lp_state_fs.c revision efc82aef35a2aac5d2ed9774f6d28f2626796416
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline.  The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60#include <limits.h>
61#include "pipe/p_defines.h"
62#include "util/u_inlines.h"
63#include "util/u_memory.h"
64#include "util/u_pointer.h"
65#include "util/u_format.h"
66#include "util/u_dump.h"
67#include "util/u_string.h"
68#include "util/u_simple_list.h"
69#include "os/os_time.h"
70#include "pipe/p_shader_tokens.h"
71#include "draw/draw_context.h"
72#include "tgsi/tgsi_dump.h"
73#include "tgsi/tgsi_scan.h"
74#include "tgsi/tgsi_parse.h"
75#include "gallivm/lp_bld_type.h"
76#include "gallivm/lp_bld_const.h"
77#include "gallivm/lp_bld_conv.h"
78#include "gallivm/lp_bld_init.h"
79#include "gallivm/lp_bld_intr.h"
80#include "gallivm/lp_bld_logic.h"
81#include "gallivm/lp_bld_tgsi.h"
82#include "gallivm/lp_bld_swizzle.h"
83#include "gallivm/lp_bld_flow.h"
84#include "gallivm/lp_bld_debug.h"
85
86#include "lp_bld_alpha.h"
87#include "lp_bld_blend.h"
88#include "lp_bld_depth.h"
89#include "lp_bld_interp.h"
90#include "lp_context.h"
91#include "lp_debug.h"
92#include "lp_perf.h"
93#include "lp_screen.h"
94#include "lp_setup.h"
95#include "lp_state.h"
96#include "lp_tex_sample.h"
97#include "lp_flush.h"
98#include "lp_state_fs.h"
99
100
101#include <llvm-c/Analysis.h>
102#include <llvm-c/BitWriter.h>
103
104
105/** Fragment shader number (for debugging) */
106static unsigned fs_no = 0;
107
108
109/**
110 * Expand the relevent bits of mask_input to a 4-dword mask for the
111 * four pixels in a 2x2 quad.  This will set the four elements of the
112 * quad mask vector to 0 or ~0.
113 *
114 * \param quad  which quad of the quad group to test, in [0,3]
115 * \param mask_input  bitwise mask for the whole 4x4 stamp
116 */
117static LLVMValueRef
118generate_quad_mask(struct gallivm_state *gallivm,
119                   struct lp_type fs_type,
120                   unsigned quad,
121                   LLVMValueRef mask_input) /* int32 */
122{
123   LLVMBuilderRef builder = gallivm->builder;
124   struct lp_type mask_type;
125   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
126   LLVMValueRef bits[4];
127   LLVMValueRef mask;
128   int shift;
129
130   /*
131    * XXX: We'll need a different path for 16 x u8
132    */
133   assert(fs_type.width == 32);
134   assert(fs_type.length == 4);
135   mask_type = lp_int_type(fs_type);
136
137   /*
138    * mask_input >>= (quad * 4)
139    */
140   switch (quad) {
141   case 0:
142      shift = 0;
143      break;
144   case 1:
145      shift = 2;
146      break;
147   case 2:
148      shift = 8;
149      break;
150   case 3:
151      shift = 10;
152      break;
153   default:
154      assert(0);
155      shift = 0;
156   }
157
158   mask_input = LLVMBuildLShr(builder,
159                              mask_input,
160                              LLVMConstInt(i32t, shift, 0),
161                              "");
162
163   /*
164    * mask = { mask_input & (1 << i), for i in [0,3] }
165    */
166   mask = lp_build_broadcast(gallivm,
167                             lp_build_vec_type(gallivm, mask_type),
168                             mask_input);
169
170   bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
171   bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
172   bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
173   bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
174
175   mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
176
177   /*
178    * mask = mask != 0 ? ~0 : 0
179    */
180   mask = lp_build_compare(gallivm,
181                           mask_type, PIPE_FUNC_NOTEQUAL,
182                           mask,
183                           lp_build_const_int_vec(gallivm, mask_type, 0));
184
185   return mask;
186}
187
188
189#define EARLY_DEPTH_TEST  0x1
190#define LATE_DEPTH_TEST   0x2
191#define EARLY_DEPTH_WRITE 0x4
192#define LATE_DEPTH_WRITE  0x8
193
194static int
195find_output_by_semantic( const struct tgsi_shader_info *info,
196			 unsigned semantic,
197			 unsigned index )
198{
199   int i;
200
201   for (i = 0; i < info->num_outputs; i++)
202      if (info->output_semantic_name[i] == semantic &&
203	  info->output_semantic_index[i] == index)
204	 return i;
205
206   return -1;
207}
208
209
210/**
211 * Generate the fragment shader, depth/stencil test, and alpha tests.
