R600Instructions.td revision f3480f92349c90f55e2e80d9a4536ab048fb5652
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<32> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0; 
24
25  let Inst = inst;
26  let Namespace = "AMDGPU";
27  let OutOperandList = outs;
28  let InOperandList = ins;
29  let AsmString = asm;
30  let Pattern = pattern;
31  let Itinerary = itin;
32
33  let TSFlags{4} = Trig;
34  let TSFlags{5} = Op3;
35
36  // Vector instructions are instructions that must fill all slots in an
37  // instruction group
38  let TSFlags{6} = isVector;
39}
40
41class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
42    AMDGPUInst <outs, ins, asm, pattern>
43{
44  field bits<64> Inst;
45
46  let Namespace = "AMDGPU";
47}
48
49def MEMxi : Operand<iPTR> {
50  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
51}
52
53def MEMrr : Operand<iPTR> {
54  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
55}
56
57def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
58def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
59def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
60
61class R600_ALU {
62
63  bits<7> DST_GPR = 0;
64  bits<9> SRC0_SEL = 0;
65  bits<1> SRC0_NEG = 0;
66  bits<9> SRC1_SEL = 0;
67  bits<1> SRC1_NEG = 0;
68  bits<1> CLAMP = 0;
69  
70}
71
72
73class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
74                InstrItinClass itin = AnyALU> :
75  InstR600 <inst,
76          (outs R600_Reg32:$dst),
77          (ins R600_Reg32:$src, variable_ops),
78          !strconcat(opName, " $dst, $src"),
79          pattern,
80          itin
81  >;
82
83class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
84                InstrItinClass itin = AnyALU> :
85  InstR600 <inst,
86          (outs R600_Reg32:$dst),
87          (ins R600_Reg32:$src0, R600_Reg32:$src1, variable_ops),
88          !strconcat(opName, " $dst, $src0, $src1"),
89          pattern,
90          itin
91  >;
92
93class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
94                InstrItinClass itin = AnyALU> :
95  InstR600 <inst,
96          (outs R600_Reg32:$dst),
97          (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2, variable_ops),
98          !strconcat(opName, " $dst, $src0, $src1, $src2"),
99          pattern,
100          itin>{
101
102    let Op3 = 1;
103  }
104
105class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
106                      InstrItinClass itin = VecALU> :
107  InstR600 <inst,
108          (outs R600_Reg32:$dst),
109          ins,
110          asm,
111          pattern,
112          itin
113
114  >;
115
116class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
117                InstrItinClass itin = AnyALU> :
118  InstR600 <inst,
119          (outs R600_Reg128:$dst),
120          (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
121          !strconcat(opName, "$dst, $src0, $src1, $src2"),
122          pattern,
123          itin
124  >;
125
126def TEX_SHADOW : PatLeaf<
127  (imm),
128  [{uint32_t TType = (uint32_t)N->getZExtValue();
129    return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
130  }]
131>;
132
133class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
134                 dag ins, string asm, list<dag> pattern> :
135    InstR600ISA <outs, ins, asm, pattern>
136{
137  bits<7>  RW_GPR;
138  bits<7>  INDEX_GPR;
139
140  bits<2>  RIM;
141  bits<2>  TYPE;
142  bits<1>  RW_REL;
143  bits<2>  ELEM_SIZE;
144
145  bits<12> ARRAY_SIZE;
146  bits<4>  COMP_MASK;
147  bits<4>  BURST_COUNT;
148  bits<1>  VPM;
149  bits<1>  EOP;
150  bits<1>  MARK;
151  bits<1>  BARRIER;
152
153  /* CF_ALLOC_EXPORT_WORD0_RAT */
154  let Inst{3-0}   = rat_id;
155  let Inst{9-4}   = rat_inst;
156  let Inst{10}    = 0; /* Reserved */
157  let Inst{12-11} = RIM;
158  let Inst{14-13} = TYPE;
159  let Inst{21-15} = RW_GPR;
160  let Inst{22}    = RW_REL;
161  let Inst{29-23} = INDEX_GPR;
162  let Inst{31-30} = ELEM_SIZE;
163
164  /* CF_ALLOC_EXPORT_WORD1_BUF */
165  let Inst{43-32} = ARRAY_SIZE;
166  let Inst{47-44} = COMP_MASK;
167  let Inst{51-48} = BURST_COUNT;
168  let Inst{52}    = VPM;
169  let Inst{53}    = EOP;
170  let Inst{61-54} = cf_inst;
171  let Inst{62}    = MARK;
172  let Inst{63}    = BARRIER;
173}
174
175/*
176def store_global : PatFrag<(ops node:$value, node:$ptr),
177                           (store node:$value, node:$ptr),
178                           [{
179                            const Value *Src;
180                            const PointerType *Type;
181                            if ((src = cast<StoreSDNode>(N)->getSrcValue() &&
182                                 PT = dyn_cast<PointerType>(Src->getType()))) {
183                              return PT->getAddressSpace() == 1;
184                            }
185                            return false;
186                           }]>;
187
188*/
189
190def load_param : PatFrag<(ops node:$ptr),
191                         (load node:$ptr),
192                          [{
193                           const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
194                           if (Src) {
195                                PointerType * PT = dyn_cast<PointerType>(Src->getType());
196                                return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
197                           }
198                           return false;
199                          }]>;
200
201//class EG_CF <bits<32> inst, string asm> :
202//    InstR600 <inst, (outs), (ins), asm, []>;
203
204/* XXX: We will use this when we emit the real ISA.
