d3d1xstutil.h revision bb26272beaf1d2bddffaad5341235e70abcf483b
1/**************************************************************************
2 *
3 * Copyright 2010 Luca Barbieri
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial
15 * portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
21 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 **************************************************************************/
26
27#ifndef D3D1XSTUTIL_H_
28#define D3D1XSTUTIL_H_
29
30#ifdef _MSC_VER
31#include <unordered_map>
32#include <unordered_set>
33#else
34#include <tr1/unordered_map>
35#include <tr1/unordered_set>
36namespace std
37{
38	using namespace tr1;
39}
40#endif
41#include <map>
42#include <utility>
43
44#define WIN32_LEAN_AND_MEAN
45#include <objbase.h>
46#include <guiddef.h>
47#include <specstrings.h>
48
49#ifdef __GNUC__
50#define ATTRIBUTE_UNUSED __attribute__((unused))
51#else
52#define ATTRIBUTE_UNUSED
53#endif
54
55// just replicate GUIDs in every object file to avoid the hassle of having to pull in a library for them
56#undef DEFINE_GUID
57#define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
58        static const GUID name ATTRIBUTE_UNUSED = \
59	{ l, w1, w2, { b1, b2,  b3,  b4,  b5,  b6,  b7,  b8 } }
60
61#include "galliumdxgi.h"
62#include <d3dcommon.h>
63
64extern "C"
65{
66#include <util/u_atomic.h>
67#include <pipe/p_format.h>
68#include <os/os_thread.h>
69}
70
71#include <assert.h>
72#ifdef min
73#undef min
74#endif
75#ifdef max
76#undef max
77#endif
78
79/* NOTE: this _depends_ on the vtable layout of the C++ compiler to be
80 * binary compatible with Windows.
81 * Furthermore some absurd vtable layout likely won't work at all, since
82 * we perform some casts which are probably not safe by the C++ standard.
83 *
84 * In particular, the GNU/Linux/Itanium/clang ABI and Microsoft ABIs will work,
85 * but others may not.
86 * If in doubt, just switch to the latest version of a widely used C++ compiler.
87 *
88 * DESIGN of the Gallium COM implementation
89 *
90 * This state tracker uses somewhat unusual C++ coding patterns,
91 * to implement the COM interfaces required by Direct3D.
92 *
93 * While it may seem complicated, the effect is that the result
94 * generally behaves as intuitively as possible: in particular pointer
95 * casts very rarely change the pointer value (only for secondary
96 * DXGI/Gallium interfaces)
97 *
98 * Implementing COM is on first sight very easy: after all, it just
99 * consists of a reference count, and a dynamic_cast<> equivalent.
100 *
101 * However, implementing objects with multiple interfaces is actually
102 * quite tricky.
103 * The issue is that the interface pointers can't be equal, since this
104 * would place incompatible constraints on the vtable layout and thus
105 * multiple inheritance (and the subobjects the C++ compiler creates
106 * with it) must be correctly used.
107 *
108 * Furthermore, we must have a single reference count, which means
109 * that a naive implementation won't work, and it's necessary to either
110 * use virtual inheritance, or the "mixin inheritance" model we use.
111 *
112 * This solution aims to achieve the following object layout:
113 * 0: pointer to vtable for primary interface
114 * 1: reference count
115 * ... main class
116 * ... vtable pointers for secondary interfaces
117 * ... implementation of subclasses assuming secondary interfaces
118 *
119 * This allows us to cast pointers by just reinterpreting the value in
120 * almost all cases.
121 *
122 * To achieve this, *all* non-leaf classes must have their parent
123 * or the base COM interface as a template parameter, since derived
124 * classes may need to change that to support an interface derived
125 * from the one implemented by the superclass.
126 *
127 * Note however, that you can cast without regard to the template
128 * parameter, because only the vtable layout depends on it, since
129 * interfaces have no data members.
130 *
131 * For this to work, DON'T USE VIRTUAL FUNCTIONS except to implement
132 * interfaces, since the vtable layouts would otherwise be mismatched.
133 * An exception are virtual functions called only from other virtual functions,
134 * which is currently only used for the virtual destructor.
