lp_state_fs.c revision 9d48a621d2a0e55a76a2cfd0aea3b773e907ed50
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline.  The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63#include <limits.h>
64#include "pipe/p_defines.h"
65#include "util/u_inlines.h"
66#include "util/u_memory.h"
67#include "util/u_format.h"
68#include "util/u_dump.h"
69#include "os/os_time.h"
70#include "pipe/p_shader_tokens.h"
71#include "draw/draw_context.h"
72#include "tgsi/tgsi_dump.h"
73#include "tgsi/tgsi_scan.h"
74#include "tgsi/tgsi_parse.h"
75#include "gallivm/lp_bld_type.h"
76#include "gallivm/lp_bld_const.h"
77#include "gallivm/lp_bld_conv.h"
78#include "gallivm/lp_bld_intr.h"
79#include "gallivm/lp_bld_logic.h"
80#include "gallivm/lp_bld_depth.h"
81#include "gallivm/lp_bld_interp.h"
82#include "gallivm/lp_bld_tgsi.h"
83#include "gallivm/lp_bld_alpha.h"
84#include "gallivm/lp_bld_blend.h"
85#include "gallivm/lp_bld_swizzle.h"
86#include "gallivm/lp_bld_flow.h"
87#include "gallivm/lp_bld_debug.h"
88#include "lp_buffer.h"
89#include "lp_context.h"
90#include "lp_debug.h"
91#include "lp_perf.h"
92#include "lp_screen.h"
93#include "lp_setup.h"
94#include "lp_state.h"
95#include "lp_tex_sample.h"
96
97
98#include <llvm-c/Analysis.h>
99
100
101static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105/*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109static void
110generate_pos0(LLVMBuilderRef builder,
111              LLVMValueRef x,
112              LLVMValueRef y,
113              LLVMValueRef *x0,
114              LLVMValueRef *y0)
115{
116   LLVMTypeRef int_elem_type = LLVMInt32Type();
117   LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118   LLVMTypeRef elem_type = LLVMFloatType();
119   LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120   LLVMValueRef x_offsets[QUAD_SIZE];
121   LLVMValueRef y_offsets[QUAD_SIZE];
122   unsigned i;
123
124   x = lp_build_broadcast(builder, int_vec_type, x);
125   y = lp_build_broadcast(builder, int_vec_type, y);
126
127   for(i = 0; i < QUAD_SIZE; ++i) {
128      x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129      y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130   }
131
132   x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133   y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135   *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136   *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137}
138
139
140/**
141 * Generate the depth /stencil test code.
142 */
143static void
144generate_depth_stencil(LLVMBuilderRef builder,
145                       const struct lp_fragment_shader_variant_key *key,
146                       struct lp_type src_type,
147                       struct lp_build_mask_context *mask,
148                       LLVMValueRef stencil_refs,
149                       LLVMValueRef src,
150                       LLVMValueRef dst_ptr)
151{
152   const struct util_format_description *format_desc;
153   struct lp_type dst_type;
154
155   if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
156      return;
157
158   format_desc = util_format_description(key->zsbuf_format);
159   assert(format_desc);
160
161   /*
162    * Depths are expected to be between 0 and 1, even if they are stored in
163    * floats. Setting these bits here will ensure that the lp_build_conv() call
164    * below won't try to unnecessarily clamp the incoming values.
165    */
166   if(src_type.floating) {
167      src_type.sign = FALSE;
168      src_type.norm = TRUE;
169   }
170   else {
171      assert(!src_type.sign);
172      assert(src_type.norm);
173   }
174
175   /* Pick the depth type. */
176   dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
177
178   /* FIXME: Cope with a depth test type with a different bit width. */
179   assert(dst_type.width == src_type.width);
180   assert(dst_type.length == src_type.length);
181
182   /* Convert fragment Z from float to integer */
183   lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
184
185   dst_ptr = LLVMBuildBitCast(builder,
186                              dst_ptr,
187                              LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
188   lp_build_depth_stencil_test(builder,
189                               &key->depth,
190                               key->stencil,
191                               dst_type,
192                               format_desc,
193                               mask,
194                               stencil_refs,
195                               src,
196                               dst_ptr);
197}
198
199
200/**
201 * Generate the code to do inside/outside triangle testing for the
202 * four pixels in a 2x2 quad.  This will set the four elements of the
203 * quad mask vector to 0 or ~0.