205  bits<24> ADDR = 0;
206  bits<3> JTS = 0;
207
208  bits<3> PC = 0;
209  bits<5> CF_CONS = 0;
210  bits<2> COND = 0;
211  bits<6> COUNT = 0;
212  bits<1> VPM = 0;
213  bits<1> EOP = 0;
214  bits<8> CF_INST = 0;
215  bits<1> WQM = 0;
216  bits<1> B = 0;
217
218  let Inst{23-0} = ADDR;
219  let Inst{26-24} = JTS;
220  let Inst{34-32} = PC;
221  let Inst{39-35} = CF_CONST;
222  let Inst{41-40} = COND;
223  let Inst{47-42} = COUNT;
224  let Inst{52} = VPM;
225  let Inst{53} = EOP;
226  let Inst{61-54} = CF_INST;
227  let Inst{62} = WQM;
228  let Inst{63} = B;
229//}
230*/
231def isR600 : Predicate<"Subtarget.device()"
232                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
233def isR700 : Predicate<"Subtarget.device()"
234                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
235                            "Subtarget.device()->getDeviceFlag()"
236                            ">= OCL_DEVICE_RV710">;
237def isEG : Predicate<"Subtarget.device()"
238                            "->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
239                            "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
240def isCayman : Predicate<"Subtarget.device()"
241                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
242def isEGorCayman : Predicate<"Subtarget.device()"
243                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
244			    "|| Subtarget.device()->getGeneration() =="
245			    "AMDGPUDeviceInfo::HD6XXX">;
246
247def isR600toCayman : Predicate<
248                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
249
250
251let Predicates = [isR600toCayman] in { 
252
253/* ------------------------------------------- */
254/* Common Instructions R600, R700, Evergreen, Cayman */
255/* ------------------------------------------- */
256def ADD : R600_2OP <
257  0x0, "ADD",
258  [(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
259>;
260
261// Non-IEEE MUL: 0 * anything = 0
262def MUL : R600_2OP <
263  0x1, "MUL NON-IEEE",
264  [(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
265>;
266
267def MUL_IEEE : R600_2OP <
268  0x2, "MUL_IEEE",
269  [(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
270>;
271
272def MAX : R600_2OP <
273  0x3, "MAX",
274  [(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
275>;
276
277def MIN : R600_2OP <
278  0x4, "MIN",
279  [(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
280>;
281
282/* For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
283 * so some of the instruction names don't match the asm string.
