lp_bld_depth.c revision 95c18abb03b035c6fa029cd0852f07fb39951279
1/**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 *  Z11 Z12 Z13 Z14 ...
44 *  Z21 Z22 Z23 Z24 ...
45 *  Z31 Z32 Z33 Z34 ...
46 *  Z41 Z42 Z43 Z44 ...
47 *  ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 *  Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 *  Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 *  ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * @author Jose Fonseca <jfonseca@vmware.com>
57 * @author Brian Paul <jfonseca@vmware.com>
58 */
59
60#include "pipe/p_state.h"
61#include "util/u_format.h"
62
63#include "gallivm/lp_bld_type.h"
64#include "gallivm/lp_bld_arit.h"
65#include "gallivm/lp_bld_bitarit.h"
66#include "gallivm/lp_bld_const.h"
67#include "gallivm/lp_bld_conv.h"
68#include "gallivm/lp_bld_logic.h"
69#include "gallivm/lp_bld_flow.h"
70#include "gallivm/lp_bld_intr.h"
71#include "gallivm/lp_bld_debug.h"
72#include "gallivm/lp_bld_swizzle.h"
73
74#include "lp_bld_depth.h"
75
76
77/** Used to select fields from pipe_stencil_state */
78enum stencil_op {
79   S_FAIL_OP,
80   Z_FAIL_OP,
81   Z_PASS_OP
82};
83
84
85
86/**
87 * Do the stencil test comparison (compare FB stencil values against ref value).
88 * This will be used twice when generating two-sided stencil code.
89 * \param stencil  the front/back stencil state
90 * \param stencilRef  the stencil reference value, replicated as a vector
91 * \param stencilVals  vector of stencil values from framebuffer
92 * \return vector mask of pass/fail values (~0 or 0)
93 */
94static LLVMValueRef
95lp_build_stencil_test_single(struct lp_build_context *bld,
96                             const struct pipe_stencil_state *stencil,
97                             LLVMValueRef stencilRef,
98                             LLVMValueRef stencilVals)
99{
100   const unsigned stencilMax = 255; /* XXX fix */
101   struct lp_type type = bld->type;
102   LLVMValueRef res;
103
104   assert(type.sign);
105
106   assert(stencil->enabled);
107
108   if (stencil->valuemask != stencilMax) {
109      /* compute stencilRef = stencilRef & valuemask */
110      LLVMValueRef valuemask = lp_build_const_int_vec(type, stencil->valuemask);
111      stencilRef = LLVMBuildAnd(bld->builder, stencilRef, valuemask, "");
112      /* compute stencilVals = stencilVals & valuemask */
113      stencilVals = LLVMBuildAnd(bld->builder, stencilVals, valuemask, "");
114   }
115
116   res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
117
118   return res;
119}
120
121
122/**
123 * Do the one or two-sided stencil test comparison.
124 * \sa lp_build_stencil_test_single
125 * \param front_facing  an integer vector mask, indicating front (~0) or back
126 *                      (0) facing polygon. If NULL, assume front-facing.
127 */
128static LLVMValueRef
129lp_build_stencil_test(struct lp_build_context *bld,
130                      const struct pipe_stencil_state stencil[2],
131                      LLVMValueRef stencilRefs[2],
132                      LLVMValueRef stencilVals,
133                      LLVMValueRef front_facing)
134{
135   LLVMValueRef res;
136
137   assert(stencil[0].enabled);
138
139   /* do front face test */
140   res = lp_build_stencil_test_single(bld, &stencil[0],
141                                      stencilRefs[0], stencilVals);
142
143   if (stencil[1].enabled && front_facing) {
144      /* do back face test */
145      LLVMValueRef back_res;
146
147      back_res = lp_build_stencil_test_single(bld, &stencil[1],
148                                              stencilRefs[1], stencilVals);
149
150      res = lp_build_select(bld, front_facing, res, back_res);
151   }
152
153   return res;
154}
155
156
157/**
158 * Apply the stencil operator (add/sub/keep/etc) to the given vector
159 * of stencil values.