135 *
136 * The base class is GalliumComObject<IFoo>, which implements the
137 * IUnknown interface, and inherits IFoo.
138 *
139 * To support multiple inheritance, we insert GalliumMultiComObject,
140 * which redirects the secondary interfaces to the GalliumComObject
141 * superclass.
142 *
143 * Gallium(Multi)PrivateDataComObject is like ComObject but also
144 * implements the Get/SetPrivateData functions present on several
145 * D3D/DXGI interfaces.
146 *
147 * Example class hierarchy:
148 *
149 * IUnknown
150 * (pure interface)
151 * |
152 * V
153 * IAnimal
154 * (pure interface)
155 * |
156 * V
157 * IDuck
158 * (pure interface)
159 * |
160 * V
161 * GalliumComObject<IDuck>
162 * (non-instantiable, only implements IUnknown)
163 * |
164 * V
165 * GalliumAnimal<IDuck>
166 * (non-instantiable, only implements IAnimal)
167 * |
168 * V
169 * GalliumDuck
170 * (concrete)
171 * |
172 * V
173 * GalliumMultiComObject<GalliumDuck, IWheeledVehicle> <- IWheeledVehicle <- IVehicle <- IUnknown (second version)
174 * (non-instantiable, only implements IDuck and the IUnknown of IWheeledVehicle)
175 * |
176 * V
177 * GalliumDuckOnWheels
178 * (concrete)
179 *
180 * This will produce the desired layout.
181 * Note that GalliumAnimal<IFoo>* is safely castable to GalliumAnimal<IBar>*
182 * by reinterpreting, as long as non-interface virtual functions are not used,
183 * and that you only call interface functions for the superinterface of IBar
184 * that the object actually implements.
185 *
186 * Instead, if GalliumDuck where to inherit both from GalliumAnimal
187 * and IDuck, then (IDuck*)gallium_duck and (IAnimal*)gallium_duck would
188 * have different pointer values, which the "base class as template parameter"
189 * trick avoids.
190 *
191 * The price we pay is that you MUST NOT have virtual functions other than those
192 * implementing interfaces (except for leaf classes) since the position of these
193 * would depend on the base interface.
194 * As mentioned above, virtual functions only called from interface functions
195 * are an exception, currently used only for the virtual destructor.
196 * If you want virtual functions anyway , put them in a separate interface class,
197 * multiply inherit from that and cast the pointer to that interface.
198 *
199 * You CAN however have virtual functions on any class which does not specify
200 * his base as a template parameter, or where you don't need to change the
201 * template base interface parameter by casting.
202 *
203 * --- The magic QueryInterface "delete this" trick ---
204 *
205 * When the reference count drops to 0, we must delete the class.
206 * The problem is, that we must call the right virtual destructor (i.e. on the right class).
207 * However, we would like to be able to call release() and nonatomic_release()
208 * non-virtually for performance (also, the latter cannot be called virtually at all, since
209 * IUnknown does not offer it).
210 *
211 * The naive solution would be to just add a virtual destructor and rely on it.
212 * However, this doesn't work due to the fact that as described above we perform casets
213 * with are unsafe regarding vtable layout.
214 * In particular, consider the case where we try to delete GalliumComObject<ID3D11Texture2D>
215 * with a pointer to GalliumComObject<ID3D11Resource>.
216 * Since we think that this is a  GalliumComObject<ID3D11Resource>, we'll look for the
217 * destructor in the vtable slot immediately after the ID3D11Resource vtable, but this is
218 * actually an ID3D11Texture2D function implemented by the object!
219 *
220 * So, we must put the destructor somewhere else.
221 * We could add it as a data member, but it would be awkward and it would bloat the
222 * class.
223 * Thus, we use this trick: we reuse the vtable slot for QueryInterface, which is always at the
224 * same position.
225 * To do so, we define a special value for the first pointer argument, that triggers a
226 * "delete this".
227 * In addition to that, we add a virtual destructor to GalliumComObject.
228 * That virtual destructor will be called by QueryInterface, and since that is a virtual
229 * function, it will know the correct place for the virtual destructor.
230 *
231 * QueryInterface is already slow due to the need to compare several GUIDs, so the
232 * additional pointer test should not be significant.
