lp_state_fs.c revision 10fdbb9298489e9dfb2ecec0662abe29da5b6239
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline.  The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63#include <limits.h>
64#include "pipe/p_defines.h"
65#include "util/u_inlines.h"
66#include "util/u_memory.h"
67#include "util/u_format.h"
68#include "util/u_dump.h"
69#include "os/os_time.h"
70#include "pipe/p_shader_tokens.h"
71#include "draw/draw_context.h"
72#include "tgsi/tgsi_dump.h"
73#include "tgsi/tgsi_scan.h"
74#include "tgsi/tgsi_parse.h"
75#include "gallivm/lp_bld_type.h"
76#include "gallivm/lp_bld_const.h"
77#include "gallivm/lp_bld_conv.h"
78#include "gallivm/lp_bld_intr.h"
79#include "gallivm/lp_bld_logic.h"
80#include "gallivm/lp_bld_tgsi.h"
81#include "gallivm/lp_bld_swizzle.h"
82#include "gallivm/lp_bld_flow.h"
83#include "gallivm/lp_bld_debug.h"
84
85#include "lp_bld_alpha.h"
86#include "lp_bld_blend.h"
87#include "lp_bld_depth.h"
88#include "lp_bld_interp.h"
89#include "lp_context.h"
90#include "lp_debug.h"
91#include "lp_perf.h"
92#include "lp_screen.h"
93#include "lp_setup.h"
94#include "lp_state.h"
95#include "lp_tex_sample.h"
96
97
98#include <llvm-c/Analysis.h>
99
100
101static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105/*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109static void
110generate_pos0(LLVMBuilderRef builder,
111              LLVMValueRef x,
112              LLVMValueRef y,
113              LLVMValueRef *x0,
114              LLVMValueRef *y0)
115{
116   LLVMTypeRef int_elem_type = LLVMInt32Type();
117   LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118   LLVMTypeRef elem_type = LLVMFloatType();
119   LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120   LLVMValueRef x_offsets[QUAD_SIZE];
121   LLVMValueRef y_offsets[QUAD_SIZE];
122   unsigned i;
123
124   x = lp_build_broadcast(builder, int_vec_type, x);
125   y = lp_build_broadcast(builder, int_vec_type, y);
126
127   for(i = 0; i < QUAD_SIZE; ++i) {
128      x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129      y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130   }
131
132   x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133   y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135   *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136   *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137}
138
139
140/**
141 * Generate the depth /stencil test code.
142 */
143static void
144generate_depth_stencil(LLVMBuilderRef builder,
145                       const struct lp_fragment_shader_variant_key *key,
146                       struct lp_type src_type,
147                       struct lp_build_mask_context *mask,
148                       LLVMValueRef stencil_refs[2],
149                       LLVMValueRef src,
150                       LLVMValueRef dst_ptr,
151                       LLVMValueRef facing,
152                       LLVMValueRef counter)
153{
154   const struct util_format_description *format_desc;
155   struct lp_type dst_type;
156
157   if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
158      return;
159
160   format_desc = util_format_description(key->zsbuf_format);
161   assert(format_desc);
162
163   /*
164    * Depths are expected to be between 0 and 1, even if they are stored in
165    * floats. Setting these bits here will ensure that the lp_build_conv() call
166    * below won't try to unnecessarily clamp the incoming values.
167    */
168   if(src_type.floating) {
169      src_type.sign = FALSE;
170      src_type.norm = TRUE;
171   }
172   else {
173      assert(!src_type.sign);
174      assert(src_type.norm);
175   }
176
177   /* Pick the depth type. */
178   dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
179
180   /* FIXME: Cope with a depth test type with a different bit width. */
181   assert(dst_type.width == src_type.width);
182   assert(dst_type.length == src_type.length);
183
184   /* Convert fragment Z from float to integer */
185   lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
186
187   dst_ptr = LLVMBuildBitCast(builder,
188                              dst_ptr,
189                              LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
190   lp_build_depth_stencil_test(builder,
191                               &key->depth,
192                               key->stencil,
193                               dst_type,
194                               format_desc,
195                               mask,
196                               stencil_refs,
197                               src,
198                               dst_ptr,
199                               facing,
200                               counter);
201}
202
203
204/**
205 * Generate the code to do inside/outside triangle testing for the
206 * four pixels in a 2x2 quad.  This will set the four elements of the
207 * quad mask vector to 0 or ~0.