212 * \param i  which quad in the tile, in range [0,3]
213 * \param partial_mask  if 1, do mask_input testing
214 */
215static void
216generate_fs(struct gallivm_state *gallivm,
217            struct lp_fragment_shader *shader,
218            const struct lp_fragment_shader_variant_key *key,
219            LLVMBuilderRef builder,
220            struct lp_type type,
221            LLVMValueRef context_ptr,
222            unsigned i,
223            struct lp_build_interp_soa_context *interp,
224            struct lp_build_sampler_soa *sampler,
225            LLVMValueRef *pmask,
226            LLVMValueRef (*color)[4],
227            LLVMValueRef depth_ptr,
228            LLVMValueRef facing,
229            unsigned partial_mask,
230            LLVMValueRef mask_input,
231            LLVMValueRef counter)
232{
233   const struct util_format_description *zs_format_desc = NULL;
234   const struct tgsi_token *tokens = shader->base.tokens;
235   LLVMTypeRef vec_type;
236   LLVMValueRef consts_ptr;
237   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
238   LLVMValueRef z;
239   LLVMValueRef zs_value = NULL;
240   LLVMValueRef stencil_refs[2];
241   struct lp_build_mask_context mask;
242   boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
243                            shader->info.base.num_inputs < 3 &&
244                            shader->info.base.num_instructions < 8);
245   unsigned attrib;
246   unsigned chan;
247   unsigned cbuf;
248   unsigned depth_mode;
249
250   if (key->depth.enabled ||
251       key->stencil[0].enabled ||
252       key->stencil[1].enabled) {
253
254      zs_format_desc = util_format_description(key->zsbuf_format);
255      assert(zs_format_desc);
256
257      if (!shader->info.base.writes_z) {
258         if (key->alpha.enabled || shader->info.base.uses_kill)
259            /* With alpha test and kill, can do the depth test early
260             * and hopefully eliminate some quads.  But need to do a
261             * special deferred depth write once the final mask value
262             * is known.
263             */
264            depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
265         else
266            depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
267      }
268      else {
269         depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
270      }
271
272      if (!(key->depth.enabled && key->depth.writemask) &&
273          !(key->stencil[0].enabled && key->stencil[0].writemask))
274         depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
275   }
276   else {
277      depth_mode = 0;
278   }
279
280   assert(i < 4);
281
282   stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
283   stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
284
285   vec_type = lp_build_vec_type(gallivm, type);
286
287   consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
288
289   memset(outputs, 0, sizeof outputs);
290
291   /* Declare the color and z variables */
292   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
293      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
294	 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color");
295      }
296   }
297
298   /* do triangle edge testing */
299   if (partial_mask) {
300      *pmask = generate_quad_mask(gallivm, type,
301                                  i, mask_input);
302   }
303   else {
304      *pmask = lp_build_const_int_vec(gallivm, type, ~0);
305   }
306
307   /* 'mask' will control execution based on quad's pixel alive/killed state */
308   lp_build_mask_begin(&mask, gallivm, type, *pmask);
309
310   if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
311      lp_build_mask_check(&mask);
312
313   lp_build_interp_soa_update_pos(interp, gallivm, i);
314   z = interp->pos[2];
315
316   if (depth_mode & EARLY_DEPTH_TEST) {
317      lp_build_depth_stencil_test(gallivm,
318                                  &key->depth,
319                                  key->stencil,
320                                  type,
321                                  zs_format_desc,
322                                  &mask,
323                                  stencil_refs,
324                                  z,
325                                  depth_ptr, facing,
326                                  &zs_value,
327                                  !simple_shader);
328
329      if (depth_mode & EARLY_DEPTH_WRITE) {
330         lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
331      }
332   }
333
334   lp_build_interp_soa_update_inputs(interp, gallivm, i);
335
336   /* Build the actual shader */
337   lp_build_tgsi_soa(gallivm, tokens, type, &mask,
338                     consts_ptr, interp->pos, interp->inputs,
339                     outputs, sampler, &shader->info.base);
340
341   /* Alpha test */
342   if (key->alpha.enabled) {
343      int color0 = find_output_by_semantic(&shader->info.base,
344                                           TGSI_SEMANTIC_COLOR,
345                                           0);
346
347      if (color0 != -1 && outputs[color0][3]) {
348         LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
349         LLVMValueRef alpha_ref_value;
350
351         alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
352         alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
353
354         lp_build_alpha_test(gallivm, key->alpha.func, type,
355                             &mask, alpha, alpha_ref_value,
356                             (depth_mode & LATE_DEPTH_TEST) != 0);
357      }
358   }
359
360   /* Late Z test */
361   if (depth_mode & LATE_DEPTH_TEST) {
362      int pos0 = find_output_by_semantic(&shader->info.base,
363                                         TGSI_SEMANTIC_POSITION,
364                                         0);
365
366      if (pos0 != -1 && outputs[pos0][2]) {
367         z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
368      }
369
370      lp_build_depth_stencil_test(gallivm,
371                                  &key->depth,
372                                  key->stencil,
373                                  type,
374                                  zs_format_desc,
375                                  &mask,
376                                  stencil_refs,
377                                  z,
378                                  depth_ptr, facing,
379                                  &zs_value,
380                                  !simple_shader);
381      /* Late Z write */
382      if (depth_mode & LATE_DEPTH_WRITE) {
383         lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
384      }
385   }
386   else if ((depth_mode & EARLY_DEPTH_TEST) &&
387            (depth_mode & LATE_DEPTH_WRITE))
388   {
389      /* Need to apply a reduced mask to the depth write.  Reload the
390       * depth value, update from zs_value with the new mask value and
391       * write that out.
