lp_bld_depth.c revision c7aa8da9573f6d505bec894b4738f0521511b9f0
1/**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 *  Z11 Z12 Z13 Z14 ...
44 *  Z21 Z22 Z23 Z24 ...
45 *  Z31 Z32 Z33 Z34 ...
46 *  Z41 Z42 Z43 Z44 ...
47 *  ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 *  Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 *  Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 *  ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * @author Jose Fonseca <jfonseca@vmware.com>
57 * @author Brian Paul <jfonseca@vmware.com>
58 */
59
60#include "pipe/p_state.h"
61#include "util/u_format.h"
62
63#include "gallivm/lp_bld_type.h"
64#include "gallivm/lp_bld_arit.h"
65#include "gallivm/lp_bld_bitarit.h"
66#include "gallivm/lp_bld_const.h"
67#include "gallivm/lp_bld_conv.h"
68#include "gallivm/lp_bld_logic.h"
69#include "gallivm/lp_bld_flow.h"
70#include "gallivm/lp_bld_intr.h"
71#include "gallivm/lp_bld_debug.h"
72#include "gallivm/lp_bld_swizzle.h"
73
74#include "lp_bld_depth.h"
75
76
77/** Used to select fields from pipe_stencil_state */
78enum stencil_op {
79   S_FAIL_OP,
80   Z_FAIL_OP,
81   Z_PASS_OP
82};
83
84
85
86/**
87 * Do the stencil test comparison (compare FB stencil values against ref value).
88 * This will be used twice when generating two-sided stencil code.
89 * \param stencil  the front/back stencil state
90 * \param stencilRef  the stencil reference value, replicated as a vector
91 * \param stencilVals  vector of stencil values from framebuffer
92 * \return vector mask of pass/fail values (~0 or 0)
93 */
94static LLVMValueRef
95lp_build_stencil_test_single(struct lp_build_context *bld,
96                             const struct pipe_stencil_state *stencil,
97                             LLVMValueRef stencilRef,
98                             LLVMValueRef stencilVals)
99{
100   LLVMBuilderRef builder = bld->gallivm->builder;
101   const unsigned stencilMax = 255; /* XXX fix */
102   struct lp_type type = bld->type;
103   LLVMValueRef res;
104
105   assert(type.sign);
106
107   assert(stencil->enabled);
108
109   if (stencil->valuemask != stencilMax) {
110      /* compute stencilRef = stencilRef & valuemask */
111      LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask);
112      stencilRef = LLVMBuildAnd(builder, stencilRef, valuemask, "");
113      /* compute stencilVals = stencilVals & valuemask */
114      stencilVals = LLVMBuildAnd(builder, stencilVals, valuemask, "");
115   }
116
117   res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
118
119   return res;
120}
121
122
123/**
124 * Do the one or two-sided stencil test comparison.
125 * \sa lp_build_stencil_test_single
126 * \param front_facing  an integer vector mask, indicating front (~0) or back
127 *                      (0) facing polygon. If NULL, assume front-facing.
128 */
129static LLVMValueRef
130lp_build_stencil_test(struct lp_build_context *bld,
131                      const struct pipe_stencil_state stencil[2],
132                      LLVMValueRef stencilRefs[2],
133                      LLVMValueRef stencilVals,
134                      LLVMValueRef front_facing)
135{
136   LLVMValueRef res;
137
138   assert(stencil[0].enabled);
139
140   /* do front face test */
141   res = lp_build_stencil_test_single(bld, &stencil[0],
142                                      stencilRefs[0], stencilVals);
143
144   if (stencil[1].enabled && front_facing != NULL) {
145      /* do back face test */
146      LLVMValueRef back_res;
147
148      back_res = lp_build_stencil_test_single(bld, &stencil[1],
149                                              stencilRefs[1], stencilVals);
150
151      res = lp_build_select(bld, front_facing, res, back_res);
152   }
153
154   return res;
155}
156
157
158/**
159 * Apply the stencil operator (add/sub/keep/etc) to the given vector
160 * of stencil values.