208 * \param i  which quad of the quad group to test, in [0,3]
209 */
210static void
211generate_tri_edge_mask(LLVMBuilderRef builder,
212                       unsigned i,
213                       LLVMValueRef *mask,      /* ivec4, out */
214                       LLVMValueRef c0,         /* int32 */
215                       LLVMValueRef c1,         /* int32 */
216                       LLVMValueRef c2,         /* int32 */
217                       LLVMValueRef step0_ptr,  /* ivec4 */
218                       LLVMValueRef step1_ptr,  /* ivec4 */
219                       LLVMValueRef step2_ptr)  /* ivec4 */
220{
221#define OPTIMIZE_IN_OUT_TEST 0
222#if OPTIMIZE_IN_OUT_TEST
223   struct lp_build_if_state ifctx;
224   LLVMValueRef not_draw_all;
225#endif
226   struct lp_build_flow_context *flow;
227   struct lp_type i32_type;
228   LLVMTypeRef i32vec4_type;
229   LLVMValueRef c0_vec, c1_vec, c2_vec;
230   LLVMValueRef in_out_mask;
231
232   assert(i < 4);
233
234   /* int32 vector type */
235   memset(&i32_type, 0, sizeof i32_type);
236   i32_type.floating = FALSE; /* values are integers */
237   i32_type.sign = TRUE;      /* values are signed */
238   i32_type.norm = FALSE;     /* values are not normalized */
239   i32_type.width = 32;       /* 32-bit int values */
240   i32_type.length = 4;       /* 4 elements per vector */
241
242   i32vec4_type = lp_build_int32_vec4_type();
243
244   /*
245    * Use a conditional here to do detailed pixel in/out testing.
246    * We only have to do this if c0 != INT_MIN.
247    */
248   flow = lp_build_flow_create(builder);
249   lp_build_flow_scope_begin(flow);
250
251   {
252#if OPTIMIZE_IN_OUT_TEST
253      /* not_draw_all = (c0 != INT_MIN) */
254      not_draw_all = LLVMBuildICmp(builder,
255                                   LLVMIntNE,
256                                   c0,
257                                   LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
258                                   "");
259
260      in_out_mask = lp_build_const_int_vec(i32_type, ~0);
261
262
263      lp_build_flow_scope_declare(flow, &in_out_mask);
264
265      /* if (not_draw_all) {... */
266      lp_build_if(&ifctx, flow, builder, not_draw_all);
267#endif
268      {
269         LLVMValueRef step0_vec, step1_vec, step2_vec;
270         LLVMValueRef m0_vec, m1_vec, m2_vec;
271         LLVMValueRef index, m;
272
273         /* c0_vec = {c0, c0, c0, c0}
274          * Note that we emit this code four times but LLVM optimizes away
275          * three instances of it.
276          */
277         c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
278         c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
279         c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
280         lp_build_name(c0_vec, "edgeconst0vec");
281         lp_build_name(c1_vec, "edgeconst1vec");
282         lp_build_name(c2_vec, "edgeconst2vec");
283
284         /* load step0vec, step1, step2 vec from memory */
285         index = LLVMConstInt(LLVMInt32Type(), i, 0);
286         step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
287         step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
288         step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
289         lp_build_name(step0_vec, "step0vec");
290         lp_build_name(step1_vec, "step1vec");
291         lp_build_name(step2_vec, "step2vec");
292
293         /* m0_vec = step0_ptr[i] > c0_vec */
294         m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
295         m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
296         m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
297
298         /* in_out_mask = m0_vec & m1_vec & m2_vec */
299         m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
300         in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
301         lp_build_name(in_out_mask, "inoutmaskvec");
302      }
303#if OPTIMIZE_IN_OUT_TEST
304      lp_build_endif(&ifctx);
305#endif
306
307   }
308   lp_build_flow_scope_end(flow);
309   lp_build_flow_destroy(flow);
310
311   /* This is the initial alive/dead pixel mask for a quad of four pixels.
312    * It's an int[4] vector with each word set to 0 or ~0.
313    * Words will get cleared when pixels faile the Z test, etc.
