1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "glsl_symbol_table.h"
25#include "ast.h"
26#include "glsl_types.h"
27#include "ir.h"
28#include "main/core.h" /* for MIN2 */
29
30static ir_rvalue *
31convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33bool
34apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35                          struct _mesa_glsl_parse_state *state);
36
37static unsigned
38process_parameters(exec_list *instructions, exec_list *actual_parameters,
39		   exec_list *parameters,
40		   struct _mesa_glsl_parse_state *state)
41{
42   unsigned count = 0;
43
44   foreach_list (n, parameters) {
45      ast_node *const ast = exec_node_data(ast_node, n, link);
46      ir_rvalue *result = ast->hir(instructions, state);
47
48      ir_constant *const constant = result->constant_expression_value();
49      if (constant != NULL)
50	 result = constant;
51
52      actual_parameters->push_tail(result);
53      count++;
54   }
55
56   return count;
57}
58
59
60/**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function.  May be \c NULL.
64 * \param name        Name of the function.
65 * \param parameters  List of \c ir_instruction nodes representing the
66 *                    parameter list for the function.  This may be either a
67 *                    formal (\c ir_variable) or actual (\c ir_rvalue)
68 *                    parameter list.  Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73char *
74prototype_string(const glsl_type *return_type, const char *name,
75		 exec_list *parameters)
76{
77   char *str = NULL;
78
79   if (return_type != NULL)
80      str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82   ralloc_asprintf_append(&str, "%s(", name);
83
84   const char *comma = "";
85   foreach_list(node, parameters) {
86      const ir_variable *const param = (ir_variable *) node;
87
88      ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89      comma = ", ";
90   }
91
92   ralloc_strcat(&str, ")");
93   return str;
94}
95
96/**
97 * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101static bool
102verify_parameter_modes(_mesa_glsl_parse_state *state,
103		       ir_function_signature *sig,
104		       exec_list &actual_ir_parameters,
105		       exec_list &actual_ast_parameters)
106{
107   exec_node *actual_ir_node  = actual_ir_parameters.head;
108   exec_node *actual_ast_node = actual_ast_parameters.head;
109
110   foreach_list(formal_node, &sig->parameters) {
111      /* The lists must be the same length. */
112      assert(!actual_ir_node->is_tail_sentinel());
113      assert(!actual_ast_node->is_tail_sentinel());
114
115      const ir_variable *const formal = (ir_variable *) formal_node;
116      const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117      const ast_expression *const actual_ast =
118	 exec_node_data(ast_expression, actual_ast_node, link);
119
120      /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121       * FIXME: 0:0(0).
122       */
123      YYLTYPE loc = actual_ast->get_location();
124
125      /* Verify that 'const_in' parameters are ir_constants. */
126      if (formal->mode == ir_var_const_in &&
127	  actual->ir_type != ir_type_constant) {
128	 _mesa_glsl_error(&loc, state,
129			  "parameter `in %s' must be a constant expression",
130			  formal->name);
131	 return false;
132      }
133
134      /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135      if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136	 const char *mode = NULL;
137	 switch (formal->mode) {
138	 case ir_var_out:   mode = "out";   break;
139	 case ir_var_inout: mode = "inout"; break;
140	 default:           assert(false);  break;
141	 }
142
143	 /* This AST-based check catches errors like f(i++).  The IR-based
144	  * is_lvalue() is insufficient because the actual parameter at the
145	  * IR-level is just a temporary value, which is an l-value.
146	  */
147	 if (actual_ast->non_lvalue_description != NULL) {
148	    _mesa_glsl_error(&loc, state,
149			     "function parameter '%s %s' references a %s",
150			     mode, formal->name,
151			     actual_ast->non_lvalue_description);
152	    return false;
153	 }
154
155	 ir_variable *var = actual->variable_referenced();
156	 if (var)
157	    var->assigned = true;
158
159	 if (var && var->read_only) {
160	    _mesa_glsl_error(&loc, state,
161			     "function parameter '%s %s' references the "
162			     "read-only variable '%s'",
163			     mode, formal->name,
164			     actual->variable_referenced()->name);
165	    return false;
166	 } else if (!actual->is_lvalue()) {
167	    _mesa_glsl_error(&loc, state,
168			     "function parameter '%s %s' is not an lvalue",
169			     mode, formal->name);
170	    return false;
171	 }
172      }
173
174      actual_ir_node  = actual_ir_node->next;
175      actual_ast_node = actual_ast_node->next;
176   }
177   return true;
178}
179
180/**
181 * If a function call is generated, \c call_ir will point to it on exit.
182 * Otherwise \c call_ir will be set to \c NULL.
183 */
184static ir_rvalue *
185generate_call(exec_list *instructions, ir_function_signature *sig,
186	      YYLTYPE *loc, exec_list *actual_parameters,
187	      ir_call **call_ir,
188	      struct _mesa_glsl_parse_state *state)
189{
190   void *ctx = state;
191   exec_list post_call_conversions;
192
193   *call_ir = NULL;
194
195   /* Perform implicit conversion of arguments.  For out parameters, we need
196    * to place them in a temporary variable and do the conversion after the
197    * call takes place.  Since we haven't emitted the call yet, we'll place
198    * the post-call conversions in a temporary exec_list, and emit them later.
199    */
200   exec_list_iterator actual_iter = actual_parameters->iterator();
201   exec_list_iterator formal_iter = sig->parameters.iterator();
202
203   while (actual_iter.has_next()) {
204      ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
205      ir_variable *formal = (ir_variable *) formal_iter.get();
206
207      assert(actual != NULL);
208      assert(formal != NULL);
209
210      if (formal->type->is_numeric() || formal->type->is_boolean()) {
211	 switch (formal->mode) {
212	 case ir_var_const_in:
213	 case ir_var_in: {
214	    ir_rvalue *converted
215	       = convert_component(actual, formal->type);
216	    actual->replace_with(converted);
217	    break;
218	 }
219	 case ir_var_out:
220	    if (actual->type != formal->type) {
221	       /* To convert an out parameter, we need to create a
222		* temporary variable to hold the value before conversion,
223		* and then perform the conversion after the function call
224		* returns.