233 *
234 * Of course the ideal solution would be telling the C++ compiler to put the
235 * destructor it in a negative vtable slot, but unfortunately GCC doesn't support that
236 * yet, and this method is almost as good as that.
237 */
238
239template<typename T>
240struct com_traits;
241
242#define COM_INTERFACE(intf, base) \
243template<> \
244struct com_traits<intf> \
245{ \
246	static REFIID iid() {return IID_##intf;} \
247	static inline bool is_self_or_ancestor(REFIID riid) {return riid == iid() || com_traits<base>::is_self_or_ancestor(riid);} \
248};
249
250template<>
251struct com_traits<IUnknown>
252{
253	static REFIID iid() {return IID_IUnknown;}
254	static inline bool is_self_or_ancestor(REFIID riid) {return riid == iid();}
255};
256
257#ifndef _MSC_VER
258#define __uuidof(T) (com_traits<T>::iid())
259#endif
260
261struct refcnt_t
262{
263	uint32_t refcnt;
264
265	refcnt_t(unsigned v = 1)
266	: refcnt(v)
267	{}
268
269	unsigned add_ref()
270	{
271		p_atomic_inc((int32_t*)&refcnt);
272		return refcnt;
273	}
274
275	unsigned release()
276	{
277		if(p_atomic_dec_zero((int32_t*)&refcnt))
278			return 0;
279		return refcnt;
280	}
281
282	void nonatomic_add_ref()
283	{
284		p_atomic_inc((int32_t*)&refcnt);
285	}
286
287	unsigned nonatomic_release()
288	{
289		if(p_atomic_dec_zero((int32_t*)&refcnt))
290			return 0;
291		else
292			return 1;
293	}
294};
295
296#if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8)
297/* this should be safe because atomic ops are full memory barriers, and thus a sequence that does:
298 * ++one_refcnt;
299 * --other_refcnt;
300 * should never be reorderable (as seen from another CPU) to:
301 * --other_refcnt
302 * ++one_refcnt
303 *
304 * since one of the ops is atomic.
305 * If this weren't the case, a CPU could incorrectly destroy an object manipulated in that way by another one.
306 */
307struct dual_refcnt_t
308{
309	union
310	{
311		uint64_t refcnt;
312		struct
313		{
314			uint32_t atomic_refcnt;
315			uint32_t nonatomic_refcnt;
316		};
317	};
318
319	dual_refcnt_t(unsigned v = 1)
320	{
321		atomic_refcnt = v;
322		nonatomic_refcnt = 0;
323	}
324
325	bool is_zero()
326	{
327		if(sizeof(void*) == 8)
328			return *(volatile uint64_t*)&refcnt == 0ULL;
329		else
330		{
331			uint64_t v;
332			do
333			{
334				v = refcnt;
335			}
336			while(!__sync_bool_compare_and_swap(&refcnt, v, v));
337			return v == 0ULL;
338		}
339	}
340
341	unsigned add_ref()
342	{
343		//printf("%p add_ref at %u %u\n", this, atomic_refcnt, nonatomic_refcnt);
344		p_atomic_inc((int32_t*)&atomic_refcnt);
345		return atomic_refcnt + nonatomic_refcnt;
346	}
347
348	unsigned release()
349	{
350		//printf("%p release at %u %u\n", this, atomic_refcnt, nonatomic_refcnt);
351		if(p_atomic_dec_zero((int32_t*)&atomic_refcnt) && !nonatomic_refcnt && is_zero())
352			return 0;
353		unsigned v = atomic_refcnt + nonatomic_refcnt;
354		return v ? v : 1;
355	}
356
357	void nonatomic_add_ref()
358	{
359		//printf("%p nonatomic_add_ref at %u %u\n", this, atomic_refcnt, nonatomic_refcnt);
360		++nonatomic_refcnt;
361	}
362
363	unsigned nonatomic_release()
364	{
365		//printf("%p nonatomic_release at %u %u\n", this, atomic_refcnt, nonatomic_refcnt);
366		if(!--nonatomic_refcnt && !atomic_refcnt && is_zero())
367			return 0;
368		return 1;
369	}
370};
371#else
372// this will result in atomic operations being used while they could have been avoided
373#ifdef __i386__
374#warning Compile for 586+ using GCC to improve the performance of the Direct3D 10/11 state tracker
