf;
444         const int rowAg0 = (rowA[j] >> 4) & 0xf;
445         const int rowAg1 = (rowA[k] >> 4) & 0xf;
446         const int rowBg0 = (rowB[j] >> 4) & 0xf;
447         const int rowBg1 = (rowB[k] >> 4) & 0xf;
448         const int rowAb0 = (rowA[j] >> 8) & 0xf;
449         const int rowAb1 = (rowA[k] >> 8) & 0xf;
450         const int rowBb0 = (rowB[j] >> 8) & 0xf;
451         const int rowBb1 = (rowB[k] >> 8) & 0xf;
452         const int rowAa0 = (rowA[j] >> 12) & 0xf;
453         const int rowAa1 = (rowA[k] >> 12) & 0xf;
454         const int rowBa0 = (rowB[j] >> 12) & 0xf;
455         const int rowBa1 = (rowB[k] >> 12) & 0xf;
456         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
457         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
458         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
459         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
460         dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
461      }
462   }
463   else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
464      uint i, j, k;
465      const ushort *rowA = (const ushort *) srcRowA;
466      const ushort *rowB = (const ushort *) srcRowB;
467      ushort *dst = (ushort *) dstRow;
468      for (i = j = 0, k = k0; i < (uint) dstWidth;
469           i++, j += colStride, k += colStride) {
470         const int rowAr0 = rowA[j] & 0x1f;
471         const int rowAr1 = rowA[k] & 0x1f;
472         const int rowBr0 = rowB[j] & 0x1f;
473         const int rowBr1 = rowB[k] & 0x1f;
474         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
475         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
476         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
477         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
478         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
479         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
480         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
481         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
482         const int rowAa0 = (rowA[j] >> 15) & 0x1;
483         const int rowAa1 = (rowA[k] >> 15) & 0x1;
484         const int rowBa0 = (rowB[j] >> 15) & 0x1;
485         const int rowBa1 = (rowB[k] >> 15) & 0x1;
486         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
487         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
488         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
489         const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
490         dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
491      }
492   }
493   else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
494      uint i, j, k;
495      const ubyte *rowA = (const ubyte *) srcRowA;
496      const ubyte *rowB = (const ubyte *) srcRowB;
497      ubyte *dst = (ubyte *) dstRow;
498      for (i = j = 0, k = k0; i < (uint) dstWidth;
499           i++, j += colStride, k += colStride) {
500         const int rowAr0 = rowA[j] & 0x3;
501         const int rowAr1 = rowA[k] & 0x3;
502         const int rowBr0 = rowB[j] & 0x3;
503         const int rowBr1 = rowB[k] & 0x3;
504         const int rowAg0 = (rowA[j] >> 2) & 0x7;
505         const int rowAg1 = (rowA[k] >> 2) & 0x7;
506         const int rowBg0 = (rowB[j] >> 2) & 0x7;
507         const int rowBg1 = (rowB[k] >> 2) & 0x7;
508         const int rowAb0 = (rowA[j] >> 5) & 0x7;
509         const int rowAb1 = (rowA[k] >> 5) & 0x7;
510         const int rowBb0 = (rowB[j] >> 5) & 0x7;
511         const int rowBb1 = (rowB[k] >> 5) & 0x7;
512         const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
513         const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
514         const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
515         dst[i] = (blue << 5) | (green << 2) | red;
516      }
517   }
518   else {
519      debug_printf("bad format in do_row()");
520   }
521}
522
523
524/**
525 * Average together four rows of a source image to produce a single new
526 * row in the dest image.  It's legal for the two source rows to point
527 * to the same data.  The source width must be equal to either the
528 * dest width or two times the dest width.
529 *
530 * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
531 *                  \c GL_FLOAT, etc.
532 * \param comps     number of components per pixel (1..4)
533 * \param srcWidth  Width of a row in the source data
534 * \param srcRowA   Pointer to one of the rows of source data
535 * \param srcRowB   Pointer to one of the rows of source data
536 * \param srcRowC   Pointer to one of the rows of source data
537 * \param srcRowD   Pointer to one of the rows of source data
538 * \param dstWidth  Width of a row in the destination data
539 * \param srcRowA   Pointer to the row of destination data
540 */
541static void
542do_row_3D(enum dtype datatype, uint comps, int srcWidth,
543          const void *srcRowA, const void *srcRowB,
544          const void *srcRowC, const void *srcRowD,
545          int dstWidth, void *dstRow)
546{
547   const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
548   const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
549   uint i, j, k;
550
551   assert(comps >= 1);
552   assert(comps <= 4);
553
554   if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
555      DECLARE_ROW_POINTERS(ubyte, 4);
556
557      for (i = j = 0, k = k0; i < (uint) dstWidth;
558           i++, j += colStride, k += colStride) {
559         FILTER_3D(0);
560         FILTER_3D(1);
