R600Instructions.td revision 8263408a91b6b3beb5af5de6bdc7e5d13197a268
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<32> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0; 
24
25  let Inst = inst;
26  let Namespace = "AMDGPU";
27  let OutOperandList = outs;
28  let InOperandList = ins;
29  let AsmString = asm;
30  let Pattern = pattern;
31  let Itinerary = itin;
32
33  let TSFlags{4} = Trig;
34  let TSFlags{5} = Op3;
35
36  // Vector instructions are instructions that must fill all slots in an
37  // instruction group
38  let TSFlags{6} = isVector;
39}
40
41class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
42    AMDGPUInst <outs, ins, asm, pattern>
43{
44  field bits<64> Inst;
45
46  let Namespace = "AMDGPU";
47}
48
49def MEMxi : Operand<iPTR> {
50  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
51}
52
53def MEMrr : Operand<iPTR> {
54  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
55}
56
57def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
58def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
59def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
60
61class R600_ALU {
62
63  bits<7> DST_GPR = 0;
64  bits<9> SRC0_SEL = 0;
65  bits<1> SRC0_NEG = 0;
66  bits<9> SRC1_SEL = 0;
67  bits<1> SRC1_NEG = 0;
68  bits<1> CLAMP = 0;
69  
70}
71
72def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
73                                     (ops PRED_SEL_OFF)>;
74
75
76class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
77                InstrItinClass itin = AnyALU> :
78  InstR600 <inst,
79          (outs R600_Reg32:$dst),
80          (ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
81          !strconcat(opName, " $dst, $src ($p)"),
82          pattern,
83          itin
84  >;
85
86class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
87                InstrItinClass itin = AnyALU> :
88  InstR600 <inst,
89          (outs R600_Reg32:$dst),
90          (ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
91          !strconcat(opName, " $dst, $src0, $src1"),
92          pattern,
93          itin
94  >;
95
96class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
97                InstrItinClass itin = AnyALU> :
98  InstR600 <inst,
99          (outs R600_Reg32:$dst),
100          (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
101          !strconcat(opName, " $dst, $src0, $src1, $src2"),
102          pattern,
103          itin>{
104
105    let Op3 = 1;
106  }
107
108
109
110def PRED_X : AMDGPUInst <(outs R600_Predicate_Bit:$dst),
111           (ins R600_Reg32:$src0, i32imm:$src1),
112           "PRED $dst, $src0, $src1",
113           []>
114{
115  let DisableEncoding = "$src0";
116  field bits<32> Inst;
117  bits<32> src1;
118
119  let Inst = src1;
120}
121
122
123
124class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
125                      InstrItinClass itin = VecALU> :
126  InstR600 <inst,
127          (outs R600_Reg32:$dst),
128          ins,
129          asm,
130          pattern,
131          itin
132
133  >;
134
135class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
136                InstrItinClass itin = AnyALU> :
137  InstR600 <inst,
138          (outs R600_Reg128:$dst),
139          (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
140          !strconcat(opName, "$dst, $src0, $src1, $src2"),
141          pattern,
142          itin
143  >;
144
145def TEX_SHADOW : PatLeaf<
146  (imm),
147  [{uint32_t TType = (uint32_t)N->getZExtValue();
148    return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
149  }]
150>;
151
152class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
153                 dag ins, string asm, list<dag> pattern> :
154    InstR600ISA <outs, ins, asm, pattern>
155{
156  bits<7>  RW_GPR;
157  bits<7>  INDEX_GPR;
158
159  bits<2>  RIM;
160  bits<2>  TYPE;
161  bits<1>  RW_REL;
162  bits<2>  ELEM_SIZE;
163
164  bits<12> ARRAY_SIZE;
165  bits<4>  COMP_MASK;
166  bits<4>  BURST_COUNT;
167  bits<1>  VPM;
168  bits<1>  EOP;
169  bits<1>  MARK;
170  bits<1>  BARRIER;
171
172  /* CF_ALLOC_EXPORT_WORD0_RAT */
173  let Inst{3-0}   = rat_id;
174  let Inst{9-4}   = rat_inst;
175  let Inst{10}    = 0; /* Reserved */
176  let Inst{12-11} = RIM;
177  let Inst{14-13} = TYPE;
178  let Inst{21-15} = RW_GPR;
