lp_bld_blend_soa.c revision efc82aef35a2aac5d2ed9774f6d28f2626796416
1/**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * @file
31 * Blend LLVM IR generation -- SoA layout.
32 *
33 * Blending in SoA is much faster than AoS, especially when separate rgb/alpha
34 * factors/functions are used, since no channel masking/shuffling is necessary
35 * and we can achieve the full throughput of the SIMD operations. Furthermore
36 * the fragment shader output is also in SoA, so it fits nicely with the rest
37 * of the fragment pipeline.
38 *
39 * The drawback is that to be displayed the color buffer needs to be in AoS
40 * layout, so we need to tile/untile the color buffer before/after rendering.
41 * A color buffer like
42 *
43 *  R11 G11 B11 A11 R12 G12 B12 A12  R13 G13 B13 A13 R14 G14 B14 A14  ...
44 *  R21 G21 B21 A21 R22 G22 B22 A22  R23 G23 B23 A23 R24 G24 B24 A24  ...
45 *
46 *  R31 G31 B31 A31 R32 G32 B32 A32  R33 G33 B33 A33 R34 G34 B34 A34  ...
47 *  R41 G41 B41 A41 R42 G42 B42 A42  R43 G43 B43 A43 R44 G44 B44 A44  ...
48 *
49 *  ... ... ... ... ... ... ... ...  ... ... ... ... ... ... ... ...  ...
50 *
51 * will actually be stored in memory as
52 *
53 *  R11 R12 R21 R22 R13 R14 R23 R24 ... G11 G12 G21 G22 G13 G14 G23 G24 ... B11 B12 B21 B22 B13 B14 B23 B24 ... A11 A12 A21 A22 A13 A14 A23 A24 ...
54 *  R31 R32 R41 R42 R33 R34 R43 R44 ... G31 G32 G41 G42 G33 G34 G43 G44 ... B31 B32 B41 B42 B33 B34 B43 B44 ... A31 A32 A41 A42 A33 A34 A43 A44 ...
55 *  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
56 *
57 * NOTE: Run lp_blend_test after any change to this file.
58 *
59 * You can also run lp_blend_test to obtain AoS vs SoA benchmarks. Invoking it
60 * as:
61 *
62 *  lp_blend_test -o blend.tsv
63 *
64 * will generate a tab-seperated-file with the test results and performance
65 * measurements.
66 *
67 * @author Jose Fonseca <jfonseca@vmware.com>
68 */
69
70
71#include "pipe/p_state.h"
72#include "util/u_debug.h"
73
74#include "gallivm/lp_bld_type.h"
75#include "gallivm/lp_bld_arit.h"
76#include "gallivm/lp_bld_init.h"
77#include "lp_bld_blend.h"
78
79
80/**
81 * We may use the same values several times, so we keep them here to avoid
82 * recomputing them. Also reusing the values allows us to do simplifications
83 * that LLVM optimization passes wouldn't normally be able to do.
84 */
85struct lp_build_blend_soa_context
86{
87   struct lp_build_context base;
88
89   LLVMValueRef src[4];
90   LLVMValueRef dst[4];
91   LLVMValueRef con[4];
92
93   LLVMValueRef inv_src[4];
94   LLVMValueRef inv_dst[4];
95   LLVMValueRef inv_con[4];
96
97   LLVMValueRef src_alpha_saturate;
98
99   /**
100    * We store all factors in a table in order to eliminate redundant
101    * multiplications later.
102    * Indexes are: factor[src,dst][color,term][r,g,b,a]
103    */
104   LLVMValueRef factor[2][2][4];
105
106   /**
107    * Table with all terms.
108    * Indexes are: term[src,dst][r,g,b,a]
109    */
110   LLVMValueRef term[2][4];
111};
112
113
114/**
115 * Build a single SOA blend factor for a color channel.