160 * \return  new stencil values vector
161 */
162static LLVMValueRef
163lp_build_stencil_op_single(struct lp_build_context *bld,
164                           const struct pipe_stencil_state *stencil,
165                           enum stencil_op op,
166                           LLVMValueRef stencilRef,
167                           LLVMValueRef stencilVals)
168
169{
170   struct lp_type type = bld->type;
171   LLVMValueRef res;
172   LLVMValueRef max = lp_build_const_int_vec(type, 0xff);
173   unsigned stencil_op;
174
175   assert(type.sign);
176
177   switch (op) {
178   case S_FAIL_OP:
179      stencil_op = stencil->fail_op;
180      break;
181   case Z_FAIL_OP:
182      stencil_op = stencil->zfail_op;
183      break;
184   case Z_PASS_OP:
185      stencil_op = stencil->zpass_op;
186      break;
187   default:
188      assert(0 && "Invalid stencil_op mode");
189      stencil_op = PIPE_STENCIL_OP_KEEP;
190   }
191
192   switch (stencil_op) {
193   case PIPE_STENCIL_OP_KEEP:
194      res = stencilVals;
195      /* we can return early for this case */
196      return res;
197   case PIPE_STENCIL_OP_ZERO:
198      res = bld->zero;
199      break;
200   case PIPE_STENCIL_OP_REPLACE:
201      res = stencilRef;
202      break;
203   case PIPE_STENCIL_OP_INCR:
204      res = lp_build_add(bld, stencilVals, bld->one);
205      res = lp_build_min(bld, res, max);
206      break;
207   case PIPE_STENCIL_OP_DECR:
208      res = lp_build_sub(bld, stencilVals, bld->one);
209      res = lp_build_max(bld, res, bld->zero);
210      break;
211   case PIPE_STENCIL_OP_INCR_WRAP:
212      res = lp_build_add(bld, stencilVals, bld->one);
213      res = LLVMBuildAnd(bld->builder, res, max, "");
214      break;
215   case PIPE_STENCIL_OP_DECR_WRAP:
216      res = lp_build_sub(bld, stencilVals, bld->one);
217      res = LLVMBuildAnd(bld->builder, res, max, "");
218      break;
219   case PIPE_STENCIL_OP_INVERT:
220      res = LLVMBuildNot(bld->builder, stencilVals, "");
221      res = LLVMBuildAnd(bld->builder, res, max, "");
222      break;
223   default:
224      assert(0 && "bad stencil op mode");
225      res = bld->undef;
226   }
227
228   return res;
229}
230
231
232/**
233 * Do the one or two-sided stencil test op/update.
234 */
235static LLVMValueRef
236lp_build_stencil_op(struct lp_build_context *bld,
237                    const struct pipe_stencil_state stencil[2],
238                    enum stencil_op op,
239                    LLVMValueRef stencilRefs[2],
240                    LLVMValueRef stencilVals,
241                    LLVMValueRef mask,
242                    LLVMValueRef front_facing)
243
244{
245   LLVMValueRef res;
246
247   assert(stencil[0].enabled);
248
249   /* do front face op */
250   res = lp_build_stencil_op_single(bld, &stencil[0], op,
251                                     stencilRefs[0], stencilVals);
252
253   if (stencil[1].enabled && front_facing) {
254      /* do back face op */
255      LLVMValueRef back_res;
256
257      back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
258                                            stencilRefs[1], stencilVals);
259
260      res = lp_build_select(bld, front_facing, res, back_res);
261   }
262
263   if (stencil->writemask != 0xff) {
264      /* mask &= stencil->writemask */
265      LLVMValueRef writemask = lp_build_const_int_vec(bld->type, stencil->writemask);
266      mask = LLVMBuildAnd(bld->builder, mask, writemask, "");
267      /* res = (res & mask) | (stencilVals & ~mask) */
268      res = lp_build_select_bitwise(bld, writemask, res, stencilVals);
269   }
270   else {
271      /* res = mask ? res : stencilVals */
272      res = lp_build_select(bld, mask, res, stencilVals);
273   }
274
275   return res;
276}
277
278
279
280/**
281 * Return a type appropriate for depth/stencil testing.
282 */
283struct lp_type
284lp_depth_type(const struct util_format_description *format_desc,
285              unsigned length)
286{
287   struct lp_type type;
288   unsigned swizzle;
289
290   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
291   assert(format_desc->block.width == 1);
292   assert(format_desc->block.height == 1);
293
294   swizzle = format_desc->swizzle[0];
295   assert(swizzle < 4);
296
297   memset(&type, 0, sizeof type);
298   type.width = format_desc->block.bits;
299
300   if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
301      type.floating = TRUE;
302      assert(swizzle == 0);
303      assert(format_desc->channel[swizzle].size == format_desc->block.bits);
304   }
305   else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
306      assert(format_desc->block.bits <= 32);
307      if(format_desc->channel[swizzle].normalized)
308         type.norm = TRUE;
309   }
310   else
311      assert(0);
312
313   assert(type.width <= length);
314   type.length = length / type.width;
315
316   return type;
317}
318
319
320/**
321 * Compute bitmask and bit shift to apply to the incoming fragment Z values
322 * and the Z buffer values needed before doing the Z comparison.