284 * XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
285 */
286
287def SETE : R600_2OP <
288  0x08, "SETE",
289  [(set R600_Reg32:$dst,
290   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
291             COND_EQ))]
292>;
293
294def SGT : R600_2OP <
295  0x09, "SETGT",
296  [(set R600_Reg32:$dst,
297   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
298              COND_GT))]
299>;
300
301def SGE : R600_2OP <
302  0xA, "SETGE",
303  [(set R600_Reg32:$dst,
304   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
305              COND_GE))]
306>;
307
308def SNE : R600_2OP <
309  0xB, "SETNE",
310  [(set R600_Reg32:$dst,
311   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
312    COND_NE))]
313>;
314
315def FRACT : R600_1OP <
316  0x10, "FRACT",
317  [(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
318>;
319
320def TRUNC : R600_1OP <
321  0x11, "TRUNC",
322  [(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
323>;
324
325def CEIL : R600_1OP <
326  0x12, "CEIL",
327  [(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
328>;
329
330def RNDNE : R600_1OP <
331  0x13, "RNDNE",
332  [(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
333>;
334
335def FLOOR : R600_1OP <
336  0x14, "FLOOR",
337  [(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
338>;
339
340def MOV : R600_1OP <0x19, "MOV", []>;
341
342class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
343  (outs R600_Reg32:$dst),
344  (ins R600_Reg32:$alu_literal, immType:$imm),
345  "MOV_IMM $dst, $imm",
346  [], AnyALU
347>;
348
349def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
350def : Pat <
351  (imm:$val),
352  (MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
353>;
354
355def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
356def : Pat <
357  (fpimm:$val),
358  (MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
359>;
360
361def KILLGT : R600_2OP <
362  0x2D, "KILLGT",
363  []
364>;
365
366def AND_INT : R600_2OP <
367  0x30, "AND_INT",
368  [(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
369>;
370
371def OR_INT : R600_2OP <
372  0x31, "OR_INT",
373  [(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
374>;
375
376def XOR_INT : R600_2OP <
377  0x32, "XOR_INT",
378  [(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
379>;
380
381def NOT_INT : R600_1OP <
382  0x33, "NOT_INT",
383  [(set R600_Reg32:$dst, (not R600_Reg32:$src))]
384>;
385
386def ADD_INT : R600_2OP <
387  0x34, "ADD_INT",
388  [(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
389>;
390
391def SUB_INT : R600_2OP <
392	0x35, "SUB_INT",
393	[(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
394>;
395
396def MAX_INT : R600_2OP <
397  0x36, "MAX_INT",
398  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
399
400def MIN_INT : R600_2OP <
401  0x37, "MIN_INT",
402  [(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
403
404def MAX_UINT : R600_2OP <
405  0x38, "MAX_UINT",
406  [(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
407>;
408
409def MIN_UINT : R600_2OP <
410  0x39, "MIN_UINT",
411  [(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
412>;
413
414def SETE_INT : R600_2OP <
415  0x3A, "SETE_INT",
416  [(set (i32 R600_Reg32:$dst),
417   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
418>;
419
420def SETGT_INT : R600_2OP <
421  0x3B, "SGT_INT",
422  [(set (i32 R600_Reg32:$dst),
423   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
424>;
425
426def SETGE_INT : R600_2OP <
427	0x3C, "SETGE_INT",
428	[(set (i32 R600_Reg32:$dst),
429   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
430>;
431
432def SETNE_INT : R600_2OP <
433  0x3D, "SETNE_INT",
434  [(set (i32 R600_Reg32:$dst),
435   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
436>;
437
438def SETGT_UINT : R600_2OP <
439  0x3E, "SETGT_UINT",
440  [(set (i32 R600_Reg32:$dst),
441   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
442>;
443
444def SETGE_UINT : R600_2OP <
445  0x3F, "SETGE_UINT",
446  [(set (i32 R600_Reg32:$dst),
447    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
448>;
449
450def CNDE_INT : R600_3OP <
451	0x1C, "CNDE_INT",
452  [(set (i32 R600_Reg32:$dst),
453   (select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
454>;
455
456/* Texture instructions */
457
458
459def TEX_LD : R600_TEX <
460  0x03, "TEX_LD",
461  [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
462> {
463let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
464let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
465}
466
467def TEX_GET_TEXTURE_RESINFO : R600_TEX <
468  0x04, "TEX_GET_TEXTURE_RESINFO",
469  [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
470>;
471
472def TEX_GET_GRADIENTS_H : R600_TEX <
473  0x07, "TEX_GET_GRADIENTS_H",
474  [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
475>;
476
477def TEX_GET_GRADIENTS_V : R600_TEX <
478  0x08, "TEX_GET_GRADIENTS_V",
479  [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
480>;
481
482def TEX_SET_GRADIENTS_H : R600_TEX <
483  0x0B, "TEX_SET_GRADIENTS_H",
484  []
485>;
486
487def TEX_SET_GRADIENTS_V : R600_TEX <
488  0x0C, "TEX_SET_GRADIENTS_V",
489  []
490>;
491
492def TEX_SAMPLE : R600_TEX <
493  0x10, "TEX_SAMPLE",
494  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
495>;
496
497def TEX_SAMPLE_C : R600_TEX <
498  0x18, "TEX_SAMPLE_C",
499  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
500>;
501
502def TEX_SAMPLE_L : R600_TEX <
503  0x11, "TEX_SAMPLE_L",
504  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
505>;
506
507def TEX_SAMPLE_C_L : R600_TEX <
508  0x19, "TEX_SAMPLE_C_L",
509  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
510>;
511
512def TEX_SAMPLE_LB : R600_TEX <
513  0x12, "TEX_SAMPLE_LB",
514  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
515>;
516
517def TEX_SAMPLE_C_LB : R600_TEX <
518  0x1A, "TEX_SAMPLE_C_LB",
519  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
520>;
521
522def TEX_SAMPLE_G : R600_TEX <
523  0x14, "TEX_SAMPLE_G",
524  []
525>;
526
527def TEX_SAMPLE_C_G : R600_TEX <
528  0x1C, "TEX_SAMPLE_C_G",
529  []
530>;
531
532/* Helper classes for common instructions */
533
534class MUL_LIT_Common <bits<32> inst> : R600_3OP <
535  inst, "MUL_LIT",
536  []
537>;
538
539class MULADD_Common <bits<32> inst> : R600_3OP <
540  inst, "MULADD",
541  [(set (f32 R600_Reg32:$dst),
542   (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
543>;
544
545class CNDE_Common <bits<32> inst> : R600_3OP <