314    */
315   *mask = in_out_mask;
316}
317
318
319static LLVMValueRef
320generate_scissor_test(LLVMBuilderRef builder,
321                      LLVMValueRef context_ptr,
322                      const struct lp_build_interp_soa_context *interp,
323                      struct lp_type type)
324{
325   LLVMTypeRef vec_type = lp_build_vec_type(type);
326   LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
327   LLVMValueRef xmin, ymin, xmax, ymax;
328   LLVMValueRef m0, m1, m2, m3, m;
329
330   /* xpos, ypos contain the window coords for the four pixels in the quad */
331   assert(xpos);
332   assert(ypos);
333
334   /* get the current scissor bounds, convert to vectors */
335   xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
336   xmin = lp_build_broadcast(builder, vec_type, xmin);
337
338   ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
339   ymin = lp_build_broadcast(builder, vec_type, ymin);
340
341   xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
342   xmax = lp_build_broadcast(builder, vec_type, xmax);
343
344   ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
345   ymax = lp_build_broadcast(builder, vec_type, ymax);
346
347   /* compare the fragment's position coordinates against the scissor bounds */
348   m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
349   m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
350   m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
351   m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
352
353   /* AND all the masks together */
354   m = LLVMBuildAnd(builder, m0, m1, "");
355   m = LLVMBuildAnd(builder, m, m2, "");
356   m = LLVMBuildAnd(builder, m, m3, "");
357
358   lp_build_name(m, "scissormask");
359
360   return m;
361}
362
363
364static LLVMValueRef
365build_int32_vec_const(int value)
366{
367   struct lp_type i32_type;
368
369   memset(&i32_type, 0, sizeof i32_type);
370   i32_type.floating = FALSE; /* values are integers */
371   i32_type.sign = TRUE;      /* values are signed */
372   i32_type.norm = FALSE;     /* values are not normalized */
373   i32_type.width = 32;       /* 32-bit int values */
374   i32_type.length = 4;       /* 4 elements per vector */
375   return lp_build_const_int_vec(i32_type, value);
376}
377
378
379
380/**
381 * Generate the fragment shader, depth/stencil test, and alpha tests.
382 * \param i  which quad in the tile, in range [0,3]
383 * \param do_tri_test  if 1, do triangle edge in/out testing
384 */
385static void
386generate_fs(struct llvmpipe_context *lp,
387            struct lp_fragment_shader *shader,
388            const struct lp_fragment_shader_variant_key *key,
389            LLVMBuilderRef builder,
390            struct lp_type type,
391            LLVMValueRef context_ptr,
392            unsigned i,
393            const struct lp_build_interp_soa_context *interp,
394            struct lp_build_sampler_soa *sampler,
395            LLVMValueRef *pmask,
396            LLVMValueRef (*color)[4],
397            LLVMValueRef depth_ptr,
398            LLVMValueRef facing,
399            unsigned do_tri_test,
400            LLVMValueRef c0,
401            LLVMValueRef c1,
402            LLVMValueRef c2,
403            LLVMValueRef step0_ptr,
404            LLVMValueRef step1_ptr,
405            LLVMValueRef step2_ptr,
406            LLVMValueRef counter)
407{
408   const struct tgsi_token *tokens = shader->base.tokens;
409   LLVMTypeRef vec_type;
410   LLVMValueRef consts_ptr;
411   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
412   LLVMValueRef z = interp->pos[2];
413   LLVMValueRef stencil_refs[2];
414   struct lp_build_flow_context *flow;
415   struct lp_build_mask_context mask;
416   boolean early_depth_stencil_test;
417   unsigned attrib;
418   unsigned chan;
419   unsigned cbuf;
420
421   assert(i < 4);
422
423   stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
424   stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
425
426   vec_type = lp_build_vec_type(type);
427
428   consts_ptr = lp_jit_context_constants(builder, context_ptr);
429
430   flow = lp_build_flow_create(builder);
431
432   memset(outputs, 0, sizeof outputs);
433
434   lp_build_flow_scope_begin(flow);
435
436   /* Declare the color and z variables */
437   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
438      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
439	 color[cbuf][chan] = LLVMGetUndef(vec_type);
440	 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
441      }
442   }
443   lp_build_flow_scope_declare(flow, &z);
444
445   /* do triangle edge testing */
446   if (do_tri_test) {
447      generate_tri_edge_mask(builder, i, pmask,
448                             c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
449   }
450   else {
451      *pmask = build_int32_vec_const(~0);
452   }
453
454   /* 'mask' will control execution based on quad's pixel alive/killed state */
455   lp_build_mask_begin(&mask, flow, type, *pmask);
456
457   if (key->scissor) {
458      LLVMValueRef smask =
459         generate_scissor_test(builder, context_ptr, interp, type);
460      lp_build_mask_update(&mask, smask);
461   }
462
463   early_depth_stencil_test =
464      (key->depth.enabled || key->stencil[0].enabled) &&
465      !key->alpha.enabled &&
466      !shader->info.uses_kill &&
467      !shader->info.writes_z;
468
469   if (early_depth_stencil_test)
470      generate_depth_stencil(builder, key,
471                             type, &mask,
472                             stencil_refs, z, depth_ptr, facing, counter);
473
474   lp_build_tgsi_soa(builder, tokens, type, &mask,
475                     consts_ptr, interp->pos, interp->inputs,
476                     outputs, sampler, &shader->info);
477
478   /* loop over fragment shader outputs/results */
479   for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
480      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
481         if(outputs[attrib][chan]) {
482            LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
483            lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
484
485            switch (shader->info.output_semantic_name[attrib]) {
486            case TGSI_SEMANTIC_COLOR:
487               {
488                  unsigned cbuf = shader->info.output_semantic_index[attrib];
489
490                  lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
491
492                  /* Alpha test */
493                  /* XXX: should the alpha reference value be passed separately? */
494		  /* XXX: should only test the final assignment to alpha */
495                  if(cbuf == 0 && chan == 3) {
496                     LLVMValueRef alpha = out;
497                     LLVMValueRef alpha_ref_value;
498                     alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
499                     alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
500                     lp_build_alpha_test(builder, &key->alpha, type,
501                                         &mask, alpha, alpha_ref_value);
502                  }
503
504		  color[cbuf][chan] = out;
505                  break;
506               }
507
508            case TGSI_SEMANTIC_POSITION:
509               if(chan == 2)
510                  z = out;
511               break;
512            }
513         }
514      }
515   }
516
517   if (!early_depth_stencil_test)
518      generate_depth_stencil(builder, key,
519                             type, &mask,
520                             stencil_refs, z, depth_ptr, facing, counter);
521
522   lp_build_mask_end(&mask);
523
524   lp_build_flow_scope_end(flow);
525
526   lp_build_flow_destroy(flow);
527
528   *pmask = mask.value;
529
530}
531
532
533/**
534 * Generate color blending and color output.