323 *
324 * Note that we leave the Z bits in the position that we find them
325 * in the Z buffer (typically 0xffffff00 or 0x00ffffff).  That lets us
326 * get by with fewer bit twiddling steps.
327 */
328static boolean
329get_z_shift_and_mask(const struct util_format_description *format_desc,
330                     unsigned *shift, unsigned *mask)
331{
332   const unsigned total_bits = format_desc->block.bits;
333   unsigned z_swizzle;
334   unsigned chan;
335   unsigned padding_left, padding_right;
336
337   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
338   assert(format_desc->block.width == 1);
339   assert(format_desc->block.height == 1);
340
341   z_swizzle = format_desc->swizzle[0];
342
343   if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
344      return FALSE;
345
346   padding_right = 0;
347   for (chan = 0; chan < z_swizzle; ++chan)
348      padding_right += format_desc->channel[chan].size;
349
350   padding_left =
351      total_bits - (padding_right + format_desc->channel[z_swizzle].size);
352
353   if (padding_left || padding_right) {
354      unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
355      unsigned long long mask_right = (1ULL << (padding_right)) - 1;
356      *mask = mask_left ^ mask_right;
357   }
358   else {
359      *mask = 0xffffffff;
360   }
361
362   *shift = padding_left;
363
364   return TRUE;
365}
366
367
368/**
369 * Compute bitmask and bit shift to apply to the framebuffer pixel values
370 * to put the stencil bits in the least significant position.
371 * (i.e. 0x000000ff)
372 */
373static boolean
374get_s_shift_and_mask(const struct util_format_description *format_desc,
375                     unsigned *shift, unsigned *mask)
376{
377   unsigned s_swizzle;
378   unsigned chan, sz;
379
380   s_swizzle = format_desc->swizzle[1];
381
382   if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
383      return FALSE;
384
385   *shift = 0;
386   for (chan = 0; chan < s_swizzle; chan++)
387      *shift += format_desc->channel[chan].size;
388
389   sz = format_desc->channel[s_swizzle].size;
390   *mask = (1U << sz) - 1U;
391
392   return TRUE;
393}
394
395
396/**
397 * Perform the occlusion test and increase the counter.
398 * Test the depth mask. Add the number of channel which has none zero mask
399 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
400 * The counter will add 4.
401 *
402 * \param type holds element type of the mask vector.
403 * \param maskvalue is the depth test mask.
404 * \param counter is a pointer of the uint32 counter.
405 */
406void
407lp_build_occlusion_count(LLVMBuilderRef builder,
408                         struct lp_type type,
409                         LLVMValueRef maskvalue,
410                         LLVMValueRef counter)
411{
412   LLVMValueRef countmask = lp_build_const_int_vec(type, 1);
413   LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
414   LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8Type(), 16);
415   LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
416   LLVMValueRef maskarray[4] = {
417      LLVMConstInt(LLVMInt32Type(), 0, 0),
418      LLVMConstInt(LLVMInt32Type(), 4, 0),
419      LLVMConstInt(LLVMInt32Type(), 8, 0),
420      LLVMConstInt(LLVMInt32Type(), 12, 0),
421   };
422   LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
423   LLVMValueRef shufflev =  LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
424   LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32Type(), "shuffle");
425   LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32Type(), shuffle);
426   LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
427   LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
428   LLVMBuildStore(builder, incr, counter);
429}
430
431
432
433/**
434 * Generate code for performing depth and/or stencil tests.
435 * We operate on a vector of values (typically a 2x2 quad).