546  inst, "CNDE",
547  [(set (f32 R600_Reg32:$dst),
548   (select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
549>;
550
551class CNDGT_Common <bits<32> inst> : R600_3OP <
552  inst, "CNDGT",
553  []
554>;
555  
556class CNDGE_Common <bits<32> inst> : R600_3OP <
557  inst, "CNDGE",
558  [(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
559>;
560
561class DOT4_Common <bits<32> inst> : R600_REDUCTION <
562  inst,
563  (ins R600_Reg128:$src0, R600_Reg128:$src1),
564  "DOT4 $dst $src0, $src1",
565  [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
566>;
567
568class CUBE_Common <bits<32> inst> : InstR600 <
569  inst,
570  (outs R600_Reg128:$dst),
571  (ins R600_Reg128:$src),
572  "CUBE $dst $src",
573  [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
574  VecALU
575>;
576
577class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
578  inst, "EXP_IEEE",
579  [(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
580>;
581
582class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
583  inst, "FLT_TO_INT",
584  [(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
585>;
586
587class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
588  inst, "INT_TO_FLT",
589  [(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
590>;
591
592class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
593  inst, "FLT_TO_UINT",
594  [(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
595>;
596
597class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
598  inst, "UINT_TO_FLT",
599  [(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
600>;
601
602class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
603  inst, "LOG_CLAMPED",
604  []
605>;
606
607class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
608  inst, "LOG_IEEE",
609  [(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
610>;
611
612class LSHL_Common <bits<32> inst> : R600_2OP <
613  inst, "LSHL $dst, $src0, $src1",
614  [(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
615>;
616
617class LSHR_Common <bits<32> inst> : R600_2OP <
618  inst, "LSHR $dst, $src0, $src1",
619  [(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
620>;
621
622class ASHR_Common <bits<32> inst> : R600_2OP <
623  inst, "ASHR $dst, $src0, $src1",
624  [(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
625>;
626
627class MULHI_INT_Common <bits<32> inst> : R600_2OP <
628  inst, "MULHI_INT $dst, $src0, $src1",
629  [(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
630>;
631
632class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
633  inst, "MULHI $dst, $src0, $src1",
634  [(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
635>;
636
637class MULLO_INT_Common <bits<32> inst> : R600_2OP <
638  inst, "MULLO_INT $dst, $src0, $src1",
639  [(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
640>;
641
642class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
643  inst, "MULLO_UINT $dst, $src0, $src1",
644  []
645>;
646
647class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
648  inst, "RECIP_CLAMPED",
649  []
650>;
651
652class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
653  inst, "RECIP_IEEE",
654  [(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
655>;
656
657class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
658  inst, "RECIP_INT $dst, $src",
659  [(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
660>;
661
662class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
663  inst, "RECIPSQRT_CLAMPED",
664  [(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
665>;
666
667class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
668  inst, "RECIPSQRT_IEEE",
669  []
670>;
671
672class SIN_Common <bits<32> inst> : R600_1OP <
673  inst, "SIN", []>{
674  let Trig = 1;
675}
676
677class COS_Common <bits<32> inst> : R600_1OP <
678  inst, "COS", []> {
679  let Trig = 1;
680}
681
682/* Helper patterns for complex intrinsics */
683/* -------------------------------------- */
684
685class DIV_Common <InstR600 recip_ieee> : Pat<
686  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
687  (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
688>;
689
690class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
691  (int_AMDGPU_ssg R600_Reg32:$src),
692  (cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
693>;
694
695class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
696  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
697  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
698>;
699
700/* ---------------------- */
701/* R600 / R700 Only Instructions */
702/* ---------------------- */
703
704let Predicates = [isR600] in {
705
706  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
707  def MULADD_r600 : MULADD_Common<0x10>;
708  def CNDE_r600 : CNDE_Common<0x18>;
709  def CNDGT_r600 : CNDGT_Common<0x19>;
710  def CNDGE_r600 : CNDGE_Common<0x1A>;
711  def DOT4_r600 : DOT4_Common<0x50>;
712  def CUBE_r600 : CUBE_Common<0x52>;
713  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
714  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
715  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
716  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
717  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
718  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
719  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
720  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
721  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
722  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
723  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
724  def SIN_r600 : SIN_Common<0x6E>;
725  def COS_r600 : COS_Common<0x6F>;
726  def ASHR_r600 : ASHR_Common<0x70>;
727  def LSHR_r600 : LSHR_Common<0x71>;
728  def LSHL_r600 : LSHL_Common<0x72>;
729  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
730  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
731  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
732  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
733  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
734
735  def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
736  def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
737  def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
738  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
739
740}
741
742// Helper pattern for normalizing inputs to triginomic instructions for R700+
743// cards.