375#endif
376typedef refcnt_t dual_refcnt_t;
377#endif
378
379#define IID_MAGIC_DELETE_THIS (*(const IID*)((intptr_t)-(int)(sizeof(IID) - 1)))
380
381template<typename Base = IUnknown, typename RefCnt = refcnt_t>
382struct GalliumComObject : public Base
383{
384	RefCnt refcnt;
385
386	GalliumComObject()
387	{}
388
389	/* DO NOT CALL this from externally called non-virtual functions in derived classes, since
390	 * the vtable position depends on the COM interface being implemented
391	 */
392	virtual ~GalliumComObject()
393	{}
394
395	inline ULONG add_ref()
396	{
397		return refcnt.add_ref();
398	}
399
400	inline ULONG release()
401	{
402		ULONG v = refcnt.release();
403		if(!v)
404		{
405			/* this will call execute "delete this", using the correct vtable slot for the destructor */
406			/* see the initial comment for an explaination of this magic trick */
407			this->QueryInterface(IID_MAGIC_DELETE_THIS, 0);
408			return 0;
409		}
410		return v;
411	}
412
413	inline void nonatomic_add_ref()
414	{
415		refcnt.nonatomic_add_ref();
416	}
417
418	inline void nonatomic_release()
419	{
420		if(!refcnt.nonatomic_release())
421		{
422			/* this will execute "delete this", using the correct vtable slot for the destructor */
423			/* see the initial comment for an explaination of this magic trick */
424			this->QueryInterface(IID_MAGIC_DELETE_THIS, 0);
425		}
426	}
427
428	inline HRESULT query_interface(REFIID riid, void **ppvObject)
429	{
430		if(com_traits<Base>::is_self_or_ancestor(riid))
431		{
432			// must be the virtual AddRef, since it is overridden by some classes
433			this->AddRef();
434			*ppvObject = this;
435			return S_OK;
436		}
437		else
438			return E_NOINTERFACE;
439	}
440
441	virtual ULONG STDMETHODCALLTYPE AddRef()
442	{
443		return add_ref();
444	}
445
446	virtual ULONG STDMETHODCALLTYPE Release()
447	{
448		return release();
449	}
450
451	virtual HRESULT STDMETHODCALLTYPE QueryInterface(
452		REFIID riid,
453	        void **ppvObject)
454	{
455		/* see the initial comment for an explaination of this magic trick */
456		if(&riid == &IID_MAGIC_DELETE_THIS)
457		{
458			delete this;
459			return 0;
460		}
461		if(!this)
462			return E_INVALIDARG;
463		if(!ppvObject)
464			return E_POINTER;
465		return query_interface(riid, ppvObject);
466	}
467};
468
469template<typename BaseClass, typename SecondaryInterface>
470struct GalliumMultiComObject : public BaseClass, SecondaryInterface
471{
472	// we could avoid this duplication, but the increased complexity to do so isn't worth it
473	virtual ULONG STDMETHODCALLTYPE AddRef()
474	{
475		return BaseClass::add_ref();
476	}
477
478	virtual ULONG STDMETHODCALLTYPE Release()
479	{
480		return BaseClass::release();
481	}
482
483	inline HRESULT query_interface(REFIID riid, void **ppvObject)
484	{
485		HRESULT hr = BaseClass::query_interface(riid, ppvObject);
486		if(SUCCEEDED(hr))
487			return hr;
488		if(com_traits<SecondaryInterface>::is_self_or_ancestor(riid))
489		{
490			// must be the virtual AddRef, since it is overridden by some classes
491			this->AddRef();
492			*ppvObject = (SecondaryInterface*)this;
493			return S_OK;
494		}
495		else
496			return E_NOINTERFACE;
497	}
498
499	virtual  HRESULT STDMETHODCALLTYPE QueryInterface(
500		REFIID riid,
501	        void **ppvObject)
502	{
503		/* see the initial comment for an explaination of this magic trick */
504		if(&riid == &IID_MAGIC_DELETE_THIS)
505		{
506			delete this;