535 * \param rt  the render target index (to index blend, colormask state)
536 * \param type  the pixel color type
537 * \param context_ptr  pointer to the runtime JIT context
538 * \param mask  execution mask (active fragment/pixel mask)
539 * \param src  colors from the fragment shader
540 * \param dst_ptr  the destination color buffer pointer
541 */
542static void
543generate_blend(const struct pipe_blend_state *blend,
544               unsigned rt,
545               LLVMBuilderRef builder,
546               struct lp_type type,
547               LLVMValueRef context_ptr,
548               LLVMValueRef mask,
549               LLVMValueRef *src,
550               LLVMValueRef dst_ptr)
551{
552   struct lp_build_context bld;
553   struct lp_build_flow_context *flow;
554   struct lp_build_mask_context mask_ctx;
555   LLVMTypeRef vec_type;
556   LLVMValueRef const_ptr;
557   LLVMValueRef con[4];
558   LLVMValueRef dst[4];
559   LLVMValueRef res[4];
560   unsigned chan;
561
562   lp_build_context_init(&bld, builder, type);
563
564   flow = lp_build_flow_create(builder);
565
566   /* we'll use this mask context to skip blending if all pixels are dead */
567   lp_build_mask_begin(&mask_ctx, flow, type, mask);
568
569   vec_type = lp_build_vec_type(type);
570
571   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
572   const_ptr = LLVMBuildBitCast(builder, const_ptr,
573                                LLVMPointerType(vec_type, 0), "");
574
575   /* load constant blend color and colors from the dest color buffer */
576   for(chan = 0; chan < 4; ++chan) {
577      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
578      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
579
580      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
581
582      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
583      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
584   }
585
586   /* do blend */
587   lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
588
589   /* store results to color buffer */
590   for(chan = 0; chan < 4; ++chan) {
591      if(blend->rt[rt].colormask & (1 << chan)) {
592         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
593         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
594         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
595         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
596      }
597   }
598
599   lp_build_mask_end(&mask_ctx);
600   lp_build_flow_destroy(flow);
601}
602
603
604/** casting function to avoid compiler warnings */
605static lp_jit_frag_func
606cast_voidptr_to_lp_jit_frag_func(void *p)
607{
608   union {
609      void *v;
610      lp_jit_frag_func f;
611   } tmp;
612   assert(sizeof(tmp.v) == sizeof(tmp.f));
613   tmp.v = p;
614   return tmp.f;
615}
616
617
618/**
619 * Generate the runtime callable function for the whole fragment pipeline.
620 * Note that the function which we generate operates on a block of 16
621 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
622 * 2x2 pixels.
