lp_bld_depth.c revision 4fbffb7d909f9746fb744e133563c80c66574adb
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 *  Z11 Z12 Z13 Z14 ...
44 *  Z21 Z22 Z23 Z24 ...
45 *  Z31 Z32 Z33 Z34 ...
46 *  Z41 Z42 Z43 Z44 ...
47 *  ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 *  Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 *  Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 *  ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * Stencil test:
57 * Two-sided stencil test is supported but probably not as efficient as
58 * it could be.  Currently, we use if/then/else constructs to do the
59 * operations for front vs. back-facing polygons.  We could probably do
60 * both the front and back arithmetic then use a Select() instruction to
61 * choose the result depending on polyon orientation.  We'd have to
62 * measure performance both ways and see which is better.
63 *
64 * @author Jose Fonseca <jfonseca@vmware.com>
65 */
66
67#include "pipe/p_state.h"
68#include "util/u_format.h"
69
70#include "gallivm/lp_bld_type.h"
71#include "gallivm/lp_bld_arit.h"
72#include "gallivm/lp_bld_const.h"
73#include "gallivm/lp_bld_logic.h"
74#include "gallivm/lp_bld_flow.h"
75#include "gallivm/lp_bld_intr.h"
76#include "gallivm/lp_bld_debug.h"
77#include "gallivm/lp_bld_swizzle.h"
78
79#include "lp_bld_depth.h"
80
81
82/** Used to select fields from pipe_stencil_state */
83enum stencil_op {
84   S_FAIL_OP,
85   Z_FAIL_OP,
86   Z_PASS_OP
87};
88
89
90
91/**
92 * Do the stencil test comparison (compare FB stencil values against ref value).
93 * This will be used twice when generating two-sided stencil code.
94 * \param stencil  the front/back stencil state
95 * \param stencilRef  the stencil reference value, replicated as a vector
96 * \param stencilVals  vector of stencil values from framebuffer
97 * \return vector mask of pass/fail values (~0 or 0)
98 */
99static LLVMValueRef
100lp_build_stencil_test_single(struct lp_build_context *bld,
101                             const struct pipe_stencil_state *stencil,
102                             LLVMValueRef stencilRef,
103                             LLVMValueRef stencilVals)
104{
105   const unsigned stencilMax = 255; /* XXX fix */
106   struct lp_type type = bld->type;
107   LLVMValueRef res;
108
109   assert(type.sign);
110
111   assert(stencil->enabled);
112
113   if (stencil->valuemask != stencilMax) {
114      /* compute stencilRef = stencilRef & valuemask */
115      LLVMValueRef valuemask = lp_build_const_int_vec(type, stencil->valuemask);
116      stencilRef = LLVMBuildAnd(bld->builder, stencilRef, valuemask, "");
117      /* compute stencilVals = stencilVals & valuemask */
118      stencilVals = LLVMBuildAnd(bld->builder, stencilVals, valuemask, "");
119   }
120
121   res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
122
123   return res;
124}
125
126
127/**
128 * Do the one or two-sided stencil test comparison.
129 * \sa lp_build_stencil_test_single
130 * \param face  an integer indicating front (+) or back (-) facing polygon.
131 *              If NULL, assume front-facing.