116 * \param i  the color channel in [0,3]
117 */
118static LLVMValueRef
119lp_build_blend_soa_factor(struct lp_build_blend_soa_context *bld,
120                          unsigned factor, unsigned i)
121{
122   /*
123    * Compute src/first term RGB
124    */
125   switch (factor) {
126   case PIPE_BLENDFACTOR_ONE:
127      return bld->base.one;
128   case PIPE_BLENDFACTOR_SRC_COLOR:
129      return bld->src[i];
130   case PIPE_BLENDFACTOR_SRC_ALPHA:
131      return bld->src[3];
132   case PIPE_BLENDFACTOR_DST_COLOR:
133      return bld->dst[i];
134   case PIPE_BLENDFACTOR_DST_ALPHA:
135      return bld->dst[3];
136   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
137      if(i == 3)
138         return bld->base.one;
139      else {
140         if(!bld->inv_dst[3])
141            bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
142         if(!bld->src_alpha_saturate)
143            bld->src_alpha_saturate = lp_build_min(&bld->base, bld->src[3], bld->inv_dst[3]);
144         return bld->src_alpha_saturate;
145      }
146   case PIPE_BLENDFACTOR_CONST_COLOR:
147      return bld->con[i];
148   case PIPE_BLENDFACTOR_CONST_ALPHA:
149      return bld->con[3];
150   case PIPE_BLENDFACTOR_SRC1_COLOR:
151      /* TODO */
152      assert(0);
153      return bld->base.zero;
154   case PIPE_BLENDFACTOR_SRC1_ALPHA:
155      /* TODO */
156      assert(0);
157      return bld->base.zero;
158   case PIPE_BLENDFACTOR_ZERO:
159      return bld->base.zero;
160   case PIPE_BLENDFACTOR_INV_SRC_COLOR:
161      if(!bld->inv_src[i])
162         bld->inv_src[i] = lp_build_comp(&bld->base, bld->src[i]);
163      return bld->inv_src[i];
164   case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
165      if(!bld->inv_src[3])
166         bld->inv_src[3] = lp_build_comp(&bld->base, bld->src[3]);
167      return bld->inv_src[3];
168   case PIPE_BLENDFACTOR_INV_DST_COLOR:
169      if(!bld->inv_dst[i])
170         bld->inv_dst[i] = lp_build_comp(&bld->base, bld->dst[i]);
171      return bld->inv_dst[i];
172   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
173      if(!bld->inv_dst[3])
174         bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
175      return bld->inv_dst[3];
176   case PIPE_BLENDFACTOR_INV_CONST_COLOR:
177      if(!bld->inv_con[i])
178         bld->inv_con[i] = lp_build_comp(&bld->base, bld->con[i]);
179      return bld->inv_con[i];
180   case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
181      if(!bld->inv_con[3])
182         bld->inv_con[3] = lp_build_comp(&bld->base, bld->con[3]);
183      return bld->inv_con[3];
184   case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
185      /* TODO */
186      assert(0);
187      return bld->base.zero;
188   case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
189      /* TODO */
190      assert(0);
191      return bld->base.zero;
192   default:
193      assert(0);
194      return bld->base.zero;
195   }
196}
197
198
199static boolean
200lp_build_blend_factor_complementary(unsigned src_factor, unsigned dst_factor)
201{
202   return dst_factor == (src_factor ^ 0x10);
203}
204
205
206/**
207 * Generate blend code in SOA mode.
208 * \param rt  render target index (to index the blend / colormask state)
209 * \param src  src/fragment color
210 * \param dst  dst/framebuffer color
211 * \param con  constant blend color
212 * \param res  the result/output
213 */
214void
215lp_build_blend_soa(struct gallivm_state *gallivm,
216                   const struct pipe_blend_state *blend,
217                   struct lp_type type,
218                   unsigned rt,
219                   LLVMValueRef src[4],
220                   LLVMValueRef dst[4],
221                   LLVMValueRef con[4],
222                   LLVMValueRef res[4])
223{
224   LLVMBuilderRef builder = gallivm->builder;
225   struct lp_build_blend_soa_context bld;
226   unsigned i, j, k;
227
228   assert(rt < PIPE_MAX_COLOR_BUFS);
229
230   /* Setup build context */
231   memset(&bld, 0, sizeof bld);
232   lp_build_context_init(&bld.base, gallivm, type);
233   for (i = 0; i < 4; ++i) {
234      bld.src[i] = src[i];
235      bld.dst[i] = dst[i];
236      bld.con[i] = con[i];
237   }
238
239   for (i = 0; i < 4; ++i) {
240      /* only compute blending for the color channels enabled for writing */
241      if (blend->rt[rt].colormask & (1 << i)) {
242         if (blend->logicop_enable) {
243            if(!type.floating) {
244               res[i] = lp_build_logicop(builder, blend->logicop_func, src[i], dst[i]);
245            }
246            else
247               res[i] = dst[i];
248         }
249         else if (blend->rt[rt].blend_enable) {
250            unsigned src_factor = i < 3 ? blend->rt[rt].rgb_src_factor : blend->rt[rt].alpha_src_factor;
251            unsigned dst_factor = i < 3 ? blend->rt[rt].rgb_dst_factor : blend->rt[rt].alpha_dst_factor;
252            unsigned func = i < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
253            boolean func_commutative = lp_build_blend_func_commutative(func);
254
255	    if (func == PIPE_BLEND_ADD &&
256		lp_build_blend_factor_complementary(src_factor, dst_factor) && 0) {
257               /*
258                * Special case linear interpolation, (i.e., complementary factors).
