lp_state_fs.c revision 078eff659a7ef90691966d983f35ed9e4ce63901
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline.  The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60#include <limits.h>
61#include "pipe/p_defines.h"
62#include "util/u_inlines.h"
63#include "util/u_memory.h"
64#include "util/u_pointer.h"
65#include "util/u_format.h"
66#include "util/u_dump.h"
67#include "util/u_string.h"
68#include "util/u_simple_list.h"
69#include "os/os_time.h"
70#include "pipe/p_shader_tokens.h"
71#include "draw/draw_context.h"
72#include "tgsi/tgsi_dump.h"
73#include "tgsi/tgsi_scan.h"
74#include "tgsi/tgsi_parse.h"
75#include "gallivm/lp_bld_type.h"
76#include "gallivm/lp_bld_const.h"
77#include "gallivm/lp_bld_conv.h"
78#include "gallivm/lp_bld_init.h"
79#include "gallivm/lp_bld_intr.h"
80#include "gallivm/lp_bld_logic.h"
81#include "gallivm/lp_bld_tgsi.h"
82#include "gallivm/lp_bld_swizzle.h"
83#include "gallivm/lp_bld_flow.h"
84#include "gallivm/lp_bld_debug.h"
85
86#include "lp_bld_alpha.h"
87#include "lp_bld_blend.h"
88#include "lp_bld_depth.h"
89#include "lp_bld_interp.h"
90#include "lp_context.h"
91#include "lp_debug.h"
92#include "lp_perf.h"
93#include "lp_screen.h"
94#include "lp_setup.h"
95#include "lp_state.h"
96#include "lp_tex_sample.h"
97#include "lp_flush.h"
98#include "lp_state_fs.h"
99
100
101#include <llvm-c/Analysis.h>
102
103
104static unsigned fs_no = 0;
105
106
107/**
108 * Generate the depth /stencil test code.
109 */
110static void
111generate_depth_stencil(LLVMBuilderRef builder,
112                       const struct lp_fragment_shader_variant_key *key,
113                       struct lp_type src_type,
114                       struct lp_build_mask_context *mask,
115                       LLVMValueRef stencil_refs[2],
116                       LLVMValueRef src,
117                       LLVMValueRef dst_ptr,
118                       LLVMValueRef facing,
119                       LLVMValueRef counter)
120{
121   const struct util_format_description *format_desc;
122   struct lp_type dst_type;
123
124   if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
125      return;
126
127   format_desc = util_format_description(key->zsbuf_format);
128   assert(format_desc);
129
130   /*
131    * Depths are expected to be between 0 and 1, even if they are stored in
132    * floats. Setting these bits here will ensure that the lp_build_conv() call
133    * below won't try to unnecessarily clamp the incoming values.
134    */
135   if(src_type.floating) {
136      src_type.sign = FALSE;
137      src_type.norm = TRUE;
138   }
139   else {
140      assert(!src_type.sign);
141      assert(src_type.norm);
142   }
143
144   /* Pick the depth type. */
145   dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
146
147   /* FIXME: Cope with a depth test type with a different bit width. */
148   assert(dst_type.width == src_type.width);
149   assert(dst_type.length == src_type.length);
150
151   /* Convert fragment Z from float to integer */
152   lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
153
154   dst_ptr = LLVMBuildBitCast(builder,
155                              dst_ptr,
156                              LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
157   lp_build_depth_stencil_test(builder,
158                               &key->depth,
159                               key->stencil,
160                               dst_type,
161                               format_desc,
162                               mask,
163                               stencil_refs,
164                               src,
165                               dst_ptr,
166                               facing,
167                               counter);
168}
169
170
171/**
172 * Expand the relevent bits of mask_input to a 4-dword mask for the
173 * four pixels in a 2x2 quad.  This will set the four elements of the
174 * quad mask vector to 0 or ~0.