179  let Inst{22}    = RW_REL;
180  let Inst{29-23} = INDEX_GPR;
181  let Inst{31-30} = ELEM_SIZE;
182
183  /* CF_ALLOC_EXPORT_WORD1_BUF */
184  let Inst{43-32} = ARRAY_SIZE;
185  let Inst{47-44} = COMP_MASK;
186  let Inst{51-48} = BURST_COUNT;
187  let Inst{52}    = VPM;
188  let Inst{53}    = EOP;
189  let Inst{61-54} = cf_inst;
190  let Inst{62}    = MARK;
191  let Inst{63}    = BARRIER;
192}
193
194/*
195def store_global : PatFrag<(ops node:$value, node:$ptr),
196                           (store node:$value, node:$ptr),
197                           [{
198                            const Value *Src;
199                            const PointerType *Type;
200                            if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
201                                 PT = dyn_cast<PointerType>(Src->getType()))) {
202                              return PT->getAddressSpace() == 1;
203                            }
204                            return false;
205                           }]>;
206
207*/
208
209def load_param : PatFrag<(ops node:$ptr),
210                         (load node:$ptr),
211                          [{
212                           const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
213                           if (Src) {
214                                PointerType * PT = dyn_cast<PointerType>(Src->getType());
215                                return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
216                           }
217                           return false;
218                          }]>;
219
220//class EG_CF <bits<32> inst, string asm> :
221//    InstR600 <inst, (outs), (ins), asm, []>;
222
223/* XXX: We will use this when we emit the real ISA.
224  bits<24> ADDR = 0;
225  bits<3> JTS = 0;
226
227  bits<3> PC = 0;
228  bits<5> CF_CONS = 0;
229  bits<2> COND = 0;
230  bits<6> COUNT = 0;
231  bits<1> VPM = 0;
232  bits<1> EOP = 0;
233  bits<8> CF_INST = 0;
234  bits<1> WQM = 0;
235  bits<1> B = 0;
236
237  let Inst{23-0} = ADDR;
238  let Inst{26-24} = JTS;
239  let Inst{34-32} = PC;
240  let Inst{39-35} = CF_CONST;
241  let Inst{41-40} = COND;
242  let Inst{47-42} = COUNT;
243  let Inst{52} = VPM;
244  let Inst{53} = EOP;
245  let Inst{61-54} = CF_INST;
246  let Inst{62} = WQM;
247  let Inst{63} = B;
248//}
249*/
250def isR600 : Predicate<"Subtarget.device()"
251                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
252def isR700 : Predicate<"Subtarget.device()"
253                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
254                            "Subtarget.device()->getDeviceFlag()"
255                            ">= OCL_DEVICE_RV710">;
256def isEG : Predicate<"Subtarget.device()"
257                            "->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
258                            "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
259def isCayman : Predicate<"Subtarget.device()"
260                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
261def isEGorCayman : Predicate<"Subtarget.device()"
262                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
263			    "|| Subtarget.device()->getGeneration() =="
264			    "AMDGPUDeviceInfo::HD6XXX">;
265
266def isR600toCayman : Predicate<
267                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
268
269
270let Predicates = [isR600toCayman] in { 
271
272/* ------------------------------------------- */
273/* Common Instructions R600, R700, Evergreen, Cayman */
274/* ------------------------------------------- */
275def ADD : R600_2OP <
276  0x0, "ADD",
277  [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
278>;
279
280// Non-IEEE MUL: 0 * anything = 0
281def MUL : R600_2OP <
282  0x1, "MUL NON-IEEE",
283  [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
284>;
285
286def MUL_IEEE : R600_2OP <
287  0x2, "MUL_IEEE",
288  [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
289>;
290
291def MAX : R600_2OP <
292  0x3, "MAX",
293  [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
294>;
295
296def MIN : R600_2OP <
297  0x4, "MIN",
298  [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
299>;
300
301/* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
302 * so some of the instruction names don't match the asm string.
