lp_bld_depth.c revision efc82aef35a2aac5d2ed9774f6d28f2626796416
1/**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 *  Z11 Z12 Z13 Z14 ...
44 *  Z21 Z22 Z23 Z24 ...
45 *  Z31 Z32 Z33 Z34 ...
46 *  Z41 Z42 Z43 Z44 ...
47 *  ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 *  Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 *  Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 *  ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * @author Jose Fonseca <jfonseca@vmware.com>
57 * @author Brian Paul <jfonseca@vmware.com>
58 */
59
60#include "pipe/p_state.h"
61#include "util/u_format.h"
62
63#include "gallivm/lp_bld_type.h"
64#include "gallivm/lp_bld_arit.h"
65#include "gallivm/lp_bld_bitarit.h"
66#include "gallivm/lp_bld_const.h"
67#include "gallivm/lp_bld_conv.h"
68#include "gallivm/lp_bld_logic.h"
69#include "gallivm/lp_bld_flow.h"
70#include "gallivm/lp_bld_intr.h"
71#include "gallivm/lp_bld_debug.h"
72#include "gallivm/lp_bld_swizzle.h"
73
74#include "lp_bld_depth.h"
75
76
77/** Used to select fields from pipe_stencil_state */
78enum stencil_op {
79   S_FAIL_OP,
80   Z_FAIL_OP,
81   Z_PASS_OP
82};
83
84
85
86/**
87 * Do the stencil test comparison (compare FB stencil values against ref value).
88 * This will be used twice when generating two-sided stencil code.
89 * \param stencil  the front/back stencil state
90 * \param stencilRef  the stencil reference value, replicated as a vector
91 * \param stencilVals  vector of stencil values from framebuffer
92 * \return vector mask of pass/fail values (~0 or 0)
93 */
94static LLVMValueRef
95lp_build_stencil_test_single(struct lp_build_context *bld,
96                             const struct pipe_stencil_state *stencil,
97                             LLVMValueRef stencilRef,
98                             LLVMValueRef stencilVals)
99{
100   const unsigned stencilMax = 255; /* XXX fix */
101   struct lp_type type = bld->type;
102   LLVMValueRef res;
103
104   assert(type.sign);
105
106   assert(stencil->enabled);
107
108   if (stencil->valuemask != stencilMax) {
109      /* compute stencilRef = stencilRef & valuemask */
110      LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask);
111      stencilRef = LLVMBuildAnd(bld->builder, stencilRef, valuemask, "");
112      /* compute stencilVals = stencilVals & valuemask */
113      stencilVals = LLVMBuildAnd(bld->builder, stencilVals, valuemask, "");
114   }
115
116   res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
117
118   return res;
119}
120
121
122/**
123 * Do the one or two-sided stencil test comparison.
124 * \sa lp_build_stencil_test_single
125 * \param front_facing  an integer vector mask, indicating front (~0) or back
126 *                      (0) facing polygon. If NULL, assume front-facing.
127 */
128static LLVMValueRef
129lp_build_stencil_test(struct lp_build_context *bld,
130                      const struct pipe_stencil_state stencil[2],
131                      LLVMValueRef stencilRefs[2],
132                      LLVMValueRef stencilVals,
133                      LLVMValueRef front_facing)
134{
135   LLVMValueRef res;
136
137   assert(stencil[0].enabled);
138
139   /* do front face test */
140   res = lp_build_stencil_test_single(bld, &stencil[0],
141                                      stencilRefs[0], stencilVals);
142
143   if (stencil[1].enabled && front_facing) {
144      /* do back face test */
145      LLVMValueRef back_res;
146
147      back_res = lp_build_stencil_test_single(bld, &stencil[1],
148                                              stencilRefs[1], stencilVals);
149
150      res = lp_build_select(bld, front_facing, res, back_res);
151   }
152
153   return res;
154}
155
156
157/**
158 * Apply the stencil operator (add/sub/keep/etc) to the given vector
159 * of stencil values.
