ast_to_hir.cpp revision 85caea29c18fad89050ac366c558afef568dcb3f
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "main/core.h" /* for struct gl_extensions */
53#include "glsl_symbol_table.h"
54#include "glsl_parser_extras.h"
55#include "ast.h"
56#include "glsl_types.h"
57#include "ir.h"
58
59void
60_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61{
62   _mesa_glsl_initialize_variables(instructions, state);
63   _mesa_glsl_initialize_functions(state);
64
65   state->symbols->language_version = state->language_version;
66
67   state->current_function = NULL;
68
69   /* Section 4.2 of the GLSL 1.20 specification states:
70    * "The built-in functions are scoped in a scope outside the global scope
71    *  users declare global variables in.  That is, a shader's global scope,
72    *  available for user-defined functions and global variables, is nested
73    *  inside the scope containing the built-in functions."
74    *
75    * Since built-in functions like ftransform() access built-in variables,
76    * it follows that those must be in the outer scope as well.
77    *
78    * We push scope here to create this nesting effect...but don't pop.
79    * This way, a shader's globals are still in the symbol table for use
80    * by the linker.
81    */
82   state->symbols->push_scope();
83
84   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85      ast->hir(instructions, state);
86}
87
88
89/**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to     Type that the operand it to be converted to
95 * \param from   Operand that is being converted
96 * \param state  GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102bool
103apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104			  struct _mesa_glsl_parse_state *state)
105{
106   void *ctx = state;
107   if (to->base_type == from->type->base_type)
108      return true;
109
110   /* This conversion was added in GLSL 1.20.  If the compilation mode is
111    * GLSL 1.10, the conversion is skipped.
112    */
113   if (state->language_version < 120)
114      return false;
115
116   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117    *
118    *    "There are no implicit array or structure conversions. For
119    *    example, an array of int cannot be implicitly converted to an
120    *    array of float. There are no implicit conversions between
121    *    signed and unsigned integers."
122    */
123   /* FINISHME: The above comment is partially a lie.  There is int/uint
124    * FINISHME: conversion for immediate constants.
125    */
126   if (!to->is_float() || !from->type->is_numeric())
127      return false;
128
129   /* Convert to a floating point type with the same number of components
130    * as the original type - i.e. int to float, not int to vec4.
131    */
132   to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133			        from->type->matrix_columns);
134
135   switch (from->type->base_type) {
136   case GLSL_TYPE_INT:
137      from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138      break;
139   case GLSL_TYPE_UINT:
140      from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141      break;
142   case GLSL_TYPE_BOOL:
143      from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144      break;
145   default:
146      assert(0);
147   }
148
149   return true;
150}
151
152
153static const struct glsl_type *
154arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155		       bool multiply,
156		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157{
158   const glsl_type *type_a = value_a->type;
159   const glsl_type *type_b = value_b->type;
160
161   /* From GLSL 1.50 spec, page 56:
162    *
163    *    "The arithmetic binary operators add (+), subtract (-),
164    *    multiply (*), and divide (/) operate on integer and
165    *    floating-point scalars, vectors, and matrices."
166    */
167   if (!type_a->is_numeric() || !type_b->is_numeric()) {
168      _mesa_glsl_error(loc, state,
169		       "Operands to arithmetic operators must be numeric");
170      return glsl_type::error_type;
171   }
172
173
174   /*    "If one operand is floating-point based and the other is
175    *    not, then the conversions from Section 4.1.10 "Implicit
176    *    Conversions" are applied to the non-floating-point-based operand."
177    */
178   if (!apply_implicit_conversion(type_a, value_b, state)
179       && !apply_implicit_conversion(type_b, value_a, state)) {
180      _mesa_glsl_error(loc, state,
181		       "Could not implicitly convert operands to "
182		       "arithmetic operator");
183      return glsl_type::error_type;
184   }
185   type_a = value_a->type;
186   type_b = value_b->type;
187
188   /*    "If the operands are integer types, they must both be signed or
189    *    both be unsigned."
190    *
191    * From this rule and the preceeding conversion it can be inferred that
192    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193    * The is_numeric check above already filtered out the case where either
194    * type is not one of these, so now the base types need only be tested for
195    * equality.