303 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
304 */
305
306def SETE : R600_2OP <
307  0x08, "SETE",
308  [(set R600_Reg32:$dst,
309   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
310             COND_EQ))]
311>;
312
313def SGT : R600_2OP <
314  0x09, "SETGT",
315  [(set R600_Reg32:$dst,
316   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
317              COND_GT))]
318>;
319
320def SGE : R600_2OP <
321  0xA, "SETGE",
322  [(set R600_Reg32:$dst,
323   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
324              COND_GE))]
325>;
326
327def SNE : R600_2OP <
328  0xB, "SETNE",
329  [(set R600_Reg32:$dst,
330   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
331    COND_NE))]
332>;
333
334def FRACT : R600_1OP <
335  0x10, "FRACT",
336  [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
337>;
338
339def TRUNC : R600_1OP <
340  0x11, "TRUNC",
341  [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
342>;
343
344def CEIL : R600_1OP <
345  0x12, "CEIL",
346  [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
347>;
348
349def RNDNE : R600_1OP <
350  0x13, "RNDNE",
351  [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
352>;
353
354def FLOOR : R600_1OP <
355  0x14, "FLOOR",
356  [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
357>;
358
359def MOV : R600_1OP <0x19, "MOV", []>;
360
361class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
362  (outs R600_Reg32:$dst),
363  (ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
364  "MOV_IMM $dst, $imm",
365  [], AnyALU
366>;
367
368def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
369def : Pat <
370  (imm:$val),
371  (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
372>;
373
374def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
375def : Pat <
376  (fpimm:$val),
377  (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
378>;
379
380def KILLGT : R600_2OP <
381  0x2D, "KILLGT",
382  []
383>;
384
385def AND_INT : R600_2OP <
386  0x30, "AND_INT",
387  [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
388>;
389
390def OR_INT : R600_2OP <
391  0x31, "OR_INT",
392  [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
393>;
394
395def XOR_INT : R600_2OP <
396  0x32, "XOR_INT",
397  [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
398>;
399
400def NOT_INT : R600_1OP <
401  0x33, "NOT_INT",
402  [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
403>;
404
405def ADD_INT : R600_2OP <
406  0x34, "ADD_INT",
407  [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
408>;
409
410def SUB_INT : R600_2OP <
411	0x35, "SUB_INT",
412	[(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
413>;
414
415def MAX_INT : R600_2OP <
416  0x36, "MAX_INT",
417  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
418
419def MIN_INT : R600_2OP <
420  0x37, "MIN_INT",
421  [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
422
423def MAX_UINT : R600_2OP <
424  0x38, "MAX_UINT",
425  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
426>;
427
428def MIN_UINT : R600_2OP <
429  0x39, "MIN_UINT",
430  [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
431>;
432
433def SETE_INT : R600_2OP <
434  0x3A, "SETE_INT",
435  [(set (i32 R600_Reg32:$dst),
436   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
437>;
438
439def SETGT_INT : R600_2OP <
440  0x3B, "SGT_INT",
441  [(set (i32 R600_Reg32:$dst),
442   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
443>;
444
445def SETGE_INT : R600_2OP <
446	0x3C, "SETGE_INT",
447	[(set (i32 R600_Reg32:$dst),
448   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
449>;
450
451def SETNE_INT : R600_2OP <
452  0x3D, "SETNE_INT",
453  [(set (i32 R600_Reg32:$dst),
454   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
455>;
456
457def SETGT_UINT : R600_2OP <
458  0x3E, "SETGT_UINT",
459  [(set (i32 R600_Reg32:$dst),
460   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
461>;
462
463def SETGE_UINT : R600_2OP <
464  0x3F, "SETGE_UINT",
465  [(set (i32 R600_Reg32:$dst),
466    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
467>;
468
469def CNDE_INT : R600_3OP <
470	0x1C, "CNDE_INT",
471  [(set (i32 R600_Reg32:$dst),
472   (select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
473>;
474
475/* Texture instructions */
476
477
478def TEX_LD : R600_TEX <
479  0x03, "TEX_LD",
480  [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
481> {
482let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
483let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
484}
485
486def TEX_GET_TEXTURE_RESINFO : R600_TEX <
487  0x04, "TEX_GET_TEXTURE_RESINFO",
488  [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
489>;
490
491def TEX_GET_GRADIENTS_H : R600_TEX <
492  0x07, "TEX_GET_GRADIENTS_H",
493  [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
494>;
495
496def TEX_GET_GRADIENTS_V : R600_TEX <
497  0x08, "TEX_GET_GRADIENTS_V",
498  [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
499>;
500
501def TEX_SET_GRADIENTS_H : R600_TEX <
502  0x0B, "TEX_SET_GRADIENTS_H",
503  []
504>;
505
506def TEX_SET_GRADIENTS_V : R600_TEX <
507  0x0C, "TEX_SET_GRADIENTS_V",
508  []
509>;
510
511def TEX_SAMPLE : R600_TEX <
512  0x10, "TEX_SAMPLE",
513  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
514>;
515
516def TEX_SAMPLE_C : R600_TEX <
517  0x18, "TEX_SAMPLE_C",