436 *
437 * \param depth  the depth test state
438 * \param stencil  the front/back stencil state
439 * \param type  the data type of the fragment depth/stencil values
440 * \param format_desc  description of the depth/stencil surface
441 * \param mask  the alive/dead pixel mask for the quad (vector)
442 * \param stencil_refs  the front/back stencil ref values (scalar)
443 * \param z_src  the incoming depth/stencil values (a 2x2 quad, float32)
444 * \param zs_dst_ptr  pointer to depth/stencil values in framebuffer
445 * \param facing  contains float value indicating front/back facing polygon
446 */
447void
448lp_build_depth_stencil_test(LLVMBuilderRef builder,
449                            const struct pipe_depth_state *depth,
450                            const struct pipe_stencil_state stencil[2],
451                            struct lp_type z_src_type,
452                            const struct util_format_description *format_desc,
453                            struct lp_build_mask_context *mask,
454                            LLVMValueRef stencil_refs[2],
455                            LLVMValueRef z_src,
456                            LLVMValueRef zs_dst_ptr,
457                            LLVMValueRef face,
458                            LLVMValueRef *zs_value,
459                            boolean do_branch)
460{
461   struct lp_type z_type;
462   struct lp_build_context z_bld;
463   struct lp_build_context s_bld;
464   struct lp_type s_type;
465   LLVMValueRef zs_dst, z_dst = NULL;
466   LLVMValueRef stencil_vals = NULL;
467   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
468   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
469   LLVMValueRef orig_mask = lp_build_mask_value(mask);
470   LLVMValueRef front_facing = NULL;
471
472   /* Prototype a simpler path:
473    */
474   if (z_src_type.floating &&
475       format_desc->format == PIPE_FORMAT_X8Z24_UNORM &&
476       depth->enabled)
477   {
478      LLVMValueRef zscaled;
479      LLVMValueRef const_ffffff_float;
480      LLVMValueRef const_8_int;
481      LLVMTypeRef int32_vec_type;
482
483      /* We know the values in z_dst are all >= 0, so allow
484       * lp_build_compare to use signed compare intrinsics:
485       */
486      z_type.floating = 0;
487      z_type.fixed = 0;
488      z_type.sign = 1;
489      z_type.norm = 1;
490      z_type.width = 32;
491      z_type.length = z_src_type.length;
492
493      int32_vec_type = LLVMVectorType(LLVMInt32Type(), z_src_type.length);
494
495      const_8_int = lp_build_const_int_vec(z_type, 8);
496      const_ffffff_float = lp_build_const_vec(z_src_type, (float)0xffffff);
497
498      zscaled = LLVMBuildFMul(builder, z_src, const_ffffff_float, "zscaled");
499      z_src = LLVMBuildFPToSI(builder, zscaled, int32_vec_type, "z_src");
500
501      /* Load current z/stencil value from z/stencil buffer */
502      zs_dst_ptr = LLVMBuildBitCast(builder,
503                                    zs_dst_ptr,
504                                    LLVMPointerType(int32_vec_type, 0), "");
505      z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
506      z_dst = LLVMBuildLShr(builder, z_dst, const_8_int, "z_dst");
507
508      /* compare src Z to dst Z, returning 'pass' mask */
509      z_pass = lp_build_compare(builder,
510                                z_type,
511                                depth->func, z_src, z_dst);
512
513      lp_build_mask_update(mask, z_pass);
514
515      if (do_branch)
516         lp_build_mask_check(mask);
517
518      /* No need to worry about old stencil contents, just blend the
519       * old and new values and shift into the correct position for
520       * storage.
521       */
522      if (depth->writemask) {
523         z_type.sign = 1;
524         lp_build_context_init(&z_bld, builder, z_type);
525
526         z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), z_src, z_dst);
527         z_dst = LLVMBuildShl(builder, z_dst, const_8_int, "z_dst");
528         *zs_value = z_dst;
529      }
530
531      return;
532   }
533
534   /*
535    * Depths are expected to be between 0 and 1, even if they are stored in
536    * floats. Setting these bits here will ensure that the lp_build_conv() call
537    * below won't try to unnecessarily clamp the incoming values.