196    */
197   if (type_a->base_type != type_b->base_type) {
198      _mesa_glsl_error(loc, state,
199		       "base type mismatch for arithmetic operator");
200      return glsl_type::error_type;
201   }
202
203   /*    "All arithmetic binary operators result in the same fundamental type
204    *    (signed integer, unsigned integer, or floating-point) as the
205    *    operands they operate on, after operand type conversion. After
206    *    conversion, the following cases are valid
207    *
208    *    * The two operands are scalars. In this case the operation is
209    *      applied, resulting in a scalar."
210    */
211   if (type_a->is_scalar() && type_b->is_scalar())
212      return type_a;
213
214   /*   "* One operand is a scalar, and the other is a vector or matrix.
215    *      In this case, the scalar operation is applied independently to each
216    *      component of the vector or matrix, resulting in the same size
217    *      vector or matrix."
218    */
219   if (type_a->is_scalar()) {
220      if (!type_b->is_scalar())
221	 return type_b;
222   } else if (type_b->is_scalar()) {
223      return type_a;
224   }
225
226   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228    * handled.
229    */
230   assert(!type_a->is_scalar());
231   assert(!type_b->is_scalar());
232
233   /*   "* The two operands are vectors of the same size. In this case, the
234    *      operation is done component-wise resulting in the same size
235    *      vector."
236    */
237   if (type_a->is_vector() && type_b->is_vector()) {
238      if (type_a == type_b) {
239	 return type_a;
240      } else {
241	 _mesa_glsl_error(loc, state,
242			  "vector size mismatch for arithmetic operator");
243	 return glsl_type::error_type;
244      }
245   }
246
247   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249    * <vector, vector> have been handled.  At least one of the operands must
250    * be matrix.  Further, since there are no integer matrix types, the base
251    * type of both operands must be float.
252    */
253   assert(type_a->is_matrix() || type_b->is_matrix());
254   assert(type_a->base_type == GLSL_TYPE_FLOAT);
255   assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257   /*   "* The operator is add (+), subtract (-), or divide (/), and the
258    *      operands are matrices with the same number of rows and the same
259    *      number of columns. In this case, the operation is done component-
260    *      wise resulting in the same size matrix."
261    *    * The operator is multiply (*), where both operands are matrices or
262    *      one operand is a vector and the other a matrix. A right vector
263    *      operand is treated as a column vector and a left vector operand as a
264    *      row vector. In all these cases, it is required that the number of
265    *      columns of the left operand is equal to the number of rows of the
266    *      right operand. Then, the multiply (*) operation does a linear
267    *      algebraic multiply, yielding an object that has the same number of
268    *      rows as the left operand and the same number of columns as the right
269    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
270    *      more detail how vectors and matrices are operated on."
271    */
272   if (! multiply) {
273      if (type_a == type_b)
274	 return type_a;
275   } else {
276      if (type_a->is_matrix() && type_b->is_matrix()) {
277	 /* Matrix multiply.  The columns of A must match the rows of B.  Given
278	  * the other previously tested constraints, this means the vector type
279	  * of a row from A must be the same as the vector type of a column from
280	  * B.
281	  */
282	 if (type_a->row_type() == type_b->column_type()) {
283	    /* The resulting matrix has the number of columns of matrix B and
284	     * the number of rows of matrix A.  We get the row count of A by
285	     * looking at the size of a vector that makes up a column.  The
286	     * transpose (size of a row) is done for B.
287	     */
288	    const glsl_type *const type =
289	       glsl_type::get_instance(type_a->base_type,
290				       type_a->column_type()->vector_elements,
291				       type_b->row_type()->vector_elements);
292	    assert(type != glsl_type::error_type);
293
294	    return type;
295	 }
296      } else if (type_a->is_matrix()) {
297	 /* A is a matrix and B is a column vector.  Columns of A must match
298	  * rows of B.  Given the other previously tested constraints, this
299	  * means the vector type of a row from A must be the same as the
300	  * vector the type of B.
301	  */
302	 if (type_a->row_type() == type_b) {
303	    /* The resulting vector has a number of elements equal to
304	     * the number of rows of matrix A. */
305	    const glsl_type *const type =
306	       glsl_type::get_instance(type_a->base_type,
307				       type_a->column_type()->vector_elements,
308				       1);
309	    assert(type != glsl_type::error_type);
310
311	    return type;
312	 }
313      } else {
314	 assert(type_b->is_matrix());
315
316	 /* A is a row vector and B is a matrix.  Columns of A must match rows
317	  * of B.  Given the other previously tested constraints, this means
318	  * the type of A must be the same as the vector type of a column from
319	  * B.
