R600Instructions.td revision e61c54cb6b220dea243568919a001e5dc7c01303
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<32> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0;
24  bits<2> FlagOperandIdx = 0;
25
26  let Inst = inst;
27  let Namespace = "AMDGPU";
28  let OutOperandList = outs;
29  let InOperandList = ins;
30  let AsmString = asm;
31  let Pattern = pattern;
32  let Itinerary = itin;
33
34  let TSFlags{4} = Trig;
35  let TSFlags{5} = Op3;
36
37  // Vector instructions are instructions that must fill all slots in an
38  // instruction group
39  let TSFlags{6} = isVector;
40  let TSFlags{8-7} = FlagOperandIdx;
41}
42
43class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
44    AMDGPUInst <outs, ins, asm, pattern>
45{
46  field bits<64> Inst;
47
48  let Namespace = "AMDGPU";
49}
50
51def MEMxi : Operand<iPTR> {
52  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
53}
54
55def MEMrr : Operand<iPTR> {
56  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
57}
58
59def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
60def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
61def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
62
63class R600_ALU {
64
65  bits<7> DST_GPR = 0;
66  bits<9> SRC0_SEL = 0;
67  bits<1> SRC0_NEG = 0;
68  bits<9> SRC1_SEL = 0;
69  bits<1> SRC1_NEG = 0;
70  bits<1> CLAMP = 0;
71  
72}
73
74def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
75                                     (ops PRED_SEL_OFF)>;
76
77
78class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
79                InstrItinClass itin = AnyALU> :
80  InstR600 <inst,
81          (outs R600_Reg32:$dst),
82          (ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
83          !strconcat(opName, " $dst, $src ($p)"),
84          pattern,
85          itin
86  >;
87
88class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
89                InstrItinClass itin = AnyALU> :
90  InstR600 <inst,
91          (outs R600_Reg32:$dst),
92          (ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
93          !strconcat(opName, " $dst, $src0, $src1"),
94          pattern,
95          itin
96  >;
97
98class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
99                InstrItinClass itin = AnyALU> :
100  InstR600 <inst,
101          (outs R600_Reg32:$dst),
102          (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
103          !strconcat(opName, " $dst, $src0, $src1, $src2"),
104          pattern,
105          itin>{
106
107    let Op3 = 1;
108  }
109
110
111
112def PRED_X : InstR600 <0, (outs R600_Predicate_Bit:$dst),
113           (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
114           "PRED $dst, $src0, $src1",
115           [], NullALU>
116{
117  let DisableEncoding = "$src0";
118  field bits<32> Inst;
119  bits<32> src1;
120
121  let Inst = src1;
122  let FlagOperandIdx = 3;
123}
124
125let isTerminator = 1, isBranch = 1, isPseudo = 1 in {
126def JUMP : InstR600 <0x10,
127          (outs),
128          (ins brtarget:$target, R600_Pred:$p),
129          "JUMP $target ($p)",
130          [], AnyALU
131  >;
132}
133
134class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
135                      InstrItinClass itin = VecALU> :
136  InstR600 <inst,
137          (outs R600_Reg32:$dst),
138          ins,
139          asm,
140          pattern,
141          itin
142
143  >;
144
145class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
146                InstrItinClass itin = AnyALU> :
147  InstR600 <inst,
148          (outs R600_Reg128:$dst),
149          (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
150          !strconcat(opName, "$dst, $src0, $src1, $src2"),
151          pattern,
152          itin
153  >;
154
155def TEX_SHADOW : PatLeaf<
156  (imm),
157  [{uint32_t TType = (uint32_t)N->getZExtValue();
158    return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
159  }]
160>;
161
162class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
163                 dag ins, string asm, list<dag> pattern> :
164    InstR600ISA <outs, ins, asm, pattern>
165{
166  bits<7>  RW_GPR;
167  bits<7>  INDEX_GPR;
168
169  bits<2>  RIM;
170  bits<2>  TYPE;
171  bits<1>  RW_REL;
172  bits<2>  ELEM_SIZE;
173
174  bits<12> ARRAY_SIZE;
175  bits<4>  COMP_MASK;
176  bits<4>  BURST_COUNT;
177  bits<1>  VPM;
178  bits<1>  EOP;
179  bits<1>  MARK;
180  bits<1>  BARRIER;
181
182  /* CF_ALLOC_EXPORT_WORD0_RAT */
183  let Inst{3-0}   = rat_id;