132 */
133static LLVMValueRef
134lp_build_stencil_test(struct lp_build_context *bld,
135                      const struct pipe_stencil_state stencil[2],
136                      LLVMValueRef stencilRefs[2],
137                      LLVMValueRef stencilVals,
138                      LLVMValueRef face)
139{
140   LLVMValueRef res;
141
142   assert(stencil[0].enabled);
143
144   if (stencil[1].enabled && face) {
145      /* do two-sided test */
146      struct lp_build_flow_context *flow_ctx;
147      struct lp_build_if_state if_ctx;
148      LLVMValueRef front_facing;
149      LLVMValueRef zero = LLVMConstReal(LLVMFloatType(), 0.0);
150      LLVMValueRef result = bld->undef;
151
152      flow_ctx = lp_build_flow_create(bld->builder);
153      lp_build_flow_scope_begin(flow_ctx);
154
155      lp_build_flow_scope_declare(flow_ctx, &result);
156
157      /* front_facing = face > 0.0 */
158      front_facing = LLVMBuildFCmp(bld->builder, LLVMRealUGT, face, zero, "");
159
160      lp_build_if(&if_ctx, flow_ctx, bld->builder, front_facing);
161      {
162         result = lp_build_stencil_test_single(bld, &stencil[0],
163                                               stencilRefs[0], stencilVals);
164      }
165      lp_build_else(&if_ctx);
166      {
167         result = lp_build_stencil_test_single(bld, &stencil[1],
168                                               stencilRefs[1], stencilVals);
169      }
170      lp_build_endif(&if_ctx);
171
172      lp_build_flow_scope_end(flow_ctx);
173      lp_build_flow_destroy(flow_ctx);
174
175      res = result;
176   }
177   else {
178      /* do single-side test */
179      res = lp_build_stencil_test_single(bld, &stencil[0],
180                                         stencilRefs[0], stencilVals);
181   }
182
183   return res;
184}
185
186
187/**
188 * Apply the stencil operator (add/sub/keep/etc) to the given vector
189 * of stencil values.
190 * \return  new stencil values vector
191 */
192static LLVMValueRef
193lp_build_stencil_op_single(struct lp_build_context *bld,
194                           const struct pipe_stencil_state *stencil,
195                           enum stencil_op op,
196                           LLVMValueRef stencilRef,
197                           LLVMValueRef stencilVals,
198                           LLVMValueRef mask)
199
200{
201   const unsigned stencilMax = 255; /* XXX fix */
202   struct lp_type type = bld->type;
203   LLVMValueRef res;
204   LLVMValueRef max = lp_build_const_int_vec(type, stencilMax);
205   unsigned stencil_op;
206
207   assert(type.sign);
208
209   switch (op) {
210   case S_FAIL_OP:
211      stencil_op = stencil->fail_op;
212      break;
213   case Z_FAIL_OP:
214      stencil_op = stencil->zfail_op;
215      break;
216   case Z_PASS_OP:
217      stencil_op = stencil->zpass_op;
218      break;
219   default:
220      assert(0 && "Invalid stencil_op mode");
221      stencil_op = PIPE_STENCIL_OP_KEEP;
222   }
223
224   switch (stencil_op) {
225   case PIPE_STENCIL_OP_KEEP:
226      res = stencilVals;
227      /* we can return early for this case */
228      return res;
229   case PIPE_STENCIL_OP_ZERO:
230      res = bld->zero;
231      break;
232   case PIPE_STENCIL_OP_REPLACE:
233      res = stencilRef;
234      break;
235   case PIPE_STENCIL_OP_INCR:
236      res = lp_build_add(bld, stencilVals, bld->one);
237      res = lp_build_min(bld, res, max);
238      break;
239   case PIPE_STENCIL_OP_DECR:
240      res = lp_build_sub(bld, stencilVals, bld->one);
241      res = lp_build_max(bld, res, bld->zero);
242      break;
243   case PIPE_STENCIL_OP_INCR_WRAP:
244      res = lp_build_add(bld, stencilVals, bld->one);
245      res = LLVMBuildAnd(bld->builder, res, max, "");
246      break;
247   case PIPE_STENCIL_OP_DECR_WRAP:
248      res = lp_build_sub(bld, stencilVals, bld->one);
249      res = LLVMBuildAnd(bld->builder, res, max, "");
250      break;
251   case PIPE_STENCIL_OP_INVERT:
252      res = LLVMBuildNot(bld->builder, stencilVals, "");
253      res = LLVMBuildAnd(bld->builder, res, max, "");
254      break;
255   default:
256      assert(0 && "bad stencil op mode");
257      res = NULL;
258   }
259
260   if (stencil->writemask != stencilMax) {
261      /* mask &= stencil->writemask */
262      LLVMValueRef writemask = lp_build_const_int_vec(type, stencil->writemask);
263      mask = LLVMBuildAnd(bld->builder, mask, writemask, "");
264      /* res = (res & mask) | (stencilVals & ~mask) */
265      res = lp_build_select_bitwise(bld, writemask, res, stencilVals);
266   }
267   else {
268      /* res = mask ? res : stencilVals */
269      res = lp_build_select(bld, mask, res, stencilVals);
270   }
271
272   return res;
273}
274
275
276/**
277 * Do the one or two-sided stencil test op/update.