160 * \return  new stencil values vector
161 */
162static LLVMValueRef
163lp_build_stencil_op_single(struct lp_build_context *bld,
164                           const struct pipe_stencil_state *stencil,
165                           enum stencil_op op,
166                           LLVMValueRef stencilRef,
167                           LLVMValueRef stencilVals)
168
169{
170   struct lp_type type = bld->type;
171   LLVMValueRef res;
172   LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
173   unsigned stencil_op;
174
175   assert(type.sign);
176
177   switch (op) {
178   case S_FAIL_OP:
179      stencil_op = stencil->fail_op;
180      break;
181   case Z_FAIL_OP:
182      stencil_op = stencil->zfail_op;
183      break;
184   case Z_PASS_OP:
185      stencil_op = stencil->zpass_op;
186      break;
187   default:
188      assert(0 && "Invalid stencil_op mode");
189      stencil_op = PIPE_STENCIL_OP_KEEP;
190   }
191
192   switch (stencil_op) {
193   case PIPE_STENCIL_OP_KEEP:
194      res = stencilVals;
195      /* we can return early for this case */
196      return res;
197   case PIPE_STENCIL_OP_ZERO:
198      res = bld->zero;
199      break;
200   case PIPE_STENCIL_OP_REPLACE:
201      res = stencilRef;
202      break;
203   case PIPE_STENCIL_OP_INCR:
204      res = lp_build_add(bld, stencilVals, bld->one);
205      res = lp_build_min(bld, res, max);
206      break;
207   case PIPE_STENCIL_OP_DECR:
208      res = lp_build_sub(bld, stencilVals, bld->one);
209      res = lp_build_max(bld, res, bld->zero);
210      break;
211   case PIPE_STENCIL_OP_INCR_WRAP:
212      res = lp_build_add(bld, stencilVals, bld->one);
213      res = LLVMBuildAnd(bld->builder, res, max, "");
214      break;
215   case PIPE_STENCIL_OP_DECR_WRAP:
216      res = lp_build_sub(bld, stencilVals, bld->one);
217      res = LLVMBuildAnd(bld->builder, res, max, "");
218      break;
219   case PIPE_STENCIL_OP_INVERT:
220      res = LLVMBuildNot(bld->builder, stencilVals, "");
221      res = LLVMBuildAnd(bld->builder, res, max, "");
222      break;
223   default:
224      assert(0 && "bad stencil op mode");
225      res = bld->undef;
226   }
227
228   return res;
229}
230
231
232/**
233 * Do the one or two-sided stencil test op/update.
234 */
235static LLVMValueRef
236lp_build_stencil_op(struct lp_build_context *bld,
237                    const struct pipe_stencil_state stencil[2],
238                    enum stencil_op op,
239                    LLVMValueRef stencilRefs[2],
240                    LLVMValueRef stencilVals,
241                    LLVMValueRef mask,
242                    LLVMValueRef front_facing)
243
244{
245   LLVMValueRef res;
246
247   assert(stencil[0].enabled);
248
249   /* do front face op */
250   res = lp_build_stencil_op_single(bld, &stencil[0], op,
251                                     stencilRefs[0], stencilVals);
252
253   if (stencil[1].enabled && front_facing) {
254      /* do back face op */
255      LLVMValueRef back_res;
256
257      back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
258                                            stencilRefs[1], stencilVals);
259
260      res = lp_build_select(bld, front_facing, res, back_res);
261   }
262
263   if (stencil->writemask != 0xff) {
264      /* mask &= stencil->writemask */
265      LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
266                                                      stencil->writemask);
267      mask = LLVMBuildAnd(bld->builder, mask, writemask, "");
268      /* res = (res & mask) | (stencilVals & ~mask) */
269      res = lp_build_select_bitwise(bld, writemask, res, stencilVals);
270   }
271   else {
272      /* res = mask ? res : stencilVals */
273      res = lp_build_select(bld, mask, res, stencilVals);
274   }
275
276   return res;
277}
278
279
280
281/**
282 * Return a type appropriate for depth/stencil testing.