518  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
519>;
520
521def TEX_SAMPLE_L : R600_TEX <
522  0x11, "TEX_SAMPLE_L",
523  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
524>;
525
526def TEX_SAMPLE_C_L : R600_TEX <
527  0x19, "TEX_SAMPLE_C_L",
528  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
529>;
530
531def TEX_SAMPLE_LB : R600_TEX <
532  0x12, "TEX_SAMPLE_LB",
533  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
534>;
535
536def TEX_SAMPLE_C_LB : R600_TEX <
537  0x1A, "TEX_SAMPLE_C_LB",
538  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
539>;
540
541def TEX_SAMPLE_G : R600_TEX <
542  0x14, "TEX_SAMPLE_G",
543  []
544>;
545
546def TEX_SAMPLE_C_G : R600_TEX <
547  0x1C, "TEX_SAMPLE_C_G",
548  []
549>;
550
551/* Helper classes for common instructions */
552
553class MUL_LIT_Common <bits<32> inst> : R600_3OP <
554  inst, "MUL_LIT",
555  []
556>;
557
558class MULADD_Common <bits<32> inst> : R600_3OP <
559  inst, "MULADD",
560  [(set (f32 R600_Reg32:$dst),
561   (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
562>;
563
564class CNDE_Common <bits<32> inst> : R600_3OP <
565  inst, "CNDE",
566  [(set (f32 R600_Reg32:$dst),
567   (select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
568>;
569
570class CNDGT_Common <bits<32> inst> : R600_3OP <
571  inst, "CNDGT",
572  []
573>;
574  
575class CNDGE_Common <bits<32> inst> : R600_3OP <
576  inst, "CNDGE",
577  [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
578>;
579
580class DOT4_Common <bits<32> inst> : R600_REDUCTION <
581  inst,
582  (ins R600_Reg128:$src0, R600_Reg128:$src1),
583  "DOT4 $dst $src0, $src1",
584  [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
585>;
586
587class CUBE_Common <bits<32> inst> : InstR600 <
588  inst,
589  (outs R600_Reg128:$dst),
590  (ins R600_Reg128:$src),
591  "CUBE $dst $src",
592  [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
593  VecALU
594>;
595
596class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
597  inst, "EXP_IEEE",
598  [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
599>;
600
601class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
602  inst, "FLT_TO_INT",
603  [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
604>;
605
606class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
607  inst, "INT_TO_FLT",
608  [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
609>;
610
611class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
612  inst, "FLT_TO_UINT",
613  [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
614>;
615
616class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
617  inst, "UINT_TO_FLT",
618  [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
619>;
620
621class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
622  inst, "LOG_CLAMPED",
623  []
624>;
625
626class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
627  inst, "LOG_IEEE",
628  [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
629>;
630
631class LSHL_Common <bits<32> inst> : R600_2OP <
632  inst, "LSHL $dst, $src0, $src1",
633  [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
634>;
635
636class LSHR_Common <bits<32> inst> : R600_2OP <
637  inst, "LSHR $dst, $src0, $src1",
638  [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
639>;
640
641class ASHR_Common <bits<32> inst> : R600_2OP <
642  inst, "ASHR $dst, $src0, $src1",
643  [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
644>;
645
646class MULHI_INT_Common <bits<32> inst> : R600_2OP <
647  inst, "MULHI_INT $dst, $src0, $src1",
648  [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
649>;
650
651class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
652  inst, "MULHI $dst, $src0, $src1",
653  [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
654>;
655
656class MULLO_INT_Common <bits<32> inst> : R600_2OP <
657  inst, "MULLO_INT $dst, $src0, $src1",
658  [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
659>;
660
661class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
662  inst, "MULLO_UINT $dst, $src0, $src1",
663  []
664>;
665
666class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
667  inst, "RECIP_CLAMPED",
668  []
669>;
670
671class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
672  inst, "RECIP_IEEE",
673  [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
674>;
675
676class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
677  inst, "RECIP_INT $dst, $src",
678  [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
679>;
680
681class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
682  inst, "RECIPSQRT_CLAMPED",
683  [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
684>;
685
686class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
687  inst, "RECIPSQRT_IEEE",
688  []
689>;
690
691class SIN_Common <bits<32> inst> : R600_1OP <
692  inst, "SIN", []>{
693  let Trig = 1;
694}
695
696class COS_Common <bits<32> inst> : R600_1OP <
697  inst, "COS", []> {
698  let Trig = 1;
699}
700
701/* Helper patterns for complex intrinsics */
702/* -------------------------------------- */
703
704class DIV_Common <InstR600 recip_ieee> : Pat<
705  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
706  (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
707>;
708
709class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
710  (int_AMDGPU_ssg R600_Reg32:$src),