507			return 0;
508		}
509		if(!this)
510			return E_INVALIDARG;
511		if(!ppvObject)
512			return E_POINTER;
513		return query_interface(riid, ppvObject);
514	}
515};
516
517template<typename T, typename Traits>
518struct refcnt_ptr
519{
520	T* p;
521
522	refcnt_ptr()
523	: p(0)
524	{}
525
526	void add_ref() {Traits::add_ref(p);}
527	void release() {Traits::release(p);}
528
529	template<typename U, typename UTraits>
530	refcnt_ptr(const refcnt_ptr<U, UTraits>& c)
531	{
532		*this = static_cast<U*>(c.ref());
533	}
534
535	~refcnt_ptr()
536	{
537		release();
538	}
539
540	void reset(T* q)
541	{
542		release();
543		p = q;
544	}
545
546	template<typename U, typename UTraits>
547	refcnt_ptr& operator =(const refcnt_ptr<U, UTraits>& q)
548	{
549		return *this = q.p;
550	}
551
552	template<typename U>
553	refcnt_ptr& operator =(U* q)
554	{
555		release();
556		p = static_cast<T*>(q);
557		add_ref();
558		return *this;
559	}
560
561	T* ref()
562	{
563		add_ref();
564		return p;
565	}
566
567	T* steal()
568	{
569		T* ret = p;
570		p = 0;
571		return ret;
572	}
573
574	T* operator ->()
575	{
576		return p;
577	}
578
579	const T* operator ->() const
580	{
581		return p;
582	}
583
584	T** operator &()
585	{
586		assert(!p);
587		return &p;
588	}
589
590	bool operator !() const
591	{
592		return !p;
593	}
594
595	typedef T* refcnt_ptr::*unspecified_bool_type;
596
597	operator unspecified_bool_type() const
598	{
599		return p ? &refcnt_ptr::p : 0;
600	}
601};
602
603struct simple_ptr_traits
604{
605	static void add_ref(void* p) {}
606	static void release(void* p) {}
607};
608
609struct com_ptr_traits
610{
611	static void add_ref(void* p)
612	{
613		if(p)
614			((IUnknown*)p)->AddRef();
615	}
616
617	static void release(void* p)
618	{
619		if(p)
620			((IUnknown*)p)->Release();
621	}
622};
623
624template<typename T>
625struct ComPtr : public refcnt_ptr<T, com_ptr_traits>
626{
627	template<typename U, typename UTraits>
628	ComPtr& operator =(const refcnt_ptr<U, UTraits>& q)
629	{
630		return *this = q.p;
631	}
632
633	template<typename U>
634	ComPtr& operator =(U* q)
635	{
636		this->release();
637		this->p = static_cast<T*>(q);
638		this->add_ref();
639		return *this;
640	}
641};
642
643template<typename T, typename TTraits, typename U, typename UTraits>
644bool operator ==(const refcnt_ptr<T, TTraits>& a, const refcnt_ptr<U, UTraits>& b)
645{
646	return a.p == b.p;
647}
648
649template<typename T, typename TTraits, typename U>
650bool operator ==(const refcnt_ptr<T, TTraits>& a, U* b)
651{
652	return a.p == b;
653}
654
655template<typename T, typename TTraits, typename U>
656bool operator ==(U* b, const refcnt_ptr<T, TTraits>& a)
657{
658	return a.p == b;
659}
660
661template<typename T, typename TTraits, typename U, typename UTraits>
662bool operator !=(const refcnt_ptr<T, TTraits>& a, const refcnt_ptr<U, UTraits>& b)
663{
664	return a.p != b.p;
665}
666
667template<typename T, typename TTraits, typename U>
668bool operator !=(const refcnt_ptr<T, TTraits>& a, U* b)
669{
670	return a.p != b;
671}
672
673template<typename T, typename TTraits, typename U>
674bool operator !=(U* b, const refcnt_ptr<T, TTraits>& a)
675{
676	return a.p != b;
677}
678
679template<bool threadsafe>
680struct maybe_mutex_t;
681
682template<>
683struct maybe_mutex_t<true>
684{
685	pipe_mutex mutex;
686
687	void lock()
688	{
689		pipe_mutex_lock(mutex);
690	}
691
692	void unlock()
693	{
694		pipe_mutex_unlock(mutex);
695	}
696};
697
698template<>
699struct maybe_mutex_t<false>