744class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
745  (intr R600_Reg32:$src),
746  (trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
747>;
748
749//===----------------------------------------------------------------------===//
750// R700 Only instructions
751//===----------------------------------------------------------------------===//
752
753let Predicates = [isR700] in {
754  def SIN_r700 : SIN_Common<0x6E>;
755  def COS_r700 : COS_Common<0x6F>;
756
757  // R700 normalizes inputs to SIN/COS the same as EG
758  def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
759  def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
760}
761
762//===----------------------------------------------------------------------===//
763// Evergreen Only instructions
764//===----------------------------------------------------------------------===//
765
766let Predicates = [isEG] in {
767  
768def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
769
770def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
771def MULHI_INT_eg : MULHI_INT_Common<0x90>;
772def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
773def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
774def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
775
776} // End Predicates = [isEG]
777
778/* ------------------------------- */
779/* Evergreen / Cayman Instructions */
780/* ------------------------------- */
781
782let Predicates = [isEGorCayman] in {
783
784  // BFE_UINT - bit_extract, an optimization for mask and shift
785  // Src0 = Input
786  // Src1 = Offset
787  // Src2 = Width
788  //
789  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
790  //
791  // Example Usage:
792  // (Offset, Width)
793  //
794  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
795  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
796  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
797  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
798  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
799    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
800                                                      R600_Reg32:$src1,
801                                                      R600_Reg32:$src2))],
802    VecALU
803  >;
804
805  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
806    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
807                                          R600_Reg32:$src2))],
808    VecALU
809  >;
810
811  def MULADD_eg : MULADD_Common<0x14>;
812  def ASHR_eg : ASHR_Common<0x15>;
813  def LSHR_eg : LSHR_Common<0x16>;
814  def LSHL_eg : LSHL_Common<0x17>;
815  def CNDE_eg : CNDE_Common<0x19>;
816  def CNDGT_eg : CNDGT_Common<0x1A>;
817  def CNDGE_eg : CNDGE_Common<0x1B>;
818  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
819  def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
820  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
821  def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
822  def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
823  def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
824  def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
825  def SIN_eg : SIN_Common<0x8D>;
826  def COS_eg : COS_Common<0x8E>;
827  def DOT4_eg : DOT4_Common<0xBE>;
828  def CUBE_eg : CUBE_Common<0xC0>;
829
830  def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
831  def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
832  def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
833  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
834
835  def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
836  def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
837
838  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
839    let Pattern = [];
840  }
841
842  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
843
844  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
845    let Pattern = [];
846  }
847
848  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
849
850  def : Pat<(fp_to_sint R600_Reg32:$src),
851    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
852
853  def : Pat<(fp_to_uint R600_Reg32:$src),
854    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
855
856//===----------------------------------------------------------------------===//
857// Memory read/write instructions
858//===----------------------------------------------------------------------===//
859
860let usesCustomInserter = 1 in {
861
862def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
863  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr),
864  "RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr",
865  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]>
866{
867  let RIM         = 0;
868  /* XXX: Have a separate instruction for non-indexed writes. */
869  let TYPE        = 1;
870  let RW_REL      = 0;
871  let ELEM_SIZE   = 0;
872
873  let ARRAY_SIZE  = 0;
874  let COMP_MASK   = 1;
875  let BURST_COUNT = 0;
876  let VPM         = 0;
877  let EOP         = 0;
878  let MARK        = 0;
879  let BARRIER     = 1;
880}
881
882} // End usesCustomInserter = 1
883
884// Floating point global_store
885def : Pat <
886  (global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
887  (RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr)
888>;
889
890class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
891    : InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
892
893  // Operands
894  bits<7> DST_GPR;
895  bits<7> SRC_GPR;
896
897  // Static fields
898  bits<5> VC_INST = 0;
899  bits<2> FETCH_TYPE = 2;
900  bits<1> FETCH_WHOLE_QUAD = 0;
901  bits<8> BUFFER_ID = buffer_id;
902  bits<1> SRC_REL = 0;
903  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
904  // to store vertex addresses in any channel, not just X.