711  (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
712>;
713
714class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
715  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
716  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
717>;
718
719/* ---------------------- */
720/* R600 / R700 Only Instructions */
721/* ---------------------- */
722
723let Predicates = [isR600] in {
724
725  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
726  def MULADD_r600 : MULADD_Common<0x10>;
727  def CNDE_r600 : CNDE_Common<0x18>;
728  def CNDGT_r600 : CNDGT_Common<0x19>;
729  def CNDGE_r600 : CNDGE_Common<0x1A>;
730  def DOT4_r600 : DOT4_Common<0x50>;
731  def CUBE_r600 : CUBE_Common<0x52>;
732  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
733  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
734  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
735  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
736  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
737  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
738  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
739  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
740  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
741  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
742  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
743  def SIN_r600 : SIN_Common<0x6E>;
744  def COS_r600 : COS_Common<0x6F>;
745  def ASHR_r600 : ASHR_Common<0x70>;
746  def LSHR_r600 : LSHR_Common<0x71>;
747  def LSHL_r600 : LSHL_Common<0x72>;
748  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
749  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
750  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
751  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
752  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
753
754  def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
755  def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
756  def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
757  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
758
759}
760
761// Helper pattern for normalizing inputs to triginomic instructions for R700+
762// cards.
763class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
764  (intr R600_Reg32:$src),
765  (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
766>;
767
768//===----------------------------------------------------------------------===//
769// R700 Only instructions
770//===----------------------------------------------------------------------===//
771
772let Predicates = [isR700] in {
773  def SIN_r700 : SIN_Common<0x6E>;
774  def COS_r700 : COS_Common<0x6F>;
775
776  // R700 normalizes inputs to SIN/COS the same as EG
777  def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
778  def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
779}
780
781//===----------------------------------------------------------------------===//
782// Evergreen Only instructions
783//===----------------------------------------------------------------------===//
784
785let Predicates = [isEG] in {
786  
787def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
788
789def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
790def MULHI_INT_eg : MULHI_INT_Common<0x90>;
791def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
792def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
793def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
794
795} // End Predicates = [isEG]
796
797/* ------------------------------- */
798/* Evergreen / Cayman Instructions */
799/* ------------------------------- */
800
801let Predicates = [isEGorCayman] in {
802
803  // BFE_UINT - bit_extract, an optimization for mask and shift
804  // Src0 = Input
805  // Src1 = Offset
806  // Src2 = Width
807  //
808  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
809  //
810  // Example Usage:
811  // (Offset, Width)
812  //
813  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
814  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
815  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
816  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
817  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
818    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
819                                                      R600_Reg32:$src1,
820                                                      R600_Reg32:$src2))],
821    VecALU
822  >;
823
824  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
825    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
826                                          R600_Reg32:$src2))],
827    VecALU
828  >;
829
830  def MULADD_eg : MULADD_Common<0x14>;
831  def ASHR_eg : ASHR_Common<0x15>;
832  def LSHR_eg : LSHR_Common<0x16>;
833  def LSHL_eg : LSHL_Common<0x17>;
834  def CNDE_eg : CNDE_Common<0x19>;
835  def CNDGT_eg : CNDGT_Common<0x1A>;
836  def CNDGE_eg : CNDGE_Common<0x1B>;
837  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
838  def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
839  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
840  def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
841  def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
842  def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