561         FILTER_3D(2);
562         FILTER_3D(3);
563      }
564   }
565   else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
566      DECLARE_ROW_POINTERS(ubyte, 3);
567
568      for (i = j = 0, k = k0; i < (uint) dstWidth;
569           i++, j += colStride, k += colStride) {
570         FILTER_3D(0);
571         FILTER_3D(1);
572         FILTER_3D(2);
573      }
574   }
575   else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
576      DECLARE_ROW_POINTERS(ubyte, 2);
577
578      for (i = j = 0, k = k0; i < (uint) dstWidth;
579           i++, j += colStride, k += colStride) {
580         FILTER_3D(0);
581         FILTER_3D(1);
582      }
583   }
584   else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
585      DECLARE_ROW_POINTERS(ubyte, 1);
586
587      for (i = j = 0, k = k0; i < (uint) dstWidth;
588           i++, j += colStride, k += colStride) {
589         FILTER_3D(0);
590      }
591   }
592   else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
593      DECLARE_ROW_POINTERS(ushort, 4);
594
595      for (i = j = 0, k = k0; i < (uint) dstWidth;
596           i++, j += colStride, k += colStride) {
597         FILTER_3D(0);
598         FILTER_3D(1);
599         FILTER_3D(2);
600         FILTER_3D(3);
601      }
602   }
603   else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
604      DECLARE_ROW_POINTERS(ushort, 3);
605
606      for (i = j = 0, k = k0; i < (uint) dstWidth;
607           i++, j += colStride, k += colStride) {
608         FILTER_3D(0);
609         FILTER_3D(1);
610         FILTER_3D(2);
611      }
612   }
613   else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
614      DECLARE_ROW_POINTERS(ushort, 2);
615
616      for (i = j = 0, k = k0; i < (uint) dstWidth;
617           i++, j += colStride, k += colStride) {
618         FILTER_3D(0);
619         FILTER_3D(1);
620      }
621   }
622   else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
623      DECLARE_ROW_POINTERS(ushort, 1);
624
625      for (i = j = 0, k = k0; i < (uint) dstWidth;
626           i++, j += colStride, k += colStride) {
627         FILTER_3D(0);
628      }
629   }
630   else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
631      DECLARE_ROW_POINTERS(float, 4);
632
633      for (i = j = 0, k = k0; i < (uint) dstWidth;
634           i++, j += colStride, k += colStride) {
635         FILTER_F_3D(0);
636         FILTER_F_3D(1);
637         FILTER_F_3D(2);
638         FILTER_F_3D(3);
639      }
640   }
641   else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
642      DECLARE_ROW_POINTERS(float, 3);
643
644      for (i = j = 0, k = k0; i < (uint) dstWidth;
645           i++, j += colStride, k += colStride) {
646         FILTER_F_3D(0);
647         FILTER_F_3D(1);
648         FILTER_F_3D(2);
649      }
650   }
651   else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
652      DECLARE_ROW_POINTERS(float, 2);
653
654      for (i = j = 0, k = k0; i < (uint) dstWidth;
655           i++, j += colStride, k += colStride) {
656         FILTER_F_3D(0);
657         FILTER_F_3D(1);
658      }
659   }
660   else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
661      DECLARE_ROW_POINTERS(float, 1);
662
663      for (i = j = 0, k = k0; i < (uint) dstWidth;
664           i++, j += colStride, k += colStride) {
665         FILTER_F_3D(0);
666      }
667   }
668   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
669      DECLARE_ROW_POINTERS(half_float, 4);
670
671      for (i = j = 0, k = k0; i < (uint) dstWidth;
672           i++, j += colStride, k += colStride) {
673         FILTER_HF_3D(0);
674         FILTER_HF_3D(1);
675         FILTER_HF_3D(2);
676         FILTER_HF_3D(3);
677      }
678   }
679   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
680      DECLARE_ROW_POINTERS(half_float, 4);
681
682      for (i = j = 0, k = k0; i < (uint) dstWidth;
683           i++, j += colStride, k += colStride) {
684         FILTER_HF_3D(0);
685         FILTER_HF_3D(1);
686         FILTER_HF_3D(2);
687      }
688   }
689   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
690      DECLARE_ROW_POINTERS(half_float, 4);
691
692      for (i = j = 0, k = k0; i < (uint) dstWidth;
693           i++, j += colStride, k += colStride) {
694         FILTER_HF_3D(0);
695         FILTER_HF_3D(1);
696      }
697   }
698   else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
699      DECLARE_ROW_POINTERS(half_float, 4);
700
701      for (i = j = 0, k = k0; i < (uint) dstWidth;
702           i++, j += colStride, k += colStride) {
703         FILTER_HF_3D(0);
704      }
705   }
706   else if ((datatype == DTYPE_UINT) && (comps == 1)) {
707      const uint *rowA = (const uint *) srcRowA;
708      const uint *rowB = (const uint *) srcRowB;
709      const uint *rowC = (const uint *) srcRowC;
710      const uint *rowD = (const uint *) srcRowD;
711      float *dst = (float *) dstRow;
712
713      for (i = j = 0, k = k0; i < (uint) dstWidth;
714           i++, j += colStride, k += colStride) {
715         const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
716                               + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
717                               + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
718                               + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
719         dst[i] = (float)((double) tmp * 0.125);
720      }
721   }
722   else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
723      DECLARE_ROW_POINTERS0(ushort);