161 * \return  new stencil values vector
162 */
163static LLVMValueRef
164lp_build_stencil_op_single(struct lp_build_context *bld,
165                           const struct pipe_stencil_state *stencil,
166                           enum stencil_op op,
167                           LLVMValueRef stencilRef,
168                           LLVMValueRef stencilVals)
169
170{
171   LLVMBuilderRef builder = bld->gallivm->builder;
172   struct lp_type type = bld->type;
173   LLVMValueRef res;
174   LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
175   unsigned stencil_op;
176
177   assert(type.sign);
178
179   switch (op) {
180   case S_FAIL_OP:
181      stencil_op = stencil->fail_op;
182      break;
183   case Z_FAIL_OP:
184      stencil_op = stencil->zfail_op;
185      break;
186   case Z_PASS_OP:
187      stencil_op = stencil->zpass_op;
188      break;
189   default:
190      assert(0 && "Invalid stencil_op mode");
191      stencil_op = PIPE_STENCIL_OP_KEEP;
192   }
193
194   switch (stencil_op) {
195   case PIPE_STENCIL_OP_KEEP:
196      res = stencilVals;
197      /* we can return early for this case */
198      return res;
199   case PIPE_STENCIL_OP_ZERO:
200      res = bld->zero;
201      break;
202   case PIPE_STENCIL_OP_REPLACE:
203      res = stencilRef;
204      break;
205   case PIPE_STENCIL_OP_INCR:
206      res = lp_build_add(bld, stencilVals, bld->one);
207      res = lp_build_min(bld, res, max);
208      break;
209   case PIPE_STENCIL_OP_DECR:
210      res = lp_build_sub(bld, stencilVals, bld->one);
211      res = lp_build_max(bld, res, bld->zero);
212      break;
213   case PIPE_STENCIL_OP_INCR_WRAP:
214      res = lp_build_add(bld, stencilVals, bld->one);
215      res = LLVMBuildAnd(builder, res, max, "");
216      break;
217   case PIPE_STENCIL_OP_DECR_WRAP:
218      res = lp_build_sub(bld, stencilVals, bld->one);
219      res = LLVMBuildAnd(builder, res, max, "");
220      break;
221   case PIPE_STENCIL_OP_INVERT:
222      res = LLVMBuildNot(builder, stencilVals, "");
223      res = LLVMBuildAnd(builder, res, max, "");
224      break;
225   default:
226      assert(0 && "bad stencil op mode");
227      res = bld->undef;
228   }
229
230   return res;
231}
232
233
234/**
235 * Do the one or two-sided stencil test op/update.
236 */
237static LLVMValueRef
238lp_build_stencil_op(struct lp_build_context *bld,
239                    const struct pipe_stencil_state stencil[2],
240                    enum stencil_op op,
241                    LLVMValueRef stencilRefs[2],
242                    LLVMValueRef stencilVals,
243                    LLVMValueRef mask,
244                    LLVMValueRef front_facing)
245
246{
247   LLVMBuilderRef builder = bld->gallivm->builder;
248   LLVMValueRef res;
249
250   assert(stencil[0].enabled);
251
252   /* do front face op */
253   res = lp_build_stencil_op_single(bld, &stencil[0], op,
254                                     stencilRefs[0], stencilVals);
255
256   if (stencil[1].enabled && front_facing != NULL) {
257      /* do back face op */
258      LLVMValueRef back_res;
259
260      back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
261                                            stencilRefs[1], stencilVals);
262
263      res = lp_build_select(bld, front_facing, res, back_res);
264   }
265
266   if (stencil->writemask != 0xff) {
267      /* mask &= stencil->writemask */
268      LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
269                                                      stencil->writemask);
270      mask = LLVMBuildAnd(builder, mask, writemask, "");
271      /* res = (res & mask) | (stencilVals & ~mask) */
272      res = lp_build_select_bitwise(bld, mask, res, stencilVals);
273   }
274   else {
275      /* res = mask ? res : stencilVals */
276      res = lp_build_select(bld, mask, res, stencilVals);
277   }
278
279   return res;
280}
281
282
283
284/**
285 * Return a type appropriate for depth/stencil testing.