392       */
393      lp_build_deferred_depth_write(gallivm,
394                                    type,
395                                    zs_format_desc,
396                                    &mask,
397                                    depth_ptr,
398                                    zs_value);
399   }
400
401
402   /* Color write  */
403   for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
404   {
405      if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
406          shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
407      {
408         unsigned cbuf = shader->info.base.output_semantic_index[attrib];
409         for(chan = 0; chan < NUM_CHANNELS; ++chan) {
410            if(outputs[attrib][chan]) {
411               /* XXX: just initialize outputs to point at colors[] and
412                * skip this.
413                */
414               LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
415               lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
416               LLVMBuildStore(builder, out, color[cbuf][chan]);
417            }
418         }
419      }
420   }
421
422   if (counter)
423      lp_build_occlusion_count(gallivm, type,
424                               lp_build_mask_value(&mask), counter);
425
426   *pmask = lp_build_mask_end(&mask);
427}
428
429
430/**
431 * Generate color blending and color output.
432 * \param rt  the render target index (to index blend, colormask state)
433 * \param type  the pixel color type
434 * \param context_ptr  pointer to the runtime JIT context
435 * \param mask  execution mask (active fragment/pixel mask)
436 * \param src  colors from the fragment shader
437 * \param dst_ptr  the destination color buffer pointer
438 */
439static void
440generate_blend(struct gallivm_state *gallivm,
441               const struct pipe_blend_state *blend,
442               unsigned rt,
443               LLVMBuilderRef builder,
444               struct lp_type type,
445               LLVMValueRef context_ptr,
446               LLVMValueRef mask,
447               LLVMValueRef *src,
448               LLVMValueRef dst_ptr,
449               boolean do_branch)
450{
451   struct lp_build_context bld;
452   struct lp_build_mask_context mask_ctx;
453   LLVMTypeRef vec_type;
454   LLVMValueRef const_ptr;
455   LLVMValueRef con[4];
456   LLVMValueRef dst[4];
457   LLVMValueRef res[4];
458   unsigned chan;
459
460   lp_build_context_init(&bld, gallivm, type);
461
462   lp_build_mask_begin(&mask_ctx, gallivm, type, mask);
463   if (do_branch)
464      lp_build_mask_check(&mask_ctx);
465
466   vec_type = lp_build_vec_type(gallivm, type);
467
468   const_ptr = lp_jit_context_blend_color(gallivm, context_ptr);
469   const_ptr = LLVMBuildBitCast(builder, const_ptr,
470                                LLVMPointerType(vec_type, 0), "");
471
472   /* load constant blend color and colors from the dest color buffer */
473   for(chan = 0; chan < 4; ++chan) {
474      LLVMValueRef index = lp_build_const_int32(gallivm, chan);
475      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
476
477      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
478
479      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
480      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
481   }
482
483   /* do blend */
484   lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res);
485
486   /* store results to color buffer */
487   for(chan = 0; chan < 4; ++chan) {
488      if(blend->rt[rt].colormask & (1 << chan)) {
489         LLVMValueRef index = lp_build_const_int32(gallivm, chan);
490         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
491         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
492         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
493      }
494   }
495
496   lp_build_mask_end(&mask_ctx);
497}
498
499
500/**
501 * Generate the runtime callable function for the whole fragment pipeline.
502 * Note that the function which we generate operates on a block of 16
503 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
504 * 2x2 pixels.
505 */
506static void
507generate_fragment(struct llvmpipe_context *lp,
508                  struct lp_fragment_shader *shader,
509                  struct lp_fragment_shader_variant *variant,
510                  unsigned partial_mask)
511{
512   struct gallivm_state *gallivm = lp->gallivm;
513   const struct lp_fragment_shader_variant_key *key = &variant->key;
514   struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
515   char func_name[256];
516   struct lp_type fs_type;
517   struct lp_type blend_type;
518   LLVMTypeRef fs_elem_type;
519   LLVMTypeRef fs_int_vec_type;
520   LLVMTypeRef blend_vec_type;
521   LLVMTypeRef arg_types[11];
522   LLVMTypeRef func_type;
523   LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
524   LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
525   LLVMValueRef context_ptr;
526   LLVMValueRef x;
527   LLVMValueRef y;
528   LLVMValueRef a0_ptr;
529   LLVMValueRef dadx_ptr;
530   LLVMValueRef dady_ptr;
531   LLVMValueRef color_ptr_ptr;
532   LLVMValueRef depth_ptr;
533   LLVMValueRef mask_input;
534   LLVMValueRef counter = NULL;
535   LLVMBasicBlockRef block;
536   LLVMBuilderRef builder;
537   struct lp_build_sampler_soa *sampler;
538   struct lp_build_interp_soa_context interp;
539   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
540   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
541   LLVMValueRef blend_mask;
542   LLVMValueRef function;
543   LLVMValueRef facing;
544   const struct util_format_description *zs_format_desc;
545   unsigned num_fs;
546   unsigned i;
547   unsigned chan;
548   unsigned cbuf;
549
550   /* Adjust color input interpolation according to flatshade state:
551    */
552   memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
553   for (i = 0; i < shader->info.base.num_inputs; i++) {
554      if (inputs[i].interp == LP_INTERP_COLOR) {
555	 if (key->flatshade)