175 *
176 * \param quad  which quad of the quad group to test, in [0,3]
177 * \param mask_input  bitwise mask for the whole 4x4 stamp
178 */
179static LLVMValueRef
180generate_quad_mask(LLVMBuilderRef builder,
181                   struct lp_type fs_type,
182                   unsigned quad,
183                   LLVMValueRef mask_input) /* int32 */
184{
185   struct lp_type mask_type;
186   LLVMTypeRef i32t = LLVMInt32Type();
187   LLVMValueRef bits[4];
188   LLVMValueRef mask;
189
190   /*
191    * XXX: We'll need a different path for 16 x u8
192    */
193   assert(fs_type.width == 32);
194   assert(fs_type.length == 4);
195   mask_type = lp_int_type(fs_type);
196
197   /*
198    * mask_input >>= (quad * 4)
199    */
200
201   mask_input = LLVMBuildLShr(builder,
202                              mask_input,
203                              LLVMConstInt(i32t, quad * 4, 0),
204                              "");
205
206   /*
207    * mask = { mask_input & (1 << i), for i in [0,3] }
208    */
209
210   mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
211
212   bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
213   bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
214   bits[2] = LLVMConstInt(i32t, 1 << 2, 0);
215   bits[3] = LLVMConstInt(i32t, 1 << 3, 0);
216
217   mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
218
219   /*
220    * mask = mask != 0 ? ~0 : 0
221    */
222
223   mask = lp_build_compare(builder,
224                           mask_type, PIPE_FUNC_NOTEQUAL,
225                           mask,
226                           lp_build_const_int_vec(mask_type, 0));
227
228   return mask;
229}
230
231
232
233/**
234 * Generate the fragment shader, depth/stencil test, and alpha tests.
235 * \param i  which quad in the tile, in range [0,3]
236 * \param partial_mask  if 1, do mask_input testing
237 */
238static void
239generate_fs(struct llvmpipe_context *lp,
240            struct lp_fragment_shader *shader,
241            const struct lp_fragment_shader_variant_key *key,
242            LLVMBuilderRef builder,
243            struct lp_type type,
244            LLVMValueRef context_ptr,
245            unsigned i,
246            const struct lp_build_interp_soa_context *interp,
247            struct lp_build_sampler_soa *sampler,
248            LLVMValueRef *pmask,
249            LLVMValueRef (*color)[4],
250            LLVMValueRef depth_ptr,
251            LLVMValueRef facing,
252            unsigned partial_mask,
253            LLVMValueRef mask_input,
254            LLVMValueRef counter)
255{
256   const struct tgsi_token *tokens = shader->base.tokens;
257   LLVMTypeRef vec_type;
258   LLVMValueRef consts_ptr;
259   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
260   LLVMValueRef z = interp->pos[2];
261   LLVMValueRef stencil_refs[2];
262   struct lp_build_flow_context *flow;
263   struct lp_build_mask_context mask;
264   boolean early_depth_stencil_test;
265   unsigned attrib;
266   unsigned chan;
267   unsigned cbuf;
268
269   assert(i < 4);
270
271   stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
272   stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
273
274   vec_type = lp_build_vec_type(type);
275
276   consts_ptr = lp_jit_context_constants(builder, context_ptr);
277
278   flow = lp_build_flow_create(builder);
279
280   memset(outputs, 0, sizeof outputs);
281
282   lp_build_flow_scope_begin(flow);
283
284   /* Declare the color and z variables */
285   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
286      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
287	 color[cbuf][chan] = LLVMGetUndef(vec_type);
288	 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
289      }
290   }
291   lp_build_flow_scope_declare(flow, &z);
292
293   /* do triangle edge testing */
294   if (partial_mask) {
295      *pmask = generate_quad_mask(builder, type,
296                                  i, mask_input);
297   }
298   else {
299      *pmask = lp_build_const_int_vec(type, ~0);
300   }
301
302   /* 'mask' will control execution based on quad's pixel alive/killed state */
303   lp_build_mask_begin(&mask, flow, type, *pmask);
304
305   early_depth_stencil_test =
306      (key->depth.enabled || key->stencil[0].enabled) &&
307      !key->alpha.enabled &&
308      !shader->info.uses_kill &&
309      !shader->info.writes_z;
310
311   if (early_depth_stencil_test)
312      generate_depth_stencil(builder, key,
313                             type, &mask,
314                             stencil_refs, z, depth_ptr, facing, counter);
315
316   lp_build_tgsi_soa(builder, tokens, type, &mask,
317                     consts_ptr, interp->pos, interp->inputs,
318                     outputs, sampler, &shader->info);
319
320   /* loop over fragment shader outputs/results */
321   for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
322      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
323         if(outputs[attrib][chan]) {
324            LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
325            lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
326
327            switch (shader->info.output_semantic_name[attrib]) {
328            case TGSI_SEMANTIC_COLOR:
329               {
330                  unsigned cbuf = shader->info.output_semantic_index[attrib];
331
332                  lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
333
334                  /* Alpha test */
335                  /* XXX: should the alpha reference value be passed separately? */
336		  /* XXX: should only test the final assignment to alpha */
337                  if(cbuf == 0 && chan == 3) {
338                     LLVMValueRef alpha = out;
339                     LLVMValueRef alpha_ref_value;
340                     alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
341                     alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
342                     lp_build_alpha_test(builder, &key->alpha, type,
343                                         &mask, alpha, alpha_ref_value);
344                  }
345
346		  color[cbuf][chan] = out;
347                  break;
348               }
349
350            case TGSI_SEMANTIC_POSITION:
351               if(chan == 2)
352                  z = out;
353               break;
354            }
355         }
356      }
357   }
358
359   if (!early_depth_stencil_test)
360      generate_depth_stencil(builder, key,
361                             type, &mask,
362                             stencil_refs, z, depth_ptr, facing, counter);
363
364   lp_build_mask_end(&mask);
365
366   lp_build_flow_scope_end(flow);
367
368   lp_build_flow_destroy(flow);
369
370   *pmask = mask.value;
371
372}
373
374
375/**
376 * Generate color blending and color output.
