R600Instructions.td revision 1cb07bd3b8abd5e52e9dbd80bb1666058545387e
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<32> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0; 
24
25  let Inst = inst;
26  let Namespace = "AMDGPU";
27  let OutOperandList = outs;
28  let InOperandList = ins;
29  let AsmString = asm;
30  let Pattern = pattern;
31  let Itinerary = itin;
32
33  let TSFlags{4} = Trig;
34  let TSFlags{5} = Op3;
35
36  // Vector instructions are instructions that must fill all slots in an
37  // instruction group
38  let TSFlags{6} = isVector;
39}
40
41class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
42    AMDGPUInst <outs, ins, asm, pattern>
43{
44  field bits<64> Inst;
45
46  let Namespace = "AMDGPU";
47}
48
49def MEMxi : Operand<iPTR> {
50  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
51}
52
53def MEMrr : Operand<iPTR> {
54  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
55}
56
57def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
58def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
59def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
60
61class R600_ALU {
62
63  bits<7> DST_GPR = 0;
64  bits<9> SRC0_SEL = 0;
65  bits<1> SRC0_NEG = 0;
66  bits<9> SRC1_SEL = 0;
67  bits<1> SRC1_NEG = 0;
68  bits<1> CLAMP = 0;
69  
70}
71
72def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
73                                     (ops PRED_SEL_OFF)>;
74
75
76class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
77                InstrItinClass itin = AnyALU> :
78  InstR600 <inst,
79          (outs R600_Reg32:$dst),
80          (ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
81          !strconcat(opName, " $dst, $src ($p)"),
82          pattern,
83          itin
84  >;
85
86class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
87                InstrItinClass itin = AnyALU> :
88  InstR600 <inst,
89          (outs R600_Reg32:$dst),
90          (ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
91          !strconcat(opName, " $dst, $src0, $src1"),
92          pattern,
93          itin
94  >;
95
96class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
97                InstrItinClass itin = AnyALU> :
98  InstR600 <inst,
99          (outs R600_Reg32:$dst),
100          (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
101          !strconcat(opName, " $dst, $src0, $src1, $src2"),
102          pattern,
103          itin>{
104
105    let Op3 = 1;
106  }
107
108
109
110def PRED_X : AMDGPUInst <(outs R600_Predicate_Bit:$dst),
111           (ins R600_Reg32:$src0, i32imm:$src1),
112           "PRED $dst, $src0, $src1",
113           []>
114{
115  let DisableEncoding = "$src0";
116  field bits<32> Inst;
117  bits<32> src1;
118
119  let Inst = src1;
120}
121
122
123
124let isTerminator = 1, isBranch = 1 in {
125def JUMP : InstR600 <0x10,
126          (outs),
127          (ins brtarget:$target, R600_Pred:$p),
128          "JUMP $target ($p)",
129          [], AnyALU
130  >;
131}
132
133class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
134                      InstrItinClass itin = VecALU> :
135  InstR600 <inst,
136          (outs R600_Reg32:$dst),
137          ins,
138          asm,
139          pattern,
140          itin
141
142  >;
143
144class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
145                InstrItinClass itin = AnyALU> :
146  InstR600 <inst,
147          (outs R600_Reg128:$dst),
148          (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
149          !strconcat(opName, "$dst, $src0, $src1, $src2"),
150          pattern,
151          itin
152  >;
153
154def TEX_SHADOW : PatLeaf<
155  (imm),
156  [{uint32_t TType = (uint32_t)N->getZExtValue();
157    return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
158  }]
159>;
160
161class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
162                 dag ins, string asm, list<dag> pattern> :
163    InstR600ISA <outs, ins, asm, pattern>
164{
165  bits<7>  RW_GPR;
166  bits<7>  INDEX_GPR;
167
168  bits<2>  RIM;
169  bits<2>  TYPE;
170  bits<1>  RW_REL;
171  bits<2>  ELEM_SIZE;
172
173  bits<12> ARRAY_SIZE;
174  bits<4>  COMP_MASK;
175  bits<4>  BURST_COUNT;
176  bits<1>  VPM;
177  bits<1>  EOP;
178  bits<1>  MARK;
179  bits<1>  BARRIER;
180
181  /* CF_ALLOC_EXPORT_WORD0_RAT */
182  let Inst{3-0}   = rat_id;
183  let Inst{9-4}   = rat_inst;
184  let Inst{10}    = 0; /* Reserved */