204 * \param i  which quad of the quad group to test, in [0,3]
205 */
206static void
207generate_tri_edge_mask(LLVMBuilderRef builder,
208                       unsigned i,
209                       LLVMValueRef *mask,      /* ivec4, out */
210                       LLVMValueRef c0,         /* int32 */
211                       LLVMValueRef c1,         /* int32 */
212                       LLVMValueRef c2,         /* int32 */
213                       LLVMValueRef step0_ptr,  /* ivec4 */
214                       LLVMValueRef step1_ptr,  /* ivec4 */
215                       LLVMValueRef step2_ptr)  /* ivec4 */
216{
217#define OPTIMIZE_IN_OUT_TEST 0
218#if OPTIMIZE_IN_OUT_TEST
219   struct lp_build_if_state ifctx;
220   LLVMValueRef not_draw_all;
221#endif
222   struct lp_build_flow_context *flow;
223   struct lp_type i32_type;
224   LLVMTypeRef i32vec4_type, mask_type;
225   LLVMValueRef c0_vec, c1_vec, c2_vec;
226   LLVMValueRef in_out_mask;
227
228   assert(i < 4);
229
230   /* int32 vector type */
231   memset(&i32_type, 0, sizeof i32_type);
232   i32_type.floating = FALSE; /* values are integers */
233   i32_type.sign = TRUE;      /* values are signed */
234   i32_type.norm = FALSE;     /* values are not normalized */
235   i32_type.width = 32;       /* 32-bit int values */
236   i32_type.length = 4;       /* 4 elements per vector */
237
238   i32vec4_type = lp_build_int32_vec4_type();
239
240   mask_type = LLVMIntType(32 * 4);
241
242   /*
243    * Use a conditional here to do detailed pixel in/out testing.
244    * We only have to do this if c0 != INT_MIN.
245    */
246   flow = lp_build_flow_create(builder);
247   lp_build_flow_scope_begin(flow);
248
249   {
250#if OPTIMIZE_IN_OUT_TEST
251      /* not_draw_all = (c0 != INT_MIN) */
252      not_draw_all = LLVMBuildICmp(builder,
253                                   LLVMIntNE,
254                                   c0,
255                                   LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
256                                   "");
257
258      in_out_mask = lp_build_const_int_vec(i32_type, ~0);
259
260
261      lp_build_flow_scope_declare(flow, &in_out_mask);
262
263      /* if (not_draw_all) {... */
264      lp_build_if(&ifctx, flow, builder, not_draw_all);
265#endif
266      {
267         LLVMValueRef step0_vec, step1_vec, step2_vec;
268         LLVMValueRef m0_vec, m1_vec, m2_vec;
269         LLVMValueRef index, m;
270
271         /* c0_vec = {c0, c0, c0, c0}
272          * Note that we emit this code four times but LLVM optimizes away
273          * three instances of it.
274          */
275         c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
276         c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
277         c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
278         lp_build_name(c0_vec, "edgeconst0vec");
279         lp_build_name(c1_vec, "edgeconst1vec");
280         lp_build_name(c2_vec, "edgeconst2vec");
281
282         /* load step0vec, step1, step2 vec from memory */
283         index = LLVMConstInt(LLVMInt32Type(), i, 0);
284         step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
285         step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
286         step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
287         lp_build_name(step0_vec, "step0vec");
288         lp_build_name(step1_vec, "step1vec");
289         lp_build_name(step2_vec, "step2vec");
290
291         /* m0_vec = step0_ptr[i] > c0_vec */
292         m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
293         m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
294         m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
295
296         /* in_out_mask = m0_vec & m1_vec & m2_vec */
297         m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
298         in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
299         lp_build_name(in_out_mask, "inoutmaskvec");
300      }
301#if OPTIMIZE_IN_OUT_TEST
302      lp_build_endif(&ifctx);
303#endif
304
305   }
306   lp_build_flow_scope_end(flow);
307   lp_build_flow_destroy(flow);
308
309   /* This is the initial alive/dead pixel mask for a quad of four pixels.
310    * It's an int[4] vector with each word set to 0 or ~0.
311    * Words will get cleared when pixels faile the Z test, etc.