184  let Inst{9-4}   = rat_inst;
185  let Inst{10}    = 0; /* Reserved */
186  let Inst{12-11} = RIM;
187  let Inst{14-13} = TYPE;
188  let Inst{21-15} = RW_GPR;
189  let Inst{22}    = RW_REL;
190  let Inst{29-23} = INDEX_GPR;
191  let Inst{31-30} = ELEM_SIZE;
192
193  /* CF_ALLOC_EXPORT_WORD1_BUF */
194  let Inst{43-32} = ARRAY_SIZE;
195  let Inst{47-44} = COMP_MASK;
196  let Inst{51-48} = BURST_COUNT;
197  let Inst{52}    = VPM;
198  let Inst{53}    = EOP;
199  let Inst{61-54} = cf_inst;
200  let Inst{62}    = MARK;
201  let Inst{63}    = BARRIER;
202}
203
204/*
205def store_global : PatFrag<(ops node:$value, node:$ptr),
206                           (store node:$value, node:$ptr),
207                           [{
208                            const Value *Src;
209                            const PointerType *Type;
210                            if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
211                                 PT = dyn_cast<PointerType>(Src->getType()))) {
212                              return PT->getAddressSpace() == 1;
213                            }
214                            return false;
215                           }]>;
216
217*/
218
219def load_param : PatFrag<(ops node:$ptr),
220                         (load node:$ptr),
221                          [{
222                           const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
223                           if (Src) {
224                                PointerType * PT = dyn_cast<PointerType>(Src->getType());
225                                return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
226                           }
227                           return false;
228                          }]>;
229
230//class EG_CF <bits<32> inst, string asm> :
231//    InstR600 <inst, (outs), (ins), asm, []>;
232
233/* XXX: We will use this when we emit the real ISA.
234  bits<24> ADDR = 0;
235  bits<3> JTS = 0;
236
237  bits<3> PC = 0;
238  bits<5> CF_CONS = 0;
239  bits<2> COND = 0;
240  bits<6> COUNT = 0;
241  bits<1> VPM = 0;
242  bits<1> EOP = 0;
243  bits<8> CF_INST = 0;
244  bits<1> WQM = 0;
245  bits<1> B = 0;
246
247  let Inst{23-0} = ADDR;
248  let Inst{26-24} = JTS;
249  let Inst{34-32} = PC;
250  let Inst{39-35} = CF_CONST;
251  let Inst{41-40} = COND;
252  let Inst{47-42} = COUNT;
253  let Inst{52} = VPM;
254  let Inst{53} = EOP;
255  let Inst{61-54} = CF_INST;
256  let Inst{62} = WQM;
257  let Inst{63} = B;
258//}
259*/
260def isR600 : Predicate<"Subtarget.device()"
261                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
262def isR700 : Predicate<"Subtarget.device()"
263                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
264                            "Subtarget.device()->getDeviceFlag()"
265                            ">= OCL_DEVICE_RV710">;
266def isEG : Predicate<"Subtarget.device()"
267                            "->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
268                            "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
269def isCayman : Predicate<"Subtarget.device()"
270                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
271def isEGorCayman : Predicate<"Subtarget.device()"
272                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
273			    "|| Subtarget.device()->getGeneration() =="
274			    "AMDGPUDeviceInfo::HD6XXX">;
275
276def isR600toCayman : Predicate<
277                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
278
279
280let Predicates = [isR600toCayman] in { 
281
282/* ------------------------------------------- */
283/* Common Instructions R600, R700, Evergreen, Cayman */
284/* ------------------------------------------- */
285def ADD : R600_2OP <
286  0x0, "ADD",
287  [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
288>;
289
290// Non-IEEE MUL: 0 * anything = 0
291def MUL : R600_2OP <
292  0x1, "MUL NON-IEEE",
293  [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
294>;
295
296def MUL_IEEE : R600_2OP <
297  0x2, "MUL_IEEE",
298  [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
299>;
300
301def MAX : R600_2OP <
302  0x3, "MAX",
303  [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
304>;
305
306def MIN : R600_2OP <
307  0x4, "MIN",
308  [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
309>;
310
311/* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
312 * so some of the instruction names don't match the asm string.