843  def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
844  def SIN_eg : SIN_Common<0x8D>;
845  def COS_eg : COS_Common<0x8E>;
846  def DOT4_eg : DOT4_Common<0xBE>;
847  def CUBE_eg : CUBE_Common<0xC0>;
848
849  def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
850  def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
851  def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
852  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
853
854  def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
855  def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
856
857  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
858    let Pattern = [];
859  }
860
861  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
862
863  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
864    let Pattern = [];
865  }
866
867  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
868
869  def : Pat<(fp_to_sint R600_Reg32:$src),
870    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
871
872  def : Pat<(fp_to_uint R600_Reg32:$src),
873    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
874
875//===----------------------------------------------------------------------===//
876// Memory read/write instructions
877//===----------------------------------------------------------------------===//
878
879let usesCustomInserter = 1 in {
880
881def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
882  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
883  "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
884  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
885{
886  let RIM         = 0;
887  /* XXX: Have a separate instruction for non-indexed writes. */
888  let TYPE        = 1;
889  let RW_REL      = 0;
890  let ELEM_SIZE   = 0;
891
892  let ARRAY_SIZE  = 0;
893  let COMP_MASK   = 1;
894  let BURST_COUNT = 0;
895  let VPM         = 0;
896  let EOP         = 0;
897  let MARK        = 0;
898  let BARRIER     = 1;
899}
900
901} // End usesCustomInserter = 1
902
903// Floating point global_store
904def : Pat <
905  (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
906  (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
907>;
908
909class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
910    : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
911
912  // Operands
913  bits<7> DST_GPR;
914  bits<7> SRC_GPR;
915
916  // Static fields
917  bits<5> VC_INST = 0;
918  bits<2> FETCH_TYPE = 2;
919  bits<1> FETCH_WHOLE_QUAD = 0;
920  bits<8> BUFFER_ID = buffer_id;
921  bits<1> SRC_REL = 0;
922  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
923  // to store vertex addresses in any channel, not just X.
924  bits<2> SRC_SEL_X = 0;
925  bits<6> MEGA_FETCH_COUNT;
926  bits<1> DST_REL = 0;
927  bits<3> DST_SEL_X;
928  bits<3> DST_SEL_Y;
929  bits<3> DST_SEL_Z;
930  bits<3> DST_SEL_W;
931  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
932  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
933  // however, based on my testing if USE_CONST_FIELDS is set, then all
934  // these fields need to be set to 0.
935  bits<1> USE_CONST_FIELDS = 0;
936  bits<6> DATA_FORMAT;
937  bits<2> NUM_FORMAT_ALL = 1;
938  bits<1> FORMAT_COMP_ALL = 0;
939  bits<1> SRF_MODE_ALL = 0;
940
941  // LLVM can only encode 64-bit instructions, so these fields are manually
942  // encoded in R600CodeEmitter
943  //
944  // bits<16> OFFSET;
945  // bits<2>  ENDIAN_SWAP = 0;
946  // bits<1>  CONST_BUF_NO_STRIDE = 0;
947  // bits<1>  MEGA_FETCH = 0;
948  // bits<1>  ALT_CONST = 0;
949  // bits<2>  BUFFER_INDEX_MODE = 0;
950
951  // VTX_WORD0
952  let Inst{4-0}   = VC_INST;
953  let Inst{6-5}   = FETCH_TYPE;
954  let Inst{7}     = FETCH_WHOLE_QUAD;
955  let Inst{15-8}  = BUFFER_ID;
956  let Inst{22-16} = SRC_GPR;
957  let Inst{23}    = SRC_REL;
958  let Inst{25-24} = SRC_SEL_X;
959  let Inst{31-26} = MEGA_FETCH_COUNT;
960
961  // VTX_WORD1_GPR
962  let Inst{38-32} = DST_GPR;
963  let Inst{39}    = DST_REL;
964  let Inst{40}    = 0; // Reserved
965  let Inst{43-41} = DST_SEL_X;
966  let Inst{46-44} = DST_SEL_Y;
967  let Inst{49-47} = DST_SEL_Z;
968  let Inst{52-50} = DST_SEL_W;
969  let Inst{53}    = USE_CONST_FIELDS;
970  let Inst{59-54} = DATA_FORMAT;
971  let Inst{61-60} = NUM_FORMAT_ALL;
972  let Inst{62}    = FORMAT_COMP_ALL;
973  let Inst{63}    = SRF_MODE_ALL;
974
975  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
976  // is done in R600CodeEmitter
977  //
978  // Inst{79-64} = OFFSET;
979  // Inst{81-80} = ENDIAN_SWAP;
980  // Inst{82}    = CONST_BUF_NO_STRIDE;
981  // Inst{83}    = MEGA_FETCH;
982  // Inst{84}    = ALT_CONST;
983  // Inst{86-85} = BUFFER_INDEX_MODE;
984  // Inst{95-86} = 0; Reserved
985
986  // VTX_WORD3 (Padding)
987  //
988  // Inst{127-96} = 0;
989}
990
991class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
992    : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
993
994  let MEGA_FETCH_COUNT = 4;
995  let DST_SEL_X        = 0;
996  let DST_SEL_Y        = 7;   // Masked
997  let DST_SEL_Z        = 7;   // Masked
998  let DST_SEL_W        = 7;   // Masked
999  let DATA_FORMAT      = 0xD; // COLOR_32
1000
1001  // This is not really necessary, but there were some GPU hangs that appeared
1002  // to be caused by ALU instructions in the next instruction group that wrote
1003  // to the $ptr registers of the VTX_READ.  