312    */
313   *mask = in_out_mask;
314}
315
316
317static LLVMValueRef
318generate_scissor_test(LLVMBuilderRef builder,
319                      LLVMValueRef context_ptr,
320                      const struct lp_build_interp_soa_context *interp,
321                      struct lp_type type)
322{
323   LLVMTypeRef vec_type = lp_build_vec_type(type);
324   LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
325   LLVMValueRef xmin, ymin, xmax, ymax;
326   LLVMValueRef m0, m1, m2, m3, m;
327
328   /* xpos, ypos contain the window coords for the four pixels in the quad */
329   assert(xpos);
330   assert(ypos);
331
332   /* get the current scissor bounds, convert to vectors */
333   xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
334   xmin = lp_build_broadcast(builder, vec_type, xmin);
335
336   ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
337   ymin = lp_build_broadcast(builder, vec_type, ymin);
338
339   xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
340   xmax = lp_build_broadcast(builder, vec_type, xmax);
341
342   ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
343   ymax = lp_build_broadcast(builder, vec_type, ymax);
344
345   /* compare the fragment's position coordinates against the scissor bounds */
346   m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
347   m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
348   m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
349   m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
350
351   /* AND all the masks together */
352   m = LLVMBuildAnd(builder, m0, m1, "");
353   m = LLVMBuildAnd(builder, m, m2, "");
354   m = LLVMBuildAnd(builder, m, m3, "");
355
356   lp_build_name(m, "scissormask");
357
358   return m;
359}
360
361
362static LLVMValueRef
363build_int32_vec_const(int value)
364{
365   struct lp_type i32_type;
366
367   memset(&i32_type, 0, sizeof i32_type);
368   i32_type.floating = FALSE; /* values are integers */
369   i32_type.sign = TRUE;      /* values are signed */
370   i32_type.norm = FALSE;     /* values are not normalized */
371   i32_type.width = 32;       /* 32-bit int values */
372   i32_type.length = 4;       /* 4 elements per vector */
373   return lp_build_const_int_vec(i32_type, value);
374}
375
376
377
378/**
379 * Generate the fragment shader, depth/stencil test, and alpha tests.
380 * \param i  which quad in the tile, in range [0,3]
381 * \param do_tri_test  if 1, do triangle edge in/out testing
382 */
383static void
384generate_fs(struct llvmpipe_context *lp,
385            struct lp_fragment_shader *shader,
386            const struct lp_fragment_shader_variant_key *key,
387            LLVMBuilderRef builder,
388            struct lp_type type,
389            LLVMValueRef context_ptr,
390            unsigned i,
391            const struct lp_build_interp_soa_context *interp,
392            struct lp_build_sampler_soa *sampler,
393            LLVMValueRef *pmask,
394            LLVMValueRef (*color)[4],
395            LLVMValueRef depth_ptr,
396            unsigned do_tri_test,
397            LLVMValueRef c0,
398            LLVMValueRef c1,
399            LLVMValueRef c2,
400            LLVMValueRef step0_ptr,
401            LLVMValueRef step1_ptr,
402            LLVMValueRef step2_ptr)
403{
404   const struct tgsi_token *tokens = shader->base.tokens;
405   LLVMTypeRef elem_type;
406   LLVMTypeRef vec_type;
407   LLVMTypeRef int_vec_type;
408   LLVMValueRef consts_ptr;
409   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
410   LLVMValueRef z = interp->pos[2];
411   LLVMValueRef stencil_refs;
412   struct lp_build_flow_context *flow;
413   struct lp_build_mask_context mask;
414   boolean early_depth_stencil_test;
415   unsigned attrib;
416   unsigned chan;
417   unsigned cbuf;
418
419   assert(i < 4);
420
421   stencil_refs = lp_jit_context_stencil_ref_values(builder, context_ptr);
422
423   elem_type = lp_build_elem_type(type);
424   vec_type = lp_build_vec_type(type);
425   int_vec_type = lp_build_int_vec_type(type);
426
427   consts_ptr = lp_jit_context_constants(builder, context_ptr);
428
429   flow = lp_build_flow_create(builder);
430
431   memset(outputs, 0, sizeof outputs);
432
433   lp_build_flow_scope_begin(flow);
434
435   /* Declare the color and z variables */
436   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
437      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
438	 color[cbuf][chan] = LLVMGetUndef(vec_type);
439	 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
440      }
441   }
442   lp_build_flow_scope_declare(flow, &z);
443
444   /* do triangle edge testing */
445   if (do_tri_test) {
446      generate_tri_edge_mask(builder, i, pmask,
447                             c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
448   }
449   else {
450      *pmask = build_int32_vec_const(~0);
451   }
452
453   /* 'mask' will control execution based on quad's pixel alive/killed state */
454   lp_build_mask_begin(&mask, flow, type, *pmask);
455
456   if (key->scissor) {
457      LLVMValueRef smask =
458         generate_scissor_test(builder, context_ptr, interp, type);
459      lp_build_mask_update(&mask, smask);