278 */
279static LLVMValueRef
280lp_build_stencil_op(struct lp_build_context *bld,
281                    const struct pipe_stencil_state stencil[2],
282                    enum stencil_op op,
283                    LLVMValueRef stencilRefs[2],
284                    LLVMValueRef stencilVals,
285                    LLVMValueRef mask,
286                    LLVMValueRef face)
287
288{
289   assert(stencil[0].enabled);
290
291   if (stencil[1].enabled && face) {
292      /* do two-sided op */
293      struct lp_build_flow_context *flow_ctx;
294      struct lp_build_if_state if_ctx;
295      LLVMValueRef front_facing;
296      LLVMValueRef zero = LLVMConstReal(LLVMFloatType(), 0.0);
297      LLVMValueRef result = bld->undef;
298
299      flow_ctx = lp_build_flow_create(bld->builder);
300      lp_build_flow_scope_begin(flow_ctx);
301
302      lp_build_flow_scope_declare(flow_ctx, &result);
303
304      /* front_facing = face > 0.0 */
305      front_facing = LLVMBuildFCmp(bld->builder, LLVMRealUGT, face, zero, "");
306
307      lp_build_if(&if_ctx, flow_ctx, bld->builder, front_facing);
308      {
309         result = lp_build_stencil_op_single(bld, &stencil[0], op,
310                                             stencilRefs[0], stencilVals, mask);
311      }
312      lp_build_else(&if_ctx);
313      {
314         result = lp_build_stencil_op_single(bld, &stencil[1], op,
315                                             stencilRefs[1], stencilVals, mask);
316      }
317      lp_build_endif(&if_ctx);
318
319      lp_build_flow_scope_end(flow_ctx);
320      lp_build_flow_destroy(flow_ctx);
321
322      return result;
323   }
324   else {
325      /* do single-sided op */
326      return lp_build_stencil_op_single(bld, &stencil[0], op,
327                                        stencilRefs[0], stencilVals, mask);
328   }
329}
330
331
332
333/**
334 * Return a type appropriate for depth/stencil testing.
335 */
336struct lp_type
337lp_depth_type(const struct util_format_description *format_desc,
338              unsigned length)
339{
340   struct lp_type type;
341   unsigned swizzle;
342
343   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
344   assert(format_desc->block.width == 1);
345   assert(format_desc->block.height == 1);
346
347   swizzle = format_desc->swizzle[0];
348   assert(swizzle < 4);
349
350   memset(&type, 0, sizeof type);
351   type.width = format_desc->block.bits;
352
353   if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
354      type.floating = TRUE;
355      assert(swizzle == 0);
356      assert(format_desc->channel[swizzle].size == format_desc->block.bits);
357   }
358   else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
359      assert(format_desc->block.bits <= 32);
360      if(format_desc->channel[swizzle].normalized)
361         type.norm = TRUE;
362   }
363   else
364      assert(0);
365
366   assert(type.width <= length);
367   type.length = length / type.width;
368
369   return type;
370}
371
372
373/**
374 * Compute bitmask and bit shift to apply to the incoming fragment Z values
375 * and the Z buffer values needed before doing the Z comparison.
376 *
377 * Note that we leave the Z bits in the position that we find them
378 * in the Z buffer (typically 0xffffff00 or 0x00ffffff).  That lets us
379 * get by with fewer bit twiddling steps.