724
725      for (i = j = 0, k = k0; i < (uint) dstWidth;
726           i++, j += colStride, k += colStride) {
727         const int rowAr0 = rowA[j] & 0x1f;
728         const int rowAr1 = rowA[k] & 0x1f;
729         const int rowBr0 = rowB[j] & 0x1f;
730         const int rowBr1 = rowB[k] & 0x1f;
731         const int rowCr0 = rowC[j] & 0x1f;
732         const int rowCr1 = rowC[k] & 0x1f;
733         const int rowDr0 = rowD[j] & 0x1f;
734         const int rowDr1 = rowD[k] & 0x1f;
735         const int rowAg0 = (rowA[j] >> 5) & 0x3f;
736         const int rowAg1 = (rowA[k] >> 5) & 0x3f;
737         const int rowBg0 = (rowB[j] >> 5) & 0x3f;
738         const int rowBg1 = (rowB[k] >> 5) & 0x3f;
739         const int rowCg0 = (rowC[j] >> 5) & 0x3f;
740         const int rowCg1 = (rowC[k] >> 5) & 0x3f;
741         const int rowDg0 = (rowD[j] >> 5) & 0x3f;
742         const int rowDg1 = (rowD[k] >> 5) & 0x3f;
743         const int rowAb0 = (rowA[j] >> 11) & 0x1f;
744         const int rowAb1 = (rowA[k] >> 11) & 0x1f;
745         const int rowBb0 = (rowB[j] >> 11) & 0x1f;
746         const int rowBb1 = (rowB[k] >> 11) & 0x1f;
747         const int rowCb0 = (rowC[j] >> 11) & 0x1f;
748         const int rowCb1 = (rowC[k] >> 11) & 0x1f;
749         const int rowDb0 = (rowD[j] >> 11) & 0x1f;
750         const int rowDb1 = (rowD[k] >> 11) & 0x1f;
751         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
752                                       rowCr0, rowCr1, rowDr0, rowDr1);
753         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
754                                       rowCg0, rowCg1, rowDg0, rowDg1);
755         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
756                                       rowCb0, rowCb1, rowDb0, rowDb1);
757         dst[i] = (b << 11) | (g << 5) | r;
758      }
759   }
760   else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
761      DECLARE_ROW_POINTERS0(ushort);
762
763      for (i = j = 0, k = k0; i < (uint) dstWidth;
764           i++, j += colStride, k += colStride) {
765         const int rowAr0 = rowA[j] & 0xf;
766         const int rowAr1 = rowA[k] & 0xf;
767         const int rowBr0 = rowB[j] & 0xf;
768         const int rowBr1 = rowB[k] & 0xf;
769         const int rowCr0 = rowC[j] & 0xf;
770         const int rowCr1 = rowC[k] & 0xf;
771         const int rowDr0 = rowD[j] & 0xf;
772         const int rowDr1 = rowD[k] & 0xf;
773         const int rowAg0 = (rowA[j] >> 4) & 0xf;
774         const int rowAg1 = (rowA[k] >> 4) & 0xf;
775         const int rowBg0 = (rowB[j] >> 4) & 0xf;
776         const int rowBg1 = (rowB[k] >> 4) & 0xf;
777         const int rowCg0 = (rowC[j] >> 4) & 0xf;
778         const int rowCg1 = (rowC[k] >> 4) & 0xf;
779         const int rowDg0 = (rowD[j] >> 4) & 0xf;
780         const int rowDg1 = (rowD[k] >> 4) & 0xf;
781         const int rowAb0 = (rowA[j] >> 8) & 0xf;
782         const int rowAb1 = (rowA[k] >> 8) & 0xf;
783         const int rowBb0 = (rowB[j] >> 8) & 0xf;
784         const int rowBb1 = (rowB[k] >> 8) & 0xf;
785         const int rowCb0 = (rowC[j] >> 8) & 0xf;
786         const int rowCb1 = (rowC[k] >> 8) & 0xf;
787         const int rowDb0 = (rowD[j] >> 8) & 0xf;
788         const int rowDb1 = (rowD[k] >> 8) & 0xf;
789         const int rowAa0 = (rowA[j] >> 12) & 0xf;
790         const int rowAa1 = (rowA[k] >> 12) & 0xf;
791         const int rowBa0 = (rowB[j] >> 12) & 0xf;
792         const int rowBa1 = (rowB[k] >> 12) & 0xf;
793         const int rowCa0 = (rowC[j] >> 12) & 0xf;
794         const int rowCa1 = (rowC[k] >> 12) & 0xf;
795         const int rowDa0 = (rowD[j] >> 12) & 0xf;
796         const int rowDa1 = (rowD[k] >> 12) & 0xf;
797         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
798                                       rowCr0, rowCr1, rowDr0, rowDr1);
799         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
800                                       rowCg0, rowCg1, rowDg0, rowDg1);
801         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
802                                       rowCb0, rowCb1, rowDb0, rowDb1);
803         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
804                                       rowCa0, rowCa1, rowDa0, rowDa1);
805
806         dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
807      }
808   }
809   else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
810      DECLARE_ROW_POINTERS0(ushort);
811
812      for (i = j = 0, k = k0; i < (uint) dstWidth;
813           i++, j += colStride, k += colStride) {
814         const int rowAr0 = rowA[j] & 0x1f;
815         const int rowAr1 = rowA[k] & 0x1f;
816         const int rowBr0 = rowB[j] & 0x1f;
817         const int rowBr1 = rowB[k] & 0x1f;
818         const int rowCr0 = rowC[j] & 0x1f;
819         const int rowCr1 = rowC[k] & 0x1f;
820         const int rowDr0 = rowD[j] & 0x1f;
821         const int rowDr1 = rowD[k] & 0x1f;
822         const int rowAg0 = (rowA[j] >> 5) & 0x1f;
823         const int rowAg1 = (rowA[k] >> 5) & 0x1f;
824         const int rowBg0 = (rowB[j] >> 5) & 0x1f;
825         const int rowBg1 = (rowB[k] >> 5) & 0x1f;
826         const int rowCg0 = (rowC[j] >> 5) & 0x1f;
827         const int rowCg1 = (rowC[k] >> 5) & 0x1f;
828         const int rowDg0 = (rowD[j] >> 5) & 0x1f;
829         const int rowDg1 = (rowD[k] >> 5) & 0x1f;
830         const int rowAb0 = (rowA[j] >> 10) & 0x1f;
831         const int rowAb1 = (rowA[k] >> 10) & 0x1f;
832         const int rowBb0 = (rowB[j] >> 10) & 0x1f;