460   }
461
462   early_depth_stencil_test =
463      (key->depth.enabled || key->stencil[0].enabled) &&
464      !key->alpha.enabled &&
465      !shader->info.uses_kill &&
466      !shader->info.writes_z;
467
468   if (early_depth_stencil_test)
469      generate_depth_stencil(builder, key,
470                             type, &mask,
471                             stencil_refs, z, depth_ptr);
472
473   lp_build_tgsi_soa(builder, tokens, type, &mask,
474                     consts_ptr, interp->pos, interp->inputs,
475                     outputs, sampler);
476
477   for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
478      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
479         if(outputs[attrib][chan]) {
480            LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
481            lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
482
483            switch (shader->info.output_semantic_name[attrib]) {
484            case TGSI_SEMANTIC_COLOR:
485               {
486                  unsigned cbuf = shader->info.output_semantic_index[attrib];
487
488                  lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
489
490                  /* Alpha test */
491                  /* XXX: should the alpha reference value be passed separately? */
492		  /* XXX: should only test the final assignment to alpha */
493                  if(cbuf == 0 && chan == 3) {
494                     LLVMValueRef alpha = out;
495                     LLVMValueRef alpha_ref_value;
496                     alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
497                     alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
498                     lp_build_alpha_test(builder, &key->alpha, type,
499                                         &mask, alpha, alpha_ref_value);
500                  }
501
502		  color[cbuf][chan] = out;
503                  break;
504               }
505
506            case TGSI_SEMANTIC_POSITION:
507               if(chan == 2)
508                  z = out;
509               break;
510            }
511         }
512      }
513   }
514
515   if (!early_depth_stencil_test)
516      generate_depth_stencil(builder, key,
517                             type, &mask,
518                             stencil_refs, z, depth_ptr);
519
520   lp_build_mask_end(&mask);
521
522   lp_build_flow_scope_end(flow);
523
524   lp_build_flow_destroy(flow);
525
526   *pmask = mask.value;
527
528}
529
530
531/**
532 * Generate color blending and color output.
533 */
534static void
535generate_blend(const struct pipe_blend_state *blend,
536               LLVMBuilderRef builder,
537               struct lp_type type,
538               LLVMValueRef context_ptr,
539               LLVMValueRef mask,
540               LLVMValueRef *src,
541               LLVMValueRef dst_ptr)
542{
543   struct lp_build_context bld;
544   struct lp_build_flow_context *flow;
545   struct lp_build_mask_context mask_ctx;
546   LLVMTypeRef vec_type;
547   LLVMTypeRef int_vec_type;
548   LLVMValueRef const_ptr;
549   LLVMValueRef con[4];
550   LLVMValueRef dst[4];
551   LLVMValueRef res[4];
552   unsigned chan;
553
554   lp_build_context_init(&bld, builder, type);
555
556   flow = lp_build_flow_create(builder);
557
558   /* we'll use this mask context to skip blending if all pixels are dead */
559   lp_build_mask_begin(&mask_ctx, flow, type, mask);
560
561   vec_type = lp_build_vec_type(type);
562   int_vec_type = lp_build_int_vec_type(type);
563
564   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
565   const_ptr = LLVMBuildBitCast(builder, const_ptr,
566                                LLVMPointerType(vec_type, 0), "");
567
568   for(chan = 0; chan < 4; ++chan) {
569      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
570      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
571
572      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
573
574      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
575      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
576   }
577
578   lp_build_blend_soa(builder, blend, type, src, dst, con, res);
579
580   for(chan = 0; chan < 4; ++chan) {
581      if(blend->rt[0].colormask & (1 << chan)) {
582         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
583         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
584         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
585         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
586      }
587   }
588
589   lp_build_mask_end(&mask_ctx);
590   lp_build_flow_destroy(flow);
591}
592
593
594/** casting function to avoid compiler warnings */
595static lp_jit_frag_func
596cast_voidptr_to_lp_jit_frag_func(void *p)
597{
598   union {
599      void *v;
600      lp_jit_frag_func f;
601   } tmp;
602   assert(sizeof(tmp.v) == sizeof(tmp.f));
603   tmp.v = p;
604   return tmp.f;
605}
606
607
608/**
609 * Generate the runtime callable function for the whole fragment pipeline.
610 * Note that the function which we generate operates on a block of 16
611 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
612 * 2x2 pixels.