556	    inputs[i].interp = LP_INTERP_CONSTANT;
557	 else
558	    inputs[i].interp = LP_INTERP_LINEAR;
559      }
560   }
561
562
563   /* TODO: actually pick these based on the fs and color buffer
564    * characteristics. */
565
566   memset(&fs_type, 0, sizeof fs_type);
567   fs_type.floating = TRUE; /* floating point values */
568   fs_type.sign = TRUE;     /* values are signed */
569   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
570   fs_type.width = 32;      /* 32-bit float */
571   fs_type.length = 4;      /* 4 elements per vector */
572   num_fs = 4;              /* number of quads per block */
573
574   memset(&blend_type, 0, sizeof blend_type);
575   blend_type.floating = FALSE; /* values are integers */
576   blend_type.sign = FALSE;     /* values are unsigned */
577   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
578   blend_type.width = 8;        /* 8-bit ubyte values */
579   blend_type.length = 16;      /* 16 elements per vector */
580
581   /*
582    * Generate the function prototype. Any change here must be reflected in
583    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
584    */
585
586   fs_elem_type = lp_build_elem_type(gallivm, fs_type);
587   fs_int_vec_type = lp_build_int_vec_type(gallivm, fs_type);
588
589   blend_vec_type = lp_build_vec_type(gallivm, blend_type);
590
591   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
592		 shader->no, variant->no, partial_mask ? "partial" : "whole");
593
594   arg_types[0] = lp_jit_get_context_type(lp);         /* context */
595   arg_types[1] = int32_type;                          /* x */
596   arg_types[2] = int32_type;                          /* y */
597   arg_types[3] = int32_type;                          /* facing */
598   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
599   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
600   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
601   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
602   arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
603   arg_types[9] = int32_type;                          /* mask_input */
604   arg_types[10] = LLVMPointerType(int32_type, 0);     /* counter */
605
606   func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
607                                arg_types, Elements(arg_types), 0);
608
609   function = LLVMAddFunction(gallivm->module, func_name, func_type);
610   LLVMSetFunctionCallConv(function, LLVMCCallConv);
611
612   variant->function[partial_mask] = function;
613
614   /* XXX: need to propagate noalias down into color param now we are
615    * passing a pointer-to-pointer?
616    */
617   for(i = 0; i < Elements(arg_types); ++i)
618      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
619         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
620
621   context_ptr  = LLVMGetParam(function, 0);
622   x            = LLVMGetParam(function, 1);
623   y            = LLVMGetParam(function, 2);
624   facing       = LLVMGetParam(function, 3);
625   a0_ptr       = LLVMGetParam(function, 4);
626   dadx_ptr     = LLVMGetParam(function, 5);
627   dady_ptr     = LLVMGetParam(function, 6);
628   color_ptr_ptr = LLVMGetParam(function, 7);
629   depth_ptr    = LLVMGetParam(function, 8);
630   mask_input   = LLVMGetParam(function, 9);
631
632   lp_build_name(context_ptr, "context");
633   lp_build_name(x, "x");
634   lp_build_name(y, "y");
635   lp_build_name(a0_ptr, "a0");
636   lp_build_name(dadx_ptr, "dadx");
637   lp_build_name(dady_ptr, "dady");
638   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
639   lp_build_name(depth_ptr, "depth");
640   lp_build_name(mask_input, "mask_input");
641
642   if (key->occlusion_count) {
643      counter = LLVMGetParam(function, 10);
644      lp_build_name(counter, "counter");
645   }
646
647   /*
648    * Function body
649    */
650
651   block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
652   builder = gallivm->builder;
653   assert(builder);
654   LLVMPositionBuilderAtEnd(builder, block);
655
656   /*
657    * The shader input interpolation info is not explicitely baked in the
658    * shader key, but everything it derives from (TGSI, and flatshade) is
659    * already included in the shader key.
660    */
661   lp_build_interp_soa_init(&interp,
662                            gallivm,
663                            shader->info.base.num_inputs,
664                            inputs,
665                            builder, fs_type,
666                            a0_ptr, dadx_ptr, dady_ptr,
667                            x, y);
668
669   /* code generated texture sampling */
670   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
671
672   /* loop over quads in the block */
673   zs_format_desc = util_format_description(key->zsbuf_format);
674
675   for(i = 0; i < num_fs; ++i) {
676      LLVMValueRef depth_offset = LLVMConstInt(int32_type,
677                                               i*fs_type.length*zs_format_desc->block.bits/8,
678                                               0);
679      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
680      LLVMValueRef depth_ptr_i;
681
682      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
683
684      generate_fs(gallivm,
685                  shader, key,
686                  builder,
687                  fs_type,
688                  context_ptr,
689                  i,
690                  &interp,
691                  sampler,
692                  &fs_mask[i], /* output */
693                  out_color,
694                  depth_ptr_i,
695                  facing,
696                  partial_mask,
697                  mask_input,
698                  counter);
699
700      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
701	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
702	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
703   }
704
705   sampler->destroy(sampler);
706
707   /* Loop over color outputs / color buffers to do blending.