313 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
314 */
315
316def SETE : R600_2OP <
317  0x08, "SETE",
318  [(set R600_Reg32:$dst,
319   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
320             COND_EQ))]
321>;
322
323def SGT : R600_2OP <
324  0x09, "SETGT",
325  [(set R600_Reg32:$dst,
326   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
327              COND_GT))]
328>;
329
330def SGE : R600_2OP <
331  0xA, "SETGE",
332  [(set R600_Reg32:$dst,
333   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
334              COND_GE))]
335>;
336
337def SNE : R600_2OP <
338  0xB, "SETNE",
339  [(set R600_Reg32:$dst,
340   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
341    COND_NE))]
342>;
343
344def FRACT : R600_1OP <
345  0x10, "FRACT",
346  [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
347>;
348
349def TRUNC : R600_1OP <
350  0x11, "TRUNC",
351  [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
352>;
353
354def CEIL : R600_1OP <
355  0x12, "CEIL",
356  [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
357>;
358
359def RNDNE : R600_1OP <
360  0x13, "RNDNE",
361  [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
362>;
363
364def FLOOR : R600_1OP <
365  0x14, "FLOOR",
366  [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
367>;
368
369def MOV : InstR600 <0x19, (outs R600_Reg32:$dst),
370                          (ins R600_Reg32:$src0, i32imm:$flags,
371                               R600_Pred:$p),
372                          "MOV $dst, $src0", [], AnyALU> {
373  let FlagOperandIdx = 2;
374}
375
376class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
377  (outs R600_Reg32:$dst),
378  (ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
379  "MOV_IMM $dst, $imm",
380  [], AnyALU
381>;
382
383def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
384def : Pat <
385  (imm:$val),
386  (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
387>;
388
389def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
390def : Pat <
391  (fpimm:$val),
392  (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
393>;
394
395def KILLGT : InstR600 <0x2D,
396          (outs R600_Reg32:$dst),
397          (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags, R600_Pred:$p,
398               variable_ops),
399          "KILLGT $dst, $src0, $src1, $flags ($p)",
400          [],
401          NullALU>{
402  let FlagOperandIdx = 3;
403}
404
405def AND_INT : R600_2OP <
406  0x30, "AND_INT",
407  [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
408>;
409
410def OR_INT : R600_2OP <
411  0x31, "OR_INT",
412  [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
413>;
414
415def XOR_INT : R600_2OP <
416  0x32, "XOR_INT",
417  [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
418>;
419
420def NOT_INT : R600_1OP <
421  0x33, "NOT_INT",
422  [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
423>;
424
425def ADD_INT : R600_2OP <
426  0x34, "ADD_INT",
427  [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
428>;
429
430def SUB_INT : R600_2OP <
431	0x35, "SUB_INT",
432	[(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
433>;
434
435def MAX_INT : R600_2OP <
436  0x36, "MAX_INT",
437  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
438
439def MIN_INT : R600_2OP <
440  0x37, "MIN_INT",
441  [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
442
443def MAX_UINT : R600_2OP <
444  0x38, "MAX_UINT",
445  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
446>;
447
448def MIN_UINT : R600_2OP <
449  0x39, "MIN_UINT",
450  [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
451>;
452
453def SETE_INT : R600_2OP <
454  0x3A, "SETE_INT",
455  [(set (i32 R600_Reg32:$dst),
456   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
457>;
458
459def SETGT_INT : R600_2OP <
460  0x3B, "SGT_INT",
461  [(set (i32 R600_Reg32:$dst),
462   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
463>;
464
465def SETGE_INT : R600_2OP <
466	0x3C, "SETGE_INT",
467	[(set (i32 R600_Reg32:$dst),
468   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
469>;
470
471def SETNE_INT : R600_2OP <
472  0x3D, "SETNE_INT",
473  [(set (i32 R600_Reg32:$dst),
474   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
475>;
476
477def SETGT_UINT : R600_2OP <
478  0x3E, "SETGT_UINT",
479  [(set (i32 R600_Reg32:$dst),
480   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
481>;
482
483def SETGE_UINT : R600_2OP <
484  0x3F, "SETGE_UINT",
485  [(set (i32 R600_Reg32:$dst),
486    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
487>;
488
489def CNDE_INT : R600_3OP <
490	0x1C, "CNDE_INT",
