u_math.h revision 553930424dec0cb1a83d2c928c260de6626b0d11
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38#ifndef U_MATH_H
39#define U_MATH_H
40
41
42#include "pipe/p_compiler.h"
43#include "util/u_debug.h"
44
45
46#ifdef __cplusplus
47extern "C" {
48#endif
49
50
51#if defined(PIPE_SUBSYSTEM_WINDOWS_MINIPORT)
52__inline double ceil(double val)
53{
54   double ceil_val;
55
56   if ((val - (long) val) == 0) {
57      ceil_val = val;
58   }
59   else {
60      if (val > 0) {
61         ceil_val = (long) val + 1;
62      }
63      else {
64         ceil_val = (long) val;
65      }
66   }
67
68   return ceil_val;
69}
70
71#ifndef PIPE_SUBSYSTEM_WINDOWS_CE_OGL
72__inline double floor(double val)
73{
74   double floor_val;
75
76   if ((val - (long) val) == 0) {
77      floor_val = val;
78   }
79   else {
80      if (val > 0) {
81         floor_val = (long) val;
82      }
83      else {
84         floor_val = (long) val - 1;
85      }
86   }
87
88   return floor_val;
89}
90#endif
91
92#pragma function(pow)
93__inline double __cdecl pow(double val, double exponent)
94{
95   /* XXX */
96   assert(0);
97   return 0;
98}
99
100#pragma function(log)
101__inline double __cdecl log(double val)
102{
103   /* XXX */
104   assert(0);
105   return 0;
106}
107
108#pragma function(atan2)
109__inline double __cdecl atan2(double val)
110{
111   /* XXX */
112   assert(0);
113   return 0;
114}
115#else
116#include <math.h>
117#include <stdarg.h>
118#endif
119
120
121#ifndef M_SQRT2
122#define M_SQRT2 1.41421356237309504880
123#endif
124
125
126#if defined(_MSC_VER)
127
128#if _MSC_VER < 1400 && !defined(__cplusplus) || defined(PIPE_SUBSYSTEM_WINDOWS_CE)
129
130static INLINE float cosf( float f )
131{
132   return (float) cos( (double) f );
133}
134
135static INLINE float sinf( float f )
136{
137   return (float) sin( (double) f );
138}
139
140static INLINE float ceilf( float f )
141{
142   return (float) ceil( (double) f );
143}
144
145static INLINE float floorf( float f )
146{
147   return (float) floor( (double) f );
148}
149
150static INLINE float powf( float f, float g )
151{
152   return (float) pow( (double) f, (double) g );
153}
154
155static INLINE float sqrtf( float f )
156{
157   return (float) sqrt( (double) f );
158}
159
160static INLINE float fabsf( float f )
161{
162   return (float) fabs( (double) f );
163}
164
165static INLINE float logf( float f )
166{
167   return (float) log( (double) f );
168}
169
170#else
171/* Work-around an extra semi-colon in VS 2005 logf definition */
172#ifdef logf
173#undef logf
174#define logf(x) ((float)log((double)(x)))
175#endif /* logf */
176
177#define isfinite(x) _finite((double)(x))
178#define isnan(x) _isnan((double)(x))
179#endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
180
181static INLINE double log2( double x )
182{
183   const double invln2 = 1.442695041;
184   return log( x ) * invln2;
185}
186
187static INLINE double
188round(double x)
189{
190   return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
191}
192
193static INLINE float
194roundf(float x)
195{
196   return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
197}
198
199#endif /* _MSC_VER */
200
201
202#ifdef PIPE_OS_ANDROID
203
204static INLINE
205double log2(double d)
206{
207   return log(d) * (1.0 / M_LN2);
208}
209
210#endif
211
212
213
214
215#define POW2_TABLE_SIZE_LOG2 9
216#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
217#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
218#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
219extern float pow2_table[POW2_TABLE_SIZE];
220
221
222/**
223 * Initialize math module.  This should be called before using any
224 * other functions in this module.
225 */
226extern void
227util_init_math(void);
228
229
230union fi {
231   float f;
232   int32_t i;
233   uint32_t ui;
234};
235
236
237/**
238 * Fast version of 2^x
239 * Identity: exp2(a + b) = exp2(a) * exp2(b)
240 * Let ipart = int(x)
241 * Let fpart = x - ipart;
242 * So, exp2(x) = exp2(ipart) * exp2(fpart)
243 * Compute exp2(ipart) with i << ipart
244 * Compute exp2(fpart) with lookup table.