833         const int rowBb1 = (rowB[k] >> 10) & 0x1f;
834         const int rowCb0 = (rowC[j] >> 10) & 0x1f;
835         const int rowCb1 = (rowC[k] >> 10) & 0x1f;
836         const int rowDb0 = (rowD[j] >> 10) & 0x1f;
837         const int rowDb1 = (rowD[k] >> 10) & 0x1f;
838         const int rowAa0 = (rowA[j] >> 15) & 0x1;
839         const int rowAa1 = (rowA[k] >> 15) & 0x1;
840         const int rowBa0 = (rowB[j] >> 15) & 0x1;
841         const int rowBa1 = (rowB[k] >> 15) & 0x1;
842         const int rowCa0 = (rowC[j] >> 15) & 0x1;
843         const int rowCa1 = (rowC[k] >> 15) & 0x1;
844         const int rowDa0 = (rowD[j] >> 15) & 0x1;
845         const int rowDa1 = (rowD[k] >> 15) & 0x1;
846         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
847                                       rowCr0, rowCr1, rowDr0, rowDr1);
848         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
849                                       rowCg0, rowCg1, rowDg0, rowDg1);
850         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
851                                       rowCb0, rowCb1, rowDb0, rowDb1);
852         const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
853                                       rowCa0, rowCa1, rowDa0, rowDa1);
854
855         dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
856      }
857   }
858   else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
859      DECLARE_ROW_POINTERS0(ushort);
860
861      for (i = j = 0, k = k0; i < (uint) dstWidth;
862           i++, j += colStride, k += colStride) {
863         const int rowAr0 = rowA[j] & 0x3;
864         const int rowAr1 = rowA[k] & 0x3;
865         const int rowBr0 = rowB[j] & 0x3;
866         const int rowBr1 = rowB[k] & 0x3;
867         const int rowCr0 = rowC[j] & 0x3;
868         const int rowCr1 = rowC[k] & 0x3;
869         const int rowDr0 = rowD[j] & 0x3;
870         const int rowDr1 = rowD[k] & 0x3;
871         const int rowAg0 = (rowA[j] >> 2) & 0x7;
872         const int rowAg1 = (rowA[k] >> 2) & 0x7;
873         const int rowBg0 = (rowB[j] >> 2) & 0x7;
874         const int rowBg1 = (rowB[k] >> 2) & 0x7;
875         const int rowCg0 = (rowC[j] >> 2) & 0x7;
876         const int rowCg1 = (rowC[k] >> 2) & 0x7;
877         const int rowDg0 = (rowD[j] >> 2) & 0x7;
878         const int rowDg1 = (rowD[k] >> 2) & 0x7;
879         const int rowAb0 = (rowA[j] >> 5) & 0x7;
880         const int rowAb1 = (rowA[k] >> 5) & 0x7;
881         const int rowBb0 = (rowB[j] >> 5) & 0x7;
882         const int rowBb1 = (rowB[k] >> 5) & 0x7;
883         const int rowCb0 = (rowC[j] >> 5) & 0x7;
884         const int rowCb1 = (rowC[k] >> 5) & 0x7;
885         const int rowDb0 = (rowD[j] >> 5) & 0x7;
886         const int rowDb1 = (rowD[k] >> 5) & 0x7;
887         const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
888                                       rowCr0, rowCr1, rowDr0, rowDr1);
889         const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
890                                       rowCg0, rowCg1, rowDg0, rowDg1);
891         const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
892                                       rowCb0, rowCb1, rowDb0, rowDb1);
893         dst[i] = (b << 5) | (g << 2) | r;
894      }
895   }
896   else {
897      debug_printf("bad format in do_row_3D()");
898   }
899}
900
901
902
903static void
904format_to_type_comps(enum pipe_format pformat,
905                     enum dtype *datatype, uint *comps)
906{
907   /* XXX I think this could be implemented in terms of the pf_*() functions */
908   switch (pformat) {
909   case PIPE_FORMAT_B8G8R8A8_UNORM:
910   case PIPE_FORMAT_B8G8R8X8_UNORM:
911   case PIPE_FORMAT_A8R8G8B8_UNORM:
912   case PIPE_FORMAT_X8R8G8B8_UNORM:
913   case PIPE_FORMAT_A8B8G8R8_SRGB:
914   case PIPE_FORMAT_X8B8G8R8_SRGB:
915   case PIPE_FORMAT_B8G8R8A8_SRGB:
916   case PIPE_FORMAT_B8G8R8X8_SRGB:
917   case PIPE_FORMAT_A8R8G8B8_SRGB:
918   case PIPE_FORMAT_X8R8G8B8_SRGB:
919   case PIPE_FORMAT_R8G8B8_SRGB:
920      *datatype = DTYPE_UBYTE;
921      *comps = 4;
922      return;
923   case PIPE_FORMAT_B5G5R5X1_UNORM:
924   case PIPE_FORMAT_B5G5R5A1_UNORM:
925      *datatype = DTYPE_USHORT_1_5_5_5_REV;
926      *comps = 4;
927      return;
928   case PIPE_FORMAT_B4G4R4A4_UNORM:
929      *datatype = DTYPE_USHORT_4_4_4_4;
930      *comps = 4;
931      return;
932   case PIPE_FORMAT_B5G6R5_UNORM:
933      *datatype = DTYPE_USHORT_5_6_5;
934      *comps = 3;
935      return;
936   case PIPE_FORMAT_L8_UNORM:
937   case PIPE_FORMAT_L8_SRGB:
938   case PIPE_FORMAT_A8_UNORM:
939   case PIPE_FORMAT_I8_UNORM:
940      *datatype = DTYPE_UBYTE;
941      *comps = 1;
942      return;
943   case PIPE_FORMAT_L8A8_UNORM:
944   case PIPE_FORMAT_L8A8_SRGB:
945      *datatype = DTYPE_UBYTE;
946      *comps = 2;
947      return;
948   default:
949      assert(0);
950      *datatype = DTYPE_UBYTE;
951      *comps = 0;
952      break;
953   }
954}
955
956
957static void
958reduce_1d(enum pipe_format pformat,
959          int srcWidth, const ubyte *srcPtr,
960          int dstWidth, ubyte *dstPtr)
961{
962   enum dtype datatype;
963   uint comps;
964
965   format_to_type_comps(pformat, &datatype, &comps);
966
967   /* we just duplicate the input row, kind of hack, saves code */
968   do_row(datatype, comps,
969          srcWidth, srcPtr, srcPtr,
970          dstWidth, dstPtr);
971}
972
973
974/**
975 * Strides are in bytes.  If zero, it'll be computed as width * bpp.