380 */
381static boolean
382get_z_shift_and_mask(const struct util_format_description *format_desc,
383                     unsigned *shift, unsigned *mask)
384{
385   const unsigned total_bits = format_desc->block.bits;
386   unsigned z_swizzle;
387   unsigned chan;
388   unsigned padding_left, padding_right;
389
390   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
391   assert(format_desc->block.width == 1);
392   assert(format_desc->block.height == 1);
393
394   z_swizzle = format_desc->swizzle[0];
395
396   if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
397      return FALSE;
398
399   padding_right = 0;
400   for (chan = 0; chan < z_swizzle; ++chan)
401      padding_right += format_desc->channel[chan].size;
402
403   padding_left =
404      total_bits - (padding_right + format_desc->channel[z_swizzle].size);
405
406   if (padding_left || padding_right) {
407      unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
408      unsigned long long mask_right = (1ULL << (padding_right)) - 1;
409      *mask = mask_left ^ mask_right;
410   }
411   else {
412      *mask = 0xffffffff;
413   }
414
415   *shift = padding_left;
416
417   return TRUE;
418}
419
420
421/**
422 * Compute bitmask and bit shift to apply to the framebuffer pixel values
423 * to put the stencil bits in the least significant position.
424 * (i.e. 0x000000ff)
425 */
426static boolean
427get_s_shift_and_mask(const struct util_format_description *format_desc,
428                     unsigned *shift, unsigned *mask)
429{
430   unsigned s_swizzle;
431   unsigned chan, sz;
432
433   s_swizzle = format_desc->swizzle[1];
434
435   if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
436      return FALSE;
437
438   *shift = 0;
439   for (chan = 0; chan < s_swizzle; chan++)
440      *shift += format_desc->channel[chan].size;
441
442   sz = format_desc->channel[s_swizzle].size;
443   *mask = (1U << sz) - 1U;
444
445   return TRUE;
446}
447
448
449/**
450 * Perform the occlusion test and increase the counter.
451 * Test the depth mask. Add the number of channel which has none zero mask
452 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
453 * The counter will add 4.
454 *
455 * \param type holds element type of the mask vector.
456 * \param maskvalue is the depth test mask.
457 * \param counter is a pointer of the uint32 counter.
458 */
459static void
460lp_build_occlusion_count(LLVMBuilderRef builder,
461                         struct lp_type type,
462                         LLVMValueRef maskvalue,
463                         LLVMValueRef counter)
464{
465   LLVMValueRef countmask = lp_build_const_int_vec(type, 1);
466   LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
467   LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8Type(), 16);
468   LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
469   LLVMValueRef maskarray[4] = {
470      LLVMConstInt(LLVMInt32Type(), 0, 0),
471      LLVMConstInt(LLVMInt32Type(), 4, 0),
472      LLVMConstInt(LLVMInt32Type(), 8, 0),
473      LLVMConstInt(LLVMInt32Type(), 12, 0),
474   };
475   LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
476   LLVMValueRef shufflev =  LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
477   LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32Type(), "shuffle");
478   LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32Type(), shuffle);
479   LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
480   LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
481   LLVMBuildStore(builder, incr, counter);
482}
483
484
485
486/**
487 * Generate code for performing depth and/or stencil tests.
488 * We operate on a vector of values (typically a 2x2 quad).