185  let Inst{12-11} = RIM;
186  let Inst{14-13} = TYPE;
187  let Inst{21-15} = RW_GPR;
188  let Inst{22}    = RW_REL;
189  let Inst{29-23} = INDEX_GPR;
190  let Inst{31-30} = ELEM_SIZE;
191
192  /* CF_ALLOC_EXPORT_WORD1_BUF */
193  let Inst{43-32} = ARRAY_SIZE;
194  let Inst{47-44} = COMP_MASK;
195  let Inst{51-48} = BURST_COUNT;
196  let Inst{52}    = VPM;
197  let Inst{53}    = EOP;
198  let Inst{61-54} = cf_inst;
199  let Inst{62}    = MARK;
200  let Inst{63}    = BARRIER;
201}
202
203/*
204def store_global : PatFrag<(ops node:$value, node:$ptr),
205                           (store node:$value, node:$ptr),
206                           [{
207                            const Value *Src;
208                            const PointerType *Type;
209                            if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
210                                 PT = dyn_cast<PointerType>(Src->getType()))) {
211                              return PT->getAddressSpace() == 1;
212                            }
213                            return false;
214                           }]>;
215
216*/
217
218def load_param : PatFrag<(ops node:$ptr),
219                         (load node:$ptr),
220                          [{
221                           const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
222                           if (Src) {
223                                PointerType * PT = dyn_cast<PointerType>(Src->getType());
224                                return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
225                           }
226                           return false;
227                          }]>;
228
229//class EG_CF <bits<32> inst, string asm> :
230//    InstR600 <inst, (outs), (ins), asm, []>;
231
232/* XXX: We will use this when we emit the real ISA.
233  bits<24> ADDR = 0;
234  bits<3> JTS = 0;
235
236  bits<3> PC = 0;
237  bits<5> CF_CONS = 0;
238  bits<2> COND = 0;
239  bits<6> COUNT = 0;
240  bits<1> VPM = 0;
241  bits<1> EOP = 0;
242  bits<8> CF_INST = 0;
243  bits<1> WQM = 0;
244  bits<1> B = 0;
245
246  let Inst{23-0} = ADDR;
247  let Inst{26-24} = JTS;
248  let Inst{34-32} = PC;
249  let Inst{39-35} = CF_CONST;
250  let Inst{41-40} = COND;
251  let Inst{47-42} = COUNT;
252  let Inst{52} = VPM;
253  let Inst{53} = EOP;
254  let Inst{61-54} = CF_INST;
255  let Inst{62} = WQM;
256  let Inst{63} = B;
257//}
258*/
259def isR600 : Predicate<"Subtarget.device()"
260                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
261def isR700 : Predicate<"Subtarget.device()"
262                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
263                            "Subtarget.device()->getDeviceFlag()"
264                            ">= OCL_DEVICE_RV710">;
265def isEG : Predicate<"Subtarget.device()"
266                            "->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
267                            "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
268def isCayman : Predicate<"Subtarget.device()"
269                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
270def isEGorCayman : Predicate<"Subtarget.device()"
271                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
272			    "|| Subtarget.device()->getGeneration() =="
273			    "AMDGPUDeviceInfo::HD6XXX">;
274
275def isR600toCayman : Predicate<
276                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
277
278
279let Predicates = [isR600toCayman] in { 
280
281/* ------------------------------------------- */
282/* Common Instructions R600, R700, Evergreen, Cayman */
283/* ------------------------------------------- */
284def ADD : R600_2OP <
285  0x0, "ADD",
286  [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
287>;
288
289// Non-IEEE MUL: 0 * anything = 0
290def MUL : R600_2OP <
291  0x1, "MUL NON-IEEE",
292  [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
293>;
294
295def MUL_IEEE : R600_2OP <
296  0x2, "MUL_IEEE",
297  [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
298>;
299
300def MAX : R600_2OP <
301  0x3, "MAX",
302  [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
303>;
304
305def MIN : R600_2OP <
306  0x4, "MIN",
307  [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
308>;
309
310/* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
311 * so some of the instruction names don't match the asm string.