320	  */
321	 if (type_a == type_b->column_type()) {
322	    /* The resulting vector has a number of elements equal to
323	     * the number of columns of matrix B. */
324	    const glsl_type *const type =
325	       glsl_type::get_instance(type_a->base_type,
326				       type_b->row_type()->vector_elements,
327				       1);
328	    assert(type != glsl_type::error_type);
329
330	    return type;
331	 }
332      }
333
334      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335      return glsl_type::error_type;
336   }
337
338
339   /*    "All other cases are illegal."
340    */
341   _mesa_glsl_error(loc, state, "type mismatch");
342   return glsl_type::error_type;
343}
344
345
346static const struct glsl_type *
347unary_arithmetic_result_type(const struct glsl_type *type,
348			     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349{
350   /* From GLSL 1.50 spec, page 57:
351    *
352    *    "The arithmetic unary operators negate (-), post- and pre-increment
353    *     and decrement (-- and ++) operate on integer or floating-point
354    *     values (including vectors and matrices). All unary operators work
355    *     component-wise on their operands. These result with the same type
356    *     they operated on."
357    */
358   if (!type->is_numeric()) {
359      _mesa_glsl_error(loc, state,
360		       "Operands to arithmetic operators must be numeric");
361      return glsl_type::error_type;
362   }
363
364   return type;
365}
366
367/**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376static const struct glsl_type *
377bit_logic_result_type(const struct glsl_type *type_a,
378                      const struct glsl_type *type_b,
379                      ast_operators op,
380                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381{
382    if (state->language_version < 130) {
383       _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384       return glsl_type::error_type;
385    }
386
387    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388     *
389     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390     *     (|). The operands must be of type signed or unsigned integers or
391     *     integer vectors."
392     */
393    if (!type_a->is_integer()) {
394       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395                         ast_expression::operator_string(op));
396       return glsl_type::error_type;
397    }
398    if (!type_b->is_integer()) {
399       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400                        ast_expression::operator_string(op));
401       return glsl_type::error_type;
402    }
403
404    /*     "The fundamental types of the operands (signed or unsigned) must
405     *     match,"
406     */
407    if (type_a->base_type != type_b->base_type) {
408       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409                        "base type", ast_expression::operator_string(op));
410       return glsl_type::error_type;
411    }
412
413    /*     "The operands cannot be vectors of differing size." */
414    if (type_a->is_vector() &&
415        type_b->is_vector() &&
416        type_a->vector_elements != type_b->vector_elements) {
417       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418                        "different sizes", ast_expression::operator_string(op));
419       return glsl_type::error_type;
420    }
421
422    /*     "If one operand is a scalar and the other a vector, the scalar is
423     *     applied component-wise to the vector, resulting in the same type as
424     *     the vector. The fundamental types of the operands [...] will be the
425     *     resulting fundamental type."
426     */
427    if (type_a->is_scalar())
428        return type_b;
429    else
430        return type_a;
431}
432
433static const struct glsl_type *
434modulus_result_type(const struct glsl_type *type_a,
435		    const struct glsl_type *type_b,
436		    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437{
438   if (state->language_version < 130) {
439      _mesa_glsl_error(loc, state,
440                       "operator '%%' is reserved in %s",
441                       state->version_string);
442      return glsl_type::error_type;
443   }
444
445   /* From GLSL 1.50 spec, page 56:
446    *    "The operator modulus (%) operates on signed or unsigned integers or
447    *    integer vectors. The operand types must both be signed or both be
448    *    unsigned."
449    */
450   if (!type_a->is_integer() || !type_b->is_integer()
451       || (type_a->base_type != type_b->base_type)) {
452      _mesa_glsl_error(loc, state, "type mismatch");
453      return glsl_type::error_type;
454   }
455
456   /*    "The operands cannot be vectors of differing size. If one operand is
457    *    a scalar and the other vector, then the scalar is applied component-
458    *    wise to the vector, resulting in the same type as the vector. If both
459    *    are vectors of the same size, the result is computed component-wise."