700{
701	void lock()
702	{
703	}
704
705	void unlock()
706	{
707	}
708};
709
710typedef maybe_mutex_t<true> mutex_t;
711
712template<typename T>
713struct lock_t
714{
715	T& mutex;
716	lock_t(T& mutex)
717	: mutex(mutex)
718	{
719		mutex.lock();
720	}
721
722	~lock_t()
723	{
724		mutex.unlock();
725	}
726};
727
728struct c_string
729{
730	const char* p;
731	c_string(const char* p)
732	: p(p)
733	{}
734
735	operator const char*() const
736	{
737		return p;
738	}
739};
740
741static inline bool operator ==(const c_string& a, const c_string& b)
742{
743	return !strcmp(a.p, b.p);
744}
745
746static inline bool operator !=(const c_string& a, const c_string& b)
747{
748	return strcmp(a.p, b.p);
749}
750
751#ifdef __GLIBCXX__
752namespace std
753{
754	namespace tr1
755	{
756		template<>
757		inline size_t hash<GUID>::operator()(GUID __val) const
758		{
759			return _Fnv_hash::hash(__val);
760		}
761
762		template<>
763		inline size_t hash<c_string>::operator()(c_string __val) const
764		{
765			return _Fnv_hash::hash(__val.p, strlen(__val.p));
766		}
767
768		template<typename T, typename U>
769		struct hash<std::pair<T, U> > : public std::unary_function<std::pair<T, U>, size_t>
770		{
771			size_t operator()(std::pair<T, U> __val) const;
772		};
773
774		template<typename T, typename U>
775		inline size_t hash<std::pair<T, U> >::operator()(std::pair<T, U> __val) const
776		{
777			std::pair<size_t, size_t> p;
778			p.first = hash<T>()(__val.first);
779			p.second = hash<U>()(__val.second);
780			return _Fnv_hash::hash(p);
781		}
782	}
783}
784#else
785#warning "You probably need to add a pair, C string and GUID hash implementation for your C++ library"
786#endif
787
788template<typename Base, typename RefCnt = refcnt_t>
789struct GalliumPrivateDataComObject : public GalliumComObject<Base, RefCnt>
790{
791	typedef std::unordered_map<GUID, std::pair<void*, unsigned> > private_data_map_t;
792	private_data_map_t private_data_map;
793	mutex_t private_data_mutex;
794
795	~GalliumPrivateDataComObject()
796	{
797		for(private_data_map_t::iterator i = private_data_map.begin(), e = private_data_map.end(); i != e; ++i)
798		{
799			if(i->second.second == ~0u)
800				((IUnknown*)i->second.first)->Release();
801			else
802				free(i->second.first);
803		}
804	}
805
806	HRESULT get_private_data(
807            __in  REFGUID guid,
808            __inout  UINT *pDataSize,
809            __out_bcount_opt(*pDataSize)  void *pData)
810        {
811		lock_t<mutex_t> lock(private_data_mutex);
812        	private_data_map_t::iterator i = private_data_map.find(guid);
813        	*pDataSize = 0;
814        	if(i == private_data_map.end())
815        		return DXGI_ERROR_NOT_FOUND;
816        	if(i->second.second == ~0u)
817        	{
818        		/* TODO: is GetPrivateData on interface data supposed to do this? */
819        		if(*pDataSize < sizeof(void*))
820        			return E_INVALIDARG;
821        		if(pData)
822        		{
823        			memcpy(pData, &i->second.first, sizeof(void*));
824				((IUnknown*)i->second.first)->AddRef();
825        		}
826        		*pDataSize = sizeof(void*);
827        	}
828        	else
829        	{
830        		unsigned size = std::min(*pDataSize, i->second.second);
831        		if(pData)
832        			memcpy(pData, i->second.first, size);
833        		*pDataSize = size;
834        	}
835        	return S_OK;
836        }
837
838        HRESULT set_private_data(
839            __in  REFGUID guid,