613 */
614static void
615generate_fragment(struct llvmpipe_context *lp,
616                  struct lp_fragment_shader *shader,
617                  struct lp_fragment_shader_variant *variant,
618                  unsigned do_tri_test)
619{
620   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
621   const struct lp_fragment_shader_variant_key *key = &variant->key;
622   struct lp_type fs_type;
623   struct lp_type blend_type;
624   LLVMTypeRef fs_elem_type;
625   LLVMTypeRef fs_vec_type;
626   LLVMTypeRef fs_int_vec_type;
627   LLVMTypeRef blend_vec_type;
628   LLVMTypeRef blend_int_vec_type;
629   LLVMTypeRef arg_types[14];
630   LLVMTypeRef func_type;
631   LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
632   LLVMValueRef context_ptr;
633   LLVMValueRef x;
634   LLVMValueRef y;
635   LLVMValueRef a0_ptr;
636   LLVMValueRef dadx_ptr;
637   LLVMValueRef dady_ptr;
638   LLVMValueRef color_ptr_ptr;
639   LLVMValueRef depth_ptr;
640   LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
641   LLVMBasicBlockRef block;
642   LLVMBuilderRef builder;
643   LLVMValueRef x0;
644   LLVMValueRef y0;
645   struct lp_build_sampler_soa *sampler;
646   struct lp_build_interp_soa_context interp;
647   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
648   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
649   LLVMValueRef blend_mask;
650   LLVMValueRef blend_in_color[NUM_CHANNELS];
651   LLVMValueRef function;
652   unsigned num_fs;
653   unsigned i;
654   unsigned chan;
655   unsigned cbuf;
656
657
658   /* TODO: actually pick these based on the fs and color buffer
659    * characteristics. */
660
661   memset(&fs_type, 0, sizeof fs_type);
662   fs_type.floating = TRUE; /* floating point values */
663   fs_type.sign = TRUE;     /* values are signed */
664   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
665   fs_type.width = 32;      /* 32-bit float */
666   fs_type.length = 4;      /* 4 elements per vector */
667   num_fs = 4;              /* number of quads per block */
668
669   memset(&blend_type, 0, sizeof blend_type);
670   blend_type.floating = FALSE; /* values are integers */
671   blend_type.sign = FALSE;     /* values are unsigned */
672   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
673   blend_type.width = 8;        /* 8-bit ubyte values */
674   blend_type.length = 16;      /* 16 elements per vector */
675
676   /*
677    * Generate the function prototype. Any change here must be reflected in
678    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
679    */
680
681   fs_elem_type = lp_build_elem_type(fs_type);
682   fs_vec_type = lp_build_vec_type(fs_type);
683   fs_int_vec_type = lp_build_int_vec_type(fs_type);
684
685   blend_vec_type = lp_build_vec_type(blend_type);
686   blend_int_vec_type = lp_build_int_vec_type(blend_type);
687
688   arg_types[0] = screen->context_ptr_type;            /* context */
689   arg_types[1] = LLVMInt32Type();                     /* x */
690   arg_types[2] = LLVMInt32Type();                     /* y */
691   arg_types[3] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
692   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
693   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dady */
694   arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
695   arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
696   arg_types[8] = LLVMInt32Type();                     /* c0 */
697   arg_types[9] = LLVMInt32Type();                     /* c1 */
698   arg_types[10] = LLVMInt32Type();                    /* c2 */
699   /* Note: the step arrays are built as int32[16] but we interpret
700    * them here as int32_vec4[4].
701    */
702   arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
703   arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
704   arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
705
706   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
707
708   function = LLVMAddFunction(screen->module, "shader", func_type);
709   LLVMSetFunctionCallConv(function, LLVMCCallConv);
710
711   variant->function[do_tri_test] = function;
712
713
714   /* XXX: need to propagate noalias down into color param now we are
715    * passing a pointer-to-pointer?