976 */
977static void
978reduce_2d(enum pipe_format pformat,
979          int srcWidth, int srcHeight,
980          int srcRowStride, const ubyte *srcPtr,
981          int dstWidth, int dstHeight,
982          int dstRowStride, ubyte *dstPtr)
983{
984   enum dtype datatype;
985   uint comps;
986   const int bpt = util_format_get_blocksize(pformat);
987   const ubyte *srcA, *srcB;
988   ubyte *dst;
989   int row;
990
991   format_to_type_comps(pformat, &datatype, &comps);
992
993   if (!srcRowStride)
994      srcRowStride = bpt * srcWidth;
995
996   if (!dstRowStride)
997      dstRowStride = bpt * dstWidth;
998
999   /* Compute src and dst pointers */
1000   srcA = srcPtr;
1001   if (srcHeight > 1)
1002      srcB = srcA + srcRowStride;
1003   else
1004      srcB = srcA;
1005   dst = dstPtr;
1006
1007   for (row = 0; row < dstHeight; row++) {
1008      do_row(datatype, comps,
1009             srcWidth, srcA, srcB,
1010             dstWidth, dst);
1011      srcA += 2 * srcRowStride;
1012      srcB += 2 * srcRowStride;
1013      dst += dstRowStride;
1014   }
1015}
1016
1017
1018static void
1019reduce_3d(enum pipe_format pformat,
1020          int srcWidth, int srcHeight, int srcDepth,
1021          int srcRowStride, int srcImageStride, const ubyte *srcPtr,
1022          int dstWidth, int dstHeight, int dstDepth,
1023          int dstRowStride, int dstImageStride, ubyte *dstPtr)
1024{
1025   const int bpt = util_format_get_blocksize(pformat);
1026   int img, row;
1027   int srcImageOffset, srcRowOffset;
1028   enum dtype datatype;
1029   uint comps;
1030
1031   format_to_type_comps(pformat, &datatype, &comps);
1032
1033   /* XXX I think we should rather assert those strides */
1034   if (!srcImageStride)
1035      srcImageStride = srcWidth * srcHeight * bpt;
1036   if (!dstImageStride)
1037      dstImageStride = dstWidth * dstHeight * bpt;
1038
1039   if (!srcRowStride)
1040      srcRowStride = srcWidth * bpt;
1041   if (!dstRowStride)
1042      dstRowStride = dstWidth * bpt;
1043
1044   /* Offset between adjacent src images to be averaged together */
1045   srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
1046
1047   /* Offset between adjacent src rows to be averaged together */
1048   srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1049
1050   /*
1051    * Need to average together up to 8 src pixels for each dest pixel.
1052    * Break that down into 3 operations:
1053    *   1. take two rows from source image and average them together.
1054    *   2. take two rows from next source image and average them together.
1055    *   3. take the two averaged rows and average them for the final dst row.
1056    */
1057
1058   /*
1059   printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1060          srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1061   */
1062
1063   for (img = 0; img < dstDepth; img++) {
1064      /* first source image pointer */
1065      const ubyte *imgSrcA = srcPtr
1066         + img * (srcImageStride + srcImageOffset);
1067      /* second source image pointer */
1068      const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1069      /* address of the dest image */
1070      ubyte *imgDst = dstPtr + img * dstImageStride;
1071
1072      /* setup the four source row pointers and the dest row pointer */
1073      const ubyte *srcImgARowA = imgSrcA;
1074      const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1075      const ubyte *srcImgBRowA = imgSrcB;
1076      const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1077      ubyte *dstImgRow = imgDst;
1078
1079      for (row = 0; row < dstHeight; row++) {
1080         do_row_3D(datatype, comps, srcWidth,
1081                   srcImgARowA, srcImgARowB,
1082                   srcImgBRowA, srcImgBRowB,
1083                   dstWidth, dstImgRow);
1084
1085         /* advance to next rows */
1086         srcImgARowA += srcRowStride + srcRowOffset;
1087         srcImgARowB += srcRowStride + srcRowOffset;
1088         srcImgBRowA += srcRowStride + srcRowOffset;
1089         srcImgBRowB += srcRowStride + srcRowOffset;
1090         dstImgRow += dstImageStride;
1091      }
1092   }
1093}
1094
1095
1096
1097
1098static void
1099make_1d_mipmap(struct gen_mipmap_state *ctx,
1100               struct pipe_resource *pt,
1101               uint layer, uint baseLevel, uint lastLevel)
1102{
1103   struct pipe_context *pipe = ctx->pipe;
1104   uint dstLevel;
1105
1106   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1107      const uint srcLevel = dstLevel - 1;
1108      struct pipe_transfer *srcTrans, *dstTrans;
1109      void *srcMap, *dstMap;
1110
1111      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1112                                   PIPE_TRANSFER_READ, 0, 0,
1113                                   u_minify(pt->width0, srcLevel),
1114                                   u_minify(pt->height0, srcLevel));
1115      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1116                                   PIPE_TRANSFER_WRITE, 0, 0,
1117                                   u_minify(pt->width0, dstLevel),
1118                                   u_minify(pt->height0, dstLevel));
1119
1120      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1121      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1122
1123      reduce_1d(pt->format,
1124                srcTrans->box.width, srcMap,
1125                dstTrans->box.width, dstMap);
1126
1127      pipe->transfer_unmap(pipe, srcTrans);
1128      pipe->transfer_unmap(pipe, dstTrans);
1129
1130      pipe->transfer_destroy(pipe, srcTrans);
1131      pipe->transfer_destroy(pipe, dstTrans);
1132   }
1133}
1134
1135
1136static void
1137make_2d_mipmap(struct gen_mipmap_state *ctx,
1138               struct pipe_resource *pt,
1139               uint layer, uint baseLevel, uint lastLevel)
1140{
1141   struct pipe_context *pipe = ctx->pipe;
1142   uint dstLevel;
1143
1144   assert(util_format_get_blockwidth(pt->format) == 1);
1145   assert(util_format_get_blockheight(pt->format) == 1);
1146
1147   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1148      const uint srcLevel = dstLevel - 1;
1149      struct pipe_transfer *srcTrans, *dstTrans;
1150      ubyte *srcMap, *dstMap;
1151
1152      srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
1153                                   PIPE_TRANSFER_READ, 0, 0,
1154                                   u_minify(pt->width0, srcLevel),
1155                                   u_minify(pt->height0, srcLevel));
1156      dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
1157                                   PIPE_TRANSFER_WRITE, 0, 0,
1158                                   u_minify(pt->width0, dstLevel),
1159                                   u_minify(pt->height0, dstLevel));
1160
1161      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1162      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1163