905  bits<2> SRC_SEL_X = 0;
906  bits<6> MEGA_FETCH_COUNT;
907  bits<1> DST_REL = 0;
908  bits<3> DST_SEL_X;
909  bits<3> DST_SEL_Y;
910  bits<3> DST_SEL_Z;
911  bits<3> DST_SEL_W;
912  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
913  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
914  // however, based on my testing if USE_CONST_FIELDS is set, then all
915  // these fields need to be set to 0.
916  bits<1> USE_CONST_FIELDS = 0;
917  bits<6> DATA_FORMAT;
918  bits<2> NUM_FORMAT_ALL = 1;
919  bits<1> FORMAT_COMP_ALL = 0;
920  bits<1> SRF_MODE_ALL = 0;
921
922  // LLVM can only encode 64-bit instructions, so these fields are manually
923  // encoded in R600CodeEmitter
924  //
925  // bits<16> OFFSET;
926  // bits<2>  ENDIAN_SWAP = 0;
927  // bits<1>  CONST_BUF_NO_STRIDE = 0;
928  // bits<1>  MEGA_FETCH = 0;
929  // bits<1>  ALT_CONST = 0;
930  // bits<2>  BUFFER_INDEX_MODE = 0;
931
932  // VTX_WORD0
933  let Inst{4-0}   = VC_INST;
934  let Inst{6-5}   = FETCH_TYPE;
935  let Inst{7}     = FETCH_WHOLE_QUAD;
936  let Inst{15-8}  = BUFFER_ID;
937  let Inst{22-16} = SRC_GPR;
938  let Inst{23}    = SRC_REL;
939  let Inst{25-24} = SRC_SEL_X;
940  let Inst{31-26} = MEGA_FETCH_COUNT;
941
942  // VTX_WORD1_GPR
943  let Inst{38-32} = DST_GPR;
944  let Inst{39}    = DST_REL;
945  let Inst{40}    = 0; // Reserved
946  let Inst{43-41} = DST_SEL_X;
947  let Inst{46-44} = DST_SEL_Y;
948  let Inst{49-47} = DST_SEL_Z;
949  let Inst{52-50} = DST_SEL_W;
950  let Inst{53}    = USE_CONST_FIELDS;
951  let Inst{59-54} = DATA_FORMAT;
952  let Inst{61-60} = NUM_FORMAT_ALL;
953  let Inst{62}    = FORMAT_COMP_ALL;
954  let Inst{63}    = SRF_MODE_ALL;
955
956  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
957  // is done in R600CodeEmitter
958  //
959  // Inst{79-64} = OFFSET;
960  // Inst{81-80} = ENDIAN_SWAP;
961  // Inst{82}    = CONST_BUF_NO_STRIDE;
962  // Inst{83}    = MEGA_FETCH;
963  // Inst{84}    = ALT_CONST;
964  // Inst{86-85} = BUFFER_INDEX_MODE;
965  // Inst{95-86} = 0; Reserved
966
967  // VTX_WORD3 (Padding)
968  //
969  // Inst{127-96} = 0;
970}
971
972class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
973    : VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
974
975  let MEGA_FETCH_COUNT = 4;
976  let DST_SEL_X        = 0;
977  let DST_SEL_Y        = 7;   // Masked
978  let DST_SEL_Z        = 7;   // Masked
979  let DST_SEL_W        = 7;   // Masked
980  let DATA_FORMAT      = 0xD; // COLOR_32
981
982  // This is not really necessary, but there were some GPU hangs that appeared
983  // to be caused by ALU instructions in the next instruction group that wrote
984  // to the $ptr registers of the VTX_READ.  
985  // e.g.
986  // %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
987  // %T2_X<def> = MOV %ZERO
988  //Adding this constraint prevents this from happening.