225		*
226		* This has the effect of transforming code like this:
227		*
228		*   void f(out int x);
229		*   float value;
230		*   f(value);
231		*
232		* Into IR that's equivalent to this:
233		*
234		*   void f(out int x);
235		*   float value;
236		*   int out_parameter_conversion;
237		*   f(out_parameter_conversion);
238		*   value = float(out_parameter_conversion);
239		*/
240	       ir_variable *tmp =
241		  new(ctx) ir_variable(formal->type,
242				       "out_parameter_conversion",
243				       ir_var_temporary);
244	       instructions->push_tail(tmp);
245	       ir_dereference_variable *deref_tmp_1
246		  = new(ctx) ir_dereference_variable(tmp);
247	       ir_dereference_variable *deref_tmp_2
248		  = new(ctx) ir_dereference_variable(tmp);
249	       ir_rvalue *converted_tmp
250		  = convert_component(deref_tmp_1, actual->type);
251	       ir_assignment *assignment
252		  = new(ctx) ir_assignment(actual, converted_tmp);
253	       post_call_conversions.push_tail(assignment);
254	       actual->replace_with(deref_tmp_2);
255	    }
256	    break;
257	 case ir_var_inout:
258	    /* Inout parameters should never require conversion, since that
259	     * would require an implicit conversion to exist both to and
260	     * from the formal parameter type, and there are no
261	     * bidirectional implicit conversions.
262	     */
263	    assert (actual->type == formal->type);
264	    break;
265	 default:
266	    assert (!"Illegal formal parameter mode");
267	    break;
268	 }
269      }
270
271      actual_iter.next();
272      formal_iter.next();
273   }
274
275   /* If the function call is a constant expression, don't generate any
276    * instructions; just generate an ir_constant.
277    *
278    * Function calls were first allowed to be constant expressions in GLSL 1.20.
279    */
280   if (state->language_version >= 120) {
281      ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
282      if (value != NULL) {
283	 return value;
284      }
285   }
286
287   ir_dereference_variable *deref = NULL;
288   if (!sig->return_type->is_void()) {
289      /* Create a new temporary to hold the return value. */
290      ir_variable *var;
291
292      var = new(ctx) ir_variable(sig->return_type,
293				 ralloc_asprintf(ctx, "%s_retval",
294						 sig->function_name()),
295				 ir_var_temporary);
296      instructions->push_tail(var);
297
298      deref = new(ctx) ir_dereference_variable(var);
299   }
300   ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
301   instructions->push_tail(call);
302
303   /* Also emit any necessary out-parameter conversions. */
304   instructions->append_list(&post_call_conversions);
305
306   return deref ? deref->clone(ctx, NULL) : NULL;
307}
308
309/**
310 * Given a function name and parameter list, find the matching signature.
311 */
312static ir_function_signature *
313match_function_by_name(const char *name,
314		       exec_list *actual_parameters,
315		       struct _mesa_glsl_parse_state *state)
316{
317   void *ctx = state;
318   ir_function *f = state->symbols->get_function(name);
319   ir_function_signature *local_sig = NULL;
320   ir_function_signature *sig = NULL;
321
322   /* Is the function hidden by a record type constructor? */
323   if (state->symbols->get_type(name))
324      goto done; /* no match */
325
326   /* Is the function hidden by a variable (impossible in 1.10)? */
327   if (state->language_version != 110 && state->symbols->get_variable(name))
328      goto done; /* no match */
329
330   if (f != NULL) {
331      /* Look for a match in the local shader.  If exact, we're done. */
332      bool is_exact = false;
333      sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
334      if (is_exact)
335	 goto done;
336
337      if (!state->es_shader && f->has_user_signature()) {
338	 /* In desktop GL, the presence of a user-defined signature hides any
339	  * built-in signatures, so we must ignore them.  In contrast, in ES2
340	  * user-defined signatures add new overloads, so we must proceed.
341	  */
342	 goto done;
343      }
344   }
345
346   /* Local shader has no exact candidates; check the built-ins. */
347   _mesa_glsl_initialize_functions(state);
348   for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
349      ir_function *builtin =
350	 state->builtins_to_link[i]->symbols->get_function(name);
351      if (builtin == NULL)
352	 continue;
353
354      bool is_exact = false;
355      ir_function_signature *builtin_sig =
356	 builtin->matching_signature(actual_parameters, &is_exact);
357
358      if (builtin_sig == NULL)
359	 continue;
360
361      /* If the built-in signature is exact, we can stop. */
362      if (is_exact) {
363	 sig = builtin_sig;
364	 goto done;
365      }
366
367      if (sig == NULL) {
368	 /* We found an inexact match, which is better than nothing.  However,
369	  * we should keep searching for an exact match.
370	  */
371	 sig = builtin_sig;
372      }
373   }
374
375done:
376   if (sig != NULL) {
377      /* If the match is from a linked built-in shader, import the prototype. */
378      if (sig != local_sig) {
379	 if (f == NULL) {
380	    f = new(ctx) ir_function(name);
381	    state->symbols->add_global_function(f);
382	    emit_function(state, f);
383	 }
384	 f->add_signature(sig->clone_prototype(f, NULL));
385      }
386   }
387   return sig;
388}
389
390/**
391 * Raise a "no matching function" error, listing all possible overloads the
392 * compiler considered so developers can figure out what went wrong.