623 */
624static void
625generate_fragment(struct llvmpipe_context *lp,
626                  struct lp_fragment_shader *shader,
627                  struct lp_fragment_shader_variant *variant,
628                  unsigned do_tri_test)
629{
630   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
631   const struct lp_fragment_shader_variant_key *key = &variant->key;
632   struct lp_type fs_type;
633   struct lp_type blend_type;
634   LLVMTypeRef fs_elem_type;
635   LLVMTypeRef fs_int_vec_type;
636   LLVMTypeRef blend_vec_type;
637   LLVMTypeRef arg_types[16];
638   LLVMTypeRef func_type;
639   LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
640   LLVMValueRef context_ptr;
641   LLVMValueRef x;
642   LLVMValueRef y;
643   LLVMValueRef a0_ptr;
644   LLVMValueRef dadx_ptr;
645   LLVMValueRef dady_ptr;
646   LLVMValueRef color_ptr_ptr;
647   LLVMValueRef depth_ptr;
648   LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
649   LLVMBasicBlockRef block;
650   LLVMBuilderRef builder;
651   LLVMValueRef x0;
652   LLVMValueRef y0;
653   struct lp_build_sampler_soa *sampler;
654   struct lp_build_interp_soa_context interp;
655   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
656   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
657   LLVMValueRef blend_mask;
658   LLVMValueRef function;
659   LLVMValueRef facing;
660   unsigned num_fs;
661   unsigned i;
662   unsigned chan;
663   unsigned cbuf;
664
665
666   /* TODO: actually pick these based on the fs and color buffer
667    * characteristics. */
668
669   memset(&fs_type, 0, sizeof fs_type);
670   fs_type.floating = TRUE; /* floating point values */
671   fs_type.sign = TRUE;     /* values are signed */
672   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
673   fs_type.width = 32;      /* 32-bit float */
674   fs_type.length = 4;      /* 4 elements per vector */
675   num_fs = 4;              /* number of quads per block */
676
677   memset(&blend_type, 0, sizeof blend_type);
678   blend_type.floating = FALSE; /* values are integers */
679   blend_type.sign = FALSE;     /* values are unsigned */
680   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
681   blend_type.width = 8;        /* 8-bit ubyte values */
682   blend_type.length = 16;      /* 16 elements per vector */
683
684   /*
685    * Generate the function prototype. Any change here must be reflected in
686    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
687    */
688
689   fs_elem_type = lp_build_elem_type(fs_type);
690   fs_int_vec_type = lp_build_int_vec_type(fs_type);
691
692   blend_vec_type = lp_build_vec_type(blend_type);
693
694   arg_types[0] = screen->context_ptr_type;            /* context */
695   arg_types[1] = LLVMInt32Type();                     /* x */
696   arg_types[2] = LLVMInt32Type();                     /* y */
697   arg_types[3] = LLVMFloatType();                     /* facing */
698   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
699   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
700   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
701   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
702   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
703   arg_types[9] = LLVMInt32Type();                     /* c0 */
704   arg_types[10] = LLVMInt32Type();                    /* c1 */
705   arg_types[11] = LLVMInt32Type();                    /* c2 */
706   /* Note: the step arrays are built as int32[16] but we interpret
707    * them here as int32_vec4[4].
708    */
709   arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
710   arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
711   arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
712   arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
713
714   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
715
716   function = LLVMAddFunction(screen->module, "shader", func_type);
717   LLVMSetFunctionCallConv(function, LLVMCCallConv);
718
719   variant->function[do_tri_test] = function;
720
721
722   /* XXX: need to propagate noalias down into color param now we are
723    * passing a pointer-to-pointer?
724    */
725   for(i = 0; i < Elements(arg_types); ++i)
726      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
727         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
728
729   context_ptr  = LLVMGetParam(function, 0);
730   x            = LLVMGetParam(function, 1);
731   y            = LLVMGetParam(function, 2);
732   facing       = LLVMGetParam(function, 3);
733   a0_ptr       = LLVMGetParam(function, 4);
734   dadx_ptr     = LLVMGetParam(function, 5);
735   dady_ptr     = LLVMGetParam(function, 6);
736   color_ptr_ptr = LLVMGetParam(function, 7);
737   depth_ptr    = LLVMGetParam(function, 8);
738   c0           = LLVMGetParam(function, 9);
739   c1           = LLVMGetParam(function, 10);
740   c2           = LLVMGetParam(function, 11);
741   step0_ptr    = LLVMGetParam(function, 12);
742   step1_ptr    = LLVMGetParam(function, 13);
743   step2_ptr    = LLVMGetParam(function, 14);
744
745   lp_build_name(context_ptr, "context");
746   lp_build_name(x, "x");
747   lp_build_name(y, "y");
748   lp_build_name(a0_ptr, "a0");
749   lp_build_name(dadx_ptr, "dadx");
750   lp_build_name(dady_ptr, "dady");
751   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
752   lp_build_name(depth_ptr, "depth");
753   lp_build_name(c0, "c0");
754   lp_build_name(c1, "c1");
755   lp_build_name(c2, "c2");
756   lp_build_name(step0_ptr, "step0");
757   lp_build_name(step1_ptr, "step1");
758   lp_build_name(step2_ptr, "step2");
759
760   if (key->occlusion_count) {
761      counter = LLVMGetParam(function, 15);
762      lp_build_name(counter, "counter");
763   }
764
765   /*
766    * Function body
767    */
768
769   block = LLVMAppendBasicBlock(function, "entry");
770   builder = LLVMCreateBuilder();
771   LLVMPositionBuilderAtEnd(builder, block);
772
773   generate_pos0(builder, x, y, &x0, &y0);
774
775   lp_build_interp_soa_init(&interp,
776                            shader->base.tokens,
777                            key->flatshade,
778                            builder, fs_type,
779                            a0_ptr, dadx_ptr, dady_ptr,
780                            x0, y0);
781
782   /* code generated texture sampling */
783   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
784
785   /* loop over quads in the block */
786   for(i = 0; i < num_fs; ++i) {
787      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
788      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
789      LLVMValueRef depth_ptr_i;
790
791      if(i != 0)
792         lp_build_interp_soa_update(&interp, i);
793
794      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
795
796      generate_fs(lp, shader, key,
797                  builder,
798                  fs_type,
799                  context_ptr,
800                  i,
801                  &interp,
802                  sampler,
803                  &fs_mask[i], /* output */
804                  out_color,
805                  depth_ptr_i,
806                  facing,
807                  do_tri_test,
808                  c0, c1, c2,
809                  step0_ptr, step1_ptr, step2_ptr, counter);
810
811      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
812	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
813	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
814   }
815
816   sampler->destroy(sampler);
817
818   /* Loop over color outputs / color buffers to do blending.