283 */
284struct lp_type
285lp_depth_type(const struct util_format_description *format_desc,
286              unsigned length)
287{
288   struct lp_type type;
289   unsigned swizzle;
290
291   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
292   assert(format_desc->block.width == 1);
293   assert(format_desc->block.height == 1);
294
295   swizzle = format_desc->swizzle[0];
296   assert(swizzle < 4);
297
298   memset(&type, 0, sizeof type);
299   type.width = format_desc->block.bits;
300
301   if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
302      type.floating = TRUE;
303      assert(swizzle == 0);
304      assert(format_desc->channel[swizzle].size == format_desc->block.bits);
305   }
306   else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
307      assert(format_desc->block.bits <= 32);
308      assert(format_desc->channel[swizzle].normalized);
309      if (format_desc->channel[swizzle].size < format_desc->block.bits) {
310         /* Prefer signed integers when possible, as SSE has less support
311          * for unsigned comparison;
312          */
313         type.sign = TRUE;
314      }
315   }
316   else
317      assert(0);
318
319   assert(type.width <= length);
320   type.length = length / type.width;
321
322   return type;
323}
324
325
326/**
327 * Compute bitmask and bit shift to apply to the incoming fragment Z values
328 * and the Z buffer values needed before doing the Z comparison.
329 *
330 * Note that we leave the Z bits in the position that we find them
331 * in the Z buffer (typically 0xffffff00 or 0x00ffffff).  That lets us
332 * get by with fewer bit twiddling steps.
333 */
334static boolean
335get_z_shift_and_mask(const struct util_format_description *format_desc,
336                     unsigned *shift, unsigned *width, unsigned *mask)
337{
338   const unsigned total_bits = format_desc->block.bits;
339   unsigned z_swizzle;
340   unsigned chan;
341   unsigned padding_left, padding_right;
342
343   assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
344   assert(format_desc->block.width == 1);
345   assert(format_desc->block.height == 1);
346
347   z_swizzle = format_desc->swizzle[0];
348
349   if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
350      return FALSE;
351
352   *width = format_desc->channel[z_swizzle].size;
353
354   padding_right = 0;
355   for (chan = 0; chan < z_swizzle; ++chan)
356      padding_right += format_desc->channel[chan].size;
357
358   padding_left =
359      total_bits - (padding_right + *width);
360
361   if (padding_left || padding_right) {
362      unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
363      unsigned long long mask_right = (1ULL << (padding_right)) - 1;
364      *mask = mask_left ^ mask_right;
365   }
366   else {
367      *mask = 0xffffffff;
368   }
369
370   *shift = padding_right;
371
372   return TRUE;
373}
374
375
376/**
377 * Compute bitmask and bit shift to apply to the framebuffer pixel values
378 * to put the stencil bits in the least significant position.
379 * (i.e. 0x000000ff)
380 */
381static boolean
382get_s_shift_and_mask(const struct util_format_description *format_desc,
383                     unsigned *shift, unsigned *mask)
384{
385   unsigned s_swizzle;
386   unsigned chan, sz;
387
388   s_swizzle = format_desc->swizzle[1];
389
390   if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
391      return FALSE;
392
393   *shift = 0;
394   for (chan = 0; chan < s_swizzle; chan++)
395      *shift += format_desc->channel[chan].size;
396
397   sz = format_desc->channel[s_swizzle].size;
398   *mask = (1U << sz) - 1U;
399
400   return TRUE;
401}
402
403
404/**
405 * Perform the occlusion test and increase the counter.
406 * Test the depth mask. Add the number of channel which has none zero mask
407 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
408 * The counter will add 4.
409 *
410 * \param type holds element type of the mask vector.
411 * \param maskvalue is the depth test mask.
412 * \param counter is a pointer of the uint32 counter.
413 */
414void
415lp_build_occlusion_count(struct gallivm_state *gallivm,
416                         struct lp_type type,
417                         LLVMValueRef maskvalue,
418                         LLVMValueRef counter)
419{
420   LLVMBuilderRef builder = gallivm->builder;
421   LLVMContextRef context = gallivm->context;
422   LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
423   LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
424   LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8TypeInContext(context), 16);
425   LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
426   LLVMValueRef maskarray[4] = {
427      lp_build_const_int32(gallivm, 0),
428      lp_build_const_int32(gallivm, 4),
429      lp_build_const_int32(gallivm, 8),
430      lp_build_const_int32(gallivm, 12)
431   };
432   LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
433   LLVMValueRef shufflev =  LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
434   LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32TypeInContext(context), "shuffle");
435   LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32TypeInContext(context), shuffle);
436   LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
437   LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
438   LLVMBuildStore(builder, incr, counter);
439}
440
441
442
443/**
444 * Generate code for performing depth and/or stencil tests.