377 * \param rt  the render target index (to index blend, colormask state)
378 * \param type  the pixel color type
379 * \param context_ptr  pointer to the runtime JIT context
380 * \param mask  execution mask (active fragment/pixel mask)
381 * \param src  colors from the fragment shader
382 * \param dst_ptr  the destination color buffer pointer
383 */
384static void
385generate_blend(const struct pipe_blend_state *blend,
386               unsigned rt,
387               LLVMBuilderRef builder,
388               struct lp_type type,
389               LLVMValueRef context_ptr,
390               LLVMValueRef mask,
391               LLVMValueRef *src,
392               LLVMValueRef dst_ptr)
393{
394   struct lp_build_context bld;
395   struct lp_build_flow_context *flow;
396   struct lp_build_mask_context mask_ctx;
397   LLVMTypeRef vec_type;
398   LLVMValueRef const_ptr;
399   LLVMValueRef con[4];
400   LLVMValueRef dst[4];
401   LLVMValueRef res[4];
402   unsigned chan;
403
404   lp_build_context_init(&bld, builder, type);
405
406   flow = lp_build_flow_create(builder);
407
408   /* we'll use this mask context to skip blending if all pixels are dead */
409   lp_build_mask_begin(&mask_ctx, flow, type, mask);
410
411   vec_type = lp_build_vec_type(type);
412
413   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
414   const_ptr = LLVMBuildBitCast(builder, const_ptr,
415                                LLVMPointerType(vec_type, 0), "");
416
417   /* load constant blend color and colors from the dest color buffer */
418   for(chan = 0; chan < 4; ++chan) {
419      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
420      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
421
422      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
423
424      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
425      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
426   }
427
428   /* do blend */
429   lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
430
431   /* store results to color buffer */
432   for(chan = 0; chan < 4; ++chan) {
433      if(blend->rt[rt].colormask & (1 << chan)) {
434         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
435         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
436         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
437         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
438      }
439   }
440
441   lp_build_mask_end(&mask_ctx);
442   lp_build_flow_destroy(flow);
443}
444
445
446/**
447 * Generate the runtime callable function for the whole fragment pipeline.
448 * Note that the function which we generate operates on a block of 16
449 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
450 * 2x2 pixels.