393 */
394static void
395no_matching_function_error(const char *name,
396			   YYLTYPE *loc,
397			   exec_list *actual_parameters,
398			   _mesa_glsl_parse_state *state)
399{
400   char *str = prototype_string(NULL, name, actual_parameters);
401   _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
402   ralloc_free(str);
403
404   const char *prefix = "candidates are: ";
405
406   for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
407      glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
408				       : state->symbols;
409      ir_function *f = syms->get_function(name);
410      if (f == NULL)
411	 continue;
412
413      foreach_list (node, &f->signatures) {
414	 ir_function_signature *sig = (ir_function_signature *) node;
415
416	 str = prototype_string(sig->return_type, f->name, &sig->parameters);
417	 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
418	 ralloc_free(str);
419
420	 prefix = "                ";
421      }
422   }
423}
424
425/**
426 * Perform automatic type conversion of constructor parameters
427 *
428 * This implements the rules in the "Conversion and Scalar Constructors"
429 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
430 */
431static ir_rvalue *
432convert_component(ir_rvalue *src, const glsl_type *desired_type)
433{
434   void *ctx = ralloc_parent(src);
435   const unsigned a = desired_type->base_type;
436   const unsigned b = src->type->base_type;
437   ir_expression *result = NULL;
438
439   if (src->type->is_error())
440      return src;
441
442   assert(a <= GLSL_TYPE_BOOL);
443   assert(b <= GLSL_TYPE_BOOL);
444
445   if (a == b)
446      return src;
447
448   switch (a) {
449   case GLSL_TYPE_UINT:
450      switch (b) {
451      case GLSL_TYPE_INT:
452	 result = new(ctx) ir_expression(ir_unop_i2u, src);
453	 break;
454      case GLSL_TYPE_FLOAT:
455	 result = new(ctx) ir_expression(ir_unop_f2u, src);
456	 break;
457      case GLSL_TYPE_BOOL:
458	 result = new(ctx) ir_expression(ir_unop_i2u,
459		  new(ctx) ir_expression(ir_unop_b2i, src));
460	 break;
461      }
462      break;
463   case GLSL_TYPE_INT:
464      switch (b) {
465      case GLSL_TYPE_UINT:
466	 result = new(ctx) ir_expression(ir_unop_u2i, src);
467	 break;
468      case GLSL_TYPE_FLOAT:
469	 result = new(ctx) ir_expression(ir_unop_f2i, src);
470	 break;
471      case GLSL_TYPE_BOOL:
472	 result = new(ctx) ir_expression(ir_unop_b2i, src);
473	 break;
474      }
475      break;
476   case GLSL_TYPE_FLOAT:
477      switch (b) {
478      case GLSL_TYPE_UINT:
479	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
480	 break;
481      case GLSL_TYPE_INT:
482	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
483	 break;
484      case GLSL_TYPE_BOOL:
485	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
486	 break;
487      }
488      break;
489   case GLSL_TYPE_BOOL:
490      switch (b) {
491      case GLSL_TYPE_UINT:
492	 result = new(ctx) ir_expression(ir_unop_i2b,
493		  new(ctx) ir_expression(ir_unop_u2i, src));
494	 break;
495      case GLSL_TYPE_INT:
496	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
497	 break;
498      case GLSL_TYPE_FLOAT:
499	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
500	 break;
501      }
502      break;
503   }
504
505   assert(result != NULL);
506   assert(result->type == desired_type);
507
508   /* Try constant folding; it may fold in the conversion we just added. */
509   ir_constant *const constant = result->constant_expression_value();
510   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
511}
512
513/**
514 * Dereference a specific component from a scalar, vector, or matrix
515 */
516static ir_rvalue *
517dereference_component(ir_rvalue *src, unsigned component)
518{
519   void *ctx = ralloc_parent(src);
520   assert(component < src->type->components());
521
522   /* If the source is a constant, just create a new constant instead of a
523    * dereference of the existing constant.
524    */
525   ir_constant *constant = src->as_constant();
526   if (constant)
527      return new(ctx) ir_constant(constant, component);
528
529   if (src->type->is_scalar()) {
530      return src;
531   } else if (src->type->is_vector()) {
532      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
533   } else {
534      assert(src->type->is_matrix());
535
536      /* Dereference a row of the matrix, then call this function again to get
537       * a specific element from that row.
538       */
539      const int c = component / src->type->column_type()->vector_elements;
540      const int r = component % src->type->column_type()->vector_elements;
541      ir_constant *const col_index = new(ctx) ir_constant(c);
542      ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
543
544      col->type = src->type->column_type();
545
546      return dereference_component(col, r);
547   }
548
549   assert(!"Should not get here.");
550   return NULL;
551}
552
553
554static ir_rvalue *
555process_array_constructor(exec_list *instructions,
556			  const glsl_type *constructor_type,
557			  YYLTYPE *loc, exec_list *parameters,
558			  struct _mesa_glsl_parse_state *state)
559{
560   void *ctx = state;
561   /* Array constructors come in two forms: sized and unsized.  Sized array
562    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
563    * variables.  In this case the number of parameters must exactly match the
564    * specified size of the array.
565    *
566    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
567    * are vec4 variables.  In this case the size of the array being constructed
568    * is determined by the number of parameters.
569    *
570    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
571    *
572    *    "There must be exactly the same number of arguments as the size of
573    *    the array being constructed. If no size is present in the
574    *    constructor, then the array is explicitly sized to the number of
575    *    arguments provided. The arguments are assigned in order, starting at
576    *    element 0, to the elements of the constructed array. Each argument
577    *    must be the same type as the element type of the array, or be a type
578    *    that can be converted to the element type of the array according to
579    *    Section 4.1.10 "Implicit Conversions.""