489 *
490 * \param depth  the depth test state
491 * \param stencil  the front/back stencil state
492 * \param type  the data type of the fragment depth/stencil values
493 * \param format_desc  description of the depth/stencil surface
494 * \param mask  the alive/dead pixel mask for the quad (vector)
495 * \param stencil_refs  the front/back stencil ref values (scalar)
496 * \param z_src  the incoming depth/stencil values (a 2x2 quad)
497 * \param zs_dst_ptr  pointer to depth/stencil values in framebuffer
498 * \param facing  contains float value indicating front/back facing polygon
499 */
500void
501lp_build_depth_stencil_test(LLVMBuilderRef builder,
502                            const struct pipe_depth_state *depth,
503                            const struct pipe_stencil_state stencil[2],
504                            struct lp_type type,
505                            const struct util_format_description *format_desc,
506                            struct lp_build_mask_context *mask,
507                            LLVMValueRef stencil_refs[2],
508                            LLVMValueRef z_src,
509                            LLVMValueRef zs_dst_ptr,
510                            LLVMValueRef face,
511                            LLVMValueRef counter)
512{
513   struct lp_build_context bld;
514   struct lp_build_context sbld;
515   struct lp_type s_type;
516   LLVMValueRef zs_dst, z_dst = NULL;
517   LLVMValueRef stencil_vals = NULL;
518   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
519   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
520   LLVMValueRef orig_mask = mask->value;
521
522   /* Sanity checking */
523   {
524      const unsigned z_swizzle = format_desc->swizzle[0];
525      const unsigned s_swizzle = format_desc->swizzle[1];
526
527      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
528             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
529
530      assert(depth->enabled || stencil[0].enabled);
531
532      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
533      assert(format_desc->block.width == 1);
534      assert(format_desc->block.height == 1);
535
536      if (stencil[0].enabled) {
537         assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_USCALED ||
538                format_desc->format == PIPE_FORMAT_S8_USCALED_Z24_UNORM);
539      }
540
541      assert(z_swizzle < 4);
542      assert(format_desc->block.bits == type.width);
543      if (type.floating) {
544         assert(z_swizzle == 0);
545         assert(format_desc->channel[z_swizzle].type ==
546                UTIL_FORMAT_TYPE_FLOAT);
547         assert(format_desc->channel[z_swizzle].size ==
548                format_desc->block.bits);
549      }
550      else {
551         assert(format_desc->channel[z_swizzle].type ==
552                UTIL_FORMAT_TYPE_UNSIGNED);
553         assert(format_desc->channel[z_swizzle].normalized);
554         assert(!type.fixed);
555         assert(!type.sign);
556         assert(type.norm);
557      }
558   }
559
560
561   /* Setup build context for Z vals */
562   lp_build_context_init(&bld, builder, type);
563
564   /* Setup build context for stencil vals */
565   s_type = lp_type_int_vec(type.width);
566   lp_build_context_init(&sbld, builder, s_type);
567
568   /* Load current z/stencil value from z/stencil buffer */
569   zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
570
571   lp_build_name(zs_dst, "zsbufval");
572
573
574   /* Compute and apply the Z/stencil bitmasks and shifts.
575    */
576   {
577      unsigned z_shift, z_mask;
578      unsigned s_shift, s_mask;
579
580      if (get_z_shift_and_mask(format_desc, &z_shift, &z_mask)) {
581         if (z_shift) {
582            LLVMValueRef shift = lp_build_const_int_vec(type, z_shift);
583            z_src = LLVMBuildLShr(builder, z_src, shift, "");
584         }
585
586         if (z_mask != 0xffffffff) {
587            LLVMValueRef mask = lp_build_const_int_vec(type, z_mask);
588            z_src = LLVMBuildAnd(builder, z_src, mask, "");
589            z_dst = LLVMBuildAnd(builder, zs_dst, mask, "");
590            z_bitmask = mask;  /* used below */
591         }
592         else {
593            z_dst = zs_dst;
594         }
595
596         lp_build_name(z_dst, "zsbuf.z");
597      }
598
599      if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
600         if (s_shift) {
601            LLVMValueRef shift = lp_build_const_int_vec(type, s_shift);
602            stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
603            stencil_shift = shift;  /* used below */
604         }
605         else {
606            stencil_vals = zs_dst;
607         }
608
609         if (s_mask != 0xffffffff) {
610            LLVMValueRef mask = lp_build_const_int_vec(type, s_mask);
611            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
612         }
613
614         lp_build_name(stencil_vals, "stencil");
615      }
616   }
617
618
619   if (stencil[0].enabled) {
620      /* convert scalar stencil refs into vectors */
621      stencil_refs[0] = lp_build_broadcast_scalar(&bld, stencil_refs[0]);
622      stencil_refs[1] = lp_build_broadcast_scalar(&bld, stencil_refs[1]);
623
624      s_pass_mask = lp_build_stencil_test(&sbld, stencil,
625                                          stencil_refs, stencil_vals, face);
626
627      /* apply stencil-fail operator */
628      {
629         LLVMValueRef s_fail_mask = lp_build_andc(&bld, orig_mask, s_pass_mask);
630         stencil_vals = lp_build_stencil_op(&sbld, stencil, S_FAIL_OP,
631                                            stencil_refs, stencil_vals,
632                                            s_fail_mask, face);
633      }
634   }
635
636   if (depth->enabled) {
637      /* compare src Z to dst Z, returning 'pass' mask */
638      z_pass = lp_build_cmp(&bld, depth->func, z_src, z_dst);
639
640      if (!stencil[0].enabled) {
641         /* We can potentially skip all remaining operations here, but only
642          * if stencil is disabled because we still need to update the stencil
643          * buffer values.  Don't need to update Z buffer values.