819    */
820   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
821      LLVMValueRef color_ptr;
822      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
823      LLVMValueRef blend_in_color[NUM_CHANNELS];
824      unsigned rt;
825
826      /*
827       * Convert the fs's output color and mask to fit to the blending type.
828       */
829      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
830	 lp_build_conv(builder, fs_type, blend_type,
831		       fs_out_color[cbuf][chan], num_fs,
832		       &blend_in_color[chan], 1);
833	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
834      }
835
836      lp_build_conv_mask(builder, fs_type, blend_type,
837			 fs_mask, num_fs,
838			 &blend_mask, 1);
839
840      color_ptr = LLVMBuildLoad(builder,
841				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
842				"");
843      lp_build_name(color_ptr, "color_ptr%d", cbuf);
844
845      /* which blend/colormask state to use */
846      rt = key->blend.independent_blend_enable ? cbuf : 0;
847
848      /*
849       * Blending.
850       */
851      generate_blend(&key->blend,
852                     rt,
853		     builder,
854		     blend_type,
855		     context_ptr,
856		     blend_mask,
857		     blend_in_color,
858		     color_ptr);
859   }
860
861   LLVMBuildRetVoid(builder);
862
863   LLVMDisposeBuilder(builder);
864
865
866   /* Verify the LLVM IR.  If invalid, dump and abort */
867#ifdef DEBUG
868   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
869      if (1)
870         lp_debug_dump_value(function);
871      abort();
872   }
873#endif
874
875   /* Apply optimizations to LLVM IR */
876   if (1)
877      LLVMRunFunctionPassManager(screen->pass, function);
878
879   if (LP_DEBUG & DEBUG_JIT) {
880      /* Print the LLVM IR to stderr */
881      lp_debug_dump_value(function);
882      debug_printf("\n");
883   }
884
885   /*
886    * Translate the LLVM IR into machine code.
887    */
888   {
889      void *f = LLVMGetPointerToGlobal(screen->engine, function);
890
891      variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
892
893      if (LP_DEBUG & DEBUG_ASM)
894         lp_disassemble(f);
895   }
896}
897
898
899static struct lp_fragment_shader_variant *
900generate_variant(struct llvmpipe_context *lp,
901                 struct lp_fragment_shader *shader,
902                 const struct lp_fragment_shader_variant_key *key)
903{
904   struct lp_fragment_shader_variant *variant;
905
906   if (LP_DEBUG & DEBUG_JIT) {
907      unsigned i;
908
909      tgsi_dump(shader->base.tokens, 0);
910      if(key->depth.enabled) {
911         debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
912         debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
913         debug_printf("depth.writemask = %u\n", key->depth.writemask);
914      }
915      if(key->alpha.enabled) {
916         debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
917         debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
918      }
919      if(key->blend.logicop_enable) {
920         debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
921      }
922      else if(key->blend.rt[0].blend_enable) {
923         debug_printf("blend.rgb_func = %s\n",   util_dump_blend_func  (key->blend.rt[0].rgb_func, TRUE));
924         debug_printf("rgb_src_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
925         debug_printf("rgb_dst_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
926         debug_printf("alpha_func = %s\n",       util_dump_blend_func  (key->blend.rt[0].alpha_func, TRUE));
927         debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
928         debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
929      }
930      debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
931      for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
932         if(key->sampler[i].format) {
933            debug_printf("sampler[%u] = \n", i);
934            debug_printf("  .format = %s\n",
935                         util_format_name(key->sampler[i].format));
936            debug_printf("  .target = %s\n",
937                         util_dump_tex_target(key->sampler[i].target, TRUE));
938            debug_printf("  .pot = %u %u %u\n",
939                         key->sampler[i].pot_width,
940                         key->sampler[i].pot_height,
941                         key->sampler[i].pot_depth);
942            debug_printf("  .wrap = %s %s %s\n",
943                         util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
944                         util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
945                         util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
946            debug_printf("  .min_img_filter = %s\n",
947                         util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