1164      reduce_2d(pt->format,
1165                srcTrans->box.width, srcTrans->box.height,
1166                srcTrans->stride, srcMap,
1167                dstTrans->box.width, dstTrans->box.height,
1168                dstTrans->stride, dstMap);
1169
1170      pipe->transfer_unmap(pipe, srcTrans);
1171      pipe->transfer_unmap(pipe, dstTrans);
1172
1173      pipe->transfer_destroy(pipe, srcTrans);
1174      pipe->transfer_destroy(pipe, dstTrans);
1175   }
1176}
1177
1178
1179/* XXX looks a bit more like it could work now but need to test */
1180static void
1181make_3d_mipmap(struct gen_mipmap_state *ctx,
1182               struct pipe_resource *pt,
1183               uint face, uint baseLevel, uint lastLevel)
1184{
1185   struct pipe_context *pipe = ctx->pipe;
1186   uint dstLevel;
1187   struct pipe_box src_box, dst_box;
1188
1189   assert(util_format_get_blockwidth(pt->format) == 1);
1190   assert(util_format_get_blockheight(pt->format) == 1);
1191
1192   src_box.x = src_box.y = src_box.z = 0;
1193   dst_box.x = dst_box.y = dst_box.z = 0;
1194
1195   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1196      const uint srcLevel = dstLevel - 1;
1197      struct pipe_transfer *srcTrans, *dstTrans;
1198      ubyte *srcMap, *dstMap;
1199      struct pipe_box src_box, dst_box;
1200      src_box.width = u_minify(pt->width0, srcLevel);
1201      src_box.height = u_minify(pt->height0, srcLevel);
1202      src_box.depth = u_minify(pt->depth0, srcLevel);
1203      dst_box.width = u_minify(pt->width0, dstLevel);
1204      dst_box.height = u_minify(pt->height0, dstLevel);
1205      dst_box.depth = u_minify(pt->depth0, dstLevel);
1206
1207      srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
1208                                    PIPE_TRANSFER_READ,
1209                                    &src_box);
1210      dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
1211                                    PIPE_TRANSFER_WRITE,
1212                                    &dst_box);
1213
1214      srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
1215      dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
1216
1217      reduce_3d(pt->format,
1218                srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
1219                srcTrans->stride, srcTrans->layer_stride, srcMap,
1220                dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
1221                dstTrans->stride, dstTrans->layer_stride, dstMap);
1222
1223      pipe->transfer_unmap(pipe, srcTrans);
1224      pipe->transfer_unmap(pipe, dstTrans);
1225
1226      pipe->transfer_destroy(pipe, srcTrans);
1227      pipe->transfer_destroy(pipe, dstTrans);
1228   }
1229}
1230
1231
1232static void
1233fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1234                    struct pipe_resource *pt,
1235                    uint layer, uint baseLevel, uint lastLevel)
1236{
1237   switch (pt->target) {
1238   case PIPE_TEXTURE_1D:
1239      make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1240      break;
1241   case PIPE_TEXTURE_2D:
1242   case PIPE_TEXTURE_RECT:
1243   case PIPE_TEXTURE_CUBE:
1244      make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1245      break;
1246   case PIPE_TEXTURE_3D:
1247      make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
1248      break;
1249   default:
1250      assert(0);
1251   }
1252}
1253
1254
1255/**
1256 * Create a mipmap generation context.
1257 * The idea is to create one of these and re-use it each time we need to
1258 * generate a mipmap.
1259 */
1260struct gen_mipmap_state *
1261util_create_gen_mipmap(struct pipe_context *pipe,
1262                       struct cso_context *cso)
1263{
1264   struct gen_mipmap_state *ctx;
1265   uint i;
1266
1267   ctx = CALLOC_STRUCT(gen_mipmap_state);
1268   if (!ctx)
1269      return NULL;
1270
1271   ctx->pipe = pipe;
1272   ctx->cso = cso;
1273
1274   /* disabled blending/masking */
1275   memset(&ctx->blend, 0, sizeof(ctx->blend));
1276   ctx->blend.rt[0].colormask = PIPE_MASK_RGBA;
1277
1278   /* no-op depth/stencil/alpha */
1279   memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1280
1281   /* rasterizer */
1282   memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1283   ctx->rasterizer.cull_face = PIPE_FACE_NONE;
1284   ctx->rasterizer.gl_rasterization_rules = 1;
1285   ctx->rasterizer.depth_clip = 1;
1286
1287   /* sampler state */
1288   memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1289   ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1290   ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1291   ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1292   ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1293   ctx->sampler.normalized_coords = 1;
1294
1295   /* vertex elements state */
1296   memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
1297   for (i = 0; i < 2; i++) {
1298      ctx->velem[i].src_offset = i * 4 * sizeof(float);
1299      ctx->velem[i].instance_divisor = 0;
1300      ctx->velem[i].vertex_buffer_index = 0;
1301      ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
1302   }
1303
1304   /* vertex data that doesn't change */
1305   for (i = 0; i < 4; i++) {
1306      ctx->vertices[i][0][2] = 0.0f; /* z */
1307      ctx->vertices[i][0][3] = 1.0f; /* w */
1308      ctx->vertices[i][1][3] = 1.0f; /* q */
1309   }
1310
1311   /* Note: the actual vertex buffer is allocated as needed below */
1312
1313   return ctx;
1314}
1315
1316
1317/**
1318 * Helper function to set the fragment shaders.
1319 */
1320static INLINE void
1321set_fragment_shader(struct gen_mipmap_state *ctx, uint type)
1322{
1323   if (!ctx->fs[type])
1324      ctx->fs[type] =
1325         util_make_fragment_tex_shader(ctx->pipe, type,
1326                                       TGSI_INTERPOLATE_LINEAR);
1327
1328   cso_set_fragment_shader_handle(ctx->cso, ctx->fs[type]);
1329}
1330
1331
1332/**
1333 * Helper function to set the vertex shader.
1334 */
1335static INLINE void
1336set_vertex_shader(struct gen_mipmap_state *ctx)
1337{
1338   /* vertex shader - still required to provide the linkage between
1339    * fragment shader input semantics and vertex_element/buffers.
1340    */
1341   if (!ctx->vs)
1342   {
1343      const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1344                                      TGSI_SEMANTIC_GENERIC };
1345      const uint semantic_indexes[] = { 0, 0 };
1346      ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
1347                                                    semantic_names,
1348                                                    semantic_indexes);
1349   }
1350
1351   cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1352}
1353
1354
1355/**
1356 * Get next "slot" of vertex space in the vertex buffer.
1357 * We're allocating one large vertex buffer and using it piece by piece.