989  let Constraints = "$ptr.ptr = $dst";
990}
991
992class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
993    : VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
994
995  let MEGA_FETCH_COUNT = 16;
996  let DST_SEL_X        =  0;
997  let DST_SEL_Y        =  1;
998  let DST_SEL_Z        =  2;
999  let DST_SEL_W        =  3;
1000  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1001
1002  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1003  // that holds its buffer address to avoid potential hangs.  We can't use
1004  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1005  // registers are different sizes.
1006}
1007
1008//===----------------------------------------------------------------------===//
1009// VTX Read from parameter memory space
1010//===----------------------------------------------------------------------===//
1011
1012class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
1013  [(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1014>;
1015
1016def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
1017def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
1018
1019
1020//===----------------------------------------------------------------------===//
1021// VTX Read from global memory space
1022//===----------------------------------------------------------------------===//
1023
1024// 32-bit reads
1025
1026class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
1027  [(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1028>;
1029
1030def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
1031def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
1032
1033// 128-bit reads
1034
1035class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
1036  [(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1037>;
1038
1039def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
1040def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
1041
1042}
1043
1044let Predicates = [isCayman] in {
1045
1046let isVector = 1 in { 
1047
1048def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1049
1050def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1051def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1052def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1053def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1054
1055} // End isVector = 1
1056
1057// RECIP_UINT emulation for Cayman
1058def : Pat <
1059  (AMDGPUurecip R600_Reg32:$src0),
1060  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1061                            (MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
1062>;
1063
1064} // End isCayman
1065
1066/* Other Instructions */
1067
1068let isCodeGenOnly = 1 in {
1069/*
1070  def SWIZZLE : AMDGPUShaderInst <
1071    (outs GPRV4F32:$dst),
1072    (ins GPRV4F32:$src0, i32imm:$src1),
1073    "SWIZZLE $dst, $src0, $src1",
1074    [(set GPRV4F32:$dst, (int_AMDGPU_swizzle GPRV4F32:$src0, imm:$src1))]
1075  >;
1076*/
1077
1078  def LAST : AMDGPUShaderInst <
1079    (outs),
1080    (ins),
1081    "LAST",
1082    []
1083  >;
1084
1085  def GET_CHAN : AMDGPUShaderInst <
1086    (outs R600_Reg32:$dst),
1087    (ins R600_Reg128:$src0, i32imm:$src1),
1088    "GET_CHAN $dst, $src0, $src1",
1089    []
1090  >;
1091
1092  def MULLIT : AMDGPUShaderInst <
1093    (outs R600_Reg128:$dst),
1094    (ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
1095    "MULLIT $dst, $src0, $src1",
1096    [(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
1097  >;
1098
1099let usesCustomInserter = 1, isPseudo = 1 in {
1100
1101class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
1102  (outs R600_TReg32:$dst),
1103  (ins),
1104  asm,
1105  [(set R600_TReg32:$dst, (intr))]
1106>;
1107
1108def TGID_X : R600PreloadInst <"TGID_X", int_r600_read_tgid_x>;
1109def TGID_Y : R600PreloadInst <"TGID_Y", int_r600_read_tgid_y>;
1110def TGID_Z : R600PreloadInst <"TGID_Z", int_r600_read_tgid_z>;
1111
1112def TIDIG_X : R600PreloadInst <"TIDIG_X", int_r600_read_tidig_x>;
1113def TIDIG_Y : R600PreloadInst <"TIDIG_Y", int_r600_read_tidig_y>;
1114def TIDIG_Z : R600PreloadInst <"TIDIG_Z", int_r600_read_tidig_z>;
1115
1116def NGROUPS_X : R600PreloadInst <"NGROUPS_X", int_r600_read_ngroups_x>;
1117def NGROUPS_Y : R600PreloadInst <"NGROUPS_Y", int_r600_read_ngroups_y>;
1118def NGROUPS_Z : R600PreloadInst <"NGROUPS_Z", int_r600_read_ngroups_z>;
1119
1120def GLOBAL_SIZE_X : R600PreloadInst <"GLOBAL_SIZE_X",
1121                                     int_r600_read_global_size_x>;
1122def GLOBAL_SIZE_Y : R600PreloadInst <"GLOBAL_SIZE_Y",
1123                                     int_r600_read_global_size_y>;
1124def GLOBAL_SIZE_Z : R600PreloadInst <"GLOBAL_SIZE_Z",
1125                                     int_r600_read_global_size_z>;
1126
1127def LOCAL_SIZE_X : R600PreloadInst <"LOCAL_SIZE_X",
1128                                    int_r600_read_local_size_x>;
1129def LOCAL_SIZE_Y : R600PreloadInst <"LOCAL_SIZE_Y",
1130                                    int_r600_read_local_size_y>;
1131def LOCAL_SIZE_Z : R600PreloadInst <"LOCAL_SIZE_Z",
1132                                    int_r600_read_local_size_z>;