445 * We operate on a vector of values (typically a 2x2 quad).
446 *
447 * \param depth  the depth test state
448 * \param stencil  the front/back stencil state
449 * \param type  the data type of the fragment depth/stencil values
450 * \param format_desc  description of the depth/stencil surface
451 * \param mask  the alive/dead pixel mask for the quad (vector)
452 * \param stencil_refs  the front/back stencil ref values (scalar)
453 * \param z_src  the incoming depth/stencil values (a 2x2 quad, float32)
454 * \param zs_dst_ptr  pointer to depth/stencil values in framebuffer
455 * \param facing  contains boolean value indicating front/back facing polygon
456 */
457void
458lp_build_depth_stencil_test(struct gallivm_state *gallivm,
459                            const struct pipe_depth_state *depth,
460                            const struct pipe_stencil_state stencil[2],
461                            struct lp_type z_src_type,
462                            const struct util_format_description *format_desc,
463                            struct lp_build_mask_context *mask,
464                            LLVMValueRef stencil_refs[2],
465                            LLVMValueRef z_src,
466                            LLVMValueRef zs_dst_ptr,
467                            LLVMValueRef face,
468                            LLVMValueRef *zs_value,
469                            boolean do_branch)
470{
471   LLVMBuilderRef builder = gallivm->builder;
472   struct lp_type z_type;
473   struct lp_build_context z_bld;
474   struct lp_build_context s_bld;
475   struct lp_type s_type;
476   unsigned z_shift = 0, z_width = 0, z_mask = 0;
477   LLVMValueRef zs_dst, z_dst = NULL;
478   LLVMValueRef stencil_vals = NULL;
479   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
480   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
481   LLVMValueRef orig_mask = lp_build_mask_value(mask);
482   LLVMValueRef front_facing = NULL;
483
484
485   /*
486    * Depths are expected to be between 0 and 1, even if they are stored in
487    * floats. Setting these bits here will ensure that the lp_build_conv() call
488    * below won't try to unnecessarily clamp the incoming values.
489    */
490   if(z_src_type.floating) {
491      z_src_type.sign = FALSE;
492      z_src_type.norm = TRUE;
493   }
494   else {
495      assert(!z_src_type.sign);
496      assert(z_src_type.norm);
497   }
498
499   /* Pick the depth type. */
500   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
501
502   /* FIXME: Cope with a depth test type with a different bit width. */
503   assert(z_type.width == z_src_type.width);
504   assert(z_type.length == z_src_type.length);
505
506   /* Sanity checking */
507   {
508      const unsigned z_swizzle = format_desc->swizzle[0];
509      const unsigned s_swizzle = format_desc->swizzle[1];
510
511      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
512             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
513
514      assert(depth->enabled || stencil[0].enabled);
515
516      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
517      assert(format_desc->block.width == 1);
518      assert(format_desc->block.height == 1);
519
520      if (stencil[0].enabled) {
521         assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_USCALED ||
522                format_desc->format == PIPE_FORMAT_S8_USCALED_Z24_UNORM);
523      }
524
525      assert(z_swizzle < 4);
526      assert(format_desc->block.bits == z_type.width);
527      if (z_type.floating) {
528         assert(z_swizzle == 0);
529         assert(format_desc->channel[z_swizzle].type ==
530                UTIL_FORMAT_TYPE_FLOAT);
531         assert(format_desc->channel[z_swizzle].size ==
532                format_desc->block.bits);
533      }
534      else {
535         assert(format_desc->channel[z_swizzle].type ==
536                UTIL_FORMAT_TYPE_UNSIGNED);
537         assert(format_desc->channel[z_swizzle].normalized);
538         assert(!z_type.fixed);
539      }
540   }
541
542
543   /* Setup build context for Z vals */
544   lp_build_context_init(&z_bld, gallivm, z_type);
545
546   /* Setup build context for stencil vals */
547   s_type = lp_type_int_vec(z_type.width);
548   lp_build_context_init(&s_bld, gallivm, s_type);
549
550   /* Load current z/stencil value from z/stencil buffer */
551   zs_dst_ptr = LLVMBuildBitCast(builder,
552                                 zs_dst_ptr,
553                                 LLVMPointerType(z_bld.vec_type, 0), "");
554   zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
555
556   lp_build_name(zs_dst, "zs_dst");
557
558
559   /* Compute and apply the Z/stencil bitmasks and shifts.