840            __in  UINT DataSize,
841            __in_bcount_opt( DataSize )  const void *pData)
842        {
843        	void* p = 0;
844
845        	if(DataSize && pData)
846        	{
847        		p = malloc(DataSize);
848        		if(!p)
849        			return E_OUTOFMEMORY;
850        	}
851
852        	lock_t<mutex_t> lock(private_data_mutex);
853        	std::pair<void*, unsigned>& v = private_data_map[guid];
854        	if(v.first)
855        	{
856        		if(v.second == ~0u)
857        			((IUnknown*)v.first)->Release();
858        		else
859        			free(v.first);
860        	}
861        	if(DataSize && pData)
862        	{
863        		memcpy(p, pData, DataSize);
864        		v.first = p;
865        		v.second = DataSize;
866        	}
867        	else
868        		private_data_map.erase(guid);
869        	return S_OK;
870        }
871
872        HRESULT set_private_data_interface(
873            __in  REFGUID guid,
874            __in_opt  const IUnknown *pData)
875        {
876        	lock_t<mutex_t> lock(private_data_mutex);
877        	std::pair<void*, unsigned>& v = private_data_map[guid];
878		if(v.first)
879		{
880			if(v.second == ~0u)
881				((IUnknown*)v.first)->Release();
882			else
883				free(v.first);
884		}
885		if(pData)
886		{
887			((IUnknown*)pData)->AddRef();
888			v.first = (void*)pData;
889			v.second = ~0;
890		}
891		else
892			private_data_map.erase(guid);
893		return S_OK;
894        }
895
896	virtual HRESULT STDMETHODCALLTYPE GetPrivateData(
897            __in  REFGUID guid,
898            __inout  UINT *pDataSize,
899            __out_bcount_opt(*pDataSize)  void *pData)
900        {
901		return get_private_data(guid, pDataSize, pData);
902        }
903
904        virtual HRESULT STDMETHODCALLTYPE SetPrivateData(
905            __in  REFGUID guid,
906            __in  UINT DataSize,
907            __in_bcount_opt( DataSize )  const void *pData)
908        {
909        	return set_private_data(guid, DataSize, pData);
910        }
911
912        virtual HRESULT STDMETHODCALLTYPE SetPrivateDataInterface(
913            __in  REFGUID guid,
914            __in_opt  const IUnknown *pData)
915        {
916        	return set_private_data_interface(guid, pData);
917        }
918};
919
920template<typename BaseClass, typename SecondaryInterface>
921struct GalliumMultiPrivateDataComObject : public GalliumMultiComObject<BaseClass, SecondaryInterface>
922{
923	// we could avoid this duplication, but the increased complexity to do so isn't worth it
924	virtual HRESULT STDMETHODCALLTYPE GetPrivateData(
925            __in  REFGUID guid,
926            __inout  UINT *pDataSize,
927            __out_bcount_opt(*pDataSize)  void *pData)
928        {
929		return BaseClass::get_private_data(guid, pDataSize, pData);
930        }
931
932        virtual HRESULT STDMETHODCALLTYPE SetPrivateData(
933            __in  REFGUID guid,
934            __in  UINT DataSize,
935            __in_bcount_opt( DataSize )  const void *pData)
936        {
937        	return BaseClass::set_private_data(guid, DataSize, pData);
938        }
939
940        virtual HRESULT STDMETHODCALLTYPE SetPrivateDataInterface(
941            __in  REFGUID guid,
942            __in_opt  const IUnknown *pData)
943        {
944        	return BaseClass::set_private_data_interface(guid, pData);
945        }
946};
947
948#define DXGI_FORMAT_COUNT 100
949extern pipe_format dxgi_to_pipe_format[DXGI_FORMAT_COUNT];
950extern DXGI_FORMAT pipe_to_dxgi_format[PIPE_FORMAT_COUNT];