1133
1134def R600_LOAD_CONST : AMDGPUShaderInst <
1135  (outs R600_Reg32:$dst),
1136  (ins i32imm:$src0),
1137  "R600_LOAD_CONST $dst, $src0",
1138  [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1139>;
1140
1141def LOAD_INPUT : AMDGPUShaderInst <
1142  (outs R600_Reg32:$dst),
1143  (ins i32imm:$src),
1144  "LOAD_INPUT $dst, $src",
1145  [(set R600_Reg32:$dst, (int_R600_load_input imm:$src))]
1146>;
1147
1148def RESERVE_REG : AMDGPUShaderInst <
1149  (outs),
1150  (ins i32imm:$src),
1151  "RESERVE_REG $src",
1152  [(int_AMDGPU_reserve_reg imm:$src)]
1153>;
1154
1155def TXD: AMDGPUShaderInst <
1156  (outs R600_Reg128:$dst),
1157  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1158  "TXD $dst, $src0, $src1, $src2, $src3, $src4",
1159  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
1160>;
1161
1162def TXD_SHADOW: AMDGPUShaderInst <
1163  (outs R600_Reg128:$dst),
1164  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
1165  "TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
1166  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
1167>;
1168
1169} // End usesCustomInserter = 1, isPseudo = 1
1170
1171} // End isCodeGenOnly = 1
1172
1173def CLAMP_R600 :  CLAMP <R600_Reg32>;
1174def FABS_R600 : FABS<R600_Reg32>;
1175def FNEG_R600 : FNEG<R600_Reg32>;
1176
1177let usesCustomInserter = 1 in {
1178
1179def MASK_WRITE : AMDGPUShaderInst <
1180    (outs),
1181    (ins R600_Reg32:$src),
1182    "MASK_WRITE $src",
1183    []
1184>;
1185
1186} // End usesCustomInserter = 1
1187
1188//===----------------------------------------------------------------------===//
1189// ISel Patterns
1190//===----------------------------------------------------------------------===//
1191
1192// KIL Patterns
1193def KILP : Pat <
1194  (int_AMDGPU_kilp),
1195  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1196>;
1197
1198def KIL : Pat <
1199  (int_AMDGPU_kill R600_Reg32:$src0),
1200  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1201>;
1202
1203// SGT Reverse args
1204def : Pat <
1205  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1206  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1207>;
1208
1209// SGE Reverse args
1210def : Pat <
1211  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1212  (SGE R600_Reg32:$src1, R600_Reg32:$src0) 
1213>;
1214
1215// SETGT_INT reverse args
1216def : Pat <
1217  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1218  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1219>;
1220
1221// SETGE_INT reverse args
1222def : Pat <
1223  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1224  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1225>;
1226
1227// SETGT_UINT reverse args
1228def : Pat <
1229  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1230  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1231>;
1232
1233// SETGE_UINT reverse args
1234def : Pat <
1235  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1236  (SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
1237>;
1238
1239// The next two patterns are special cases for handling 'true if ordered' and
1240// 'true if unordered' conditionals.  The assumption here is that the behavior of
1241// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1242// described here:
1243// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1244// We assume that  SETE returns false when one of the operands is NAN and
1245// SNE returns true when on of the operands is NAN
1246
1247//SETE - 'true if ordered'
1248def : Pat <
1249  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1250  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1251>;
1252
1253//SNE - 'true if unordered'
1254def : Pat <
1255  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1256  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1257>;
1258
1259def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1260def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1261def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1262def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1263
1264def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
1265def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
1266def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
1267def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
1268
1269def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1270def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1271def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1272def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1273
1274def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
1275def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
1276def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
1277def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
1278
1279def : Vector_Build <v4f32, R600_Reg32>;
1280def : Vector_Build <v4i32, R600_Reg32>;
1281
1282// bitconvert patterns
1283
1284def : BitConvert <i32, f32, R600_Reg32>;
1285def : BitConvert <f32, i32, R600_Reg32>;
1286def : BitConvert <v4f32, v4i32, R600_Reg128>;
1287
1288} // End isR600toCayman Predicate
1289