580    */
581   exec_list actual_parameters;
582   const unsigned parameter_count =
583      process_parameters(instructions, &actual_parameters, parameters, state);
584
585   if ((parameter_count == 0)
586       || ((constructor_type->length != 0)
587	   && (constructor_type->length != parameter_count))) {
588      const unsigned min_param = (constructor_type->length == 0)
589	 ? 1 : constructor_type->length;
590
591      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
592		       "parameter%s",
593		       (constructor_type->length != 0) ? "at least" : "exactly",
594		       min_param, (min_param <= 1) ? "" : "s");
595      return ir_rvalue::error_value(ctx);
596   }
597
598   if (constructor_type->length == 0) {
599      constructor_type =
600	 glsl_type::get_array_instance(constructor_type->element_type(),
601				       parameter_count);
602      assert(constructor_type != NULL);
603      assert(constructor_type->length == parameter_count);
604   }
605
606   bool all_parameters_are_constant = true;
607
608   /* Type cast each parameter and, if possible, fold constants. */
609   foreach_list_safe(n, &actual_parameters) {
610      ir_rvalue *ir = (ir_rvalue *) n;
611      ir_rvalue *result = ir;
612
613      /* Apply implicit conversions (not the scalar constructor rules!). See
614       * the spec quote above. */
615      if (constructor_type->element_type()->is_float()) {
616	 const glsl_type *desired_type =
617	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
618				    ir->type->vector_elements,
619				    ir->type->matrix_columns);
620	 if (result->type->can_implicitly_convert_to(desired_type)) {
621	    /* Even though convert_component() implements the constructor
622	     * conversion rules (not the implicit conversion rules), its safe
623	     * to use it here because we already checked that the implicit
624	     * conversion is legal.
625	     */
626	    result = convert_component(ir, desired_type);
627	 }
628      }
629
630      if (result->type != constructor_type->element_type()) {
631	 _mesa_glsl_error(loc, state, "type error in array constructor: "
632			  "expected: %s, found %s",
633			  constructor_type->element_type()->name,
634			  result->type->name);
635      }
636
637      /* Attempt to convert the parameter to a constant valued expression.
638       * After doing so, track whether or not all the parameters to the
639       * constructor are trivially constant valued expressions.
640       */
641      ir_rvalue *const constant = result->constant_expression_value();
642
643      if (constant != NULL)
644         result = constant;
645      else
646         all_parameters_are_constant = false;
647
648      ir->replace_with(result);
649   }
650
651   if (all_parameters_are_constant)
652      return new(ctx) ir_constant(constructor_type, &actual_parameters);
653
654   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
655					   ir_var_temporary);
656   instructions->push_tail(var);
657
658   int i = 0;
659   foreach_list(node, &actual_parameters) {
660      ir_rvalue *rhs = (ir_rvalue *) node;
661      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
662						     new(ctx) ir_constant(i));
663
664      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
665      instructions->push_tail(assignment);
666
667      i++;
668   }
669
670   return new(ctx) ir_dereference_variable(var);
671}
672
673
674/**
675 * Try to convert a record constructor to a constant expression
676 */
677static ir_constant *
678constant_record_constructor(const glsl_type *constructor_type,
679			    exec_list *parameters, void *mem_ctx)
680{
681   foreach_list(node, parameters) {
682      ir_constant *constant = ((ir_instruction *) node)->as_constant();
683      if (constant == NULL)
684	 return NULL;
685      node->replace_with(constant);
686   }
687
688   return new(mem_ctx) ir_constant(constructor_type, parameters);
689}
690
691
692/**
693 * Determine if a list consists of a single scalar r-value
694 */
695bool
696single_scalar_parameter(exec_list *parameters)
697{
698   const ir_rvalue *const p = (ir_rvalue *) parameters->head;
699   assert(((ir_rvalue *)p)->as_rvalue() != NULL);
700
701   return (p->type->is_scalar() && p->next->is_tail_sentinel());
702}
703
704
705/**
706 * Generate inline code for a vector constructor
707 *
708 * The generated constructor code will consist of a temporary variable
709 * declaration of the same type as the constructor.  A sequence of assignments
710 * from constructor parameters to the temporary will follow.
711 *
712 * \return
713 * An \c ir_dereference_variable of the temprorary generated in the constructor
714 * body.
715 */
716ir_rvalue *
717emit_inline_vector_constructor(const glsl_type *type,
718			       exec_list *instructions,
719			       exec_list *parameters,
720			       void *ctx)
721{
722   assert(!parameters->is_empty());
723
724   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
725   instructions->push_tail(var);
726
727   /* There are two kinds of vector constructors.
728    *
729    *  - Construct a vector from a single scalar by replicating that scalar to
730    *    all components of the vector.
731    *
732    *  - Construct a vector from an arbirary combination of vectors and
733    *    scalars.  The components of the constructor parameters are assigned
734    *    to the vector in order until the vector is full.
735    */
736   const unsigned lhs_components = type->components();
737   if (single_scalar_parameter(parameters)) {
738      ir_rvalue *first_param = (ir_rvalue *)parameters->head;
739      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
740					   lhs_components);
741      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
742      const unsigned mask = (1U << lhs_components) - 1;
743
744      assert(rhs->type == lhs->type);
745
746      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
747      instructions->push_tail(inst);
748   } else {
749      unsigned base_component = 0;
750      unsigned base_lhs_component = 0;
751      ir_constant_data data;
752      unsigned constant_mask = 0, constant_components = 0;
753
754      memset(&data, 0, sizeof(data));
755
756      foreach_list(node, parameters) {
757	 ir_rvalue *param = (ir_rvalue *) node;
758	 unsigned rhs_components = param->type->components();
759
760	 /* Do not try to assign more components to the vector than it has!
761	  */
762	 if ((rhs_components + base_lhs_component) > lhs_components) {
763	    rhs_components = lhs_components - base_lhs_component;
764	 }
765
766	 const ir_constant *const c = param->as_constant();
767	 if (c != NULL) {
768	    for (unsigned i = 0; i < rhs_components; i++) {
769	       switch (c->type->base_type) {
770	       case GLSL_TYPE_UINT:
771		  data.u[i + base_component] = c->get_uint_component(i);
772		  break;
773	       case GLSL_TYPE_INT:
774		  data.i[i + base_component] = c->get_int_component(i);
775		  break;
776	       case GLSL_TYPE_FLOAT:
777		  data.f[i + base_component] = c->get_float_component(i);
778		  break;
779	       case GLSL_TYPE_BOOL:
780		  data.b[i + base_component] = c->get_bool_component(i);
781		  break;
782	       default:
783		  assert(!"Should not get here.");
784		  break;
785	       }
786	    }
787
788	    /* Mask of fields to be written in the assignment.
