u_math.h revision 63e0e4b8f5a37f5f6a1b9a783f201d748eb312e8
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38#ifndef U_MATH_H
39#define U_MATH_H
40
41
42#include "pipe/p_compiler.h"
43#include "util/u_debug.h"
44
45
46#ifdef __cplusplus
47extern "C" {
48#endif
49
50
51#include <math.h>
52#include <stdarg.h>
53
54#ifdef PIPE_OS_UNIX
55#include <strings.h> /* for ffs */
56#endif
57
58
59#ifndef M_SQRT2
60#define M_SQRT2 1.41421356237309504880
61#endif
62
63
64#if defined(_MSC_VER)
65
66#if _MSC_VER < 1400 && !defined(__cplusplus)
67
68static INLINE float cosf( float f )
69{
70   return (float) cos( (double) f );
71}
72
73static INLINE float sinf( float f )
74{
75   return (float) sin( (double) f );
76}
77
78static INLINE float ceilf( float f )
79{
80   return (float) ceil( (double) f );
81}
82
83static INLINE float floorf( float f )
84{
85   return (float) floor( (double) f );
86}
87
88static INLINE float powf( float f, float g )
89{
90   return (float) pow( (double) f, (double) g );
91}
92
93static INLINE float sqrtf( float f )
94{
95   return (float) sqrt( (double) f );
96}
97
98static INLINE float fabsf( float f )
99{
100   return (float) fabs( (double) f );
101}
102
103static INLINE float logf( float f )
104{
105   return (float) log( (double) f );
106}
107
108#else
109/* Work-around an extra semi-colon in VS 2005 logf definition */
110#ifdef logf
111#undef logf
112#define logf(x) ((float)log((double)(x)))
113#endif /* logf */
114
115#define isfinite(x) _finite((double)(x))
116#define isnan(x) _isnan((double)(x))
117#endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
118
119static INLINE double log2( double x )
120{
121   const double invln2 = 1.442695041;
122   return log( x ) * invln2;
123}
124
125static INLINE double
126round(double x)
127{
128   return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
129}
130
131static INLINE float
132roundf(float x)
133{
134   return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
135}
136
137#endif /* _MSC_VER */
138
139
140#ifdef PIPE_OS_ANDROID
141
142static INLINE
143double log2(double d)
144{
145   return log(d) * (1.0 / M_LN2);
146}
147
148/* workaround a conflict with main/imports.h */
149#ifdef log2f
150#undef log2f
151#endif
152
153static INLINE
154float log2f(float f)
155{
156   return logf(f) * (float) (1.0 / M_LN2);
157}
158
159#endif
160
161
162
163
164#define POW2_TABLE_SIZE_LOG2 9
165#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
166#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
167#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
168extern float pow2_table[POW2_TABLE_SIZE];
169
170
171/**
172 * Initialize math module.  This should be called before using any
173 * other functions in this module.
174 */
175extern void
176util_init_math(void);
177
178
179union fi {
180   float f;
181   int32_t i;
182   uint32_t ui;
183};
184
185
186union di {
187   double d;
188   int64_t i;
189   uint64_t ui;
190};
191
192
193/**
194 * Fast version of 2^x
195 * Identity: exp2(a + b) = exp2(a) * exp2(b)
196 * Let ipart = int(x)
197 * Let fpart = x - ipart;
198 * So, exp2(x) = exp2(ipart) * exp2(fpart)
199 * Compute exp2(ipart) with i << ipart
200 * Compute exp2(fpart) with lookup table.
201 */
202static INLINE float
203util_fast_exp2(float x)
204{
205   int32_t ipart;
206   float fpart, mpart;
207   union fi epart;
208
209   if(x > 129.00000f)
210      return 3.402823466e+38f;
211
212   if (x < -126.99999f)
213      return 0.0f;
214
215   ipart = (int32_t) x;
216   fpart = x - (float) ipart;
217
218   /* same as
219    *   epart.f = (float) (1 << ipart)
220    * but faster and without integer overflow for ipart > 31
221    */
222   epart.i = (ipart + 127 ) << 23;
223
224   mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
225
226   return epart.f * mpart;
227}
228
229
230/**
231 * Fast approximation to exp(x).
232 */
233static INLINE float
234util_fast_exp(float x)
235{
236   const float k = 1.44269f; /* = log2(e) */
237   return util_fast_exp2(k * x);
238}
239
240
241#define LOG2_TABLE_SIZE_LOG2 16
242#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
243#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
244extern float log2_table[LOG2_TABLE_SIZE];
245
246
247/**
248 * Fast approximation to log2(x).
249 */
250static INLINE float
251util_fast_log2(float x)
252{
253   union fi num;
254   float epart, mpart;
255   num.f = x;
256   epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
257   /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
258   mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
259   return epart + mpart;
260}
261
262
263/**
264 * Fast approximation to x^y.
265 */
266static INLINE float
267util_fast_pow(float x, float y)
268{
269   return util_fast_exp2(util_fast_log2(x) * y);
270}
271
272/* Note that this counts zero as a power of two.