560    */
561   {
562      unsigned s_shift, s_mask;
563
564      if (get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask)) {
565         if (z_mask != 0xffffffff) {
566            z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
567         }
568
569         /*
570          * Align the framebuffer Z 's LSB to the right.
571          */
572         if (z_shift) {
573            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
574            z_dst = LLVMBuildLShr(builder, zs_dst, shift, "z_dst");
575         } else if (z_bitmask) {
576	    /* TODO: Instead of loading a mask from memory and ANDing, it's
577	     * probably faster to just shake the bits with two shifts. */
578            z_dst = LLVMBuildAnd(builder, zs_dst, z_bitmask, "z_dst");
579         } else {
580            z_dst = zs_dst;
581            lp_build_name(z_dst, "z_dst");
582         }
583      }
584
585      if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
586         if (s_shift) {
587            LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
588            stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
589            stencil_shift = shift;  /* used below */
590         }
591         else {
592            stencil_vals = zs_dst;
593         }
594
595         if (s_mask != 0xffffffff) {
596            LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
597            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
598         }
599
600         lp_build_name(stencil_vals, "s_dst");
601      }
602   }
603
604   if (stencil[0].enabled) {
605
606      if (face) {
607         LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
608
609         /* front_facing = face != 0 ? ~0 : 0 */
610         front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
611         front_facing = LLVMBuildSExt(builder, front_facing,
612                                      LLVMIntTypeInContext(gallivm->context,
613                                             s_bld.type.length*s_bld.type.width),
614                                      "");
615         front_facing = LLVMBuildBitCast(builder, front_facing,
616                                         s_bld.int_vec_type, "");
617      }
618
619      /* convert scalar stencil refs into vectors */
620      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
621      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
622
623      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
624                                          stencil_refs, stencil_vals,
625                                          front_facing);
626
627      /* apply stencil-fail operator */
628      {
629         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
630         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
631                                            stencil_refs, stencil_vals,
632                                            s_fail_mask, front_facing);
633      }
634   }
635
636   if (depth->enabled) {
637      /*
638       * Convert fragment Z to the desired type, aligning the LSB to the right.
639       */
640
641      assert(z_type.width == z_src_type.width);
642      assert(z_type.length == z_src_type.length);
643      assert(lp_check_value(z_src_type, z_src));
644      if (z_src_type.floating) {
645         /*
646          * Convert from floating point values
647          */
648
649         if (!z_type.floating) {
650            z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
651                                                            z_src_type,
652                                                            z_width,
653                                                            z_src);
654         }
655      } else {
656         /*
657          * Convert from unsigned normalized values.
658          */
659
660         assert(!z_src_type.sign);
661         assert(!z_src_type.fixed);
662         assert(z_src_type.norm);
663         assert(!z_type.floating);
664         if (z_src_type.width > z_width) {
665            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
666                                                        z_src_type.width - z_width);
667            z_src = LLVMBuildLShr(builder, z_src, shift, "");
668         }
669      }
670      assert(lp_check_value(z_type, z_src));
671
672      lp_build_name(z_src, "z_src");
673
674      /* compare src Z to dst Z, returning 'pass' mask */
675      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
676
677      if (!stencil[0].enabled) {
678         /* We can potentially skip all remaining operations here, but only
679          * if stencil is disabled because we still need to update the stencil
680          * buffer values.  Don't need to update Z buffer values.