451 */
452static void
453generate_fragment(struct llvmpipe_context *lp,
454                  struct lp_fragment_shader *shader,
455                  struct lp_fragment_shader_variant *variant,
456                  unsigned partial_mask)
457{
458   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
459   const struct lp_fragment_shader_variant_key *key = &variant->key;
460   char func_name[256];
461   struct lp_type fs_type;
462   struct lp_type blend_type;
463   LLVMTypeRef fs_elem_type;
464   LLVMTypeRef fs_int_vec_type;
465   LLVMTypeRef blend_vec_type;
466   LLVMTypeRef arg_types[11];
467   LLVMTypeRef func_type;
468   LLVMValueRef context_ptr;
469   LLVMValueRef x;
470   LLVMValueRef y;
471   LLVMValueRef a0_ptr;
472   LLVMValueRef dadx_ptr;
473   LLVMValueRef dady_ptr;
474   LLVMValueRef color_ptr_ptr;
475   LLVMValueRef depth_ptr;
476   LLVMValueRef mask_input;
477   LLVMValueRef counter = NULL;
478   LLVMBasicBlockRef block;
479   LLVMBuilderRef builder;
480   struct lp_build_sampler_soa *sampler;
481   struct lp_build_interp_soa_context interp;
482   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
483   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
484   LLVMValueRef blend_mask;
485   LLVMValueRef function;
486   LLVMValueRef facing;
487   unsigned num_fs;
488   unsigned i;
489   unsigned chan;
490   unsigned cbuf;
491
492
493   /* TODO: actually pick these based on the fs and color buffer
494    * characteristics. */
495
496   memset(&fs_type, 0, sizeof fs_type);
497   fs_type.floating = TRUE; /* floating point values */
498   fs_type.sign = TRUE;     /* values are signed */
499   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
500   fs_type.width = 32;      /* 32-bit float */
501   fs_type.length = 4;      /* 4 elements per vector */
502   num_fs = 4;              /* number of quads per block */
503
504   memset(&blend_type, 0, sizeof blend_type);
505   blend_type.floating = FALSE; /* values are integers */
506   blend_type.sign = FALSE;     /* values are unsigned */
507   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
508   blend_type.width = 8;        /* 8-bit ubyte values */
509   blend_type.length = 16;      /* 16 elements per vector */
510
511   /*
512    * Generate the function prototype. Any change here must be reflected in
513    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
514    */
515
516   fs_elem_type = lp_build_elem_type(fs_type);
517   fs_int_vec_type = lp_build_int_vec_type(fs_type);
518
519   blend_vec_type = lp_build_vec_type(blend_type);
520
521   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
522		 shader->no, variant->no, partial_mask ? "partial" : "whole");
523
524   arg_types[0] = screen->context_ptr_type;            /* context */
525   arg_types[1] = LLVMInt32Type();                     /* x */
526   arg_types[2] = LLVMInt32Type();                     /* y */
527   arg_types[3] = LLVMFloatType();                     /* facing */
528   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
529   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
530   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
531   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
532   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
533   arg_types[9] = LLVMInt32Type();                     /* mask_input */
534   arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
535
536   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
537
538   function = LLVMAddFunction(screen->module, func_name, func_type);
539   LLVMSetFunctionCallConv(function, LLVMCCallConv);
540
541   variant->function[partial_mask] = function;
542
543
544   /* XXX: need to propagate noalias down into color param now we are
545    * passing a pointer-to-pointer?
546    */
547   for(i = 0; i < Elements(arg_types); ++i)
548      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
549         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
550
551   context_ptr  = LLVMGetParam(function, 0);
552   x            = LLVMGetParam(function, 1);
553   y            = LLVMGetParam(function, 2);
554   facing       = LLVMGetParam(function, 3);
555   a0_ptr       = LLVMGetParam(function, 4);
556   dadx_ptr     = LLVMGetParam(function, 5);
557   dady_ptr     = LLVMGetParam(function, 6);
558   color_ptr_ptr = LLVMGetParam(function, 7);
559   depth_ptr    = LLVMGetParam(function, 8);
560   mask_input   = LLVMGetParam(function, 9);
561
562   lp_build_name(context_ptr, "context");
563   lp_build_name(x, "x");
564   lp_build_name(y, "y");
565   lp_build_name(a0_ptr, "a0");
566   lp_build_name(dadx_ptr, "dadx");
567   lp_build_name(dady_ptr, "dady");
568   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
569   lp_build_name(depth_ptr, "depth");
570   lp_build_name(mask_input, "mask_input");
571
572   if (key->occlusion_count) {
573      counter = LLVMGetParam(function, 10);
574      lp_build_name(counter, "counter");
575   }
576
577   /*
578    * Function body
579    */
580
581   block = LLVMAppendBasicBlock(function, "entry");
582   builder = LLVMCreateBuilder();
583   LLVMPositionBuilderAtEnd(builder, block);
584
585   /*
586    * The shader input interpolation info is not explicitely baked in the
587    * shader key, but everything it derives from (TGSI, and flatshade) is
588    * already included in the shader key.