644          */
645         lp_build_mask_update(mask, z_pass);
646      }
647
648      if (depth->writemask) {
649         LLVMValueRef zselectmask = mask->value;
650
651         /* mask off bits that failed Z test */
652         zselectmask = LLVMBuildAnd(builder, zselectmask, z_pass, "");
653
654         /* mask off bits that failed stencil test */
655         if (s_pass_mask) {
656            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
657         }
658
659         /* if combined Z/stencil format, mask off the stencil bits */
660         if (z_bitmask) {
661            zselectmask = LLVMBuildAnd(builder, zselectmask, z_bitmask, "");
662         }
663
664         /* Mix the old and new Z buffer values.
665          * z_dst[i] = (zselectmask[i] & z_src[i]) | (~zselectmask[i] & z_dst[i])
666          */
667         z_dst = lp_build_select_bitwise(&bld, zselectmask, z_src, z_dst);
668      }
669
670      if (stencil[0].enabled) {
671         /* update stencil buffer values according to z pass/fail result */
672         LLVMValueRef z_fail_mask, z_pass_mask;
673
674         /* apply Z-fail operator */
675         z_fail_mask = lp_build_andc(&bld, orig_mask, z_pass);
676         stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_FAIL_OP,
677                                            stencil_refs, stencil_vals,
678                                            z_fail_mask, face);
679
680         /* apply Z-pass operator */
681         z_pass_mask = LLVMBuildAnd(bld.builder, orig_mask, z_pass, "");
682         stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_PASS_OP,
683                                            stencil_refs, stencil_vals,
684                                            z_pass_mask, face);
685      }
686   }
687   else {
688      /* No depth test: apply Z-pass operator to stencil buffer values which
689       * passed the stencil test.
690       */
691      s_pass_mask = LLVMBuildAnd(bld.builder, orig_mask, s_pass_mask, "");
692      stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_PASS_OP,
693                                         stencil_refs, stencil_vals,
694                                         s_pass_mask, face);
695   }
696
697   /* The Z bits are already in the right place but we may need to shift the
698    * stencil bits before ORing Z with Stencil to make the final pixel value.
699    */
700   if (stencil_vals && stencil_shift)
701      stencil_vals = LLVMBuildShl(bld.builder, stencil_vals,
702                                  stencil_shift, "");
703
704   /* Finally, merge/store the z/stencil values */
705   if ((depth->enabled && depth->writemask) ||
706       (stencil[0].enabled && stencil[0].writemask)) {
707
708      if (z_dst && stencil_vals)
709         zs_dst = LLVMBuildOr(bld.builder, z_dst, stencil_vals, "");
710      else if (z_dst)
711         zs_dst = z_dst;
712      else
713         zs_dst = stencil_vals;
714
715      LLVMBuildStore(builder, zs_dst, zs_dst_ptr);
716   }
717
718   if (s_pass_mask)
719      lp_build_mask_update(mask, s_pass_mask);
720
721   if (depth->enabled && stencil[0].enabled)
722      lp_build_mask_update(mask, z_pass);
723
724   if (counter)
725      lp_build_occlusion_count(builder, type, mask->value, counter);
726}
727