491  [(set (i32 R600_Reg32:$dst),
492   (select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
493>;
494
495/* Texture instructions */
496
497
498def TEX_LD : R600_TEX <
499  0x03, "TEX_LD",
500  [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
501> {
502let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
503let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
504}
505
506def TEX_GET_TEXTURE_RESINFO : R600_TEX <
507  0x04, "TEX_GET_TEXTURE_RESINFO",
508  [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
509>;
510
511def TEX_GET_GRADIENTS_H : R600_TEX <
512  0x07, "TEX_GET_GRADIENTS_H",
513  [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
514>;
515
516def TEX_GET_GRADIENTS_V : R600_TEX <
517  0x08, "TEX_GET_GRADIENTS_V",
518  [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
519>;
520
521def TEX_SET_GRADIENTS_H : R600_TEX <
522  0x0B, "TEX_SET_GRADIENTS_H",
523  []
524>;
525
526def TEX_SET_GRADIENTS_V : R600_TEX <
527  0x0C, "TEX_SET_GRADIENTS_V",
528  []
529>;
530
531def TEX_SAMPLE : R600_TEX <
532  0x10, "TEX_SAMPLE",
533  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
534>;
535
536def TEX_SAMPLE_C : R600_TEX <
537  0x18, "TEX_SAMPLE_C",
538  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
539>;
540
541def TEX_SAMPLE_L : R600_TEX <
542  0x11, "TEX_SAMPLE_L",
543  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
544>;
545
546def TEX_SAMPLE_C_L : R600_TEX <
547  0x19, "TEX_SAMPLE_C_L",
548  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
549>;
550
551def TEX_SAMPLE_LB : R600_TEX <
552  0x12, "TEX_SAMPLE_LB",
553  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
554>;
555
556def TEX_SAMPLE_C_LB : R600_TEX <
557  0x1A, "TEX_SAMPLE_C_LB",
558  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
559>;
560
561def TEX_SAMPLE_G : R600_TEX <
562  0x14, "TEX_SAMPLE_G",
563  []
564>;
565
566def TEX_SAMPLE_C_G : R600_TEX <
567  0x1C, "TEX_SAMPLE_C_G",
568  []
569>;
570
571/* Helper classes for common instructions */
572
573class MUL_LIT_Common <bits<32> inst> : R600_3OP <
574  inst, "MUL_LIT",
575  []
576>;
577
578class MULADD_Common <bits<32> inst> : R600_3OP <
579  inst, "MULADD",
580  [(set (f32 R600_Reg32:$dst),
581   (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
582>;
583
584class CNDE_Common <bits<32> inst> : R600_3OP <
585  inst, "CNDE",
586  [(set (f32 R600_Reg32:$dst),
587   (select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
588>;
589
590class CNDGT_Common <bits<32> inst> : R600_3OP <
591  inst, "CNDGT",
592  []
593>;
594  
595class CNDGE_Common <bits<32> inst> : R600_3OP <
596  inst, "CNDGE",
597  [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
598>;
599
600class DOT4_Common <bits<32> inst> : R600_REDUCTION <
601  inst,
602  (ins R600_Reg128:$src0, R600_Reg128:$src1, i32imm:$flags),
603  "DOT4 $dst $src0, $src1",
604  []
605  > {
606  let FlagOperandIdx = 3;
607}
608
609class DOT4_Pat <Instruction dot4> : Pat <
610  (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1),
611  (dot4 R600_Reg128:$src0, R600_Reg128:$src1, 0)
612>;
613
614multiclass CUBE_Common <bits<32> inst> {
615
616  def _pseudo : InstR600 <
617    inst,
618    (outs R600_Reg128:$dst),
619    (ins R600_Reg128:$src),
620    "CUBE $dst $src",
621    [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
622    VecALU
623  >;
624
625  def _real : InstR600 <
626    inst,
627    (outs R600_Reg32:$dst),
628    (ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags),
629    "CUBE $dst, $src0, $src1",
630    [], VecALU
631  >{
632    let FlagOperandIdx = 3;
633  }
634}
635
636class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
637  inst, "EXP_IEEE",
638  [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
639>;
640
641class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
642  inst, "FLT_TO_INT",
643  [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
644>;
645
646class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
647  inst, "INT_TO_FLT",
648  [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
649>;
650
651class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
652  inst, "FLT_TO_UINT",
653  [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
654>;
655
656class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
657  inst, "UINT_TO_FLT",
658  [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
659>;
660
661class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
662  inst, "LOG_CLAMPED",
663  []
664>;
665
666class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
667  inst, "LOG_IEEE",
668  [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
669>;
670