951
952void init_pipe_to_dxgi_format();
953
954COM_INTERFACE(IGalliumDevice, IUnknown);
955COM_INTERFACE(IGalliumAdapter, IUnknown);
956COM_INTERFACE(IGalliumResource, IUnknown);
957
958// used to make QueryInterface know the IIDs of the interface and its ancestors
959COM_INTERFACE(IDXGIObject, IUnknown)
960COM_INTERFACE(IDXGIDeviceSubObject, IDXGIObject)
961COM_INTERFACE(IDXGISurface, IDXGIDeviceSubObject)
962COM_INTERFACE(IDXGIOutput, IDXGIObject)
963COM_INTERFACE(IDXGIAdapter, IDXGIObject)
964COM_INTERFACE(IDXGISwapChain, IDXGIDeviceSubObject)
965COM_INTERFACE(IDXGIFactory, IDXGIObject)
966COM_INTERFACE(IDXGIDevice, IDXGIObject)
967COM_INTERFACE(IDXGIResource, IDXGIDeviceSubObject)
968COM_INTERFACE(IDXGISurface1, IDXGISurface)
969COM_INTERFACE(IDXGIDevice1, IDXGIDevice)
970COM_INTERFACE(IDXGIAdapter1, IDXGIAdapter)
971COM_INTERFACE(IDXGIFactory1, IDXGIFactory)
972
973template<typename Base>
974struct GalliumDXGIDevice : public GalliumMultiPrivateDataComObject<Base, IDXGIDevice>
975{
976	ComPtr<IDXGIAdapter> adapter;
977	int priority;
978	unsigned max_latency;
979
980	GalliumDXGIDevice(IDXGIAdapter* p_adapter)
981	{
982		adapter = p_adapter;
983	}
984
985        virtual HRESULT STDMETHODCALLTYPE GetParent(
986            __in  REFIID riid,
987            __out  void **ppParent)
988        {
989        	return adapter.p->QueryInterface(riid, ppParent);
990        }
991
992	virtual HRESULT STDMETHODCALLTYPE GetAdapter(
993		__out  IDXGIAdapter **pAdapter)
994	{
995		*pAdapter = adapter.ref();
996		return S_OK;
997	}
998
999	virtual HRESULT STDMETHODCALLTYPE QueryResourceResidency(
1000		__in_ecount(NumResources)  IUnknown *const *ppResources,
1001		__out_ecount(NumResources)  DXGI_RESIDENCY *pResidencyStatus,
1002		UINT NumResources)
1003	{
1004		for(unsigned i = 0; i < NumResources; ++i)
1005			pResidencyStatus[i] = DXGI_RESIDENCY_FULLY_RESIDENT;
1006		return S_OK;
1007	}
1008
1009	virtual HRESULT STDMETHODCALLTYPE SetGPUThreadPriority(
1010		INT Priority)
1011	{
1012		priority = Priority;
1013		return S_OK;
1014	}
1015
1016	virtual HRESULT STDMETHODCALLTYPE GetGPUThreadPriority(
1017	    __out  INT *pPriority)
1018	{
1019		*pPriority = priority;
1020		return S_OK;
1021	}
1022
1023	HRESULT STDMETHODCALLTYPE GetMaximumFrameLatency(
1024		UINT *pMaxLatency
1025	)
1026	{
1027		*pMaxLatency = max_latency;
1028		return S_OK;
1029	}
1030
1031        virtual HRESULT STDMETHODCALLTYPE SetMaximumFrameLatency(
1032        	UINT MaxLatency)
1033        {
1034        	max_latency = MaxLatency;
1035        	return S_OK;
1036        }
1037};
1038
1039COM_INTERFACE(ID3D10Blob, IUnknown);
1040
1041/* NOTE: ID3DBlob implementations may come from a Microsoft native DLL
1042 * (e.g. d3dcompiler), or perhaps even from the application itself.
1043 *
1044 * Hence, never try to access the data/size members directly, which is why they are private.
1045 * In internal code, use std::pair<void*, size_t> instead of this class.
1046 */
1047class GalliumD3DBlob : public GalliumComObject<ID3DBlob>
1048{
1049	void* data;
1050	size_t size;
1051
1052public:
1053	GalliumD3DBlob(void* data, size_t size)
1054	: data(data), size(size)
1055	{}
1056
1057	~GalliumD3DBlob()
1058	{
1059		free(data);
1060	}
1061
1062	virtual LPVOID STDMETHODCALLTYPE GetBufferPointer()
1063	{
1064		return data;
1065	}
1066
1067	virtual SIZE_T STDMETHODCALLTYPE GetBufferSize()
1068	{
1069		return size;
1070	}
1071};
1072
1073#endif /* D3D1XSTUTIL_H_ */
1074