716    */
717   for(i = 0; i < Elements(arg_types); ++i)
718      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
719         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
720
721   context_ptr  = LLVMGetParam(function, 0);
722   x            = LLVMGetParam(function, 1);
723   y            = LLVMGetParam(function, 2);
724   a0_ptr       = LLVMGetParam(function, 3);
725   dadx_ptr     = LLVMGetParam(function, 4);
726   dady_ptr     = LLVMGetParam(function, 5);
727   color_ptr_ptr = LLVMGetParam(function, 6);
728   depth_ptr    = LLVMGetParam(function, 7);
729   c0           = LLVMGetParam(function, 8);
730   c1           = LLVMGetParam(function, 9);
731   c2           = LLVMGetParam(function, 10);
732   step0_ptr    = LLVMGetParam(function, 11);
733   step1_ptr    = LLVMGetParam(function, 12);
734   step2_ptr    = LLVMGetParam(function, 13);
735
736   lp_build_name(context_ptr, "context");
737   lp_build_name(x, "x");
738   lp_build_name(y, "y");
739   lp_build_name(a0_ptr, "a0");
740   lp_build_name(dadx_ptr, "dadx");
741   lp_build_name(dady_ptr, "dady");
742   lp_build_name(color_ptr_ptr, "color_ptr");
743   lp_build_name(depth_ptr, "depth");
744   lp_build_name(c0, "c0");
745   lp_build_name(c1, "c1");
746   lp_build_name(c2, "c2");
747   lp_build_name(step0_ptr, "step0");
748   lp_build_name(step1_ptr, "step1");
749   lp_build_name(step2_ptr, "step2");
750
751   /*
752    * Function body
753    */
754
755   block = LLVMAppendBasicBlock(function, "entry");
756   builder = LLVMCreateBuilder();
757   LLVMPositionBuilderAtEnd(builder, block);
758
759   generate_pos0(builder, x, y, &x0, &y0);
760
761   lp_build_interp_soa_init(&interp,
762                            shader->base.tokens,
763                            key->flatshade,
764                            builder, fs_type,
765                            a0_ptr, dadx_ptr, dady_ptr,
766                            x0, y0);
767
768   /* code generated texture sampling */
769   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
770
771   /* loop over quads in the block */
772   for(i = 0; i < num_fs; ++i) {
773      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
774      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
775      LLVMValueRef depth_ptr_i;
776      int cbuf;
777
778      if(i != 0)
779         lp_build_interp_soa_update(&interp, i);
780
781      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
782
783      generate_fs(lp, shader, key,
784                  builder,
785                  fs_type,
786                  context_ptr,
787                  i,
788                  &interp,
789                  sampler,
790                  &fs_mask[i], /* output */
791                  out_color,
792                  depth_ptr_i,
793                  do_tri_test,
794                  c0, c1, c2,
795                  step0_ptr, step1_ptr, step2_ptr);
796
797      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
798	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
799	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
800   }
801
802   sampler->destroy(sampler);
803
804   /* Loop over color outputs / color buffers to do blending.
805    */
806   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
807      LLVMValueRef color_ptr;
808      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
809
810      /*
811       * Convert the fs's output color and mask to fit to the blending type.
812       */
813      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
814	 lp_build_conv(builder, fs_type, blend_type,
815		       fs_out_color[cbuf][chan], num_fs,
816		       &blend_in_color[chan], 1);
817	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
818      }
819
820      lp_build_conv_mask(builder, fs_type, blend_type,
821			 fs_mask, num_fs,
822			 &blend_mask, 1);
823
824      color_ptr = LLVMBuildLoad(builder,
825				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
826				"");
827      lp_build_name(color_ptr, "color_ptr%d", cbuf);
828
829      /*
830       * Blending.
831       */
832      generate_blend(&key->blend,
833		     builder,
834		     blend_type,
835		     context_ptr,
836		     blend_mask,
837		     blend_in_color,
838		     color_ptr);
839   }
840
841   LLVMBuildRetVoid(builder);
842
843   LLVMDisposeBuilder(builder);
844
845
846   /* Verify the LLVM IR.  If invalid, dump and abort */
847#ifdef DEBUG
848   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
849      if (1)
850         LLVMDumpValue(function);
851      abort();
852   }
853#endif
854
855   /* Apply optimizations to LLVM IR */
856   if (1)
857      LLVMRunFunctionPassManager(screen->pass, function);
858
859   if (LP_DEBUG & DEBUG_JIT) {
860      /* Print the LLVM IR to stderr */
861      LLVMDumpValue(function);
862      debug_printf("\n");
863   }
864
865   /*
866    * Translate the LLVM IR into machine code.