671class LSHL_Common <bits<32> inst> : R600_2OP <
672  inst, "LSHL $dst, $src0, $src1",
673  [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
674>;
675
676class LSHR_Common <bits<32> inst> : R600_2OP <
677  inst, "LSHR $dst, $src0, $src1",
678  [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
679>;
680
681class ASHR_Common <bits<32> inst> : R600_2OP <
682  inst, "ASHR $dst, $src0, $src1",
683  [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
684>;
685
686class MULHI_INT_Common <bits<32> inst> : R600_2OP <
687  inst, "MULHI_INT $dst, $src0, $src1",
688  [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
689>;
690
691class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
692  inst, "MULHI $dst, $src0, $src1",
693  [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
694>;
695
696class MULLO_INT_Common <bits<32> inst> : R600_2OP <
697  inst, "MULLO_INT $dst, $src0, $src1",
698  [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
699>;
700
701class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
702  inst, "MULLO_UINT $dst, $src0, $src1",
703  []
704>;
705
706class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
707  inst, "RECIP_CLAMPED",
708  []
709>;
710
711class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
712  inst, "RECIP_IEEE",
713  [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
714>;
715
716class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
717  inst, "RECIP_INT $dst, $src",
718  [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
719>;
720
721class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
722  inst, "RECIPSQRT_CLAMPED",
723  [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
724>;
725
726class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
727  inst, "RECIPSQRT_IEEE",
728  []
729>;
730
731class SIN_Common <bits<32> inst> : R600_1OP <
732  inst, "SIN", []>{
733  let Trig = 1;
734}
735
736class COS_Common <bits<32> inst> : R600_1OP <
737  inst, "COS", []> {
738  let Trig = 1;
739}
740
741/* Helper patterns for complex intrinsics */
742/* -------------------------------------- */
743
744class DIV_Common <InstR600 recip_ieee> : Pat<
745  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
746  (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
747>;
748
749class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
750  (int_AMDGPU_ssg R600_Reg32:$src),
751  (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
752>;
753
754class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
755  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
756  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
757>;
758
759/* ---------------------- */
760/* R600 / R700 Only Instructions */
761/* ---------------------- */
762
763let Predicates = [isR600] in {
764
765  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
766  def MULADD_r600 : MULADD_Common<0x10>;
767  def CNDE_r600 : CNDE_Common<0x18>;
768  def CNDGT_r600 : CNDGT_Common<0x19>;
769  def CNDGE_r600 : CNDGE_Common<0x1A>;
770  def DOT4_r600 : DOT4_Common<0x50>;
771  def : DOT4_Pat <DOT4_r600>;
772  defm CUBE_r600 : CUBE_Common<0x52>;
773  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
774  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
775  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
776  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
777  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
778  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
779  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
780  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
781  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
782  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
783  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
784  def SIN_r600 : SIN_Common<0x6E>;
785  def COS_r600 : COS_Common<0x6F>;
786  def ASHR_r600 : ASHR_Common<0x70>;
787  def LSHR_r600 : LSHR_Common<0x71>;
788  def LSHL_r600 : LSHL_Common<0x72>;
789  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
790  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
791  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
792  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
793  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
794
795  def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
796  def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
797  def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
798  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
799
800}
801
802// Helper pattern for normalizing inputs to triginomic instructions for R700+
803// cards.