312 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
313 */
314
315def SETE : R600_2OP <
316  0x08, "SETE",
317  [(set R600_Reg32:$dst,
318   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
319             COND_EQ))]
320>;
321
322def SGT : R600_2OP <
323  0x09, "SETGT",
324  [(set R600_Reg32:$dst,
325   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
326              COND_GT))]
327>;
328
329def SGE : R600_2OP <
330  0xA, "SETGE",
331  [(set R600_Reg32:$dst,
332   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
333              COND_GE))]
334>;
335
336def SNE : R600_2OP <
337  0xB, "SETNE",
338  [(set R600_Reg32:$dst,
339   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
340    COND_NE))]
341>;
342
343def FRACT : R600_1OP <
344  0x10, "FRACT",
345  [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
346>;
347
348def TRUNC : R600_1OP <
349  0x11, "TRUNC",
350  [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
351>;
352
353def CEIL : R600_1OP <
354  0x12, "CEIL",
355  [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
356>;
357
358def RNDNE : R600_1OP <
359  0x13, "RNDNE",
360  [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
361>;
362
363def FLOOR : R600_1OP <
364  0x14, "FLOOR",
365  [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
366>;
367
368def MOV : R600_1OP <0x19, "MOV", []>;
369
370class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
371  (outs R600_Reg32:$dst),
372  (ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
373  "MOV_IMM $dst, $imm",
374  [], AnyALU
375>;
376
377def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
378def : Pat <
379  (imm:$val),
380  (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
381>;
382
383def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
384def : Pat <
385  (fpimm:$val),
386  (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
387>;
388
389def KILLGT : R600_2OP <
390  0x2D, "KILLGT",
391  []
392>;
393
394def AND_INT : R600_2OP <
395  0x30, "AND_INT",
396  [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
397>;
398
399def OR_INT : R600_2OP <
400  0x31, "OR_INT",
401  [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
402>;
403
404def XOR_INT : R600_2OP <
405  0x32, "XOR_INT",
406  [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
407>;
408
409def NOT_INT : R600_1OP <
410  0x33, "NOT_INT",
411  [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
412>;
413
414def ADD_INT : R600_2OP <
415  0x34, "ADD_INT",
416  [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
417>;
418
419def SUB_INT : R600_2OP <
420	0x35, "SUB_INT",
421	[(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
422>;
423
424def MAX_INT : R600_2OP <
425  0x36, "MAX_INT",
426  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
427
428def MIN_INT : R600_2OP <
429  0x37, "MIN_INT",
430  [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
431
432def MAX_UINT : R600_2OP <
433  0x38, "MAX_UINT",
434  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
435>;
436
437def MIN_UINT : R600_2OP <
438  0x39, "MIN_UINT",
439  [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
440>;
441
442def SETE_INT : R600_2OP <
443  0x3A, "SETE_INT",
444  [(set (i32 R600_Reg32:$dst),
445   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
446>;
447
448def SETGT_INT : R600_2OP <
449  0x3B, "SGT_INT",
450  [(set (i32 R600_Reg32:$dst),
451   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
452>;
453
454def SETGE_INT : R600_2OP <
455	0x3C, "SETGE_INT",
456	[(set (i32 R600_Reg32:$dst),
457   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
458>;
459
460def SETNE_INT : R600_2OP <
461  0x3D, "SETNE_INT",
462  [(set (i32 R600_Reg32:$dst),
463   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
464>;
465
466def SETGT_UINT : R600_2OP <
467  0x3E, "SETGT_UINT",
468  [(set (i32 R600_Reg32:$dst),
469   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
470>;
471
472def SETGE_UINT : R600_2OP <
473  0x3F, "SETGE_UINT",
474  [(set (i32 R600_Reg32:$dst),
475    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
476>;
477
478def CNDE_INT : R600_3OP <
479	0x1C, "CNDE_INT",
480  [(set (i32 R600_Reg32:$dst),
481   (select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
482>;
483
484/* Texture instructions */
485
486
487def TEX_LD : R600_TEX <
488  0x03, "TEX_LD",
489  [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
490> {
491let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
492let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
493}
494
495def TEX_GET_TEXTURE_RESINFO : R600_TEX <
496  0x04, "TEX_GET_TEXTURE_RESINFO",
497  [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
498>;
499
500def TEX_GET_GRADIENTS_H : R600_TEX <
501  0x07, "TEX_GET_GRADIENTS_H",
502  [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
503>;
504