708    */
709   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
710      LLVMValueRef color_ptr;
711      LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
712      LLVMValueRef blend_in_color[NUM_CHANNELS];
713      unsigned rt;
714
715      /*
716       * Convert the fs's output color and mask to fit to the blending type.
717       */
718      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
719         LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
720
721         for (i = 0; i < num_fs; i++) {
722            fs_color_vals[i] =
723               LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
724         }
725
726	 lp_build_conv(gallivm, fs_type, blend_type,
727                       fs_color_vals,
728                       num_fs,
729		       &blend_in_color[chan], 1);
730
731	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
732      }
733
734      if (partial_mask || !variant->opaque) {
735         lp_build_conv_mask(lp->gallivm, fs_type, blend_type,
736                            fs_mask, num_fs,
737                            &blend_mask, 1);
738      } else {
739         blend_mask = lp_build_const_int_vec(lp->gallivm, blend_type, ~0);
740      }
741
742      color_ptr = LLVMBuildLoad(builder,
743				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
744				"");
745      lp_build_name(color_ptr, "color_ptr%d", cbuf);
746
747      /* which blend/colormask state to use */
748      rt = key->blend.independent_blend_enable ? cbuf : 0;
749
750      /*
751       * Blending.
752       */
753      {
754         /* Could the 4x4 have been killed?
755          */
756         boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
757                              !key->alpha.enabled &&
758                              !shader->info.base.uses_kill);
759
760         generate_blend(lp->gallivm,
761                        &key->blend,
762                        rt,
763                        builder,
764                        blend_type,
765                        context_ptr,
766                        blend_mask,
767                        blend_in_color,
768                        color_ptr,
769                        do_branch);
770      }
771   }
772
773   LLVMBuildRetVoid(builder);
774
775   /* Verify the LLVM IR.  If invalid, dump and abort */
776#ifdef DEBUG
777   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
778      if (1)
779         lp_debug_dump_value(function);
780      abort();
781   }
782#endif
783
784   /* Apply optimizations to LLVM IR */
785   LLVMRunFunctionPassManager(gallivm->passmgr, function);
786
787   if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
788      /* Print the LLVM IR to stderr */
789      lp_debug_dump_value(function);
790      debug_printf("\n");
791   }
792
793   /* Dump byte code to a file */
794   if (0) {
795      LLVMWriteBitcodeToFile(gallivm->module, "llvmpipe.bc");
796   }
797
798   /*
799    * Translate the LLVM IR into machine code.
800    */
801   {
802      void *f = LLVMGetPointerToGlobal(gallivm->engine, function);
803
804      variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
805
806      if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
807         lp_disassemble(f);
808      }
809      lp_func_delete_body(function);
810   }
811}
812
813
814static void
815dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
816{
817   unsigned i;
818
819   debug_printf("fs variant %p:\n", (void *) key);
820
821   if (key->flatshade) {
822      debug_printf("flatshade = 1\n");
823   }
824   for (i = 0; i < key->nr_cbufs; ++i) {
825      debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
826   }
827   if (key->depth.enabled) {
828      debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
829      debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
830      debug_printf("depth.writemask = %u\n", key->depth.writemask);
831   }
832
833   for (i = 0; i < 2; ++i) {
834      if (key->stencil[i].enabled) {
835         debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
836         debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
837         debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
838         debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
839         debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
840         debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
841      }
842   }
843
844   if (key->alpha.enabled) {
845      debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
846   }
847
848   if (key->occlusion_count) {
849      debug_printf("occlusion_count = 1\n");
850   }
851
852   if (key->blend.logicop_enable) {
853      debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
854   }
855   else if (key->blend.rt[0].blend_enable) {
856      debug_printf("blend.rgb_func = %s\n",   util_dump_blend_func  (key->blend.rt[0].rgb_func, TRUE));
857      debug_printf("blend.rgb_src_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
858      debug_printf("blend.rgb_dst_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
859      debug_printf("blend.alpha_func = %s\n",       util_dump_blend_func  (key->blend.rt[0].alpha_func, TRUE));
860      debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
861      debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
862   }
863   debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
864   for (i = 0; i < key->nr_samplers; ++i) {
865      debug_printf("sampler[%u] = \n", i);
866      debug_printf("  .format = %s\n",
867                   util_format_name(key->sampler[i].format));
868      debug_printf("  .target = %s\n",
869                   util_dump_tex_target(key->sampler[i].target, TRUE));
870      debug_printf("  .pot = %u %u %u\n",
871                   key->sampler[i].pot_width,
872                   key->sampler[i].pot_height,
873                   key->sampler[i].pot_depth);
874      debug_printf("  .wrap = %s %s %s\n",
875                   util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
876                   util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
877                   util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
878      debug_printf("  .min_img_filter = %s\n",
879                   util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
880      debug_printf("  .min_mip_filter = %s\n",
881                   util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
882      debug_printf("  .mag_img_filter = %s\n",
883                   util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
884      if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
885         debug_printf("  .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
886      debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
887      debug_printf("  .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
888      debug_printf("  .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
889      debug_printf("  .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
890      debug_printf("  .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
891   }
892}
893
894
895void
896lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
897{
898   debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
899                variant->shader->no, variant->no);
900   tgsi_dump(variant->shader->base.tokens, 0);
901   dump_fs_variant_key(&variant->key);
902   debug_printf("variant->opaque = %u\n", variant->opaque);
903   debug_printf("\n");
904}
905
906
907/**
908 * Generate a new fragment shader variant from the shader code and
909 * other state indicated by the key.