1004  // e.g.
1005  // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
1006  // %T2_X<def> = MOV %ZERO
1007  //Adding this constraint prevents this from happening.
1008  let Constraints = "$ptr.ptr = $dst";
1009}
1010
1011class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1012    : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1013
1014  let MEGA_FETCH_COUNT = 16;
1015  let DST_SEL_X        =  0;
1016  let DST_SEL_Y        =  1;
1017  let DST_SEL_Z        =  2;
1018  let DST_SEL_W        =  3;
1019  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1020
1021  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1022  // that holds its buffer address to avoid potential hangs.  We can't use
1023  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1024  // registers are different sizes.
1025}
1026
1027//===----------------------------------------------------------------------===//
1028// VTX Read from parameter memory space
1029//===----------------------------------------------------------------------===//
1030
1031class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1032  [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1033>;
1034
1035def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1036def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1037
1038
1039//===----------------------------------------------------------------------===//
1040// VTX Read from global memory space
1041//===----------------------------------------------------------------------===//
1042
1043// 32-bit reads
1044
1045class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1046  [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1047>;
1048
1049def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1050def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1051
1052// 128-bit reads
1053
1054class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1055  [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1056>;
1057
1058def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1059def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1060
1061}
1062
1063let Predicates = [isCayman] in {
1064
1065let isVector = 1 in { 
1066
1067def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1068
1069def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1070def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1071def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1072def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1073
1074} // End isVector = 1
1075
1076// RECIP_UINT emulation for Cayman
1077def : Pat <
1078  (AMDGPUurecip R600_Reg32:$src0),
1079  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1080                            (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1081>;
1082
1083} // End isCayman
1084
1085/* Other Instructions */
1086
1087let isCodeGenOnly = 1 in {
1088/*
1089  def SWIZZLE : AMDGPUShaderInst <
1090    (outs GPRV4F32:$dst),
1091    (ins GPRV4F32:$src0, i32imm:$src1),
1092    "SWIZZLE $dst, $src0, $src1",
1093    [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1094  >;
1095*/
1096
1097  def LAST : AMDGPUShaderInst <
1098    (outs),
1099    (ins),
1100    "LAST",
1101    []
1102  >;
1103
1104  def GET_CHAN : AMDGPUShaderInst <
1105    (outs R600_Reg32:$dst),
1106    (ins R600_Reg128:$src0, i32imm:$src1),
1107    "GET_CHAN $dst, $src0, $src1",
1108    []
1109  >;
1110
1111  def MULLIT : AMDGPUShaderInst <
1112    (outs R600_Reg128:$dst),
1113    (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1114    "MULLIT $dst, $src0, $src1",
1115    [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1116  >;
1117
1118let usesCustomInserter = 1, isPseudo = 1 in {
1119
1120class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1121  (outs R600_TReg32:$dst),
1122  (ins),
1123  asm,
1124  [(set R600_TReg32:$dst, (intr))]
1125>;
1126
1127def NGROUPS_X : R600PreloadInst <"NGROUPS_X", int_r600_read_ngroups_x>;
1128def NGROUPS_Y : R600PreloadInst <"NGROUPS_Y", int_r600_read_ngroups_y>;
1129def NGROUPS_Z : R600PreloadInst <"NGROUPS_Z", int_r600_read_ngroups_z>;
1130
1131def GLOBAL_SIZE_X : R600PreloadInst <"GLOBAL_SIZE_X",
1132                                     int_r600_read_global_size_x>;
1133def GLOBAL_SIZE_Y : R600PreloadInst <"GLOBAL_SIZE_Y",
1134                                     int_r600_read_global_size_y>;
1135def GLOBAL_SIZE_Z : R600PreloadInst <"GLOBAL_SIZE_Z",
1136                                     int_r600_read_global_size_z>;
1137
1138def LOCAL_SIZE_X : R600PreloadInst <"LOCAL_SIZE_X",
1139                                    int_r600_read_local_size_x>;
1140def LOCAL_SIZE_Y : R600PreloadInst <"LOCAL_SIZE_Y",
1141                                    int_r600_read_local_size_y>;
1142def LOCAL_SIZE_Z : R600PreloadInst <"LOCAL_SIZE_Z",
1143                                    int_r600_read_local_size_z>;
1144