505def TEX_GET_GRADIENTS_V : R600_TEX <
506  0x08, "TEX_GET_GRADIENTS_V",
507  [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
508>;
509
510def TEX_SET_GRADIENTS_H : R600_TEX <
511  0x0B, "TEX_SET_GRADIENTS_H",
512  []
513>;
514
515def TEX_SET_GRADIENTS_V : R600_TEX <
516  0x0C, "TEX_SET_GRADIENTS_V",
517  []
518>;
519
520def TEX_SAMPLE : R600_TEX <
521  0x10, "TEX_SAMPLE",
522  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
523>;
524
525def TEX_SAMPLE_C : R600_TEX <
526  0x18, "TEX_SAMPLE_C",
527  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
528>;
529
530def TEX_SAMPLE_L : R600_TEX <
531  0x11, "TEX_SAMPLE_L",
532  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
533>;
534
535def TEX_SAMPLE_C_L : R600_TEX <
536  0x19, "TEX_SAMPLE_C_L",
537  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
538>;
539
540def TEX_SAMPLE_LB : R600_TEX <
541  0x12, "TEX_SAMPLE_LB",
542  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
543>;
544
545def TEX_SAMPLE_C_LB : R600_TEX <
546  0x1A, "TEX_SAMPLE_C_LB",
547  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
548>;
549
550def TEX_SAMPLE_G : R600_TEX <
551  0x14, "TEX_SAMPLE_G",
552  []
553>;
554
555def TEX_SAMPLE_C_G : R600_TEX <
556  0x1C, "TEX_SAMPLE_C_G",
557  []
558>;
559
560/* Helper classes for common instructions */
561
562class MUL_LIT_Common <bits<32> inst> : R600_3OP <
563  inst, "MUL_LIT",
564  []
565>;
566
567class MULADD_Common <bits<32> inst> : R600_3OP <
568  inst, "MULADD",
569  [(set (f32 R600_Reg32:$dst),
570   (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
571>;
572
573class CNDE_Common <bits<32> inst> : R600_3OP <
574  inst, "CNDE",
575  [(set (f32 R600_Reg32:$dst),
576   (select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
577>;
578
579class CNDGT_Common <bits<32> inst> : R600_3OP <
580  inst, "CNDGT",
581  []
582>;
583  
584class CNDGE_Common <bits<32> inst> : R600_3OP <
585  inst, "CNDGE",
586  [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
587>;
588
589class DOT4_Common <bits<32> inst> : R600_REDUCTION <
590  inst,
591  (ins R600_Reg128:$src0, R600_Reg128:$src1),
592  "DOT4 $dst $src0, $src1",
593  [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
594>;
595
596multiclass CUBE_Common <bits<32> inst> {
597
598  def _pseudo : InstR600 <
599    inst,
600    (outs R600_Reg128:$dst),
601    (ins R600_Reg128:$src),
602    "CUBE $dst $src",
603    [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
604    VecALU
605  >;
606
607  def _real : InstR600 <
608    inst,
609    (outs R600_Reg32:$dst),
610    (ins R600_Reg32:$src0, R600_Reg32:$src1),
611    "CUBE $dst, $src0, $src1",
612    [], VecALU
613  >;
614}
615
616class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
617  inst, "EXP_IEEE",
618  [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
619>;
620
621class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
622  inst, "FLT_TO_INT",
623  [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
624>;
625
626class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
627  inst, "INT_TO_FLT",
628  [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
629>;
630
631class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
632  inst, "FLT_TO_UINT",
633  [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
634>;
635
636class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
637  inst, "UINT_TO_FLT",
638  [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
639>;
640
641class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
642  inst, "LOG_CLAMPED",
643  []
644>;
645
646class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
647  inst, "LOG_IEEE",
648  [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
649>;
650
651class LSHL_Common <bits<32> inst> : R600_2OP <
652  inst, "LSHL $dst, $src0, $src1",
653  [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
654>;
655
656class LSHR_Common <bits<32> inst> : R600_2OP <
657  inst, "LSHR $dst, $src0, $src1",
658  [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
659>;
660
661class ASHR_Common <bits<32> inst> : R600_2OP <
662  inst, "ASHR $dst, $src0, $src1",
663  [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
664>;
665
666class MULHI_INT_Common <bits<32> inst> : R600_2OP <
667  inst, "MULHI_INT $dst, $src0, $src1",
668  [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
669>;
670
671class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
672  inst, "MULHI $dst, $src0, $src1",
673  [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
674>;
675
676class MULLO_INT_Common <bits<32> inst> : R600_2OP <
677  inst, "MULLO_INT $dst, $src0, $src1",
678  [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
679>;
680
681class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
682  inst, "MULLO_UINT $dst, $src0, $src1",
683  []
684>;
685