273 */
274static INLINE boolean
275util_is_power_of_two( unsigned v )
276{
277   return (v & (v-1)) == 0;
278}
279
280
281/**
282 * Floor(x), returned as int.
283 */
284static INLINE int
285util_ifloor(float f)
286{
287   int ai, bi;
288   double af, bf;
289   union fi u;
290   af = (3 << 22) + 0.5 + (double) f;
291   bf = (3 << 22) + 0.5 - (double) f;
292   u.f = (float) af;  ai = u.i;
293   u.f = (float) bf;  bi = u.i;
294   return (ai - bi) >> 1;
295}
296
297
298/**
299 * Round float to nearest int.
300 */
301static INLINE int
302util_iround(float f)
303{
304#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
305   int r;
306   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
307   return r;
308#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
309   int r;
310   _asm {
311      fld f
312      fistp r
313   }
314   return r;
315#else
316   if (f >= 0.0f)
317      return (int) (f + 0.5f);
318   else
319      return (int) (f - 0.5f);
320#endif
321}
322
323
324/**
325 * Approximate floating point comparison
326 */
327static INLINE boolean
328util_is_approx(float a, float b, float tol)
329{
330   return fabs(b - a) <= tol;
331}
332
333
334/**
335 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
336 * util_is_X_nan        = test if x is NaN
337 * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
338 *
339 * NaN can be checked with x != x, however this fails with the fast math flag
340 **/
341
342
343/**
344 * Single-float
345 */
346static INLINE boolean
347util_is_inf_or_nan(float x)
348{
349   union fi tmp;
350   tmp.f = x;
351   return (tmp.ui & 0x7f800000) == 0x7f800000;
352}
353
354
355static INLINE boolean
356util_is_nan(float x)
357{
358   union fi tmp;
359   tmp.f = x;
360   return (tmp.ui & 0x7fffffff) > 0x7f800000;
361}
362
363
364static INLINE int
365util_inf_sign(float x)
366{
367   union fi tmp;
368   tmp.f = x;
369   if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
370      return 0;
371   }
372
373   return (x < 0) ? -1 : 1;
374}
375
376
377/**
378 * Double-float
379 */
380static INLINE boolean
381util_is_double_inf_or_nan(double x)
382{
383   union di tmp;
384   tmp.d = x;
385   return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
386}
387
388
389static INLINE boolean
390util_is_double_nan(double x)
391{
392   union di tmp;
393   tmp.d = x;
394   return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
395}
396
397
398static INLINE int
399util_double_inf_sign(double x)
400{
401   union di tmp;
402   tmp.d = x;
403   if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
404      return 0;
405   }
406
407   return (x < 0) ? -1 : 1;
408}
409
410
411/**
412 * Half-float
413 */
414static INLINE boolean
415util_is_half_inf_or_nan(int16_t x)
416{
417   return (x & 0x7c00) == 0x7c00;
418}
419
420
421static INLINE boolean
422util_is_half_nan(int16_t x)
423{
424   return (x & 0x7fff) > 0x7c00;
425}
426
427
428static INLINE int
429util_half_inf_sign(int16_t x)
430{
431   if ((x & 0x7fff) != 0x7c00) {
432      return 0;
433   }
434
435   return (x < 0) ? -1 : 1;
436}
437
438
439/**
440 * Find first bit set in word.  Least significant bit is 1.
441 * Return 0 if no bits set.
442 */
443#ifndef FFS_DEFINED
444#define FFS_DEFINED 1
445
446#if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
447unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
448#pragma intrinsic(_BitScanForward)
449static INLINE
450unsigned long ffs( unsigned long u )
451{
452   unsigned long i;
453   if (_BitScanForward(&i, u))
454      return i + 1;
455   else
456      return 0;
457}
458#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
459static INLINE
460unsigned ffs( unsigned u )
461{
462   unsigned i;
463
464   if (u == 0) {
465      return 0;
466   }
467
468   __asm bsf eax, [u]
469   __asm inc eax
470   __asm mov [i], eax
471
472   return i;
473}
474#elif defined(__MINGW32__) || defined(PIPE_OS_ANDROID)
475#define ffs __builtin_ffs
476#endif
477
478#endif /* FFS_DEFINED */
479
480
481/* Destructively loop over all of the bits in a mask as in:
482 *
483 * while (mymask) {
484 *   int i = u_bit_scan(&mymask);
485 *   ... process element i
486 * }
487 *
488 */
489static INLINE int u_bit_scan(unsigned *mask)
490{
491   int i = ffs(*mask) - 1;
492   *mask &= ~(1 << i);
493   return i;
494}
495
496
497/**
498 * Return float bits.
499 */
500static INLINE unsigned
501fui( float f )
502{
503   union fi fi;
504   fi.f = f;
505   return fi.ui;
506}
507
508
509/**
510 * Convert ubyte to float in [0, 1].
511 * XXX a 256-entry lookup table would be slightly faster.
512 */
513static INLINE float
514ubyte_to_float(ubyte ub)
515{
516   return (float) ub * (1.0f / 255.0f);
517}
518
519
520/**
521 * Convert float in [0,1] to ubyte in [0,255] with clamping.