804class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
805  (intr R600_Reg32:$src),
806  (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
807>;
808
809//===----------------------------------------------------------------------===//
810// R700 Only instructions
811//===----------------------------------------------------------------------===//
812
813let Predicates = [isR700] in {
814  def SIN_r700 : SIN_Common<0x6E>;
815  def COS_r700 : COS_Common<0x6F>;
816
817  // R700 normalizes inputs to SIN/COS the same as EG
818  def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
819  def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
820}
821
822//===----------------------------------------------------------------------===//
823// Evergreen Only instructions
824//===----------------------------------------------------------------------===//
825
826let Predicates = [isEG] in {
827  
828def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
829
830def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
831def MULHI_INT_eg : MULHI_INT_Common<0x90>;
832def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
833def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
834def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
835
836} // End Predicates = [isEG]
837
838/* ------------------------------- */
839/* Evergreen / Cayman Instructions */
840/* ------------------------------- */
841
842let Predicates = [isEGorCayman] in {
843
844  // BFE_UINT - bit_extract, an optimization for mask and shift
845  // Src0 = Input
846  // Src1 = Offset
847  // Src2 = Width
848  //
849  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
850  //
851  // Example Usage:
852  // (Offset, Width)
853  //
854  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
855  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
856  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
857  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
858  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
859    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
860                                                      R600_Reg32:$src1,
861                                                      R600_Reg32:$src2))],
862    VecALU
863  >;
864
865  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
866    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
867                                          R600_Reg32:$src2))],
868    VecALU
869  >;
870
871  def MULADD_eg : MULADD_Common<0x14>;
872  def ASHR_eg : ASHR_Common<0x15>;
873  def LSHR_eg : LSHR_Common<0x16>;
874  def LSHL_eg : LSHL_Common<0x17>;
875  def CNDE_eg : CNDE_Common<0x19>;
876  def CNDGT_eg : CNDGT_Common<0x1A>;
877  def CNDGE_eg : CNDGE_Common<0x1B>;
878  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
879  def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
880  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
881  def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
882  def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
883  def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
884  def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
885  def SIN_eg : SIN_Common<0x8D>;
886  def COS_eg : COS_Common<0x8E>;
887  def DOT4_eg : DOT4_Common<0xBE>;
888  def : DOT4_Pat <DOT4_eg>;
889  defm CUBE_eg : CUBE_Common<0xC0>;
890
891  def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
892  def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
893  def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
894  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
895
896  def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
897  def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
898
899  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
900    let Pattern = [];
901  }
902
903  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
904
905  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
906    let Pattern = [];
907  }
908
909  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
910
911  def : Pat<(fp_to_sint R600_Reg32:$src),
912    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
913
914  def : Pat<(fp_to_uint R600_Reg32:$src),
915    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
916
917//===----------------------------------------------------------------------===//
918// Memory read/write instructions
919//===----------------------------------------------------------------------===//
920
921let usesCustomInserter = 1 in {
922
923def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
924  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
925  "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
926  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
927{
928  let RIM         = 0;
929  /* XXX: Have a separate instruction for non-indexed writes. */
930  let TYPE        = 1;
931  let RW_REL      = 0;
932  let ELEM_SIZE   = 0;
933
934  let ARRAY_SIZE  = 0;
935  let COMP_MASK   = 1;
936  let BURST_COUNT = 0;
937  let VPM         = 0;
938  let EOP         = 0;
939  let MARK        = 0;
940  let BARRIER     = 1;
941}
942
943} // End usesCustomInserter = 1
944
945// Floating point global_store
946def : Pat <
947  (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
948  (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
949>;
950
951class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
952    : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
953
954  // Operands
955  bits<7> DST_GPR;
956  bits<7> SRC_GPR;
957
958  // Static fields
959  bits<5> VC_INST = 0;
960  bits<2> FETCH_TYPE = 2;
961  bits<1> FETCH_WHOLE_QUAD = 0;
962  bits<8> BUFFER_ID = buffer_id;
963  bits<1> SRC_REL = 0;
964  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
965  // to store vertex addresses in any channel, not just X.
966  bits<2> SRC_SEL_X = 0;
967  bits<6> MEGA_FETCH_COUNT;
968  bits<1> DST_REL = 0;
969  bits<3> DST_SEL_X;
970  bits<3> DST_SEL_Y;
971  bits<3> DST_SEL_Z;
972  bits<3> DST_SEL_W;
973  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
974  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
975  // however, based on my testing if USE_CONST_FIELDS is set, then all
976  // these fields need to be set to 0.