1358 */
1359static unsigned
1360get_next_slot(struct gen_mipmap_state *ctx)
1361{
1362   const unsigned max_slots = 4096 / sizeof ctx->vertices;
1363
1364   if (ctx->vbuf_slot >= max_slots) {
1365      pipe_resource_reference(&ctx->vbuf, NULL);
1366      ctx->vbuf_slot = 0;
1367   }
1368
1369   if (!ctx->vbuf) {
1370      ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1371                                     PIPE_BIND_VERTEX_BUFFER,
1372                                     PIPE_USAGE_STREAM,
1373                                     max_slots * sizeof ctx->vertices);
1374   }
1375
1376   return ctx->vbuf_slot++ * sizeof ctx->vertices;
1377}
1378
1379
1380static unsigned
1381set_vertex_data(struct gen_mipmap_state *ctx,
1382                enum pipe_texture_target tex_target,
1383                uint layer, float r)
1384{
1385   unsigned offset;
1386
1387   /* vert[0].position */
1388   ctx->vertices[0][0][0] = -1.0f; /*x*/
1389   ctx->vertices[0][0][1] = -1.0f; /*y*/
1390
1391   /* vert[1].position */
1392   ctx->vertices[1][0][0] = 1.0f;
1393   ctx->vertices[1][0][1] = -1.0f;
1394
1395   /* vert[2].position */
1396   ctx->vertices[2][0][0] = 1.0f;
1397   ctx->vertices[2][0][1] = 1.0f;
1398
1399   /* vert[3].position */
1400   ctx->vertices[3][0][0] = -1.0f;
1401   ctx->vertices[3][0][1] = 1.0f;
1402
1403   /* Setup vertex texcoords.  This is a little tricky for cube maps. */
1404   if (tex_target == PIPE_TEXTURE_CUBE) {
1405      static const float st[4][2] = {
1406         {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1407      };
1408
1409      util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
1410                                        &ctx->vertices[0][1][0], 8);
1411   }
1412   else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
1413      /* 1D texture array  */
1414      ctx->vertices[0][1][0] = 0.0f; /*s*/
1415      ctx->vertices[0][1][1] = r; /*t*/
1416      ctx->vertices[0][1][2] = 0.0f;    /*r*/
1417
1418      ctx->vertices[1][1][0] = 1.0f;
1419      ctx->vertices[1][1][1] = r;
1420      ctx->vertices[1][1][2] = 0.0f;
1421
1422      ctx->vertices[2][1][0] = 1.0f;
1423      ctx->vertices[2][1][1] = r;
1424      ctx->vertices[2][1][2] = 0.0f;
1425
1426      ctx->vertices[3][1][0] = 0.0f;
1427      ctx->vertices[3][1][1] = r;
1428      ctx->vertices[3][1][2] = 0.0f;
1429   } else {
1430      /* 1D/2D/3D/2D array */
1431      ctx->vertices[0][1][0] = 0.0f; /*s*/
1432      ctx->vertices[0][1][1] = 0.0f; /*t*/
1433      ctx->vertices[0][1][2] = r;    /*r*/
1434
1435      ctx->vertices[1][1][0] = 1.0f;
1436      ctx->vertices[1][1][1] = 0.0f;
1437      ctx->vertices[1][1][2] = r;
1438
1439      ctx->vertices[2][1][0] = 1.0f;
1440      ctx->vertices[2][1][1] = 1.0f;
1441      ctx->vertices[2][1][2] = r;
1442
1443      ctx->vertices[3][1][0] = 0.0f;
1444      ctx->vertices[3][1][1] = 1.0f;
1445      ctx->vertices[3][1][2] = r;
1446   }
1447
1448   offset = get_next_slot( ctx );
1449
1450   pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
1451                               offset, sizeof(ctx->vertices), ctx->vertices);
1452
1453   return offset;
1454}
1455
1456
1457
1458/**
1459 * Destroy a mipmap generation context
1460 */
1461void
1462util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1463{
1464   struct pipe_context *pipe = ctx->pipe;
1465   unsigned i;
1466
1467   for (i = 0; i < Elements(ctx->fs); i++)
1468      if (ctx->fs[i])
1469         pipe->delete_fs_state(pipe, ctx->fs[i]);
1470
1471   if (ctx->vs)
1472      pipe->delete_vs_state(pipe, ctx->vs);
1473
1474   pipe_resource_reference(&ctx->vbuf, NULL);
1475
1476   FREE(ctx);
1477}
1478
1479
1480/**
1481 * Generate mipmap images.  It's assumed all needed texture memory is
1482 * already allocated.
1483 *
1484 * \param psv  the sampler view to the texture to generate mipmap levels for
1485 * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
1486 * \param baseLevel  the first mipmap level to use as a src
1487 * \param lastLevel  the last mipmap level to generate
1488 * \param filter  the minification filter used to generate mipmap levels with
1489 * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1490 */
1491void
1492util_gen_mipmap(struct gen_mipmap_state *ctx,
1493                struct pipe_sampler_view *psv,
1494                uint face, uint baseLevel, uint lastLevel, uint filter)
1495{
1496   struct pipe_context *pipe = ctx->pipe;
1497   struct pipe_screen *screen = pipe->screen;
1498   struct pipe_framebuffer_state fb;
1499   struct pipe_resource *pt = psv->texture;
1500   uint dstLevel;
1501   uint offset;
1502   uint type;
1503
1504   /* The texture object should have room for the levels which we're
1505    * about to generate.