522 */
523static INLINE ubyte
524float_to_ubyte(float f)
525{
526   const int ieee_0996 = 0x3f7f0000;   /* 0.996 or so */
527   union fi tmp;
528
529   tmp.f = f;
530   if (tmp.i < 0) {
531      return (ubyte) 0;
532   }
533   else if (tmp.i >= ieee_0996) {
534      return (ubyte) 255;
535   }
536   else {
537      tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
538      return (ubyte) tmp.i;
539   }
540}
541
542static INLINE float
543byte_to_float_tex(int8_t b)
544{
545   return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
546}
547
548static INLINE int8_t
549float_to_byte_tex(float f)
550{
551   return (int8_t) (127.0F * f);
552}
553
554/**
555 * Calc log base 2
556 */
557static INLINE unsigned
558util_logbase2(unsigned n)
559{
560#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
561   return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
562#else
563   unsigned pos = 0;
564   if (n >= 1<<16) { n >>= 16; pos += 16; }
565   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
566   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
567   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
568   if (n >= 1<< 1) {           pos +=  1; }
569   return pos;
570#endif
571}
572
573
574/**
575 * Returns the smallest power of two >= x
576 */
577static INLINE unsigned
578util_next_power_of_two(unsigned x)
579{
580#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
581   if (x <= 1)
582       return 1;
583
584   return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
585#else
586   unsigned val = x;
587
588   if (x <= 1)
589      return 1;
590
591   if (util_is_power_of_two(x))
592      return x;
593
594   val--;
595   val = (val >> 1) | val;
596   val = (val >> 2) | val;
597   val = (val >> 4) | val;
598   val = (val >> 8) | val;
599   val = (val >> 16) | val;
600   val++;
601   return val;
602#endif
603}
604
605
606/**
607 * Return number of bits set in n.
608 */
609static INLINE unsigned
610util_bitcount(unsigned n)
611{
612#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
613   return __builtin_popcount(n);
614#else
615   /* K&R classic bitcount.
616    *
617    * For each iteration, clear the LSB from the bitfield.
618    * Requires only one iteration per set bit, instead of
619    * one iteration per bit less than highest set bit.
620    */
621   unsigned bits = 0;
622   for (bits; n; bits++) {
623      n &= n - 1;
624   }
625   return bits;
626#endif
627}
628
629
630/**
631 * Convert from little endian to CPU byte order.
632 */
633
634#ifdef PIPE_ARCH_BIG_ENDIAN
635#define util_le32_to_cpu(x) util_bswap32(x)
636#define util_le16_to_cpu(x) util_bswap16(x)
637#else
638#define util_le32_to_cpu(x) (x)
639#define util_le16_to_cpu(x) (x)
640#endif
641
642
643/**
644 * Reverse byte order of a 32 bit word.
645 */
646static INLINE uint32_t
647util_bswap32(uint32_t n)
648{
649#if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
650   return __builtin_bswap32(n);
651#else
652   return (n >> 24) |
653          ((n >> 8) & 0x0000ff00) |
654          ((n << 8) & 0x00ff0000) |
655          (n << 24);
656#endif
657}
658
659
660/**
661 * Reverse byte order of a 16 bit word.
662 */
663static INLINE uint16_t
664util_bswap16(uint16_t n)
665{
666   return (n >> 8) |
667          (n << 8);
668}
669
670
671/**
672 * Clamp X to [MIN, MAX].
673 * This is a macro to allow float, int, uint, etc. types.
674 */
675#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
676
677#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
678#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
679
680#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
681#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
682
683#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
684#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
685
686
687/**
688 * Align a value, only works pot alignemnts.
689 */
690static INLINE int
691align(int value, int alignment)
692{
693   return (value + alignment - 1) & ~(alignment - 1);
694}
695
696/**
697 * Works like align but on npot alignments.
698 */
699static INLINE size_t
700util_align_npot(size_t value, size_t alignment)
701{
702   if (value % alignment)
703      return value + (alignment - (value % alignment));
704   return value;
705}
706
707static INLINE unsigned
708u_minify(unsigned value, unsigned levels)
709{
710    return MAX2(1, value >> levels);
711}
712
713#ifndef COPY_4V
714#define COPY_4V( DST, SRC )         \
715do {                                \
716   (DST)[0] = (SRC)[0];             \
717   (DST)[1] = (SRC)[1];             \
718   (DST)[2] = (SRC)[2];             \
719   (DST)[3] = (SRC)[3];             \
720} while (0)
721#endif
722
723
724#ifndef COPY_4FV
725#define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
726#endif
727
728
729#ifndef ASSIGN_4V
730#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
731do {                                     \
732   (DST)[0] = (V0);                      \
733   (DST)[1] = (V1);                      \
734   (DST)[2] = (V2);                      \
735   (DST)[3] = (V3);                      \
736} while (0)
737#endif
738
739
740static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
741{
742   return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
743}
744
745static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
746{
747   return (int32_t)(value * (1<<frac_bits));
748}
749
750
751
752#ifdef __cplusplus
753}
754#endif
755
756#endif /* U_MATH_H */
757