245 */
246static INLINE float
247util_fast_exp2(float x)
248{
249   int32_t ipart;
250   float fpart, mpart;
251   union fi epart;
252
253   if(x > 129.00000f)
254      return 3.402823466e+38f;
255
256   if (x < -126.99999f)
257      return 0.0f;
258
259   ipart = (int32_t) x;
260   fpart = x - (float) ipart;
261
262   /* same as
263    *   epart.f = (float) (1 << ipart)
264    * but faster and without integer overflow for ipart > 31
265    */
266   epart.i = (ipart + 127 ) << 23;
267
268   mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
269
270   return epart.f * mpart;
271}
272
273
274/**
275 * Fast approximation to exp(x).
276 */
277static INLINE float
278util_fast_exp(float x)
279{
280   const float k = 1.44269f; /* = log2(e) */
281   return util_fast_exp2(k * x);
282}
283
284
285#define LOG2_TABLE_SIZE_LOG2 16
286#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
287#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
288extern float log2_table[LOG2_TABLE_SIZE];
289
290
291/**
292 * Fast approximation to log2(x).
293 */
294static INLINE float
295util_fast_log2(float x)
296{
297   union fi num;
298   float epart, mpart;
299   num.f = x;
300   epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
301   /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
302   mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
303   return epart + mpart;
304}
305
306
307/**
308 * Fast approximation to x^y.
309 */
310static INLINE float
311util_fast_pow(float x, float y)
312{
313   return util_fast_exp2(util_fast_log2(x) * y);
314}
315
316/* Note that this counts zero as a power of two.
317 */
318static INLINE boolean
319util_is_power_of_two( unsigned v )
320{
321   return (v & (v-1)) == 0;
322}
323
324
325/**
326 * Floor(x), returned as int.
327 */
328static INLINE int
329util_ifloor(float f)
330{
331   int ai, bi;
332   double af, bf;
333   union fi u;
334   af = (3 << 22) + 0.5 + (double) f;
335   bf = (3 << 22) + 0.5 - (double) f;
336   u.f = (float) af;  ai = u.i;
337   u.f = (float) bf;  bi = u.i;
338   return (ai - bi) >> 1;
339}
340
341
342/**
343 * Round float to nearest int.
344 */
345static INLINE int
346util_iround(float f)
347{
348#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
349   int r;
350   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
351   return r;
352#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
353   int r;
354   _asm {
355      fld f
356      fistp r
357   }
358   return r;
359#else
360   if (f >= 0.0f)
361      return (int) (f + 0.5f);
362   else
363      return (int) (f - 0.5f);
364#endif
365}
366
367
368/**
369 * Approximate floating point comparison
370 */
371static INLINE boolean
372util_is_approx(float a, float b, float tol)
373{
374   return fabs(b - a) <= tol;
375}
376
377
378/**
379 * Test if x is NaN or +/- infinity.
380 */
381static INLINE boolean
382util_is_inf_or_nan(float x)
383{
384   union fi tmp;
385   tmp.f = x;
386   return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
387}
388
389
390/**
391 * Find first bit set in word.  Least significant bit is 1.
392 * Return 0 if no bits set.
393 */
394#if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
395unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
396#pragma intrinsic(_BitScanForward)
397static INLINE
398unsigned long ffs( unsigned long u )
399{
400   unsigned long i;
401   if (_BitScanForward(&i, u))
402      return i + 1;
403   else
404      return 0;
405}
406#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
407static INLINE
408unsigned ffs( unsigned u )
409{
410   unsigned i;
411
412   if (u == 0) {
413      return 0;
414   }
415
416   __asm bsf eax, [u]
417   __asm inc eax
418   __asm mov [i], eax
419
420   return i;
421}
422#elif defined(__MINGW32__) || defined(PIPE_OS_ANDROID)
423#define ffs __builtin_ffs
424#endif
425
426
427/* Destructively loop over all of the bits in a mask as in:
428 *
429 * while (mymask) {
430 *   int i = u_bit_scan(&mymask);
431 *   ... process element i
432 * }
433 *
434 */
435static INLINE int u_bit_scan(unsigned *mask)
436{
437   int i = ffs(*mask) - 1;
438   *mask &= ~(1 << i);
439   return i;
440}
441
442
443/**
444 * Return float bits.
445 */
446static INLINE unsigned
447fui( float f )
448{
449   union fi fi;
450   fi.f = f;
451   return fi.ui;
452}
453
454
455/**
456 * Convert ubyte to float in [0, 1].
457 * XXX a 256-entry lookup table would be slightly faster.
458 */
459static INLINE float
460ubyte_to_float(ubyte ub)
461{
462   return (float) ub * (1.0f / 255.0f);
463}
464
465
466/**
467 * Convert float in [0,1] to ubyte in [0,255] with clamping.