286 */
287struct lp_type
288lp_depth_type(const struct util_format_description *format_desc,
289              unsigned length)
290{
291   struct lp_type type;
292   unsigned swizzle;
293
294   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
295   assert(format_desc->block.width == 1);
296   assert(format_desc->block.height == 1);
297
298   swizzle = format_desc->swizzle[0];
299   assert(swizzle < 4);
300
301   memset(&type, 0, sizeof type);
302   type.width = format_desc->block.bits;
303
304   if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
305      type.floating = TRUE;
306      assert(swizzle == 0);
307      assert(format_desc->channel[swizzle].size == format_desc->block.bits);
308   }
309   else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
310      assert(format_desc->block.bits <= 32);
311      assert(format_desc->channel[swizzle].normalized);
312      if (format_desc->channel[swizzle].size < format_desc->block.bits) {
313         /* Prefer signed integers when possible, as SSE has less support
314          * for unsigned comparison;
315          */
316         type.sign = TRUE;
317      }
318   }
319   else
320      assert(0);
321
322   assert(type.width <= length);
323   type.length = length / type.width;
324
325   return type;
326}
327
328
329/**
330 * Compute bitmask and bit shift to apply to the incoming fragment Z values
331 * and the Z buffer values needed before doing the Z comparison.
332 *
333 * Note that we leave the Z bits in the position that we find them
334 * in the Z buffer (typically 0xffffff00 or 0x00ffffff).  That lets us
335 * get by with fewer bit twiddling steps.
336 */
337static boolean
338get_z_shift_and_mask(const struct util_format_description *format_desc,
339                     unsigned *shift, unsigned *width, unsigned *mask)
340{
341   const unsigned total_bits = format_desc->block.bits;
342   unsigned z_swizzle;
343   unsigned chan;
344   unsigned padding_left, padding_right;
345
346   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
347   assert(format_desc->block.width == 1);
348   assert(format_desc->block.height == 1);
349
350   z_swizzle = format_desc->swizzle[0];
351
352   if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
353      return FALSE;
354
355   *width = format_desc->channel[z_swizzle].size;
356
357   padding_right = 0;
358   for (chan = 0; chan < z_swizzle; ++chan)
359      padding_right += format_desc->channel[chan].size;
360
361   padding_left =
362      total_bits - (padding_right + *width);
363
364   if (padding_left || padding_right) {
365      unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
366      unsigned long long mask_right = (1ULL << (padding_right)) - 1;
367      *mask = mask_left ^ mask_right;
368   }
369   else {
370      *mask = 0xffffffff;
371   }
372
373   *shift = padding_right;
374
375   return TRUE;
376}
377
378
379/**
380 * Compute bitmask and bit shift to apply to the framebuffer pixel values
381 * to put the stencil bits in the least significant position.
382 * (i.e. 0x000000ff)
383 */
384static boolean
385get_s_shift_and_mask(const struct util_format_description *format_desc,
386                     unsigned *shift, unsigned *mask)
387{
388   unsigned s_swizzle;
389   unsigned chan, sz;
390
391   s_swizzle = format_desc->swizzle[1];
392
393   if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
394      return FALSE;
395
396   *shift = 0;
397   for (chan = 0; chan < s_swizzle; chan++)
398      *shift += format_desc->channel[chan].size;
399
400   sz = format_desc->channel[s_swizzle].size;
401   *mask = (1U << sz) - 1U;
402
403   return TRUE;
404}
405
406
407/**
408 * Perform the occlusion test and increase the counter.
409 * Test the depth mask. Add the number of channel which has none zero mask
410 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
411 * The counter will add 4.
412 *
413 * \param type holds element type of the mask vector.
414 * \param maskvalue is the depth test mask.
415 * \param counter is a pointer of the uint32 counter.