460    */
461   if (type_a->is_vector()) {
462      if (!type_b->is_vector()
463	  || (type_a->vector_elements == type_b->vector_elements))
464	 return type_a;
465   } else
466      return type_b;
467
468   /*    "The operator modulus (%) is not defined for any other data types
469    *    (non-integer types)."
470    */
471   _mesa_glsl_error(loc, state, "type mismatch");
472   return glsl_type::error_type;
473}
474
475
476static const struct glsl_type *
477relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
478		       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
479{
480   const glsl_type *type_a = value_a->type;
481   const glsl_type *type_b = value_b->type;
482
483   /* From GLSL 1.50 spec, page 56:
484    *    "The relational operators greater than (>), less than (<), greater
485    *    than or equal (>=), and less than or equal (<=) operate only on
486    *    scalar integer and scalar floating-point expressions."
487    */
488   if (!type_a->is_numeric()
489       || !type_b->is_numeric()
490       || !type_a->is_scalar()
491       || !type_b->is_scalar()) {
492      _mesa_glsl_error(loc, state,
493		       "Operands to relational operators must be scalar and "
494		       "numeric");
495      return glsl_type::error_type;
496   }
497
498   /*    "Either the operands' types must match, or the conversions from
499    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
500    *    operand, after which the types must match."
501    */
502   if (!apply_implicit_conversion(type_a, value_b, state)
503       && !apply_implicit_conversion(type_b, value_a, state)) {
504      _mesa_glsl_error(loc, state,
505		       "Could not implicitly convert operands to "
506		       "relational operator");
507      return glsl_type::error_type;
508   }
509   type_a = value_a->type;
510   type_b = value_b->type;
511
512   if (type_a->base_type != type_b->base_type) {
513      _mesa_glsl_error(loc, state, "base type mismatch");
514      return glsl_type::error_type;
515   }
516
517   /*    "The result is scalar Boolean."
518    */
519   return glsl_type::bool_type;
520}
521
522/**
523 * \brief Return the result type of a bit-shift operation.
524 *
525 * If the given types to the bit-shift operator are invalid, return
526 * glsl_type::error_type.
527 *
528 * \param type_a Type of LHS of bit-shift op
529 * \param type_b Type of RHS of bit-shift op
530 */
531static const struct glsl_type *
532shift_result_type(const struct glsl_type *type_a,
533                  const struct glsl_type *type_b,
534                  ast_operators op,
535                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
536{
537   if (state->language_version < 130) {
538      _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
539      return glsl_type::error_type;
540   }
541
542   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
543    *
544    *     "The shift operators (<<) and (>>). For both operators, the operands
545    *     must be signed or unsigned integers or integer vectors. One operand
546    *     can be signed while the other is unsigned."
547    */
548   if (!type_a->is_integer()) {
549      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
550              "integer vector", ast_expression::operator_string(op));
551     return glsl_type::error_type;
552
553   }
554   if (!type_b->is_integer()) {
555      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
556              "integer vector", ast_expression::operator_string(op));
557     return glsl_type::error_type;
558   }
559
560   /*     "If the first operand is a scalar, the second operand has to be
561    *     a scalar as well."
562    */
563   if (type_a->is_scalar() && !type_b->is_scalar()) {
564      _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
565              "second must be scalar as well",
566              ast_expression::operator_string(op));
567     return glsl_type::error_type;
568   }
569
570   /* If both operands are vectors, check that they have same number of
571    * elements.
572    */
573   if (type_a->is_vector() &&
574      type_b->is_vector() &&
575      type_a->vector_elements != type_b->vector_elements) {
576      _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
577              "have same number of elements",
578              ast_expression::operator_string(op));
579     return glsl_type::error_type;
580   }
581
582   /*     "In all cases, the resulting type will be the same type as the left
583    *     operand."
584    */
585   return type_a;
586}
587
588/**
589 * Validates that a value can be assigned to a location with a specified type
590 *
591 * Validates that \c rhs can be assigned to some location.  If the types are
592 * not an exact match but an automatic conversion is possible, \c rhs will be
593 * converted.
594 *
595 * \return
596 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
597 * Otherwise the actual RHS to be assigned will be returned.  This may be
598 * \c rhs, or it may be \c rhs after some type conversion.
599 *
600 * \note
601 * In addition to being used for assignments, this function is used to
602 * type-check return values.