686class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
687  inst, "RECIP_CLAMPED",
688  []
689>;
690
691class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
692  inst, "RECIP_IEEE",
693  [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
694>;
695
696class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
697  inst, "RECIP_INT $dst, $src",
698  [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
699>;
700
701class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
702  inst, "RECIPSQRT_CLAMPED",
703  [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
704>;
705
706class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
707  inst, "RECIPSQRT_IEEE",
708  []
709>;
710
711class SIN_Common <bits<32> inst> : R600_1OP <
712  inst, "SIN", []>{
713  let Trig = 1;
714}
715
716class COS_Common <bits<32> inst> : R600_1OP <
717  inst, "COS", []> {
718  let Trig = 1;
719}
720
721/* Helper patterns for complex intrinsics */
722/* -------------------------------------- */
723
724class DIV_Common <InstR600 recip_ieee> : Pat<
725  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
726  (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
727>;
728
729class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
730  (int_AMDGPU_ssg R600_Reg32:$src),
731  (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
732>;
733
734class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
735  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
736  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
737>;
738
739/* ---------------------- */
740/* R600 / R700 Only Instructions */
741/* ---------------------- */
742
743let Predicates = [isR600] in {
744
745  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
746  def MULADD_r600 : MULADD_Common<0x10>;
747  def CNDE_r600 : CNDE_Common<0x18>;
748  def CNDGT_r600 : CNDGT_Common<0x19>;
749  def CNDGE_r600 : CNDGE_Common<0x1A>;
750  def DOT4_r600 : DOT4_Common<0x50>;
751  defm CUBE_r600 : CUBE_Common<0x52>;
752  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
753  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
754  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
755  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
756  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
757  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
758  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
759  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
760  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
761  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
762  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
763  def SIN_r600 : SIN_Common<0x6E>;
764  def COS_r600 : COS_Common<0x6F>;
765  def ASHR_r600 : ASHR_Common<0x70>;
766  def LSHR_r600 : LSHR_Common<0x71>;
767  def LSHL_r600 : LSHL_Common<0x72>;
768  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
769  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
770  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
771  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
772  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
773
774  def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
775  def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
776  def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
777  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
778
779}
780
781// Helper pattern for normalizing inputs to triginomic instructions for R700+
782// cards.
783class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
784  (intr R600_Reg32:$src),
785  (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
786>;
787
788//===----------------------------------------------------------------------===//
789// R700 Only instructions
790//===----------------------------------------------------------------------===//
791
792let Predicates = [isR700] in {
793  def SIN_r700 : SIN_Common<0x6E>;
794  def COS_r700 : COS_Common<0x6F>;
795
796  // R700 normalizes inputs to SIN/COS the same as EG
797  def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
798  def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
799}
800
801//===----------------------------------------------------------------------===//
802// Evergreen Only instructions
803//===----------------------------------------------------------------------===//
804
805let Predicates = [isEG] in {
806  
807def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
808
809def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
810def MULHI_INT_eg : MULHI_INT_Common<0x90>;
811def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
812def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
813def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
814
815} // End Predicates = [isEG]
816
817/* ------------------------------- */
818/* Evergreen / Cayman Instructions */