416 */
417void
418lp_build_occlusion_count(struct gallivm_state *gallivm,
419                         struct lp_type type,
420                         LLVMValueRef maskvalue,
421                         LLVMValueRef counter)
422{
423   LLVMBuilderRef builder = gallivm->builder;
424   LLVMContextRef context = gallivm->context;
425   LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
426   LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
427   LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8TypeInContext(context), 16);
428   LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
429   LLVMValueRef maskarray[4] = {
430      lp_build_const_int32(gallivm, 0),
431      lp_build_const_int32(gallivm, 4),
432      lp_build_const_int32(gallivm, 8),
433      lp_build_const_int32(gallivm, 12)
434   };
435   LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
436   LLVMValueRef shufflev =  LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
437   LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32TypeInContext(context), "shuffle");
438   LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32TypeInContext(context), shuffle);
439   LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
440   LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
441   LLVMBuildStore(builder, incr, counter);
442}
443
444
445
446/**
447 * Generate code for performing depth and/or stencil tests.
448 * We operate on a vector of values (typically a 2x2 quad).
449 *
450 * \param depth  the depth test state
451 * \param stencil  the front/back stencil state
452 * \param type  the data type of the fragment depth/stencil values
453 * \param format_desc  description of the depth/stencil surface
454 * \param mask  the alive/dead pixel mask for the quad (vector)
455 * \param stencil_refs  the front/back stencil ref values (scalar)
456 * \param z_src  the incoming depth/stencil values (a 2x2 quad, float32)
457 * \param zs_dst_ptr  pointer to depth/stencil values in framebuffer
458 * \param facing  contains boolean value indicating front/back facing polygon
459 */
460void
461lp_build_depth_stencil_test(struct gallivm_state *gallivm,
462                            const struct pipe_depth_state *depth,
463                            const struct pipe_stencil_state stencil[2],
464                            struct lp_type z_src_type,
465                            const struct util_format_description *format_desc,
466                            struct lp_build_mask_context *mask,
467                            LLVMValueRef stencil_refs[2],
468                            LLVMValueRef z_src,
469                            LLVMValueRef zs_dst_ptr,
470                            LLVMValueRef face,
471                            LLVMValueRef *zs_value,
472                            boolean do_branch)
473{
474   LLVMBuilderRef builder = gallivm->builder;
475   struct lp_type z_type;
476   struct lp_build_context z_bld;
477   struct lp_build_context s_bld;
478   struct lp_type s_type;
479   unsigned z_shift = 0, z_width = 0, z_mask = 0;
480   LLVMValueRef zs_dst, z_dst = NULL;
481   LLVMValueRef stencil_vals = NULL;
482   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
483   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
484   LLVMValueRef orig_mask = lp_build_mask_value(mask);
485   LLVMValueRef front_facing = NULL;
486
487
488   /*
489    * Depths are expected to be between 0 and 1, even if they are stored in
490    * floats. Setting these bits here will ensure that the lp_build_conv() call
491    * below won't try to unnecessarily clamp the incoming values.
492    */
493   if(z_src_type.floating) {
494      z_src_type.sign = FALSE;
495      z_src_type.norm = TRUE;
496   }
497   else {
498      assert(!z_src_type.sign);
499      assert(z_src_type.norm);
500   }
501
502   /* Pick the depth type. */
503   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
504
505   /* FIXME: Cope with a depth test type with a different bit width. */
506   assert(z_type.width == z_src_type.width);
507   assert(z_type.length == z_src_type.length);
508
509   /* Sanity checking */
510   {
511      const unsigned z_swizzle = format_desc->swizzle[0];
512      const unsigned s_swizzle = format_desc->swizzle[1];
513
514      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
515             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
516
517      assert(depth->enabled || stencil[0].enabled);
518
519      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
520      assert(format_desc->block.width == 1);
521      assert(format_desc->block.height == 1);
522
523      if (stencil[0].enabled) {
524         assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_UINT ||
525                format_desc->format == PIPE_FORMAT_S8_UINT_Z24_UNORM);
526      }
527
528      assert(z_swizzle < 4);
529      assert(format_desc->block.bits == z_type.width);
530      if (z_type.floating) {
531         assert(z_swizzle == 0);
532         assert(format_desc->channel[z_swizzle].type ==
533                UTIL_FORMAT_TYPE_FLOAT);
534         assert(format_desc->channel[z_swizzle].size ==
535                format_desc->block.bits);
536      }
537      else {
538         assert(format_desc->channel[z_swizzle].type ==
539                UTIL_FORMAT_TYPE_UNSIGNED);
540         assert(format_desc->channel[z_swizzle].normalized);
541         assert(!z_type.fixed);
542      }
543   }
544
545
546   /* Setup build context for Z vals */
547   lp_build_context_init(&z_bld, gallivm, z_type);
548
549   /* Setup build context for stencil vals */
550   s_type = lp_type_int_vec(z_type.width);
551   lp_build_context_init(&s_bld, gallivm, s_type);
552
553   /* Load current z/stencil value from z/stencil buffer */
554   zs_dst_ptr = LLVMBuildBitCast(builder,
555                                 zs_dst_ptr,
556                                 LLVMPointerType(z_bld.vec_type, 0), "");
557   zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
558
559   lp_build_name(zs_dst, "zs_dst");
560
561
562   /* Compute and apply the Z/stencil bitmasks and shifts.