468 */
469static INLINE ubyte
470float_to_ubyte(float f)
471{
472   const int ieee_0996 = 0x3f7f0000;   /* 0.996 or so */
473   union fi tmp;
474
475   tmp.f = f;
476   if (tmp.i < 0) {
477      return (ubyte) 0;
478   }
479   else if (tmp.i >= ieee_0996) {
480      return (ubyte) 255;
481   }
482   else {
483      tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
484      return (ubyte) tmp.i;
485   }
486}
487
488static INLINE float
489byte_to_float_tex(int8_t b)
490{
491   return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
492}
493
494static INLINE int8_t
495float_to_byte_tex(float f)
496{
497   return (int8_t) (127.0F * f);
498}
499
500/**
501 * Calc log base 2
502 */
503static INLINE unsigned
504util_logbase2(unsigned n)
505{
506#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
507   return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
508#else
509   unsigned pos = 0;
510   if (n >= 1<<16) { n >>= 16; pos += 16; }
511   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
512   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
513   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
514   if (n >= 1<< 1) {           pos +=  1; }
515   return pos;
516#endif
517}
518
519
520/**
521 * Returns the smallest power of two >= x
522 */
523static INLINE unsigned
524util_next_power_of_two(unsigned x)
525{
526#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
527   if (x <= 1)
528       return 1;
529
530   return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
531#else
532   unsigned val = x;
533
534   if (x <= 1)
535      return 1;
536
537   if (util_is_power_of_two(x))
538      return x;
539
540   val--;
541   val = (val >> 1) | val;
542   val = (val >> 2) | val;
543   val = (val >> 4) | val;
544   val = (val >> 8) | val;
545   val = (val >> 16) | val;
546   val++;
547   return val;
548#endif
549}
550
551
552/**
553 * Return number of bits set in n.
554 */
555static INLINE unsigned
556util_bitcount(unsigned n)
557{
558#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
559   return __builtin_popcount(n);
560#else
561   /* K&R classic bitcount.
562    *
563    * For each iteration, clear the LSB from the bitfield.
564    * Requires only one iteration per set bit, instead of
565    * one iteration per bit less than highest set bit.
566    */
567   unsigned bits = 0;
568   for (bits; n; bits++) {
569      n &= n - 1;
570   }
571   return bits;
572#endif
573}
574
575
576/**
577 * Reverse byte order of a 32 bit word.
578 */
579static INLINE uint32_t
580util_bswap32(uint32_t n)
581{
582#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
583   return __builtin_bswap32(n);
584#else
585   return (n >> 24) |
586          ((n >> 8) & 0x0000ff00) |
587          ((n << 8) & 0x00ff0000) |
588          (n << 24);
589#endif
590}
591
592
593/**
594 * Reverse byte order of a 16 bit word.
595 */
596static INLINE uint16_t
597util_bswap16(uint16_t n)
598{
599   return (n >> 8) |
600          (n << 8);
601}
602
603
604/**
605 * Clamp X to [MIN, MAX].
606 * This is a macro to allow float, int, uint, etc. types.
607 */
608#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
609
610#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
611#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
612
613#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
614#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
615
616#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
617#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
618
619
620/**
621 * Align a value, only works pot alignemnts.
622 */
623static INLINE int
624align(int value, int alignment)
625{
626   return (value + alignment - 1) & ~(alignment - 1);
627}
628
629/**
630 * Works like align but on npot alignments.
631 */
632static INLINE size_t
633util_align_npot(size_t value, size_t alignment)
634{
635   if (value % alignment)
636      return value + (alignment - (value % alignment));
637   return value;
638}
639
640static INLINE unsigned
641u_minify(unsigned value, unsigned levels)
642{
643    return MAX2(1, value >> levels);
644}
645
646#ifndef COPY_4V
647#define COPY_4V( DST, SRC )         \
648do {                                \
649   (DST)[0] = (SRC)[0];             \
650   (DST)[1] = (SRC)[1];             \
651   (DST)[2] = (SRC)[2];             \
652   (DST)[3] = (SRC)[3];             \
653} while (0)
654#endif
655
656
657#ifndef COPY_4FV
658#define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
659#endif
660
661
662#ifndef ASSIGN_4V
663#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
664do {                                     \
665   (DST)[0] = (V0);                      \
666   (DST)[1] = (V1);                      \
667   (DST)[2] = (V2);                      \
668   (DST)[3] = (V3);                      \
669} while (0)
670#endif
671
672
673static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
674{
675   return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
676}
677
678static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
679{
680   return (int32_t)(value * (1<<frac_bits));
681}
682
683
684
685#ifdef __cplusplus
686}
687#endif
688
689#endif /* U_MATH_H */
690