589    */
590   lp_build_interp_soa_init(&interp,
591                            lp->num_inputs,
592                            lp->inputs,
593                            builder, fs_type,
594                            a0_ptr, dadx_ptr, dady_ptr,
595                            x, y);
596
597   /* code generated texture sampling */
598   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
599
600   /* loop over quads in the block */
601   for(i = 0; i < num_fs; ++i) {
602      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
603      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
604      LLVMValueRef depth_ptr_i;
605
606      if(i != 0)
607         lp_build_interp_soa_update(&interp, i);
608
609      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
610
611      generate_fs(lp, shader, key,
612                  builder,
613                  fs_type,
614                  context_ptr,
615                  i,
616                  &interp,
617                  sampler,
618                  &fs_mask[i], /* output */
619                  out_color,
620                  depth_ptr_i,
621                  facing,
622                  partial_mask,
623                  mask_input,
624                  counter);
625
626      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
627	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
628	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
629   }
630
631   sampler->destroy(sampler);
632
633   /* Loop over color outputs / color buffers to do blending.
634    */
635   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
636      LLVMValueRef color_ptr;
637      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
638      LLVMValueRef blend_in_color[NUM_CHANNELS];
639      unsigned rt;
640
641      /*
642       * Convert the fs's output color and mask to fit to the blending type.
643       */
644      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
645	 lp_build_conv(builder, fs_type, blend_type,
646		       fs_out_color[cbuf][chan], num_fs,
647		       &blend_in_color[chan], 1);
648	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
649      }
650
651      if (partial_mask || !variant->opaque) {
652         lp_build_conv_mask(builder, fs_type, blend_type,
653                            fs_mask, num_fs,
654                            &blend_mask, 1);
655      } else {
656         blend_mask = lp_build_const_int_vec(blend_type, ~0);
657      }
658
659      color_ptr = LLVMBuildLoad(builder,
660				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
661				"");
662      lp_build_name(color_ptr, "color_ptr%d", cbuf);
663
664      /* which blend/colormask state to use */
665      rt = key->blend.independent_blend_enable ? cbuf : 0;
666
667      /*
668       * Blending.
669       */
670      generate_blend(&key->blend,
671                     rt,
672		     builder,
673		     blend_type,
674		     context_ptr,
675		     blend_mask,
676		     blend_in_color,
677		     color_ptr);
678   }
679
680#ifdef PIPE_ARCH_X86
681   /* Avoid corrupting the FPU stack on 32bit OSes. */
682   lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
683#endif
684
685   LLVMBuildRetVoid(builder);
686
687   LLVMDisposeBuilder(builder);
688
689
690   /* Verify the LLVM IR.  If invalid, dump and abort */
691#ifdef DEBUG
692   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
693      if (1)
694         lp_debug_dump_value(function);
695      abort();
696   }
697#endif
698
699   /* Apply optimizations to LLVM IR */
700   LLVMRunFunctionPassManager(screen->pass, function);
701
702   if (gallivm_debug & GALLIVM_DEBUG_IR) {
703      /* Print the LLVM IR to stderr */
704      lp_debug_dump_value(function);
705      debug_printf("\n");
706   }
707
708   /*
709    * Translate the LLVM IR into machine code.