1145def R600_LOAD_CONST : AMDGPUShaderInst <
1146  (outs R600_Reg32:$dst),
1147  (ins i32imm:$src0),
1148  "R600_LOAD_CONST $dst, $src0",
1149  [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1150>;
1151
1152def RESERVE_REG : AMDGPUShaderInst <
1153  (outs),
1154  (ins i32imm:$src),
1155  "RESERVE_REG $src",
1156  [(int_AMDGPU_reserve_reg imm:$src)]
1157>;
1158
1159def TXD: AMDGPUShaderInst <
1160  (outs R600_Reg128:$dst),
1161  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1162  "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1163  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1164>;
1165
1166def TXD_SHADOW: AMDGPUShaderInst <
1167  (outs R600_Reg128:$dst),
1168  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1169  "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1170  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1171>;
1172
1173} // End usesCustomInserter = 1, isPseudo = 1
1174
1175} // End isCodeGenOnly = 1
1176
1177def CLAMP_R600 :  CLAMP <R600_Reg32>;
1178def FABS_R600 : FABS<R600_Reg32>;
1179def FNEG_R600 : FNEG<R600_Reg32>;
1180
1181let usesCustomInserter = 1 in {
1182
1183def MASK_WRITE : AMDGPUShaderInst <
1184    (outs),
1185    (ins R600_Reg32:$src),
1186    "MASK_WRITE $src",
1187    []
1188>;
1189
1190} // End usesCustomInserter = 1
1191
1192//===----------------------------------------------------------------------===//
1193// ISel Patterns
1194//===----------------------------------------------------------------------===//
1195
1196// KIL Patterns
1197def KILP : Pat <
1198  (int_AMDGPU_kilp),
1199  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1200>;
1201
1202def KIL : Pat <
1203  (int_AMDGPU_kill R600_Reg32:$src0),
1204  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1205>;
1206
1207// SGT Reverse args
1208def : Pat <
1209  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1210  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1211>;
1212
1213// SGE Reverse args
1214def : Pat <
1215  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1216  (SGE R600_Reg32:$src1, R600_Reg32:$src0) 
1217>;
1218
1219// SETGT_INT reverse args
1220def : Pat <
1221  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1222  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1223>;
1224
1225// SETGE_INT reverse args
1226def : Pat <
1227  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1228  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1229>;
1230
1231// SETGT_UINT reverse args
1232def : Pat <
1233  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1234  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1235>;
1236
1237// SETGE_UINT reverse args
1238def : Pat <
1239  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1240  (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1241>;
1242
1243// The next two patterns are special cases for handling 'true if ordered' and
1244// 'true if unordered' conditionals.  The assumption here is that the behavior of
1245// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1246// described here:
1247// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1248// We assume that  SETE returns false when one of the operands is NAN and
1249// SNE returns true when on of the operands is NAN
1250
1251//SETE - 'true if ordered'
1252def : Pat <
1253  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1254  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1255>;
1256
1257//SNE - 'true if unordered'
1258def : Pat <
1259  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1260  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1261>;
1262
1263def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1264def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1265def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1266def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1267
1268def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1269def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1270def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1271def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1272
1273def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1274def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1275def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1276def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1277
1278def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1279def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1280def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1281def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1282
1283def : Vector_Build <v4f32, R600_Reg32>;
1284def : Vector_Build <v4i32, R600_Reg32>;
1285
1286// bitconvert patterns
1287
1288def : BitConvert <i32, f32, R600_Reg32>;
1289def : BitConvert <f32, i32, R600_Reg32>;
1290def : BitConvert <v4f32, v4i32, R600_Reg128>;
1291
1292} // End isR600toCayman Predicate
1293