538    */
539   if(z_src_type.floating) {
540      z_src_type.sign = FALSE;
541      z_src_type.norm = TRUE;
542   }
543   else {
544      assert(!z_src_type.sign);
545      assert(z_src_type.norm);
546   }
547
548   /* Pick the depth type. */
549   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
550
551   /* FIXME: Cope with a depth test type with a different bit width. */
552   assert(z_type.width == z_src_type.width);
553   assert(z_type.length == z_src_type.length);
554
555   /* Convert fragment Z from float to integer */
556   lp_build_conv(builder, z_src_type, z_type, &z_src, 1, &z_src, 1);
557
558
559   /* Sanity checking */
560   {
561      const unsigned z_swizzle = format_desc->swizzle[0];
562      const unsigned s_swizzle = format_desc->swizzle[1];
563
564      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
565             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
566
567      assert(depth->enabled || stencil[0].enabled);
568
569      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
570      assert(format_desc->block.width == 1);
571      assert(format_desc->block.height == 1);
572
573      if (stencil[0].enabled) {
574         assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_USCALED ||
575                format_desc->format == PIPE_FORMAT_S8_USCALED_Z24_UNORM);
576      }
577
578      assert(z_swizzle < 4);
579      assert(format_desc->block.bits == z_type.width);
580      if (z_type.floating) {
581         assert(z_swizzle == 0);
582         assert(format_desc->channel[z_swizzle].type ==
583                UTIL_FORMAT_TYPE_FLOAT);
584         assert(format_desc->channel[z_swizzle].size ==
585                format_desc->block.bits);
586      }
587      else {
588         assert(format_desc->channel[z_swizzle].type ==
589                UTIL_FORMAT_TYPE_UNSIGNED);
590         assert(format_desc->channel[z_swizzle].normalized);
591         assert(!z_type.fixed);
592         assert(!z_type.sign);
593         assert(z_type.norm);
594      }
595   }
596
597
598   /* Setup build context for Z vals */
599   lp_build_context_init(&z_bld, builder, z_type);
600
601   /* Setup build context for stencil vals */
602   s_type = lp_type_int_vec(z_type.width);
603   lp_build_context_init(&s_bld, builder, s_type);
604
605   /* Load current z/stencil value from z/stencil buffer */
606   zs_dst_ptr = LLVMBuildBitCast(builder,
607                                 zs_dst_ptr,
608                                 LLVMPointerType(z_bld.vec_type, 0), "");
609   zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
610
611   lp_build_name(zs_dst, "zsbufval");
612
613
614   /* Compute and apply the Z/stencil bitmasks and shifts.
615    */
616   {
617      unsigned z_shift, z_mask;
618      unsigned s_shift, s_mask;
619
620      if (get_z_shift_and_mask(format_desc, &z_shift, &z_mask)) {
621         if (z_shift) {
622            LLVMValueRef shift = lp_build_const_int_vec(z_type, z_shift);
623            z_src = LLVMBuildLShr(builder, z_src, shift, "");
624         }
625
626         if (z_mask != 0xffffffff) {
627            LLVMValueRef mask = lp_build_const_int_vec(z_type, z_mask);
628            z_src = LLVMBuildAnd(builder, z_src, mask, "");
629            z_dst = LLVMBuildAnd(builder, zs_dst, mask, "");
630            z_bitmask = mask;  /* used below */
631         }
632         else {
633            z_dst = zs_dst;
634         }
635
636         lp_build_name(z_dst, "zsbuf.z");
637      }
638
639      if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
640         if (s_shift) {
641            LLVMValueRef shift = lp_build_const_int_vec(s_type, s_shift);
642            stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
643            stencil_shift = shift;  /* used below */
644         }
645         else {
646            stencil_vals = zs_dst;
647         }
648
649         if (s_mask != 0xffffffff) {
650            LLVMValueRef mask = lp_build_const_int_vec(s_type, s_mask);
651            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
652         }
653
654         lp_build_name(stencil_vals, "stencil");
655      }
656   }
657
658   if (stencil[0].enabled) {
659
660      if (face) {
661         LLVMValueRef zero = LLVMConstReal(LLVMFloatType(), 0.0);
662
663         /* front_facing = face > 0.0 ? ~0 : 0 */
664         front_facing = LLVMBuildFCmp(builder, LLVMRealUGT, face, zero, "");
665         front_facing = LLVMBuildSExt(builder, front_facing,
666                                      LLVMIntType(s_bld.type.length*s_bld.type.width),
667                                      "");
668         front_facing = LLVMBuildBitCast(builder, front_facing,
669                                         s_bld.int_vec_type, "");
670      }
671
672      /* convert scalar stencil refs into vectors */
673      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
674      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
675
676      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
677                                          stencil_refs, stencil_vals,
678                                          front_facing);
679
680      /* apply stencil-fail operator */
681      {
682         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
683         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
684                                            stencil_refs, stencil_vals,
685                                            s_fail_mask, front_facing);
686      }
687   }
688
689   if (depth->enabled) {
690      /* compare src Z to dst Z, returning 'pass' mask */
691      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
692
693      if (!stencil[0].enabled) {
694         /* We can potentially skip all remaining operations here, but only
695          * if stencil is disabled because we still need to update the stencil
696          * buffer values.  Don't need to update Z buffer values.