789	     */
790	    constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
791	    constant_components += rhs_components;
792
793	    base_component += rhs_components;
794	 }
795	 /* Advance the component index by the number of components
796	  * that were just assigned.
797	  */
798	 base_lhs_component += rhs_components;
799      }
800
801      if (constant_mask != 0) {
802	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
803	 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
804							     constant_components,
805							     1);
806	 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
807
808	 ir_instruction *inst =
809	    new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
810	 instructions->push_tail(inst);
811      }
812
813      base_component = 0;
814      foreach_list(node, parameters) {
815	 ir_rvalue *param = (ir_rvalue *) node;
816	 unsigned rhs_components = param->type->components();
817
818	 /* Do not try to assign more components to the vector than it has!
819	  */
820	 if ((rhs_components + base_component) > lhs_components) {
821	    rhs_components = lhs_components - base_component;
822	 }
823
824	 const ir_constant *const c = param->as_constant();
825	 if (c == NULL) {
826	    /* Mask of fields to be written in the assignment.
827	     */
828	    const unsigned write_mask = ((1U << rhs_components) - 1)
829	       << base_component;
830
831	    ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
832
833	    /* Generate a swizzle so that LHS and RHS sizes match.
834	     */
835	    ir_rvalue *rhs =
836	       new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
837
838	    ir_instruction *inst =
839	       new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
840	    instructions->push_tail(inst);
841	 }
842
843	 /* Advance the component index by the number of components that were
844	  * just assigned.
845	  */
846	 base_component += rhs_components;
847      }
848   }
849   return new(ctx) ir_dereference_variable(var);
850}
851
852
853/**
854 * Generate assignment of a portion of a vector to a portion of a matrix column
855 *
856 * \param src_base  First component of the source to be used in assignment
857 * \param column    Column of destination to be assiged
858 * \param row_base  First component of the destination column to be assigned
859 * \param count     Number of components to be assigned
860 *
861 * \note
862 * \c src_base + \c count must be less than or equal to the number of components
863 * in the source vector.
864 */
865ir_instruction *
866assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
867			ir_rvalue *src, unsigned src_base, unsigned count,
868			void *mem_ctx)
869{
870   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
871   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
872
873   assert(column_ref->type->components() >= (row_base + count));
874   assert(src->type->components() >= (src_base + count));
875
876   /* Generate a swizzle that extracts the number of components from the source
877    * that are to be assigned to the column of the matrix.
878    */
879   if (count < src->type->vector_elements) {
880      src = new(mem_ctx) ir_swizzle(src,
881				    src_base + 0, src_base + 1,
882				    src_base + 2, src_base + 3,
883				    count);
884   }
885
886   /* Mask of fields to be written in the assignment.
887    */
888   const unsigned write_mask = ((1U << count) - 1) << row_base;
889
890   return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
891}
892
893
894/**
895 * Generate inline code for a matrix constructor
896 *
897 * The generated constructor code will consist of a temporary variable
898 * declaration of the same type as the constructor.  A sequence of assignments
899 * from constructor parameters to the temporary will follow.
900 *
901 * \return
902 * An \c ir_dereference_variable of the temprorary generated in the constructor
903 * body.
904 */
905ir_rvalue *
906emit_inline_matrix_constructor(const glsl_type *type,
907			       exec_list *instructions,
908			       exec_list *parameters,
909			       void *ctx)
910{
911   assert(!parameters->is_empty());
912
913   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
914   instructions->push_tail(var);
915
916   /* There are three kinds of matrix constructors.
917    *
918    *  - Construct a matrix from a single scalar by replicating that scalar to
919    *    along the diagonal of the matrix and setting all other components to
920    *    zero.
921    *
922    *  - Construct a matrix from an arbirary combination of vectors and
923    *    scalars.  The components of the constructor parameters are assigned
924    *    to the matrix in colum-major order until the matrix is full.
925    *
926    *  - Construct a matrix from a single matrix.  The source matrix is copied
927    *    to the upper left portion of the constructed matrix, and the remaining
928    *    elements take values from the identity matrix.
929    */
930   ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
931   if (single_scalar_parameter(parameters)) {
932      /* Assign the scalar to the X component of a vec4, and fill the remaining
933       * components with zero.
934       */
935      ir_variable *rhs_var =
936	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
937			      ir_var_temporary);
938      instructions->push_tail(rhs_var);
939
940      ir_constant_data zero;
941      zero.f[0] = 0.0;
942      zero.f[1] = 0.0;
943      zero.f[2] = 0.0;
944      zero.f[3] = 0.0;
945
946      ir_instruction *inst =
947	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
948				new(ctx) ir_constant(rhs_var->type, &zero),
949				NULL);
950      instructions->push_tail(inst);
951
952      ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
953
954      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
955      instructions->push_tail(inst);
956
957      /* Assign the temporary vector to each column of the destination matrix
958       * with a swizzle that puts the X component on the diagonal of the
959       * matrix.  In some cases this may mean that the X component does not
960       * get assigned into the column at all (i.e., when the matrix has more
961       * columns than rows).