948            debug_printf("  .min_mip_filter = %s\n",
949                         util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
950            debug_printf("  .mag_img_filter = %s\n",
951                         util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
952            if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
953               debug_printf("  .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
954            debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
955         }
956      }
957   }
958
959   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
960   if(!variant)
961      return NULL;
962
963   memcpy(&variant->key, key, sizeof *key);
964
965   generate_fragment(lp, shader, variant, 0);
966   generate_fragment(lp, shader, variant, 1);
967
968   /* TODO: most of these can be relaxed, in particular the colormask */
969   variant->opaque =
970         !key->blend.logicop_enable &&
971         !key->blend.rt[0].blend_enable &&
972         key->blend.rt[0].colormask == 0xf &&
973         !key->stencil[0].enabled &&
974         !key->alpha.enabled &&
975         !key->depth.enabled &&
976         !key->scissor &&
977         !shader->info.uses_kill
978         ? TRUE : FALSE;
979
980   /* insert new variant into linked list */
981   variant->next = shader->variants;
982   shader->variants = variant;
983
984   return variant;
985}
986
987
988static void *
989llvmpipe_create_fs_state(struct pipe_context *pipe,
990                         const struct pipe_shader_state *templ)
991{
992   struct lp_fragment_shader *shader;
993
994   shader = CALLOC_STRUCT(lp_fragment_shader);
995   if (!shader)
996      return NULL;
997
998   /* get/save the summary info for this shader */
999   tgsi_scan_shader(templ->tokens, &shader->info);
1000
1001   /* we need to keep a local copy of the tokens */
1002   shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1003
1004   if (LP_DEBUG & DEBUG_TGSI) {
1005      debug_printf("llvmpipe: Create fragment shader %p:\n", (void *) shader);
1006      tgsi_dump(templ->tokens, 0);
1007   }
1008
1009   return shader;
1010}
1011
1012
1013static void
1014llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1015{
1016   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1017
1018   if (llvmpipe->fs == fs)
1019      return;
1020
1021   draw_flush(llvmpipe->draw);
1022
1023   llvmpipe->fs = fs;
1024
1025   llvmpipe->dirty |= LP_NEW_FS;
1026}
1027
1028
1029static void
1030llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1031{
1032   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1033   struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1034   struct lp_fragment_shader *shader = fs;
1035   struct lp_fragment_shader_variant *variant;
1036
1037   assert(fs != llvmpipe->fs);
1038   (void) llvmpipe;
1039
1040   /*
1041    * XXX: we need to flush the context until we have some sort of reference
1042    * counting in fragment shaders as they may still be binned
1043    */
1044   draw_flush(llvmpipe->draw);
1045   lp_setup_flush(llvmpipe->setup, 0);
1046
1047   variant = shader->variants;
1048   while(variant) {
1049      struct lp_fragment_shader_variant *next = variant->next;
1050      unsigned i;
1051
1052      for (i = 0; i < Elements(variant->function); i++) {
1053         if (variant->function[i]) {
1054            if (variant->jit_function[i])
1055               LLVMFreeMachineCodeForFunction(screen->engine,
1056                                              variant->function[i]);
1057            LLVMDeleteFunction(variant->function[i]);
1058         }
1059      }
1060
1061      FREE(variant);
1062
1063      variant = next;
1064   }
1065
1066   FREE((void *) shader->base.tokens);
1067   FREE(shader);
1068}
1069
1070
1071
1072static void
1073llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1074                             uint shader, uint index,
1075                             struct pipe_resource *constants)
1076{
1077   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1078   unsigned size = constants ? constants->width0 : 0;
1079   const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1080
1081   assert(shader < PIPE_SHADER_TYPES);
1082   assert(index == 0);
1083
1084   if(llvmpipe->constants[shader] == constants)
1085      return;
1086
1087   draw_flush(llvmpipe->draw);
1088
1089   /* note: reference counting */
1090   pipe_resource_reference(&llvmpipe->constants[shader], constants);
1091
1092   if(shader == PIPE_SHADER_VERTEX) {
1093      draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1094                                      data, size);
1095   }
1096
1097   llvmpipe->dirty |= LP_NEW_CONSTANTS;
1098}
1099
1100
1101/**
1102 * Return the blend factor equivalent to a destination alpha of one.