819/* ------------------------------- */
820
821let Predicates = [isEGorCayman] in {
822
823  // BFE_UINT - bit_extract, an optimization for mask and shift
824  // Src0 = Input
825  // Src1 = Offset
826  // Src2 = Width
827  //
828  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
829  //
830  // Example Usage:
831  // (Offset, Width)
832  //
833  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
834  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
835  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
836  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
837  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
838    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
839                                                      R600_Reg32:$src1,
840                                                      R600_Reg32:$src2))],
841    VecALU
842  >;
843
844  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
845    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
846                                          R600_Reg32:$src2))],
847    VecALU
848  >;
849
850  def MULADD_eg : MULADD_Common<0x14>;
851  def ASHR_eg : ASHR_Common<0x15>;
852  def LSHR_eg : LSHR_Common<0x16>;
853  def LSHL_eg : LSHL_Common<0x17>;
854  def CNDE_eg : CNDE_Common<0x19>;
855  def CNDGT_eg : CNDGT_Common<0x1A>;
856  def CNDGE_eg : CNDGE_Common<0x1B>;
857  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
858  def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
859  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
860  def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
861  def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
862  def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
863  def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
864  def SIN_eg : SIN_Common<0x8D>;
865  def COS_eg : COS_Common<0x8E>;
866  def DOT4_eg : DOT4_Common<0xBE>;
867  defm CUBE_eg : CUBE_Common<0xC0>;
868
869  def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
870  def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
871  def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
872  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
873
874  def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
875  def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
876
877  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
878    let Pattern = [];
879  }
880
881  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
882
883  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
884    let Pattern = [];
885  }
886
887  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
888
889  def : Pat<(fp_to_sint R600_Reg32:$src),
890    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
891
892  def : Pat<(fp_to_uint R600_Reg32:$src),
893    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
894
895//===----------------------------------------------------------------------===//
896// Memory read/write instructions
897//===----------------------------------------------------------------------===//
898
899let usesCustomInserter = 1 in {
900
901def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
902  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
903  "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
904  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
905{
906  let RIM         = 0;
907  /* XXX: Have a separate instruction for non-indexed writes. */
908  let TYPE        = 1;
909  let RW_REL      = 0;
910  let ELEM_SIZE   = 0;
911
912  let ARRAY_SIZE  = 0;
913  let COMP_MASK   = 1;
914  let BURST_COUNT = 0;
915  let VPM         = 0;
916  let EOP         = 0;
917  let MARK        = 0;
918  let BARRIER     = 1;
919}
920
921} // End usesCustomInserter = 1
922
923// Floating point global_store
924def : Pat <
925  (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
926  (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
927>;
928
929class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
930    : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
931
932  // Operands
933  bits<7> DST_GPR;
934  bits<7> SRC_GPR;
935
936  // Static fields
937  bits<5> VC_INST = 0;
938  bits<2> FETCH_TYPE = 2;
939  bits<1> FETCH_WHOLE_QUAD = 0;
940  bits<8> BUFFER_ID = buffer_id;
941  bits<1> SRC_REL = 0;
942  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
943  // to store vertex addresses in any channel, not just X.
944  bits<2> SRC_SEL_X = 0;
945  bits<6> MEGA_FETCH_COUNT;
946  bits<1> DST_REL = 0;
947  bits<3> DST_SEL_X;
948  bits<3> DST_SEL_Y;
949  bits<3> DST_SEL_Z;
950  bits<3> DST_SEL_W;
951  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
952  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
953  // however, based on my testing if USE_CONST_FIELDS is set, then all
954  // these fields need to be set to 0.