977  bits<1> USE_CONST_FIELDS = 0;
978  bits<6> DATA_FORMAT;
979  bits<2> NUM_FORMAT_ALL = 1;
980  bits<1> FORMAT_COMP_ALL = 0;
981  bits<1> SRF_MODE_ALL = 0;
982
983  // LLVM can only encode 64-bit instructions, so these fields are manually
984  // encoded in R600CodeEmitter
985  //
986  // bits<16> OFFSET;
987  // bits<2>  ENDIAN_SWAP = 0;
988  // bits<1>  CONST_BUF_NO_STRIDE = 0;
989  // bits<1>  MEGA_FETCH = 0;
990  // bits<1>  ALT_CONST = 0;
991  // bits<2>  BUFFER_INDEX_MODE = 0;
992
993  // VTX_WORD0
994  let Inst{4-0}   = VC_INST;
995  let Inst{6-5}   = FETCH_TYPE;
996  let Inst{7}     = FETCH_WHOLE_QUAD;
997  let Inst{15-8}  = BUFFER_ID;
998  let Inst{22-16} = SRC_GPR;
999  let Inst{23}    = SRC_REL;
1000  let Inst{25-24} = SRC_SEL_X;
1001  let Inst{31-26} = MEGA_FETCH_COUNT;
1002
1003  // VTX_WORD1_GPR
1004  let Inst{38-32} = DST_GPR;
1005  let Inst{39}    = DST_REL;
1006  let Inst{40}    = 0; // Reserved
1007  let Inst{43-41} = DST_SEL_X;
1008  let Inst{46-44} = DST_SEL_Y;
1009  let Inst{49-47} = DST_SEL_Z;
1010  let Inst{52-50} = DST_SEL_W;
1011  let Inst{53}    = USE_CONST_FIELDS;
1012  let Inst{59-54} = DATA_FORMAT;
1013  let Inst{61-60} = NUM_FORMAT_ALL;
1014  let Inst{62}    = FORMAT_COMP_ALL;
1015  let Inst{63}    = SRF_MODE_ALL;
1016
1017  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1018  // is done in R600CodeEmitter
1019  //
1020  // Inst{79-64} = OFFSET;
1021  // Inst{81-80} = ENDIAN_SWAP;
1022  // Inst{82}    = CONST_BUF_NO_STRIDE;
1023  // Inst{83}    = MEGA_FETCH;
1024  // Inst{84}    = ALT_CONST;
1025  // Inst{86-85} = BUFFER_INDEX_MODE;
1026  // Inst{95-86} = 0; Reserved
1027
1028  // VTX_WORD3 (Padding)
1029  //
1030  // Inst{127-96} = 0;
1031}
1032
1033class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1034    : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
1035
1036  let MEGA_FETCH_COUNT = 4;
1037  let DST_SEL_X        = 0;
1038  let DST_SEL_Y        = 7;   // Masked
1039  let DST_SEL_Z        = 7;   // Masked
1040  let DST_SEL_W        = 7;   // Masked
1041  let DATA_FORMAT      = 0xD; // COLOR_32
1042
1043  // This is not really necessary, but there were some GPU hangs that appeared
1044  // to be caused by ALU instructions in the next instruction group that wrote
1045  // to the $ptr registers of the VTX_READ.  
1046  // e.g.
1047  // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
1048  // %T2_X<def> = MOV %ZERO
1049  //Adding this constraint prevents this from happening.
1050  let Constraints = "$ptr.ptr = $dst";
1051}
1052
1053class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1054    : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
1055
1056  let MEGA_FETCH_COUNT = 16;
1057  let DST_SEL_X        =  0;
1058  let DST_SEL_Y        =  1;
1059  let DST_SEL_Z        =  2;
1060  let DST_SEL_W        =  3;
1061  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1062
1063  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1064  // that holds its buffer address to avoid potential hangs.  We can't use
1065  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1066  // registers are different sizes.
1067}
1068
1069//===----------------------------------------------------------------------===//
1070// VTX Read from parameter memory space
1071//===----------------------------------------------------------------------===//
1072
1073class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1074  [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1075>;
1076
1077def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1078def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1079
1080
1081//===----------------------------------------------------------------------===//
1082// VTX Read from global memory space
1083//===----------------------------------------------------------------------===//
1084
1085// 32-bit reads
1086
1087class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1088  [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1089>;
1090
1091def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1092def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1093
1094// 128-bit reads
1095
1096class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1097  [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1098>;
1099
1100def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1101def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1102
1103}
1104
1105let Predicates = [isCayman] in {
1106
1107let isVector = 1 in { 
1108
1109def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1110
1111def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1112def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1113def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1114def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1115
1116} // End isVector = 1
1117
1118// RECIP_UINT emulation for Cayman
1119def : Pat <
1120  (AMDGPUurecip R600_Reg32:$src0),
1121  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1122                            (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1123>;
1124
1125} // End isCayman
1126
1127/* Other Instructions */
1128
1129let isCodeGenOnly = 1 in {
1130/*
1131  def SWIZZLE : AMDGPUShaderInst <
1132    (outs GPRV4F32:$dst),
1133    (ins GPRV4F32:$src0, i32imm:$src1),
1134    "SWIZZLE $dst, $src0, $src1",
1135    [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1136  >;
1137*/
1138
1139  def LAST : AMDGPUShaderInst <
1140    (outs),
1141    (ins),
1142    "LAST",
1143    []
1144  >;
1145
1146  def GET_CHAN : AMDGPUShaderInst <