962       */
963      static const unsigned rhs_swiz[4][4] = {
964	 { 0, 1, 1, 1 },
965	 { 1, 0, 1, 1 },
966	 { 1, 1, 0, 1 },
967	 { 1, 1, 1, 0 }
968      };
969
970      const unsigned cols_to_init = MIN2(type->matrix_columns,
971					 type->vector_elements);
972      for (unsigned i = 0; i < cols_to_init; i++) {
973	 ir_constant *const col_idx = new(ctx) ir_constant(i);
974	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
975
976	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
977	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
978						    type->vector_elements);
979
980	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
981	 instructions->push_tail(inst);
982      }
983
984      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
985	 ir_constant *const col_idx = new(ctx) ir_constant(i);
986	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
987
988	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
989	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
990						    type->vector_elements);
991
992	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
993	 instructions->push_tail(inst);
994      }
995   } else if (first_param->type->is_matrix()) {
996      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
997       *
998       *     "If a matrix is constructed from a matrix, then each component
999       *     (column i, row j) in the result that has a corresponding
1000       *     component (column i, row j) in the argument will be initialized
1001       *     from there. All other components will be initialized to the
1002       *     identity matrix. If a matrix argument is given to a matrix
1003       *     constructor, it is an error to have any other arguments."
1004       */
1005      assert(first_param->next->is_tail_sentinel());
1006      ir_rvalue *const src_matrix = first_param;
1007
1008      /* If the source matrix is smaller, pre-initialize the relavent parts of
1009       * the destination matrix to the identity matrix.
1010       */
1011      if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1012	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1013
1014	 /* If the source matrix has fewer rows, every column of the destination
1015	  * must be initialized.  Otherwise only the columns in the destination
1016	  * that do not exist in the source must be initialized.
1017	  */
1018	 unsigned col =
1019	    (src_matrix->type->vector_elements < var->type->vector_elements)
1020	    ? 0 : src_matrix->type->matrix_columns;
1021
1022	 const glsl_type *const col_type = var->type->column_type();
1023	 for (/* empty */; col < var->type->matrix_columns; col++) {
1024	    ir_constant_data ident;
1025
1026	    ident.f[0] = 0.0;
1027	    ident.f[1] = 0.0;
1028	    ident.f[2] = 0.0;
1029	    ident.f[3] = 0.0;
1030
1031	    ident.f[col] = 1.0;
1032
1033	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1034
1035	    ir_rvalue *const lhs =
1036	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1037
1038	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1039	    instructions->push_tail(inst);
1040	 }
1041      }
1042
1043      /* Assign columns from the source matrix to the destination matrix.
1044       *
1045       * Since the parameter will be used in the RHS of multiple assignments,
1046       * generate a temporary and copy the paramter there.
1047       */
1048      ir_variable *const rhs_var =
1049	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1050			      ir_var_temporary);
1051      instructions->push_tail(rhs_var);
1052
1053      ir_dereference *const rhs_var_ref =
1054	 new(ctx) ir_dereference_variable(rhs_var);
1055      ir_instruction *const inst =
1056	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1057      instructions->push_tail(inst);
1058
1059      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1060				     var->type->vector_elements);
1061      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1062				     var->type->matrix_columns);
1063
1064      unsigned swiz[4] = { 0, 0, 0, 0 };
1065      for (unsigned i = 1; i < last_row; i++)
1066	 swiz[i] = i;
1067
1068      const unsigned write_mask = (1U << last_row) - 1;
1069
1070      for (unsigned i = 0; i < last_col; i++) {
1071	 ir_dereference *const lhs =
1072	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1073	 ir_rvalue *const rhs_col =
1074	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1075
1076	 /* If one matrix has columns that are smaller than the columns of the
1077	  * other matrix, wrap the column access of the larger with a swizzle
1078	  * so that the LHS and RHS of the assignment have the same size (and
1079	  * therefore have the same type).
1080	  *
1081	  * It would be perfectly valid to unconditionally generate the
1082	  * swizzles, this this will typically result in a more compact IR tree.
1083	  */
1084	 ir_rvalue *rhs;
1085	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1086	    rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1087	 } else {
1088	    rhs = rhs_col;
1089	 }
1090
1091	 ir_instruction *inst =
1092	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1093	 instructions->push_tail(inst);
1094      }
1095   } else {
1096      const unsigned cols = type->matrix_columns;
1097      const unsigned rows = type->vector_elements;
1098      unsigned col_idx = 0;
1099      unsigned row_idx = 0;
1100
1101      foreach_list (node, parameters) {
1102	 ir_rvalue *const rhs = (ir_rvalue *) node;
1103	 const unsigned components_remaining_this_column = rows - row_idx;
1104	 unsigned rhs_components = rhs->type->components();
1105	 unsigned rhs_base = 0;
1106
1107	 /* Since the parameter might be used in the RHS of two assignments,
1108	  * generate a temporary and copy the paramter there.
1109	  */
1110	 ir_variable *rhs_var =
1111	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1112	 instructions->push_tail(rhs_var);
1113
1114	 ir_dereference *rhs_var_ref =
1115	    new(ctx) ir_dereference_variable(rhs_var);
1116	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1117	 instructions->push_tail(inst);
1118
1119	 /* Assign the current parameter to as many components of the matrix
1120	  * as it will fill.
1121	  *
1122	  * NOTE: A single vector parameter can span two matrix columns.  A
1123	  * single vec4, for example, can completely fill a mat2.
1124	  */
1125	 if (rhs_components >= components_remaining_this_column) {
1126	    const unsigned count = MIN2(rhs_components,
1127					components_remaining_this_column);
1128
1129	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1130
1131	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1132							   row_idx,
1133							   rhs_var_ref, 0,
1134							   count, ctx);
1135	    instructions->push_tail(inst);
1136
1137	    rhs_base = count;
1138
1139	    col_idx++;
1140	    row_idx = 0;
1141	 }
1142
1143	 /* If there is data left in the parameter and components left to be
1144	  * set in the destination, emit another assignment.  It is possible
1145	  * that the assignment could be of a vec4 to the last element of the
1146	  * matrix.  In this case col_idx==cols, but there is still data
1147	  * left in the source parameter.  Obviously, don't emit an assignment
1148	  * to data outside the destination matrix.