955  bits<1> USE_CONST_FIELDS = 0;
956  bits<6> DATA_FORMAT;
957  bits<2> NUM_FORMAT_ALL = 1;
958  bits<1> FORMAT_COMP_ALL = 0;
959  bits<1> SRF_MODE_ALL = 0;
960
961  // LLVM can only encode 64-bit instructions, so these fields are manually
962  // encoded in R600CodeEmitter
963  //
964  // bits<16> OFFSET;
965  // bits<2>  ENDIAN_SWAP = 0;
966  // bits<1>  CONST_BUF_NO_STRIDE = 0;
967  // bits<1>  MEGA_FETCH = 0;
968  // bits<1>  ALT_CONST = 0;
969  // bits<2>  BUFFER_INDEX_MODE = 0;
970
971  // VTX_WORD0
972  let Inst{4-0}   = VC_INST;
973  let Inst{6-5}   = FETCH_TYPE;
974  let Inst{7}     = FETCH_WHOLE_QUAD;
975  let Inst{15-8}  = BUFFER_ID;
976  let Inst{22-16} = SRC_GPR;
977  let Inst{23}    = SRC_REL;
978  let Inst{25-24} = SRC_SEL_X;
979  let Inst{31-26} = MEGA_FETCH_COUNT;
980
981  // VTX_WORD1_GPR
982  let Inst{38-32} = DST_GPR;
983  let Inst{39}    = DST_REL;
984  let Inst{40}    = 0; // Reserved
985  let Inst{43-41} = DST_SEL_X;
986  let Inst{46-44} = DST_SEL_Y;
987  let Inst{49-47} = DST_SEL_Z;
988  let Inst{52-50} = DST_SEL_W;
989  let Inst{53}    = USE_CONST_FIELDS;
990  let Inst{59-54} = DATA_FORMAT;
991  let Inst{61-60} = NUM_FORMAT_ALL;
992  let Inst{62}    = FORMAT_COMP_ALL;
993  let Inst{63}    = SRF_MODE_ALL;
994
995  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
996  // is done in R600CodeEmitter
997  //
998  // Inst{79-64} = OFFSET;
999  // Inst{81-80} = ENDIAN_SWAP;
1000  // Inst{82}    = CONST_BUF_NO_STRIDE;
1001  // Inst{83}    = MEGA_FETCH;
1002  // Inst{84}    = ALT_CONST;
1003  // Inst{86-85} = BUFFER_INDEX_MODE;
1004  // Inst{95-86} = 0; Reserved
1005
1006  // VTX_WORD3 (Padding)
1007  //
1008  // Inst{127-96} = 0;
1009}
1010
1011class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1012    : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1013
1014  let MEGA_FETCH_COUNT = 4;
1015  let DST_SEL_X        = 0;
1016  let DST_SEL_Y        = 7;   // Masked
1017  let DST_SEL_Z        = 7;   // Masked
1018  let DST_SEL_W        = 7;   // Masked
1019  let DATA_FORMAT      = 0xD; // COLOR_32
1020
1021  // This is not really necessary, but there were some GPU hangs that appeared
1022  // to be caused by ALU instructions in the next instruction group that wrote
1023  // to the $ptr registers of the VTX_READ.  
1024  // e.g.
1025  // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
1026  // %T2_X<def> = MOV %ZERO
1027  //Adding this constraint prevents this from happening.
1028  let Constraints = "$ptr.ptr = $dst";
1029}
1030
1031class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1032    : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1033
1034  let MEGA_FETCH_COUNT = 16;
1035  let DST_SEL_X        =  0;
1036  let DST_SEL_Y        =  1;
1037  let DST_SEL_Z        =  2;
1038  let DST_SEL_W        =  3;
1039  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1040
1041  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1042  // that holds its buffer address to avoid potential hangs.  We can't use
1043  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1044  // registers are different sizes.
1045}
1046
1047//===----------------------------------------------------------------------===//
1048// VTX Read from parameter memory space
1049//===----------------------------------------------------------------------===//
1050
1051class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1052  [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1053>;
1054
1055def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1056def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1057
1058
1059//===----------------------------------------------------------------------===//
1060// VTX Read from global memory space
1061//===----------------------------------------------------------------------===//
1062
1063// 32-bit reads
1064
1065class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1066  [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1067>;
1068
1069def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1070def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1071
1072// 128-bit reads
1073
1074class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1075  [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1076>;
1077
1078def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1079def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1080
1081}
1082
1083let Predicates = [isCayman] in {
1084
1085let isVector = 1 in { 
1086
1087def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1088
1089def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1090def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1091def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1092def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1093
1094} // End isVector = 1
1095
1096// RECIP_UINT emulation for Cayman
1097def : Pat <
1098  (AMDGPUurecip R600_Reg32:$src0),
1099  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1100                            (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1101>;
1102
1103} // End isCayman
1104
1105/* Other Instructions */
1106
1107let isCodeGenOnly = 1 in {
1108/*
1109  def SWIZZLE : AMDGPUShaderInst <
1110    (outs GPRV4F32:$dst),
1111    (ins GPRV4F32:$src0, i32imm:$src1),
1112    "SWIZZLE $dst, $src0, $src1",
1113    [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1114  >;
1115*/
1116
1117  def LAST : AMDGPUShaderInst <
1118    (outs),
1119    (ins),
1120    "LAST",
1121    []
1122  >;
1123
1124  def GET_CHAN : AMDGPUShaderInst <