710    */
711   {
712      void *f = LLVMGetPointerToGlobal(screen->engine, function);
713
714      variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
715
716      if (gallivm_debug & GALLIVM_DEBUG_ASM) {
717         lp_disassemble(f);
718      }
719      lp_func_delete_body(function);
720   }
721}
722
723
724static void
725dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
726{
727   unsigned i;
728
729   debug_printf("fs variant %p:\n", (void *) key);
730
731   if (key->depth.enabled) {
732      debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
733      debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
734      debug_printf("depth.writemask = %u\n", key->depth.writemask);
735   }
736
737   for (i = 0; i < 2; ++i) {
738      if (key->stencil[i].enabled) {
739         debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
740         debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
741         debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
742         debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
743         debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
744         debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
745      }
746   }
747
748   if (key->alpha.enabled) {
749      debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
750      debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
751   }
752
753   if (key->blend.logicop_enable) {
754      debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
755   }
756   else if (key->blend.rt[0].blend_enable) {
757      debug_printf("blend.rgb_func = %s\n",   util_dump_blend_func  (key->blend.rt[0].rgb_func, TRUE));
758      debug_printf("blend.rgb_src_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
759      debug_printf("blend.rgb_dst_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
760      debug_printf("blend.alpha_func = %s\n",       util_dump_blend_func  (key->blend.rt[0].alpha_func, TRUE));
761      debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
762      debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
763   }
764   debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
765   for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
766      if (key->sampler[i].format) {
767         debug_printf("sampler[%u] = \n", i);
768         debug_printf("  .format = %s\n",
769                      util_format_name(key->sampler[i].format));
770         debug_printf("  .target = %s\n",
771                      util_dump_tex_target(key->sampler[i].target, TRUE));
772         debug_printf("  .pot = %u %u %u\n",
773                      key->sampler[i].pot_width,
774                      key->sampler[i].pot_height,
775                      key->sampler[i].pot_depth);
776         debug_printf("  .wrap = %s %s %s\n",
777                      util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
778                      util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
779                      util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
780         debug_printf("  .min_img_filter = %s\n",
781                      util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
782         debug_printf("  .min_mip_filter = %s\n",
783                      util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
784         debug_printf("  .mag_img_filter = %s\n",
785                      util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
786         if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
787            debug_printf("  .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
788         debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
789      }
790   }
791}
792
793
794
795static struct lp_fragment_shader_variant *
796generate_variant(struct llvmpipe_context *lp,
797                 struct lp_fragment_shader *shader,
798                 const struct lp_fragment_shader_variant_key *key)
799{
800   struct lp_fragment_shader_variant *variant;
801
802   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
803   if(!variant)
804      return NULL;
805
806   variant->shader = shader;
807   variant->list_item_global.base = variant;
808   variant->list_item_local.base = variant;
809   variant->no = shader->variants_created++;
810
811   memcpy(&variant->key, key, sizeof *key);
812
813   if (gallivm_debug & GALLIVM_DEBUG_IR) {
814      debug_printf("llvmpipe: Creating fragment shader #%u variant #%u:\n",
815		   shader->no, variant->no);
816      tgsi_dump(shader->base.tokens, 0);
817      dump_fs_variant_key(key);
818   }
819
820   generate_fragment(lp, shader, variant, RAST_WHOLE);
821   generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
822
823   /* TODO: most of these can be relaxed, in particular the colormask */
824   variant->opaque =
825         !key->blend.logicop_enable &&
826         !key->blend.rt[0].blend_enable &&
827         key->blend.rt[0].colormask == 0xf &&
828         !key->stencil[0].enabled &&
829         !key->alpha.enabled &&
830         !key->depth.enabled &&
831         !shader->info.uses_kill
832         ? TRUE : FALSE;
833
834   return variant;
835}
836
837
838static void *
839llvmpipe_create_fs_state(struct pipe_context *pipe,
840                         const struct pipe_shader_state *templ)
841{
842   struct lp_fragment_shader *shader;
843
844   shader = CALLOC_STRUCT(lp_fragment_shader);
845   if (!shader)
846      return NULL;
847
848   shader->no = fs_no++;
849   make_empty_list(&shader->variants);
850
851   /* get/save the summary info for this shader */
852   tgsi_scan_shader(templ->tokens, &shader->info);
853
854   /* we need to keep a local copy of the tokens */
855   shader->base.tokens = tgsi_dup_tokens(templ->tokens);
856
857   if (LP_DEBUG & DEBUG_TGSI) {
858      unsigned attrib;
859      debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
860      tgsi_dump(templ->tokens, 0);
861      debug_printf("usage masks:\n");
862      for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
863         unsigned usage_mask = shader->info.input_usage_mask[attrib];
864         debug_printf("  IN[%u].%s%s%s%s\n",
865                      attrib,
866                      usage_mask & TGSI_WRITEMASK_X ? "x" : "",
867                      usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
868                      usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
869                      usage_mask & TGSI_WRITEMASK_W ? "w" : "");
870      }
871      debug_printf("\n");
872   }
873
874   return shader;
875}
876
877
878static void
879llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
880{
881   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
882
883   if (llvmpipe->fs == fs)
884      return;
885
886   draw_flush(llvmpipe->draw);
887
888   llvmpipe->fs = fs;
889
890   llvmpipe->dirty |= LP_NEW_FS;
891}
892
893static void
894remove_shader_variant(struct llvmpipe_context *lp,
895                      struct lp_fragment_shader_variant *variant)
896{
897   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
898   unsigned i;
899
900   if (gallivm_debug & GALLIVM_DEBUG_IR) {
901      debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
902                    variant->shader->no, variant->no, variant->shader->variants_created,
903                    variant->shader->variants_cached, lp->nr_fs_variants);
904   }
905   for (i = 0; i < Elements(variant->function); i++) {
906      if (variant->function[i]) {
907         if (variant->jit_function[i])
908            LLVMFreeMachineCodeForFunction(screen->engine,
909                                           variant->function[i]);
910         LLVMDeleteFunction(variant->function[i]);
911      }
912   }
913   remove_from_list(&variant->list_item_local);
914   variant->shader->variants_cached--;
915   remove_from_list(&variant->list_item_global);
916   lp->nr_fs_variants--;
917   FREE(variant);
918}
919
920static void
921llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
922{
923   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
924   struct pipe_fence_handle *fence = NULL;
925   struct lp_fragment_shader *shader = fs;
926   struct lp_fs_variant_list_item *li;
927
928   assert(fs != llvmpipe->fs);
929   (void) llvmpipe;
930
931   /*
932    * XXX: we need to flush the context until we have some sort of reference
933    * counting in fragment shaders as they may still be binned
934    * Flushing alone might not sufficient we need to wait on it too.