1149	  */
1150	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1151	    const unsigned count = rhs_components - rhs_base;
1152
1153	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1154
1155	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1156							   row_idx,
1157							   rhs_var_ref,
1158							   rhs_base,
1159							   count, ctx);
1160	    instructions->push_tail(inst);
1161
1162	    row_idx += count;
1163	 }
1164      }
1165   }
1166
1167   return new(ctx) ir_dereference_variable(var);
1168}
1169
1170
1171ir_rvalue *
1172emit_inline_record_constructor(const glsl_type *type,
1173			       exec_list *instructions,
1174			       exec_list *parameters,
1175			       void *mem_ctx)
1176{
1177   ir_variable *const var =
1178      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1179   ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1180
1181   instructions->push_tail(var);
1182
1183   exec_node *node = parameters->head;
1184   for (unsigned i = 0; i < type->length; i++) {
1185      assert(!node->is_tail_sentinel());
1186
1187      ir_dereference *const lhs =
1188	 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1189					    type->fields.structure[i].name);
1190
1191      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1192      assert(rhs != NULL);
1193
1194      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1195
1196      instructions->push_tail(assign);
1197      node = node->next;
1198   }
1199
1200   return d;
1201}
1202
1203
1204ir_rvalue *
1205ast_function_expression::hir(exec_list *instructions,
1206			     struct _mesa_glsl_parse_state *state)
1207{
1208   void *ctx = state;
1209   /* There are three sorts of function calls.
1210    *
1211    * 1. constructors - The first subexpression is an ast_type_specifier.
1212    * 2. methods - Only the .length() method of array types.
1213    * 3. functions - Calls to regular old functions.
1214    *
1215    * Method calls are actually detected when the ast_field_selection
1216    * expression is handled.
1217    */
1218   if (is_constructor()) {
1219      const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1220      YYLTYPE loc = type->get_location();
1221      const char *name;
1222
1223      const glsl_type *const constructor_type = type->glsl_type(& name, state);
1224
1225      /* constructor_type can be NULL if a variable with the same name as the
1226       * structure has come into scope.
1227       */
1228      if (constructor_type == NULL) {
1229	 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1230			  "may be shadowed by a variable with the same name)",
1231			  type->type_name);
1232	 return ir_rvalue::error_value(ctx);
1233      }
1234
1235
1236      /* Constructors for samplers are illegal.
1237       */
1238      if (constructor_type->is_sampler()) {
1239	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1240			  constructor_type->name);
1241	 return ir_rvalue::error_value(ctx);
1242      }
1243
1244      if (constructor_type->is_array()) {
1245	 if (state->language_version <= 110) {
1246	    _mesa_glsl_error(& loc, state,
1247			     "array constructors forbidden in GLSL 1.10");
1248	    return ir_rvalue::error_value(ctx);
1249	 }
1250
1251	 return process_array_constructor(instructions, constructor_type,
1252					  & loc, &this->expressions, state);
1253      }
1254
1255
1256      /* There are two kinds of constructor call.  Constructors for built-in
1257       * language types, such as mat4 and vec2, are free form.  The only
1258       * requirement is that the parameters must provide enough values of the
1259       * correct scalar type.  Constructors for arrays and structures must
1260       * have the exact number of parameters with matching types in the
1261       * correct order.  These constructors follow essentially the same type
1262       * matching rules as functions.
1263       */
1264      if (constructor_type->is_record()) {
1265	 exec_list actual_parameters;
1266
1267	 process_parameters(instructions, &actual_parameters,
1268			    &this->expressions, state);
1269
1270	 exec_node *node = actual_parameters.head;
1271	 for (unsigned i = 0; i < constructor_type->length; i++) {
1272	    ir_rvalue *ir = (ir_rvalue *) node;
1273
1274	    if (node->is_tail_sentinel()) {
1275	       _mesa_glsl_error(&loc, state,
1276				"insufficient parameters to constructor "
1277				"for `%s'",
1278				constructor_type->name);
1279	       return ir_rvalue::error_value(ctx);
1280	    }
1281
1282	    if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1283					  ir, state)) {
1284	       node->replace_with(ir);
1285	    } else {
1286	       _mesa_glsl_error(&loc, state,
1287				"parameter type mismatch in constructor "
1288				"for `%s.%s' (%s vs %s)",
1289				constructor_type->name,
1290				constructor_type->fields.structure[i].name,
1291				ir->type->name,
1292				constructor_type->fields.structure[i].type->name);
1293	       return ir_rvalue::error_value(ctx);;
1294	    }
1295
1296	    node = node->next;
1297	 }
1298
1299	 if (!node->is_tail_sentinel()) {
1300	    _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1301			     "for `%s'", constructor_type->name);
1302	    return ir_rvalue::error_value(ctx);
1303	 }
1304
1305	 ir_rvalue *const constant =
1306	    constant_record_constructor(constructor_type, &actual_parameters,
1307					state);
1308
1309	 return (constant != NULL)
1310	    ? constant
1311	    : emit_inline_record_constructor(constructor_type, instructions,
1312					     &actual_parameters, state);
1313      }
1314
1315      if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1316	 return ir_rvalue::error_value(ctx);
1317
1318      /* Total number of components of the type being constructed. */
1319      const unsigned type_components = constructor_type->components();
1320
1321      /* Number of components from parameters that have actually been
1322       * consumed.  This is used to perform several kinds of error checking.
1323       */
1324      unsigned components_used = 0;
1325
1326      unsigned matrix_parameters = 0;
1327      unsigned nonmatrix_parameters = 0;
1328      exec_list actual_parameters;
1329
1330      foreach_list (n, &this->expressions) {
1331	 ast_node *ast = exec_node_data(ast_node, n, link);
1332	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1333
1334	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1335	  *
1336	  *    "It is an error to provide extra arguments beyond this
1337	  *    last used argument."