867    */
868   {
869      void *f = LLVMGetPointerToGlobal(screen->engine, function);
870
871      variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
872
873      if (LP_DEBUG & DEBUG_ASM)
874         lp_disassemble(f);
875   }
876}
877
878
879static struct lp_fragment_shader_variant *
880generate_variant(struct llvmpipe_context *lp,
881                 struct lp_fragment_shader *shader,
882                 const struct lp_fragment_shader_variant_key *key)
883{
884   struct lp_fragment_shader_variant *variant;
885
886   if (LP_DEBUG & DEBUG_JIT) {
887      unsigned i;
888
889      tgsi_dump(shader->base.tokens, 0);
890      if(key->depth.enabled) {
891         debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
892         debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
893         debug_printf("depth.writemask = %u\n", key->depth.writemask);
894      }
895      if(key->alpha.enabled) {
896         debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
897         debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
898      }
899      if(key->blend.logicop_enable) {
900         debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
901      }
902      else if(key->blend.rt[0].blend_enable) {
903         debug_printf("blend.rgb_func = %s\n",   util_dump_blend_func  (key->blend.rt[0].rgb_func, TRUE));
904         debug_printf("rgb_src_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
905         debug_printf("rgb_dst_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
906         debug_printf("alpha_func = %s\n",       util_dump_blend_func  (key->blend.rt[0].alpha_func, TRUE));
907         debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
908         debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
909      }
910      debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
911      for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
912         if(key->sampler[i].format) {
913            debug_printf("sampler[%u] = \n", i);
914            debug_printf("  .format = %s\n",
915                         util_format_name(key->sampler[i].format));
916            debug_printf("  .target = %s\n",
917                         util_dump_tex_target(key->sampler[i].target, TRUE));
918            debug_printf("  .pot = %u %u %u\n",
919                         key->sampler[i].pot_width,
920                         key->sampler[i].pot_height,
921                         key->sampler[i].pot_depth);
922            debug_printf("  .wrap = %s %s %s\n",
923                         util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
924                         util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
925                         util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
926            debug_printf("  .min_img_filter = %s\n",
927                         util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
928            debug_printf("  .min_mip_filter = %s\n",
929                         util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
930            debug_printf("  .mag_img_filter = %s\n",
931                         util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
932            if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
933               debug_printf("  .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
934            debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
935         }
936      }
937   }
938
939   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
940   if(!variant)
941      return NULL;
942
943   variant->shader = shader;
944   memcpy(&variant->key, key, sizeof *key);
945
946   generate_fragment(lp, shader, variant, 0);
947   generate_fragment(lp, shader, variant, 1);
948
949   /* insert new variant into linked list */
950   variant->next = shader->variants;
951   shader->variants = variant;
952
953   return variant;
954}
955
956
957void *
958llvmpipe_create_fs_state(struct pipe_context *pipe,
959                         const struct pipe_shader_state *templ)
960{
961   struct lp_fragment_shader *shader;
962
963   shader = CALLOC_STRUCT(lp_fragment_shader);
964   if (!shader)
965      return NULL;
966
967   /* get/save the summary info for this shader */
968   tgsi_scan_shader(templ->tokens, &shader->info);
969
970   /* we need to keep a local copy of the tokens */
971   shader->base.tokens = tgsi_dup_tokens(templ->tokens);
972
973   return shader;
974}
975
976
977void
978llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
979{
980   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
981
982   if (llvmpipe->fs == fs)
983      return;
984
985   draw_flush(llvmpipe->draw);
986
987   llvmpipe->fs = fs;
988
989   llvmpipe->dirty |= LP_NEW_FS;
990}
991
992
993void
994llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
995{
996   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
997   struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
998   struct lp_fragment_shader *shader = fs;
999   struct lp_fragment_shader_variant *variant;
1000
1001   assert(fs != llvmpipe->fs);
1002   (void) llvmpipe;
1003
1004   /*
1005    * XXX: we need to flush the context until we have some sort of reference
1006    * counting in fragment shaders as they may still be binned
1007    */
1008   draw_flush(llvmpipe->draw);
1009   lp_setup_flush(llvmpipe->setup, 0);
1010
1011   variant = shader->variants;
1012   while(variant) {
1013      struct lp_fragment_shader_variant *next = variant->next;
1014      unsigned i;
1015
1016      for (i = 0; i < Elements(variant->function); i++) {
1017         if (variant->function[i]) {
1018            if (variant->jit_function[i])
1019               LLVMFreeMachineCodeForFunction(screen->engine,
1020                                              variant->function[i]);
1021            LLVMDeleteFunction(variant->function[i]);
1022         }
1023      }
1024
1025      FREE(variant);
1026
1027      variant = next;
1028   }
1029
1030   FREE((void *) shader->base.tokens);
1031   FREE(shader);
1032}
1033
1034
1035
1036void
1037llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1038                             uint shader, uint index,
1039                             struct pipe_buffer *constants)
1040{
1041   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1042   unsigned size = constants ? constants->size : 0;
1043   const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1044
1045   assert(shader < PIPE_SHADER_TYPES);
1046   assert(index == 0);
1047
1048   if(llvmpipe->constants[shader] == constants)
1049      return;
1050
1051   draw_flush(llvmpipe->draw);
1052
1053   /* note: reference counting */
1054   pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1055
1056   if(shader == PIPE_SHADER_VERTEX) {
1057      draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1058                                      data, size);
1059   }
1060
1061   llvmpipe->dirty |= LP_NEW_CONSTANTS;
1062}
1063
1064
1065/**
1066 * We need to generate several variants of the fragment pipeline to match
1067 * all the combinations of the contributing state atoms.