681          */
682         lp_build_mask_update(mask, z_pass);
683
684         if (do_branch) {
685            lp_build_mask_check(mask);
686            do_branch = FALSE;
687         }
688      }
689
690      if (depth->writemask) {
691         LLVMValueRef zselectmask;
692
693         /* mask off bits that failed Z test */
694         zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
695
696         /* mask off bits that failed stencil test */
697         if (s_pass_mask) {
698            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
699         }
700
701         /* Mix the old and new Z buffer values.
702          * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
703          */
704         z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
705      }
706
707      if (stencil[0].enabled) {
708         /* update stencil buffer values according to z pass/fail result */
709         LLVMValueRef z_fail_mask, z_pass_mask;
710
711         /* apply Z-fail operator */
712         z_fail_mask = lp_build_andnot(&z_bld, orig_mask, z_pass);
713         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
714                                            stencil_refs, stencil_vals,
715                                            z_fail_mask, front_facing);
716
717         /* apply Z-pass operator */
718         z_pass_mask = LLVMBuildAnd(z_bld.builder, orig_mask, z_pass, "");
719         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
720                                            stencil_refs, stencil_vals,
721                                            z_pass_mask, front_facing);
722      }
723   }
724   else {
725      /* No depth test: apply Z-pass operator to stencil buffer values which
726       * passed the stencil test.
727       */
728      s_pass_mask = LLVMBuildAnd(s_bld.builder, orig_mask, s_pass_mask, "");
729      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
730                                         stencil_refs, stencil_vals,
731                                         s_pass_mask, front_facing);
732   }
733
734   /* Put Z and ztencil bits in the right place */
735   if (z_dst && z_shift) {
736      LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
737      z_dst = LLVMBuildShl(builder, z_dst, shift, "");
738   }
739   if (stencil_vals && stencil_shift)
740      stencil_vals = LLVMBuildShl(s_bld.builder, stencil_vals,
741                                  stencil_shift, "");
742
743   /* Finally, merge/store the z/stencil values */
744   if ((depth->enabled && depth->writemask) ||
745       (stencil[0].enabled && stencil[0].writemask)) {
746
747      if (z_dst && stencil_vals)
748         zs_dst = LLVMBuildOr(z_bld.builder, z_dst, stencil_vals, "");
749      else if (z_dst)
750         zs_dst = z_dst;
751      else
752         zs_dst = stencil_vals;
753
754      *zs_value = zs_dst;
755   }
756
757   if (s_pass_mask)
758      lp_build_mask_update(mask, s_pass_mask);
759
760   if (depth->enabled && stencil[0].enabled)
761      lp_build_mask_update(mask, z_pass);
762
763   if (do_branch)
764      lp_build_mask_check(mask);
765
766}
767
768
769void
770lp_build_depth_write(LLVMBuilderRef builder,
771                     const struct util_format_description *format_desc,
772                     LLVMValueRef zs_dst_ptr,
773                     LLVMValueRef zs_value)
774{
775   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
776                                 LLVMPointerType(LLVMTypeOf(zs_value), 0), "");
777
778   LLVMBuildStore(builder, zs_value, zs_dst_ptr);
779}
780
781
782void
783lp_build_deferred_depth_write(struct gallivm_state *gallivm,
784                              struct lp_type z_src_type,
785                              const struct util_format_description *format_desc,
786                              struct lp_build_mask_context *mask,
787                              LLVMValueRef zs_dst_ptr,
788                              LLVMValueRef zs_value)
789{
790   struct lp_type z_type;
791   struct lp_build_context z_bld;
792   LLVMValueRef z_dst;
793   LLVMBuilderRef builder = gallivm->builder;
794
795   /* XXX: pointlessly redo type logic:
796    */
797   z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
798   lp_build_context_init(&z_bld, gallivm, z_type);
799
800   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
801                                 LLVMPointerType(z_bld.vec_type, 0), "");
802
803   z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
804   z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), zs_value, z_dst);
805
806   LLVMBuildStore(builder, z_dst, zs_dst_ptr);
807}
808