935    */
936
937   llvmpipe_flush(pipe, 0, &fence);
938
939   if (fence) {
940      pipe->screen->fence_finish(pipe->screen, fence, 0);
941      pipe->screen->fence_reference(pipe->screen, &fence, NULL);
942   }
943
944   li = first_elem(&shader->variants);
945   while(!at_end(&shader->variants, li)) {
946      struct lp_fs_variant_list_item *next = next_elem(li);
947      remove_shader_variant(llvmpipe, li->base);
948      li = next;
949   }
950
951   assert(shader->variants_cached == 0);
952   FREE((void *) shader->base.tokens);
953   FREE(shader);
954}
955
956
957
958static void
959llvmpipe_set_constant_buffer(struct pipe_context *pipe,
960                             uint shader, uint index,
961                             struct pipe_resource *constants)
962{
963   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
964   unsigned size = constants ? constants->width0 : 0;
965   const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
966
967   assert(shader < PIPE_SHADER_TYPES);
968   assert(index < PIPE_MAX_CONSTANT_BUFFERS);
969
970   if(llvmpipe->constants[shader][index] == constants)
971      return;
972
973   draw_flush(llvmpipe->draw);
974
975   /* note: reference counting */
976   pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
977
978   if(shader == PIPE_SHADER_VERTEX ||
979      shader == PIPE_SHADER_GEOMETRY) {
980      draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
981                                      index, data, size);
982   }
983
984   llvmpipe->dirty |= LP_NEW_CONSTANTS;
985}
986
987
988/**
989 * Return the blend factor equivalent to a destination alpha of one.
990 */
991static INLINE unsigned
992force_dst_alpha_one(unsigned factor, boolean alpha)
993{
994   switch(factor) {
995   case PIPE_BLENDFACTOR_DST_ALPHA:
996      return PIPE_BLENDFACTOR_ONE;
997   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
998      return PIPE_BLENDFACTOR_ZERO;
999   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1000      return PIPE_BLENDFACTOR_ZERO;
1001   }
1002
1003   if (alpha) {
1004      switch(factor) {
1005      case PIPE_BLENDFACTOR_DST_COLOR:
1006         return PIPE_BLENDFACTOR_ONE;
1007      case PIPE_BLENDFACTOR_INV_DST_COLOR:
1008         return PIPE_BLENDFACTOR_ZERO;
1009      }
1010   }
1011
1012   return factor;
1013}
1014
1015
1016/**
1017 * We need to generate several variants of the fragment pipeline to match
1018 * all the combinations of the contributing state atoms.
1019 *
1020 * TODO: there is actually no reason to tie this to context state -- the
1021 * generated code could be cached globally in the screen.