697          */
698         lp_build_mask_update(mask, z_pass);
699
700         if (do_branch) {
701            lp_build_mask_check(mask);
702            do_branch = FALSE;
703         }
704      }
705
706      if (depth->writemask) {
707         LLVMValueRef zselectmask = lp_build_mask_value(mask);
708
709         /* mask off bits that failed Z test */
710         zselectmask = LLVMBuildAnd(builder, zselectmask, z_pass, "");
711
712         /* mask off bits that failed stencil test */
713         if (s_pass_mask) {
714            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
715         }
716
717         /* if combined Z/stencil format, mask off the stencil bits */
718         if (z_bitmask) {
719            zselectmask = LLVMBuildAnd(builder, zselectmask, z_bitmask, "");
720         }
721
722         /* Mix the old and new Z buffer values.
723          * z_dst[i] = (zselectmask[i] & z_src[i]) | (~zselectmask[i] & z_dst[i])
724          */
725         z_dst = lp_build_select_bitwise(&z_bld, zselectmask, z_src, z_dst);
726      }
727
728      if (stencil[0].enabled) {
729         /* update stencil buffer values according to z pass/fail result */
730         LLVMValueRef z_fail_mask, z_pass_mask;
731
732         /* apply Z-fail operator */
733         z_fail_mask = lp_build_andnot(&z_bld, orig_mask, z_pass);
734         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
735                                            stencil_refs, stencil_vals,
736                                            z_fail_mask, front_facing);
737
738         /* apply Z-pass operator */
739         z_pass_mask = LLVMBuildAnd(z_bld.builder, orig_mask, z_pass, "");
740         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
741                                            stencil_refs, stencil_vals,
742                                            z_pass_mask, front_facing);
743      }
744   }
745   else {
746      /* No depth test: apply Z-pass operator to stencil buffer values which
747       * passed the stencil test.
748       */
749      s_pass_mask = LLVMBuildAnd(s_bld.builder, orig_mask, s_pass_mask, "");
750      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
751                                         stencil_refs, stencil_vals,
752                                         s_pass_mask, front_facing);
753   }
754
755   /* The Z bits are already in the right place but we may need to shift the
756    * stencil bits before ORing Z with Stencil to make the final pixel value.
757    */
758   if (stencil_vals && stencil_shift)
759      stencil_vals = LLVMBuildShl(s_bld.builder, stencil_vals,
760                                  stencil_shift, "");
761
762   /* Finally, merge/store the z/stencil values */
763   if ((depth->enabled && depth->writemask) ||
764       (stencil[0].enabled && stencil[0].writemask)) {
765
766      if (z_dst && stencil_vals)
767         zs_dst = LLVMBuildOr(z_bld.builder, z_dst, stencil_vals, "");
768      else if (z_dst)
769         zs_dst = z_dst;
770      else
771         zs_dst = stencil_vals;
772
773      *zs_value = zs_dst;
774   }
775
776   if (s_pass_mask)
777      lp_build_mask_update(mask, s_pass_mask);
778
779   if (depth->enabled && stencil[0].enabled)
780      lp_build_mask_update(mask, z_pass);
781
782   if (do_branch)
783      lp_build_mask_check(mask);
784
785}
786
787
788void
789lp_build_depth_write(LLVMBuilderRef builder,
790                     const struct util_format_description *format_desc,
791                     LLVMValueRef zs_dst_ptr,
792                     LLVMValueRef zs_value)
793{
794   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
795                                 LLVMPointerType(LLVMTypeOf(zs_value), 0), "");
796
797   LLVMBuildStore(builder, zs_value, zs_dst_ptr);
798}
799
800
801void
802lp_build_deferred_depth_write(LLVMBuilderRef builder,
803                              struct lp_type z_src_type,
804                              const struct util_format_description *format_desc,
805                              struct lp_build_mask_context *mask,
806                              LLVMValueRef zs_dst_ptr,
807                              LLVMValueRef zs_value)
808{
809   struct lp_type z_type;
810   struct lp_build_context z_bld;
811   LLVMValueRef z_dst;
812
813   /* XXX: pointlessly redo type logic:
814    */
815   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
816   lp_build_context_init(&z_bld, builder, z_type);
817
818   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
819                                 LLVMPointerType(z_bld.vec_type, 0), "");
820
821   z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
822   z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), zs_value, z_dst);
823
824   LLVMBuildStore(builder, z_dst, zs_dst_ptr);
825}
826