1068 *
1069 * TODO: there is actually no reason to tie this to context state -- the
1070 * generated code could be cached globally in the screen.
1071 */
1072static void
1073make_variant_key(struct llvmpipe_context *lp,
1074                 struct lp_fragment_shader *shader,
1075                 struct lp_fragment_shader_variant_key *key)
1076{
1077   unsigned i;
1078
1079   memset(key, 0, sizeof *key);
1080
1081   if (lp->framebuffer.zsbuf) {
1082      if (lp->depth_stencil->depth.enabled) {
1083         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1084         memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1085      }
1086      if (lp->depth_stencil->stencil[0].enabled) {
1087         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1088         memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1089      }
1090   }
1091
1092   key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1093   if(key->alpha.enabled)
1094      key->alpha.func = lp->depth_stencil->alpha.func;
1095   /* alpha.ref_value is passed in jit_context */
1096
1097   key->flatshade = lp->rasterizer->flatshade;
1098   key->scissor = lp->rasterizer->scissor;
1099
1100   if (lp->framebuffer.nr_cbufs) {
1101      memcpy(&key->blend, lp->blend, sizeof key->blend);
1102   }
1103
1104   key->nr_cbufs = lp->framebuffer.nr_cbufs;
1105   for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1106      const struct util_format_description *format_desc;
1107      unsigned chan;
1108
1109      format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1110      assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1111             format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1112
1113      /* mask out color channels not present in the color buffer.
1114       * Should be simple to incorporate per-cbuf writemasks:
1115       */
1116      for(chan = 0; chan < 4; ++chan) {
1117         enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1118
1119         if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1120            key->blend.rt[0].colormask |= (1 << chan);
1121      }
1122   }
1123
1124   for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1125      if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1126         lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]);
1127}
1128
1129
1130/**
1131 * Update fragment state.  This is called just prior to drawing
1132 * something when some fragment-related state has changed.
1133 */
1134void
1135llvmpipe_update_fs(struct llvmpipe_context *lp)
1136{
1137   struct lp_fragment_shader *shader = lp->fs;
1138   struct lp_fragment_shader_variant_key key;
1139   struct lp_fragment_shader_variant *variant;
1140   boolean opaque;
1141
1142   make_variant_key(lp, shader, &key);
1143
1144   variant = shader->variants;
1145   while(variant) {
1146      if(memcmp(&variant->key, &key, sizeof key) == 0)
1147         break;
1148
1149      variant = variant->next;
1150   }
1151
1152   if (!variant) {
1153      int64_t t0, t1;
1154      int64_t dt;
1155      t0 = os_time_get();
1156
1157      variant = generate_variant(lp, shader, &key);
1158
1159      t1 = os_time_get();
1160      dt = t1 - t0;
1161      LP_COUNT_ADD(llvm_compile_time, dt);
1162      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
1163   }
1164
1165   shader->current = variant;
1166
1167   /* TODO: put this in the variant */
1168   /* TODO: most of these can be relaxed, in particular the colormask */
1169   opaque = !key.blend.logicop_enable &&
1170            !key.blend.rt[0].blend_enable &&
1171            key.blend.rt[0].colormask == 0xf &&
1172            !key.alpha.enabled &&
1173            !key.depth.enabled &&
1174            !key.scissor &&
1175            !shader->info.uses_kill
1176            ? TRUE : FALSE;
1177
1178   lp_setup_set_fs_functions(lp->setup,
1179                             shader->current->jit_function[0],
1180                             shader->current->jit_function[1],
1181                             opaque);
1182}
1183