1506    */
1507   assert(lastLevel <= pt->last_level);
1508
1509   /* If this fails, why are we here? */
1510   assert(lastLevel > baseLevel);
1511
1512   assert(filter == PIPE_TEX_FILTER_LINEAR ||
1513          filter == PIPE_TEX_FILTER_NEAREST);
1514
1515   switch (pt->target) {
1516   case PIPE_TEXTURE_1D:
1517      type = TGSI_TEXTURE_1D;
1518      break;
1519   case PIPE_TEXTURE_2D:
1520      type = TGSI_TEXTURE_2D;
1521      break;
1522   case PIPE_TEXTURE_3D:
1523      type = TGSI_TEXTURE_3D;
1524      break;
1525   case PIPE_TEXTURE_CUBE:
1526      type = TGSI_TEXTURE_CUBE;
1527      break;
1528   case PIPE_TEXTURE_1D_ARRAY:
1529      type = TGSI_TEXTURE_1D_ARRAY;
1530      break;
1531   case PIPE_TEXTURE_2D_ARRAY:
1532      type = TGSI_TEXTURE_2D_ARRAY;
1533      break;
1534   default:
1535      assert(0);
1536      type = TGSI_TEXTURE_2D;
1537   }
1538
1539   /* check if we can render in the texture's format */
1540   if (!screen->is_format_supported(screen, psv->format, pt->target,
1541                                    pt->nr_samples, PIPE_BIND_RENDER_TARGET)) {
1542      fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1543      return;
1544   }
1545
1546   /* save state (restored below) */
1547   cso_save_blend(ctx->cso);
1548   cso_save_depth_stencil_alpha(ctx->cso);
1549   cso_save_rasterizer(ctx->cso);
1550   cso_save_samplers(ctx->cso);
1551   cso_save_fragment_sampler_views(ctx->cso);
1552   cso_save_stream_outputs(ctx->cso);
1553   cso_save_framebuffer(ctx->cso);
1554   cso_save_fragment_shader(ctx->cso);
1555   cso_save_vertex_shader(ctx->cso);
1556   cso_save_geometry_shader(ctx->cso);
1557   cso_save_viewport(ctx->cso);
1558   cso_save_vertex_elements(ctx->cso);
1559
1560   /* bind our state */
1561   cso_set_blend(ctx->cso, &ctx->blend);
1562   cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1563   cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1564   cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
1565   cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
1566
1567   set_fragment_shader(ctx, type);
1568   set_vertex_shader(ctx);
1569   cso_set_geometry_shader_handle(ctx->cso, NULL);
1570
1571   /* init framebuffer state */
1572   memset(&fb, 0, sizeof(fb));
1573   fb.nr_cbufs = 1;
1574
1575   /* set min/mag to same filter for faster sw speed */
1576   ctx->sampler.mag_img_filter = filter;
1577   ctx->sampler.min_img_filter = filter;
1578
1579   /*
1580    * XXX for small mipmap levels, it may be faster to use the software
1581    * fallback path...
1582    */
1583   for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1584      const uint srcLevel = dstLevel - 1;
1585      struct pipe_viewport_state vp;
1586      unsigned nr_layers, layer, i;
1587      float rcoord = 0.0f;
1588
1589      if (pt->target == PIPE_TEXTURE_3D)
1590         nr_layers = u_minify(pt->depth0, dstLevel);
1591      else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
1592	 nr_layers = pt->array_size;
1593      else
1594         nr_layers = 1;
1595
1596      for (i = 0; i < nr_layers; i++) {
1597         struct pipe_surface *surf, surf_templ;
1598         if (pt->target == PIPE_TEXTURE_3D) {
1599            /* in theory with geom shaders and driver with full layer support
1600               could do that in one go. */
1601            layer = i;
1602            /* XXX hmm really? */
1603            rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
1604         } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
1605	    layer = i;
1606	    rcoord = (float)layer;
1607	 } else
1608            layer = face;
1609
1610         memset(&surf_templ, 0, sizeof(surf_templ));
1611         u_surface_default_template(&surf_templ, pt, PIPE_BIND_RENDER_TARGET);
1612         surf_templ.u.tex.level = dstLevel;
1613         surf_templ.u.tex.first_layer = layer;
1614         surf_templ.u.tex.last_layer = layer;
1615         surf = pipe->create_surface(pipe, pt, &surf_templ);
1616
1617         /*
1618          * Setup framebuffer / dest surface
1619          */
1620         fb.cbufs[0] = surf;
1621         fb.width = u_minify(pt->width0, dstLevel);
1622         fb.height = u_minify(pt->height0, dstLevel);
1623         cso_set_framebuffer(ctx->cso, &fb);
1624
1625         /* viewport */
1626         vp.scale[0] = 0.5f * fb.width;
1627         vp.scale[1] = 0.5f * fb.height;
1628         vp.scale[2] = 1.0f;
1629         vp.scale[3] = 1.0f;
1630         vp.translate[0] = 0.5f * fb.width;
1631         vp.translate[1] = 0.5f * fb.height;
1632         vp.translate[2] = 0.0f;
1633         vp.translate[3] = 0.0f;
1634         cso_set_viewport(ctx->cso, &vp);
1635
1636         /*
1637          * Setup sampler state
1638          * Note: we should only have to set the min/max LOD clamps to ensure
1639          * we grab texels from the right mipmap level.  But some hardware
1640          * has trouble with min clamping so we also set the lod_bias to
1641          * try to work around that.
1642          */
1643         ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1644         ctx->sampler.lod_bias = (float) srcLevel;
1645         cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1646         cso_single_sampler_done(ctx->cso);
1647
1648         cso_set_fragment_sampler_views(ctx->cso, 1, &psv);
1649
1650         /* quad coords in clip coords */
1651         offset = set_vertex_data(ctx,
1652                                  pt->target,
1653                                  face,
1654                                  rcoord);
1655
1656         util_draw_vertex_buffer(ctx->pipe,
1657                                 ctx->cso,
1658                                 ctx->vbuf,
1659                                 offset,
1660                                 PIPE_PRIM_TRIANGLE_FAN,
1661                                 4,  /* verts */
1662                                 2); /* attribs/vert */
1663
1664         /* need to signal that the texture has changed _after_ rendering to it */
1665         pipe_surface_reference( &surf, NULL );
1666      }
1667   }
1668
1669   /* restore state we changed */
1670   cso_restore_blend(ctx->cso);
1671   cso_restore_depth_stencil_alpha(ctx->cso);
1672   cso_restore_rasterizer(ctx->cso);
1673   cso_restore_samplers(ctx->cso);
1674   cso_restore_fragment_sampler_views(ctx->cso);
1675   cso_restore_framebuffer(ctx->cso);
1676   cso_restore_fragment_shader(ctx->cso);
1677   cso_restore_vertex_shader(ctx->cso);
1678   cso_restore_geometry_shader(ctx->cso);
1679   cso_restore_viewport(ctx->cso);
1680   cso_restore_vertex_elements(ctx->cso);
1681   cso_restore_stream_outputs(ctx->cso);
1682}
1683