910 */
911static struct lp_fragment_shader_variant *
912generate_variant(struct llvmpipe_context *lp,
913                 struct lp_fragment_shader *shader,
914                 const struct lp_fragment_shader_variant_key *key)
915{
916   struct lp_fragment_shader_variant *variant;
917   boolean fullcolormask;
918
919   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
920   if(!variant)
921      return NULL;
922
923   variant->shader = shader;
924   variant->list_item_global.base = variant;
925   variant->list_item_local.base = variant;
926   variant->no = shader->variants_created++;
927
928   memcpy(&variant->key, key, shader->variant_key_size);
929
930   /*
931    * Determine whether we are touching all channels in the color buffer.
932    */
933   fullcolormask = FALSE;
934   if (key->nr_cbufs == 1) {
935      const struct util_format_description *format_desc;
936      format_desc = util_format_description(key->cbuf_format[0]);
937      if ((~key->blend.rt[0].colormask &
938           util_format_colormask(format_desc)) == 0) {
939         fullcolormask = TRUE;
940      }
941   }
942
943   variant->opaque =
944         !key->blend.logicop_enable &&
945         !key->blend.rt[0].blend_enable &&
946         fullcolormask &&
947         !key->stencil[0].enabled &&
948         !key->alpha.enabled &&
949         !key->depth.enabled &&
950         !shader->info.base.uses_kill
951         ? TRUE : FALSE;
952
953
954   if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
955      lp_debug_fs_variant(variant);
956   }
957
958   generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
959
960   if (variant->opaque) {
961      /* Specialized shader, which doesn't need to read the color buffer. */
962      generate_fragment(lp, shader, variant, RAST_WHOLE);
963   } else {
964      variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
965   }
966
967   return variant;
968}
969
970
971static void *
972llvmpipe_create_fs_state(struct pipe_context *pipe,
973                         const struct pipe_shader_state *templ)
974{
975   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
976   struct lp_fragment_shader *shader;
977   int nr_samplers;
978   int i;
979
980   shader = CALLOC_STRUCT(lp_fragment_shader);
981   if (!shader)
982      return NULL;
983
984   shader->no = fs_no++;
985   make_empty_list(&shader->variants);
986
987   /* get/save the summary info for this shader */
988   lp_build_tgsi_info(templ->tokens, &shader->info);
989
990   /* we need to keep a local copy of the tokens */
991   shader->base.tokens = tgsi_dup_tokens(templ->tokens);
992
993   shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
994   if (shader->draw_data == NULL) {
995      FREE((void *) shader->base.tokens);
996      FREE(shader);
997      return NULL;
998   }
999
1000   nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1001
1002   shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
1003				     sampler[nr_samplers]);
1004
1005   for (i = 0; i < shader->info.base.num_inputs; i++) {
1006      shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
1007
1008      switch (shader->info.base.input_interpolate[i]) {
1009      case TGSI_INTERPOLATE_CONSTANT:
1010	 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1011	 break;
1012      case TGSI_INTERPOLATE_LINEAR:
1013	 shader->inputs[i].interp = LP_INTERP_LINEAR;
1014	 break;
1015      case TGSI_INTERPOLATE_PERSPECTIVE:
1016	 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1017	 break;
1018      default:
1019	 assert(0);
1020	 break;
1021      }
1022
1023      switch (shader->info.base.input_semantic_name[i]) {
1024      case TGSI_SEMANTIC_COLOR:
1025         /* Colors may be either linearly or constant interpolated in
1026	  * the fragment shader, but that information isn't available
1027	  * here.  Mark color inputs and fix them up later.
1028          */
1029	 shader->inputs[i].interp = LP_INTERP_COLOR;
1030         break;
1031      case TGSI_SEMANTIC_FACE:
1032	 shader->inputs[i].interp = LP_INTERP_FACING;
1033	 break;
1034      case TGSI_SEMANTIC_POSITION:
1035	 /* Position was already emitted above
1036	  */
1037	 shader->inputs[i].interp = LP_INTERP_POSITION;
1038	 shader->inputs[i].src_index = 0;
1039	 continue;
1040      }
1041
1042      shader->inputs[i].src_index = i+1;
1043   }
1044
1045   if (LP_DEBUG & DEBUG_TGSI) {
1046      unsigned attrib;
1047      debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
1048                   shader->no, (void *) shader);
1049      tgsi_dump(templ->tokens, 0);
1050      debug_printf("usage masks:\n");
1051      for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1052         unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1053         debug_printf("  IN[%u].%s%s%s%s\n",
1054                      attrib,
1055                      usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1056                      usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1057                      usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1058                      usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1059      }
1060      debug_printf("\n");
1061   }
1062
1063   return shader;
1064}
1065
1066
1067static void
1068llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1069{
1070   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1071
1072   if (llvmpipe->fs == fs)
1073      return;
1074
1075   draw_flush(llvmpipe->draw);
1076
1077   llvmpipe->fs = (struct lp_fragment_shader *) fs;
1078
1079   draw_bind_fragment_shader(llvmpipe->draw,
1080                             (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1081
1082   llvmpipe->dirty |= LP_NEW_FS;
1083}
1084
1085
1086/**
1087 * Remove shader variant from two lists: the shader's variant list
1088 * and the context's variant list.