1147    (outs R600_Reg32:$dst),
1148    (ins R600_Reg128:$src0, i32imm:$src1),
1149    "GET_CHAN $dst, $src0, $src1",
1150    []
1151  >;
1152
1153  def MULLIT : AMDGPUShaderInst <
1154    (outs R600_Reg128:$dst),
1155    (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1156    "MULLIT $dst, $src0, $src1",
1157    [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1158  >;
1159
1160let usesCustomInserter = 1, isPseudo = 1 in {
1161
1162class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1163  (outs R600_TReg32:$dst),
1164  (ins),
1165  asm,
1166  [(set R600_TReg32:$dst, (intr))]
1167>;
1168
1169def R600_LOAD_CONST : AMDGPUShaderInst <
1170  (outs R600_Reg32:$dst),
1171  (ins i32imm:$src0),
1172  "R600_LOAD_CONST $dst, $src0",
1173  [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1174>;
1175
1176def RESERVE_REG : AMDGPUShaderInst <
1177  (outs),
1178  (ins i32imm:$src),
1179  "RESERVE_REG $src",
1180  [(int_AMDGPU_reserve_reg imm:$src)]
1181>;
1182
1183def TXD: AMDGPUShaderInst <
1184  (outs R600_Reg128:$dst),
1185  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1186  "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1187  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1188>;
1189
1190def TXD_SHADOW: AMDGPUShaderInst <
1191  (outs R600_Reg128:$dst),
1192  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1193  "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1194  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1195>;
1196
1197} // End usesCustomInserter = 1, isPseudo = 1
1198
1199} // End isCodeGenOnly = 1
1200
1201def CLAMP_R600 :  CLAMP <R600_Reg32>;
1202def FABS_R600 : FABS<R600_Reg32>;
1203def FNEG_R600 : FNEG<R600_Reg32>;
1204
1205let usesCustomInserter = 1 in {
1206
1207def MASK_WRITE : AMDGPUShaderInst <
1208    (outs),
1209    (ins R600_Reg32:$src),
1210    "MASK_WRITE $src",
1211    []
1212>;
1213
1214} // End usesCustomInserter = 1
1215
1216//===----------------------------------------------------------------------===//
1217// ISel Patterns
1218//===----------------------------------------------------------------------===//
1219
1220// KIL Patterns
1221def KILP : Pat <
1222  (int_AMDGPU_kilp),
1223  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO), 0))
1224>;
1225
1226def KIL : Pat <
1227  (int_AMDGPU_kill R600_Reg32:$src0),
1228  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0), 0))
1229>;
1230
1231// SGT Reverse args
1232def : Pat <
1233  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1234  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1235>;
1236
1237// SGE Reverse args
1238def : Pat <
1239  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1240  (SGE R600_Reg32:$src1, R600_Reg32:$src0) 
1241>;
1242
1243// SETGT_INT reverse args
1244def : Pat <
1245  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1246  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1247>;
1248
1249// SETGE_INT reverse args
1250def : Pat <
1251  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1252  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1253>;
1254
1255// SETGT_UINT reverse args
1256def : Pat <
1257  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1258  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1259>;
1260
1261// SETGE_UINT reverse args
1262def : Pat <
1263  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1264  (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1265>;
1266
1267// The next two patterns are special cases for handling 'true if ordered' and
1268// 'true if unordered' conditionals.  The assumption here is that the behavior of
1269// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1270// described here:
1271// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1272// We assume that  SETE returns false when one of the operands is NAN and
1273// SNE returns true when on of the operands is NAN
1274
1275//SETE - 'true if ordered'
1276def : Pat <
1277  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1278  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1279>;
1280
1281//SNE - 'true if unordered'
1282def : Pat <
1283  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1284  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1285>;
1286
1287def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1288def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1289def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1290def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1291
1292def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1293def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1294def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1295def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1296
1297def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1298def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1299def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1300def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1301
1302def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1303def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1304def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1305def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1306
1307def : Vector_Build <v4f32, R600_Reg32>;
1308def : Vector_Build <v4i32, R600_Reg32>;
1309
1310// bitconvert patterns
1311
1312def : BitConvert <i32, f32, R600_Reg32>;
1313def : BitConvert <f32, i32, R600_Reg32>;
1314def : BitConvert <v4f32, v4i32, R600_Reg128>;
1315
1316} // End isR600toCayman Predicate
1317