563    */
564   {
565      unsigned s_shift, s_mask;
566
567      if (get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask)) {
568         if (z_mask != 0xffffffff) {
569            z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
570         }
571
572         /*
573          * Align the framebuffer Z 's LSB to the right.
574          */
575         if (z_shift) {
576            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
577            z_dst = LLVMBuildLShr(builder, zs_dst, shift, "z_dst");
578         } else if (z_bitmask) {
579	    /* TODO: Instead of loading a mask from memory and ANDing, it's
580	     * probably faster to just shake the bits with two shifts. */
581            z_dst = LLVMBuildAnd(builder, zs_dst, z_bitmask, "z_dst");
582         } else {
583            z_dst = zs_dst;
584            lp_build_name(z_dst, "z_dst");
585         }
586      }
587
588      if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
589         if (s_shift) {
590            LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
591            stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
592            stencil_shift = shift;  /* used below */
593         }
594         else {
595            stencil_vals = zs_dst;
596         }
597
598         if (s_mask != 0xffffffff) {
599            LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
600            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
601         }
602
603         lp_build_name(stencil_vals, "s_dst");
604      }
605   }
606
607   if (stencil[0].enabled) {
608
609      if (face) {
610         LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
611
612         /* front_facing = face != 0 ? ~0 : 0 */
613         front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
614         front_facing = LLVMBuildSExt(builder, front_facing,
615                                      LLVMIntTypeInContext(gallivm->context,
616                                             s_bld.type.length*s_bld.type.width),
617                                      "");
618         front_facing = LLVMBuildBitCast(builder, front_facing,
619                                         s_bld.int_vec_type, "");
620      }
621
622      /* convert scalar stencil refs into vectors */
623      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
624      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
625
626      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
627                                          stencil_refs, stencil_vals,
628                                          front_facing);
629
630      /* apply stencil-fail operator */
631      {
632         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
633         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
634                                            stencil_refs, stencil_vals,
635                                            s_fail_mask, front_facing);
636      }
637   }
638
639   if (depth->enabled) {
640      /*
641       * Convert fragment Z to the desired type, aligning the LSB to the right.
642       */
643
644      assert(z_type.width == z_src_type.width);
645      assert(z_type.length == z_src_type.length);
646      assert(lp_check_value(z_src_type, z_src));
647      if (z_src_type.floating) {
648         /*
649          * Convert from floating point values
650          */
651
652         if (!z_type.floating) {
653            z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
654                                                            z_src_type,
655                                                            z_width,
656                                                            z_src);
657         }
658      } else {
659         /*
660          * Convert from unsigned normalized values.
661          */
662
663         assert(!z_src_type.sign);
664         assert(!z_src_type.fixed);
665         assert(z_src_type.norm);
666         assert(!z_type.floating);
667         if (z_src_type.width > z_width) {
668            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
669                                                        z_src_type.width - z_width);
670            z_src = LLVMBuildLShr(builder, z_src, shift, "");
671         }
672      }
673      assert(lp_check_value(z_type, z_src));
674
675      lp_build_name(z_src, "z_src");
676
677      /* compare src Z to dst Z, returning 'pass' mask */
678      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
679
680      if (!stencil[0].enabled) {
681         /* We can potentially skip all remaining operations here, but only
682          * if stencil is disabled because we still need to update the stencil
683          * buffer values.  Don't need to update Z buffer values.