1338	  */
1339	 if (components_used >= type_components) {
1340	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1341			     "constructor",
1342			     constructor_type->name);
1343	    return ir_rvalue::error_value(ctx);
1344	 }
1345
1346	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1347	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1348			     "non-numeric data type",
1349			     constructor_type->name);
1350	    return ir_rvalue::error_value(ctx);
1351	 }
1352
1353	 /* Count the number of matrix and nonmatrix parameters.  This
1354	  * is used below to enforce some of the constructor rules.
1355	  */
1356	 if (result->type->is_matrix())
1357	    matrix_parameters++;
1358	 else
1359	    nonmatrix_parameters++;
1360
1361	 actual_parameters.push_tail(result);
1362	 components_used += result->type->components();
1363      }
1364
1365      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1366       *
1367       *    "It is an error to construct matrices from other matrices. This
1368       *    is reserved for future use."
1369       */
1370      if (state->language_version == 110 && matrix_parameters > 0
1371	  && constructor_type->is_matrix()) {
1372	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1373			  "matrix in GLSL 1.10",
1374			  constructor_type->name);
1375	 return ir_rvalue::error_value(ctx);
1376      }
1377
1378      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1379       *
1380       *    "If a matrix argument is given to a matrix constructor, it is
1381       *    an error to have any other arguments."
1382       */
1383      if ((matrix_parameters > 0)
1384	  && ((matrix_parameters + nonmatrix_parameters) > 1)
1385	  && constructor_type->is_matrix()) {
1386	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1387			  "matrix must be only parameter",
1388			  constructor_type->name);
1389	 return ir_rvalue::error_value(ctx);
1390      }
1391
1392      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1393       *
1394       *    "In these cases, there must be enough components provided in the
1395       *    arguments to provide an initializer for every component in the
1396       *    constructed value."
1397       */
1398      if (components_used < type_components && components_used != 1
1399	  && matrix_parameters == 0) {
1400	 _mesa_glsl_error(& loc, state, "too few components to construct "
1401			  "`%s'",
1402			  constructor_type->name);
1403	 return ir_rvalue::error_value(ctx);
1404      }
1405
1406      /* Later, we cast each parameter to the same base type as the
1407       * constructor.  Since there are no non-floating point matrices, we
1408       * need to break them up into a series of column vectors.
1409       */
1410      if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1411	 foreach_list_safe(n, &actual_parameters) {
1412	    ir_rvalue *matrix = (ir_rvalue *) n;
1413
1414	    if (!matrix->type->is_matrix())
1415	       continue;
1416
1417	    /* Create a temporary containing the matrix. */
1418	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1419						    ir_var_temporary);
1420	    instructions->push_tail(var);
1421	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1422	       ir_dereference_variable(var), matrix, NULL));
1423	    var->constant_value = matrix->constant_expression_value();
1424
1425	    /* Replace the matrix with dereferences of its columns. */
1426	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
1427	       matrix->insert_before(new (ctx) ir_dereference_array(var,
1428		  new(ctx) ir_constant(i)));
1429	    }
1430	    matrix->remove();
1431	 }
1432      }
1433
1434      bool all_parameters_are_constant = true;
1435
1436      /* Type cast each parameter and, if possible, fold constants.*/
1437      foreach_list_safe(n, &actual_parameters) {
1438	 ir_rvalue *ir = (ir_rvalue *) n;
1439
1440	 const glsl_type *desired_type =
1441	    glsl_type::get_instance(constructor_type->base_type,
1442				    ir->type->vector_elements,
1443				    ir->type->matrix_columns);
1444	 ir_rvalue *result = convert_component(ir, desired_type);
1445
1446	 /* Attempt to convert the parameter to a constant valued expression.
1447	  * After doing so, track whether or not all the parameters to the
1448	  * constructor are trivially constant valued expressions.
1449	  */
1450	 ir_rvalue *const constant = result->constant_expression_value();
1451
1452	 if (constant != NULL)
1453	    result = constant;
1454	 else
1455	    all_parameters_are_constant = false;
1456
1457	 if (result != ir) {
1458	    ir->replace_with(result);
1459	 }
1460      }
1461
1462      /* If all of the parameters are trivially constant, create a
1463       * constant representing the complete collection of parameters.
1464       */
1465      if (all_parameters_are_constant) {
1466	 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1467      } else if (constructor_type->is_scalar()) {
1468	 return dereference_component((ir_rvalue *) actual_parameters.head,
1469				      0);
1470      } else if (constructor_type->is_vector()) {
1471	 return emit_inline_vector_constructor(constructor_type,
1472					       instructions,
1473					       &actual_parameters,
1474					       ctx);
1475      } else {
1476	 assert(constructor_type->is_matrix());
1477	 return emit_inline_matrix_constructor(constructor_type,
1478					       instructions,
1479					       &actual_parameters,
1480					       ctx);
1481      }
1482   } else {
1483      const ast_expression *id = subexpressions[0];
1484      const char *func_name = id->primary_expression.identifier;
1485      YYLTYPE loc = id->get_location();
1486      exec_list actual_parameters;
1487
1488      process_parameters(instructions, &actual_parameters, &this->expressions,
1489			 state);
1490
1491      ir_function_signature *sig =
1492	 match_function_by_name(func_name, &actual_parameters, state);
1493
1494      ir_call *call = NULL;
1495      ir_rvalue *value = NULL;
1496      if (sig == NULL) {
1497	 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1498	 value = ir_rvalue::error_value(ctx);
1499      } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1500	 /* an error has already been emitted */
1501	 value = ir_rvalue::error_value(ctx);
1502      } else {
1503	 value = generate_call(instructions, sig, &loc, &actual_parameters,
1504			       &call, state);
1505      }
1506
1507      return value;
1508   }
1509
1510   return ir_rvalue::error_value(ctx);
1511}
1512