1125    (outs R600_Reg32:$dst),
1126    (ins R600_Reg128:$src0, i32imm:$src1),
1127    "GET_CHAN $dst, $src0, $src1",
1128    []
1129  >;
1130
1131  def MULLIT : AMDGPUShaderInst <
1132    (outs R600_Reg128:$dst),
1133    (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1134    "MULLIT $dst, $src0, $src1",
1135    [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1136  >;
1137
1138let usesCustomInserter = 1, isPseudo = 1 in {
1139
1140class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1141  (outs R600_TReg32:$dst),
1142  (ins),
1143  asm,
1144  [(set R600_TReg32:$dst, (intr))]
1145>;
1146
1147def R600_LOAD_CONST : AMDGPUShaderInst <
1148  (outs R600_Reg32:$dst),
1149  (ins i32imm:$src0),
1150  "R600_LOAD_CONST $dst, $src0",
1151  [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1152>;
1153
1154def RESERVE_REG : AMDGPUShaderInst <
1155  (outs),
1156  (ins i32imm:$src),
1157  "RESERVE_REG $src",
1158  [(int_AMDGPU_reserve_reg imm:$src)]
1159>;
1160
1161def TXD: AMDGPUShaderInst <
1162  (outs R600_Reg128:$dst),
1163  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1164  "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1165  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1166>;
1167
1168def TXD_SHADOW: AMDGPUShaderInst <
1169  (outs R600_Reg128:$dst),
1170  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1171  "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1172  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1173>;
1174
1175} // End usesCustomInserter = 1, isPseudo = 1
1176
1177} // End isCodeGenOnly = 1
1178
1179def CLAMP_R600 :  CLAMP <R600_Reg32>;
1180def FABS_R600 : FABS<R600_Reg32>;
1181def FNEG_R600 : FNEG<R600_Reg32>;
1182
1183let usesCustomInserter = 1 in {
1184
1185def MASK_WRITE : AMDGPUShaderInst <
1186    (outs),
1187    (ins R600_Reg32:$src),
1188    "MASK_WRITE $src",
1189    []
1190>;
1191
1192} // End usesCustomInserter = 1
1193
1194//===----------------------------------------------------------------------===//
1195// ISel Patterns
1196//===----------------------------------------------------------------------===//
1197
1198// KIL Patterns
1199def KILP : Pat <
1200  (int_AMDGPU_kilp),
1201  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1202>;
1203
1204def KIL : Pat <
1205  (int_AMDGPU_kill R600_Reg32:$src0),
1206  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1207>;
1208
1209// SGT Reverse args
1210def : Pat <
1211  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1212  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1213>;
1214
1215// SGE Reverse args
1216def : Pat <
1217  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1218  (SGE R600_Reg32:$src1, R600_Reg32:$src0) 
1219>;
1220
1221// SETGT_INT reverse args
1222def : Pat <
1223  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1224  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1225>;
1226
1227// SETGE_INT reverse args
1228def : Pat <
1229  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1230  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1231>;
1232
1233// SETGT_UINT reverse args
1234def : Pat <
1235  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1236  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1237>;
1238
1239// SETGE_UINT reverse args
1240def : Pat <
1241  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1242  (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1243>;
1244
1245// The next two patterns are special cases for handling 'true if ordered' and
1246// 'true if unordered' conditionals.  The assumption here is that the behavior of
1247// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1248// described here:
1249// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1250// We assume that  SETE returns false when one of the operands is NAN and
1251// SNE returns true when on of the operands is NAN
1252
1253//SETE - 'true if ordered'
1254def : Pat <
1255  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1256  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1257>;
1258
1259//SNE - 'true if unordered'
1260def : Pat <
1261  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1262  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1263>;
1264
1265def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1266def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1267def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1268def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1269
1270def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1271def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1272def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1273def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1274
1275def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1276def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1277def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1278def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1279
1280def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1281def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1282def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1283def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1284
1285def : Vector_Build <v4f32, R600_Reg32>;
1286def : Vector_Build <v4i32, R600_Reg32>;
1287
1288// bitconvert patterns
1289
1290def : BitConvert <i32, f32, R600_Reg32>;
1291def : BitConvert <f32, i32, R600_Reg32>;
1292def : BitConvert <v4f32, v4i32, R600_Reg128>;
1293
1294} // End isR600toCayman Predicate
1295