1103 */
1104static INLINE unsigned
1105force_dst_alpha_one(unsigned factor, boolean alpha)
1106{
1107   switch(factor) {
1108   case PIPE_BLENDFACTOR_DST_ALPHA:
1109      return PIPE_BLENDFACTOR_ONE;
1110   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1111      return PIPE_BLENDFACTOR_ZERO;
1112   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1113      return PIPE_BLENDFACTOR_ZERO;
1114   }
1115
1116   if (alpha) {
1117      switch(factor) {
1118      case PIPE_BLENDFACTOR_DST_COLOR:
1119         return PIPE_BLENDFACTOR_ONE;
1120      case PIPE_BLENDFACTOR_INV_DST_COLOR:
1121         return PIPE_BLENDFACTOR_ZERO;
1122      }
1123   }
1124
1125   return factor;
1126}
1127
1128
1129/**
1130 * We need to generate several variants of the fragment pipeline to match
1131 * all the combinations of the contributing state atoms.
1132 *
1133 * TODO: there is actually no reason to tie this to context state -- the
1134 * generated code could be cached globally in the screen.
1135 */
1136static void
1137make_variant_key(struct llvmpipe_context *lp,
1138                 struct lp_fragment_shader *shader,
1139                 struct lp_fragment_shader_variant_key *key)
1140{
1141   unsigned i;
1142
1143   memset(key, 0, sizeof *key);
1144
1145   if (lp->framebuffer.zsbuf) {
1146      if (lp->depth_stencil->depth.enabled) {
1147         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1148         memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1149      }
1150      if (lp->depth_stencil->stencil[0].enabled) {
1151         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1152         memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1153      }
1154   }
1155
1156   key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1157   if(key->alpha.enabled)
1158      key->alpha.func = lp->depth_stencil->alpha.func;
1159   /* alpha.ref_value is passed in jit_context */
1160
1161   key->flatshade = lp->rasterizer->flatshade;
1162   key->scissor = lp->rasterizer->scissor;
1163   if (lp->active_query_count) {
1164      key->occlusion_count = TRUE;
1165   }
1166
1167   if (lp->framebuffer.nr_cbufs) {
1168      memcpy(&key->blend, lp->blend, sizeof key->blend);
1169   }
1170
1171   key->nr_cbufs = lp->framebuffer.nr_cbufs;
1172   for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1173      struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1174      const struct util_format_description *format_desc;
1175      unsigned chan;
1176
1177      format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1178      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1179             format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1180
1181      blend_rt->colormask = lp->blend->rt[i].colormask;
1182
1183      /* mask out color channels not present in the color buffer.
1184       * Should be simple to incorporate per-cbuf writemasks:
1185       */
1186      for(chan = 0; chan < 4; ++chan) {
1187         enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1188
1189         if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1190            blend_rt->colormask &= ~(1 << chan);
1191      }
1192
1193      /*
1194       * Our swizzled render tiles always have an alpha channel, but the linear
1195       * render target format often does not, so force here the dst alpha to be
1196       * one.
1197       *
1198       * This is not a mere optimization. Wrong results will be produced if the
1199       * dst alpha is used, the dst format does not have alpha, and the previous
1200       * rendering was not flushed from the swizzled to linear buffer. For
1201       * example, NonPowTwo DCT.
1202       *
1203       * TODO: This should be generalized to all channels for better
1204       * performance, but only alpha causes correctness issues.
1205       */
1206      if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1207         blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1208         blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1209         blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1210         blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1211      }
1212   }
1213
1214   for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1215      if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1216         lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1217}
1218
1219
1220/**
1221 * Update fragment state.  This is called just prior to drawing
1222 * something when some fragment-related state has changed.
1223 */
1224void
1225llvmpipe_update_fs(struct llvmpipe_context *lp)
1226{
1227   struct lp_fragment_shader *shader = lp->fs;
1228   struct lp_fragment_shader_variant_key key;
1229   struct lp_fragment_shader_variant *variant;
1230
1231   make_variant_key(lp, shader, &key);
1232
1233   variant = shader->variants;
1234   while(variant) {
1235      if(memcmp(&variant->key, &key, sizeof key) == 0)
1236         break;
1237
1238      variant = variant->next;
1239   }
1240
1241   if (!variant) {
1242      int64_t t0, t1;
1243      int64_t dt;
1244      t0 = os_time_get();
1245
1246      variant = generate_variant(lp, shader, &key);
1247
1248      t1 = os_time_get();
1249      dt = t1 - t0;
1250      LP_COUNT_ADD(llvm_compile_time, dt);
1251      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
1252   }
1253
1254   lp_setup_set_fs_functions(lp->setup,
1255                             variant->jit_function[RAST_WHOLE],
1256                             variant->jit_function[RAST_EDGE_TEST],
1257                             variant->opaque);
1258}
1259
1260
1261
1262void
1263llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1264{
1265   llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1266   llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
1267   llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1268
1269   llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1270}
1271