1089 */
1090void
1091llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
1092                               struct lp_fragment_shader_variant *variant)
1093{
1094   unsigned i;
1095
1096   if (gallivm_debug & GALLIVM_DEBUG_IR) {
1097      debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
1098                   " #%u v total cached #%u\n",
1099                   variant->shader->no,
1100                   variant->no,
1101                   variant->shader->variants_created,
1102                   variant->shader->variants_cached,
1103                   lp->nr_fs_variants);
1104   }
1105
1106   /* free all the variant's JIT'd functions */
1107   for (i = 0; i < Elements(variant->function); i++) {
1108      if (variant->function[i]) {
1109         if (variant->jit_function[i])
1110            LLVMFreeMachineCodeForFunction(lp->gallivm->engine,
1111                                           variant->function[i]);
1112         LLVMDeleteFunction(variant->function[i]);
1113      }
1114   }
1115
1116   /* remove from shader's list */
1117   remove_from_list(&variant->list_item_local);
1118   variant->shader->variants_cached--;
1119
1120   /* remove from context's list */
1121   remove_from_list(&variant->list_item_global);
1122   lp->nr_fs_variants--;
1123
1124   FREE(variant);
1125}
1126
1127
1128static void
1129llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1130{
1131   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1132   struct lp_fragment_shader *shader = fs;
1133   struct lp_fs_variant_list_item *li;
1134
1135   assert(fs != llvmpipe->fs);
1136
1137   /*
1138    * XXX: we need to flush the context until we have some sort of reference
1139    * counting in fragment shaders as they may still be binned
1140    * Flushing alone might not sufficient we need to wait on it too.
1141    */
1142   llvmpipe_finish(pipe, __FUNCTION__);
1143
1144   /* Delete all the variants */
1145   li = first_elem(&shader->variants);
1146   while(!at_end(&shader->variants, li)) {
1147      struct lp_fs_variant_list_item *next = next_elem(li);
1148      llvmpipe_remove_shader_variant(llvmpipe, li->base);
1149      li = next;
1150   }
1151
1152   /* Delete draw module's data */
1153   draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1154
1155   assert(shader->variants_cached == 0);
1156   FREE((void *) shader->base.tokens);
1157   FREE(shader);
1158}
1159
1160
1161
1162static void
1163llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1164                             uint shader, uint index,
1165                             struct pipe_resource *constants)
1166{
1167   struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1168   unsigned size = constants ? constants->width0 : 0;
1169   const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1170
1171   assert(shader < PIPE_SHADER_TYPES);
1172   assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1173
1174   if(llvmpipe->constants[shader][index] == constants)
1175      return;
1176
1177   draw_flush(llvmpipe->draw);
1178
1179   /* note: reference counting */
1180   pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1181
1182   if(shader == PIPE_SHADER_VERTEX ||
1183      shader == PIPE_SHADER_GEOMETRY) {
1184      draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1185                                      index, data, size);
1186   }
1187
1188   llvmpipe->dirty |= LP_NEW_CONSTANTS;
1189}
1190
1191
1192/**
1193 * Return the blend factor equivalent to a destination alpha of one.
1194 */
1195static INLINE unsigned
1196force_dst_alpha_one(unsigned factor)
1197{
1198   switch(factor) {
1199   case PIPE_BLENDFACTOR_DST_ALPHA:
1200      return PIPE_BLENDFACTOR_ONE;
1201   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1202      return PIPE_BLENDFACTOR_ZERO;
1203   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1204      return PIPE_BLENDFACTOR_ZERO;
1205   }
1206
1207   return factor;
1208}
1209
1210
1211/**
1212 * We need to generate several variants of the fragment pipeline to match
1213 * all the combinations of the contributing state atoms.
1214 *
1215 * TODO: there is actually no reason to tie this to context state -- the
1216 * generated code could be cached globally in the screen.