259                */
260
261	       LLVMValueRef weight;
262	       if (src_factor < dst_factor) {
263		  weight = lp_build_blend_soa_factor(&bld, src_factor, i);
264		  res[i] = lp_build_lerp(&bld.base, weight, dst[i], src[i]);
265	       } else {
266		  weight = lp_build_blend_soa_factor(&bld, dst_factor, i);
267		  res[i] = lp_build_lerp(&bld.base, weight, src[i], dst[i]);
268	       }
269	       continue;
270	    }
271
272	    if ((func == PIPE_BLEND_ADD ||
273                 func == PIPE_BLEND_SUBTRACT ||
274                 func == PIPE_BLEND_REVERSE_SUBTRACT) &&
275		src_factor == dst_factor &&
276                type.floating) {
277               /*
278                * Special common factor.
279                *
280                * XXX: Only for floating points for now, since saturation will
281                * cause different results.
282                */
283
284	       LLVMValueRef factor;
285               factor = lp_build_blend_soa_factor(&bld, src_factor, i);
286               res[i] = lp_build_blend_func(&bld.base, func, src[i], dst[i]);
287               res[i] = lp_build_mul(&bld.base, res[i], factor);
288	       continue;
289	    }
290
291            /*
292             * Compute src/dst factors.
293             */
294
295            bld.factor[0][0][i] = src[i];
296            bld.factor[0][1][i] = lp_build_blend_soa_factor(&bld, src_factor, i);
297            bld.factor[1][0][i] = dst[i];
298            bld.factor[1][1][i] = lp_build_blend_soa_factor(&bld, dst_factor, i);
299
300            /*
301             * Compute src/dst terms
302             */
303
304            for(k = 0; k < 2; ++k) {
305               /* See if this multiplication has been previously computed */
306               for(j = 0; j < i; ++j) {
307                  if((bld.factor[k][0][j] == bld.factor[k][0][i] &&
308                      bld.factor[k][1][j] == bld.factor[k][1][i]) ||
309                     (bld.factor[k][0][j] == bld.factor[k][1][i] &&
310                      bld.factor[k][1][j] == bld.factor[k][0][i]))
311                     break;
312               }
313
314               if(j < i)
315                  bld.term[k][i] = bld.term[k][j];
316               else
317                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i], bld.factor[k][1][i]);
318
319               if (src_factor == PIPE_BLENDFACTOR_ZERO &&
320                   (dst_factor == PIPE_BLENDFACTOR_DST_ALPHA ||
321                    dst_factor == PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
322                  /* XXX special case these combos to work around an apparent
323                   * bug in LLVM.
324                   * This hack disables the check for multiplication by zero
325                   * in lp_bld_mul().  When we optimize away the
326                   * multiplication, something goes wrong during code
327                   * generation and we segfault at runtime.
328                   */
329                  LLVMValueRef zeroSave = bld.base.zero;
330                  bld.base.zero = NULL;
331                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i],
332                                                bld.factor[k][1][i]);
333                  bld.base.zero = zeroSave;
334               }
335            }
336
337            /*
338             * Combine terms
339             */
340
341            /* See if this function has been previously applied */
342            for(j = 0; j < i; ++j) {
343               unsigned prev_func = j < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
344               unsigned func_reverse = lp_build_blend_func_reverse(func, prev_func);
345
346               if((!func_reverse &&
347                   bld.term[0][j] == bld.term[0][i] &&
348                   bld.term[1][j] == bld.term[1][i]) ||
349                  ((func_commutative || func_reverse) &&
350                   bld.term[0][j] == bld.term[1][i] &&
351                   bld.term[1][j] == bld.term[0][i]))
352                  break;
353            }
354
355            if(j < i)
356               res[i] = res[j];
357            else
358               res[i] = lp_build_blend_func(&bld.base, func, bld.term[0][i], bld.term[1][i]);
359         }
360         else {
361            res[i] = src[i];
362         }
363      }
364      else {
365         res[i] = dst[i];
366      }
367   }
368}
369