684          */
685         lp_build_mask_update(mask, z_pass);
686
687         if (do_branch) {
688            lp_build_mask_check(mask);
689            do_branch = FALSE;
690         }
691      }
692
693      if (depth->writemask) {
694         LLVMValueRef zselectmask;
695
696         /* mask off bits that failed Z test */
697         zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
698
699         /* mask off bits that failed stencil test */
700         if (s_pass_mask) {
701            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
702         }
703
704         /* Mix the old and new Z buffer values.
705          * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
706          */
707         z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
708      }
709
710      if (stencil[0].enabled) {
711         /* update stencil buffer values according to z pass/fail result */
712         LLVMValueRef z_fail_mask, z_pass_mask;
713
714         /* apply Z-fail operator */
715         z_fail_mask = lp_build_andnot(&z_bld, orig_mask, z_pass);
716         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
717                                            stencil_refs, stencil_vals,
718                                            z_fail_mask, front_facing);
719
720         /* apply Z-pass operator */
721         z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
722         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
723                                            stencil_refs, stencil_vals,
724                                            z_pass_mask, front_facing);
725      }
726   }
727   else {
728      /* No depth test: apply Z-pass operator to stencil buffer values which
729       * passed the stencil test.
730       */
731      s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
732      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
733                                         stencil_refs, stencil_vals,
734                                         s_pass_mask, front_facing);
735   }
736
737   /* Put Z and ztencil bits in the right place */
738   if (z_dst && z_shift) {
739      LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
740      z_dst = LLVMBuildShl(builder, z_dst, shift, "");
741   }
742   if (stencil_vals && stencil_shift)
743      stencil_vals = LLVMBuildShl(builder, stencil_vals,
744                                  stencil_shift, "");
745
746   /* Finally, merge/store the z/stencil values */
747   if ((depth->enabled && depth->writemask) ||
748       (stencil[0].enabled && stencil[0].writemask)) {
749
750      if (z_dst && stencil_vals)
751         zs_dst = LLVMBuildOr(builder, z_dst, stencil_vals, "");
752      else if (z_dst)
753         zs_dst = z_dst;
754      else
755         zs_dst = stencil_vals;
756
757      *zs_value = zs_dst;
758   }
759
760   if (s_pass_mask)
761      lp_build_mask_update(mask, s_pass_mask);
762
763   if (depth->enabled && stencil[0].enabled)
764      lp_build_mask_update(mask, z_pass);
765
766   if (do_branch)
767      lp_build_mask_check(mask);
768
769}
770
771
772void
773lp_build_depth_write(LLVMBuilderRef builder,
774                     const struct util_format_description *format_desc,
775                     LLVMValueRef zs_dst_ptr,
776                     LLVMValueRef zs_value)
777{
778   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
779                                 LLVMPointerType(LLVMTypeOf(zs_value), 0), "");
780
781   LLVMBuildStore(builder, zs_value, zs_dst_ptr);
782}
783
784
785void
786lp_build_deferred_depth_write(struct gallivm_state *gallivm,
787                              struct lp_type z_src_type,
788                              const struct util_format_description *format_desc,
789                              struct lp_build_mask_context *mask,
790                              LLVMValueRef zs_dst_ptr,
791                              LLVMValueRef zs_value)
792{
793   struct lp_type z_type;
794   struct lp_build_context z_bld;
795   LLVMValueRef z_dst;
796   LLVMBuilderRef builder = gallivm->builder;
797
798   /* XXX: pointlessly redo type logic:
799    */
800   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
801   lp_build_context_init(&z_bld, gallivm, z_type);
802
803   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
804                                 LLVMPointerType(z_bld.vec_type, 0), "");
805
806   z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
807   z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), zs_value, z_dst);
808
809   LLVMBuildStore(builder, z_dst, zs_dst_ptr);
810}
811