1022 */
1023static void
1024make_variant_key(struct llvmpipe_context *lp,
1025                 struct lp_fragment_shader *shader,
1026                 struct lp_fragment_shader_variant_key *key)
1027{
1028   unsigned i;
1029
1030   memset(key, 0, sizeof *key);
1031
1032   if (lp->framebuffer.zsbuf) {
1033      if (lp->depth_stencil->depth.enabled) {
1034         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1035         memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1036      }
1037      if (lp->depth_stencil->stencil[0].enabled) {
1038         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1039         memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1040      }
1041   }
1042
1043   key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1044   if(key->alpha.enabled)
1045      key->alpha.func = lp->depth_stencil->alpha.func;
1046   /* alpha.ref_value is passed in jit_context */
1047
1048   key->flatshade = lp->rasterizer->flatshade;
1049   if (lp->active_query_count) {
1050      key->occlusion_count = TRUE;
1051   }
1052
1053   if (lp->framebuffer.nr_cbufs) {
1054      memcpy(&key->blend, lp->blend, sizeof key->blend);
1055   }
1056
1057   key->nr_cbufs = lp->framebuffer.nr_cbufs;
1058   for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1059      struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1060      const struct util_format_description *format_desc;
1061      unsigned chan;
1062
1063      format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1064      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1065             format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1066
1067      blend_rt->colormask = lp->blend->rt[i].colormask;
1068
1069      /* mask out color channels not present in the color buffer.
1070       * Should be simple to incorporate per-cbuf writemasks:
1071       */
1072      for(chan = 0; chan < 4; ++chan) {
1073         enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1074
1075         if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1076            blend_rt->colormask &= ~(1 << chan);
1077      }
1078
1079      /*
1080       * Our swizzled render tiles always have an alpha channel, but the linear
1081       * render target format often does not, so force here the dst alpha to be
1082       * one.
1083       *
1084       * This is not a mere optimization. Wrong results will be produced if the
1085       * dst alpha is used, the dst format does not have alpha, and the previous
1086       * rendering was not flushed from the swizzled to linear buffer. For
1087       * example, NonPowTwo DCT.
1088       *
1089       * TODO: This should be generalized to all channels for better
1090       * performance, but only alpha causes correctness issues.
1091       */
1092      if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1093         blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1094         blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1095         blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1096         blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1097      }
1098   }
1099
1100   for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1101      if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1102         lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1103}
1104
1105/**
1106 * Update fragment state.  This is called just prior to drawing
1107 * something when some fragment-related state has changed.
1108 */
1109void
1110llvmpipe_update_fs(struct llvmpipe_context *lp)
1111{
1112   struct lp_fragment_shader *shader = lp->fs;
1113   struct lp_fragment_shader_variant_key key;
1114   struct lp_fragment_shader_variant *variant = NULL;
1115   struct lp_fs_variant_list_item *li;
1116
1117   make_variant_key(lp, shader, &key);
1118
1119   li = first_elem(&shader->variants);
1120   while(!at_end(&shader->variants, li)) {
1121      if(memcmp(&li->base->key, &key, sizeof key) == 0) {
1122         variant = li->base;
1123         break;
1124      }
1125      li = next_elem(li);
1126   }
1127
1128   if (variant) {
1129      move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1130   }
1131   else {
1132      int64_t t0, t1;
1133      int64_t dt;
1134      unsigned i;
1135      if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1136         struct pipe_context *pipe = &lp->pipe;
1137         struct pipe_fence_handle *fence = NULL;
1138
1139         /*
1140          * XXX: we need to flush the context until we have some sort of reference
1141          * counting in fragment shaders as they may still be binned
1142          * Flushing alone might not be sufficient we need to wait on it too.
1143          */
1144         llvmpipe_flush(pipe, 0, &fence);
1145
1146         if (fence) {
1147            pipe->screen->fence_finish(pipe->screen, fence, 0);
1148            pipe->screen->fence_reference(pipe->screen, &fence, NULL);
1149         }
1150         for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1151            struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1152            remove_shader_variant(lp, item->base);
1153         }
1154      }
1155      t0 = os_time_get();
1156
1157      variant = generate_variant(lp, shader, &key);
1158
1159      t1 = os_time_get();
1160      dt = t1 - t0;
1161      LP_COUNT_ADD(llvm_compile_time, dt);
1162      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
1163
1164      if (variant) {
1165         insert_at_head(&shader->variants, &variant->list_item_local);
1166         insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1167         lp->nr_fs_variants++;
1168         shader->variants_cached++;
1169      }
1170   }
1171
1172   lp_setup_set_fs_variant(lp->setup, variant);
1173}
1174
1175
1176
1177void
1178llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1179{
1180   llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1181   llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
1182   llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1183
1184   llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1185}
1186