1217 */
1218static void
1219make_variant_key(struct llvmpipe_context *lp,
1220                 struct lp_fragment_shader *shader,
1221                 struct lp_fragment_shader_variant_key *key)
1222{
1223   unsigned i;
1224
1225   memset(key, 0, shader->variant_key_size);
1226
1227   if (lp->framebuffer.zsbuf) {
1228      if (lp->depth_stencil->depth.enabled) {
1229         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1230         memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1231      }
1232      if (lp->depth_stencil->stencil[0].enabled) {
1233         key->zsbuf_format = lp->framebuffer.zsbuf->format;
1234         memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1235      }
1236   }
1237
1238   key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1239   if(key->alpha.enabled)
1240      key->alpha.func = lp->depth_stencil->alpha.func;
1241   /* alpha.ref_value is passed in jit_context */
1242
1243   key->flatshade = lp->rasterizer->flatshade;
1244   if (lp->active_query_count) {
1245      key->occlusion_count = TRUE;
1246   }
1247
1248   if (lp->framebuffer.nr_cbufs) {
1249      memcpy(&key->blend, lp->blend, sizeof key->blend);
1250   }
1251
1252   key->nr_cbufs = lp->framebuffer.nr_cbufs;
1253   for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1254      enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1255      struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1256      const struct util_format_description *format_desc;
1257
1258      key->cbuf_format[i] = format;
1259
1260      format_desc = util_format_description(format);
1261      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1262             format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1263
1264      blend_rt->colormask = lp->blend->rt[i].colormask;
1265
1266      /*
1267       * Mask out color channels not present in the color buffer.
1268       */
1269      blend_rt->colormask &= util_format_colormask(format_desc);
1270
1271      /*
1272       * Our swizzled render tiles always have an alpha channel, but the linear
1273       * render target format often does not, so force here the dst alpha to be
1274       * one.
1275       *
1276       * This is not a mere optimization. Wrong results will be produced if the
1277       * dst alpha is used, the dst format does not have alpha, and the previous
1278       * rendering was not flushed from the swizzled to linear buffer. For
1279       * example, NonPowTwo DCT.
1280       *
1281       * TODO: This should be generalized to all channels for better
1282       * performance, but only alpha causes correctness issues.
1283       *
1284       * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1285       */
1286      if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1287         blend_rt->rgb_src_factor   = force_dst_alpha_one(blend_rt->rgb_src_factor);
1288         blend_rt->rgb_dst_factor   = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1289         blend_rt->alpha_func       = blend_rt->rgb_func;
1290         blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1291         blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1292      }
1293   }
1294
1295   /* This value will be the same for all the variants of a given shader:
1296    */
1297   key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1298
1299   for(i = 0; i < key->nr_samplers; ++i) {
1300      if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1301         lp_sampler_static_state(&key->sampler[i],
1302				 lp->fragment_sampler_views[i],
1303				 lp->sampler[i]);
1304      }
1305   }
1306}
1307
1308
1309
1310/**
1311 * Update fragment shader state.  This is called just prior to drawing
1312 * something when some fragment-related state has changed.
1313 */
1314void
1315llvmpipe_update_fs(struct llvmpipe_context *lp)
1316{
1317   struct lp_fragment_shader *shader = lp->fs;
1318   struct lp_fragment_shader_variant_key key;
1319   struct lp_fragment_shader_variant *variant = NULL;
1320   struct lp_fs_variant_list_item *li;
1321
1322   make_variant_key(lp, shader, &key);
1323
1324   /* Search the variants for one which matches the key */
1325   li = first_elem(&shader->variants);
1326   while(!at_end(&shader->variants, li)) {
1327      if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1328         variant = li->base;
1329         break;
1330      }
1331      li = next_elem(li);
1332   }
1333
1334   if (variant) {
1335      /* Move this variant to the head of the list to implement LRU
1336       * deletion of shader's when we have too many.
1337       */
1338      move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1339   }
1340   else {
1341      /* variant not found, create it now */
1342      int64_t t0, t1, dt;
1343      unsigned i;
1344
1345      /* First, check if we've exceeded the max number of shader variants.
1346       * If so, free 25% of them (the least recently used ones).
1347       */
1348      if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1349         struct pipe_context *pipe = &lp->pipe;
1350
1351         /*
1352          * XXX: we need to flush the context until we have some sort of
1353          * reference counting in fragment shaders as they may still be binned
1354          * Flushing alone might not be sufficient we need to wait on it too.
1355          */
1356         llvmpipe_finish(pipe, __FUNCTION__);
1357
1358         for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1359            struct lp_fs_variant_list_item *item;
1360            item = last_elem(&lp->fs_variants_list);
1361            llvmpipe_remove_shader_variant(lp, item->base);
1362         }
1363      }
1364
1365      /*
1366       * Generate the new variant.
1367       */
1368      t0 = os_time_get();
1369      variant = generate_variant(lp, shader, &key);
1370      t1 = os_time_get();
1371      dt = t1 - t0;
1372      LP_COUNT_ADD(llvm_compile_time, dt);
1373      LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
1374
1375      llvmpipe_variant_count++;
1376
1377      /* Put the new variant into the list */
1378      if (variant) {
1379         insert_at_head(&shader->variants, &variant->list_item_local);
1380         insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1381         lp->nr_fs_variants++;
1382         shader->variants_cached++;
1383      }
1384   }
1385
1386   /* Bind this variant */
1387   lp_setup_set_fs_variant(lp->setup, variant);
1388}
1389
1390
1391
1392
1393
1394
1395
1396void
1397llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1398{
1399   llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1400   llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
1401   llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1402
1403   llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1404}
1405