603 */
604ir_rvalue *
605validate_assignment(struct _mesa_glsl_parse_state *state,
606		    const glsl_type *lhs_type, ir_rvalue *rhs,
607		    bool is_initializer)
608{
609   /* If there is already some error in the RHS, just return it.  Anything
610    * else will lead to an avalanche of error message back to the user.
611    */
612   if (rhs->type->is_error())
613      return rhs;
614
615   /* If the types are identical, the assignment can trivially proceed.
616    */
617   if (rhs->type == lhs_type)
618      return rhs;
619
620   /* If the array element types are the same and the size of the LHS is zero,
621    * the assignment is okay for initializers embedded in variable
622    * declarations.
623    *
624    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
625    * is handled by ir_dereference::is_lvalue.
626    */
627   if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
628       && (lhs_type->element_type() == rhs->type->element_type())
629       && (lhs_type->array_size() == 0)) {
630      return rhs;
631   }
632
633   /* Check for implicit conversion in GLSL 1.20 */
634   if (apply_implicit_conversion(lhs_type, rhs, state)) {
635      if (rhs->type == lhs_type)
636	 return rhs;
637   }
638
639   return NULL;
640}
641
642ir_rvalue *
643do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
644	      ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
645	      YYLTYPE lhs_loc)
646{
647   void *ctx = state;
648   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
649
650   if (!error_emitted) {
651      if (lhs->variable_referenced() != NULL
652          && lhs->variable_referenced()->read_only) {
653         _mesa_glsl_error(&lhs_loc, state,
654                          "assignment to read-only variable '%s'",
655                          lhs->variable_referenced()->name);
656         error_emitted = true;
657
658      } else if (!lhs->is_lvalue()) {
659	 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
660	 error_emitted = true;
661      }
662
663      if (state->es_shader && lhs->type->is_array()) {
664	 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
665			  "allowed in GLSL ES 1.00.");
666	 error_emitted = true;
667      }
668   }
669
670   ir_rvalue *new_rhs =
671      validate_assignment(state, lhs->type, rhs, is_initializer);
672   if (new_rhs == NULL) {
673      _mesa_glsl_error(& lhs_loc, state, "type mismatch");
674   } else {
675      rhs = new_rhs;
676
677      /* If the LHS array was not declared with a size, it takes it size from
678       * the RHS.  If the LHS is an l-value and a whole array, it must be a
679       * dereference of a variable.  Any other case would require that the LHS
680       * is either not an l-value or not a whole array.
681       */
682      if (lhs->type->array_size() == 0) {
683	 ir_dereference *const d = lhs->as_dereference();
684
685	 assert(d != NULL);
686
687	 ir_variable *const var = d->variable_referenced();
688
689	 assert(var != NULL);
690
691	 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
692	    /* FINISHME: This should actually log the location of the RHS. */
693	    _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
694			     "previous access",
695			     var->max_array_access);
696	 }
697
698	 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
699						   rhs->type->array_size());
700	 d->type = var->type;
701      }
702   }
703
704   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
705    * but not post_inc) need the converted assigned value as an rvalue
706    * to handle things like:
707    *
708    * i = j += 1;
709    *
710    * So we always just store the computed value being assigned to a
711    * temporary and return a deref of that temporary.  If the rvalue
712    * ends up not being used, the temp will get copy-propagated out.
713    */
714   ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
715					   ir_var_temporary);
716   ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
717   instructions->push_tail(var);
718   instructions->push_tail(new(ctx) ir_assignment(deref_var,
719						  rhs,
720						  NULL));
721   deref_var = new(ctx) ir_dereference_variable(var);
722
723   if (!error_emitted)
724      instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
725
726   return new(ctx) ir_dereference_variable(var);
727}
728
729static ir_rvalue *
730get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
731{
732   void *ctx = ralloc_parent(lvalue);
733   ir_variable *var;
734
735   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
736			      ir_var_temporary);
737   instructions->push_tail(var);
738   var->mode = ir_var_auto;
739
740   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
741						  lvalue, NULL));
742
743   /* Once we've created this temporary, mark it read only so it's no
744    * longer considered an lvalue.
745    */
746   var->read_only = true;
747
748   return new(ctx) ir_dereference_variable(var);
749}
750
751
752ir_rvalue *
753ast_node::hir(exec_list *instructions,
754	      struct _mesa_glsl_parse_state *state)
755{
756   (void) instructions;
757   (void) state;
758
759   return NULL;
760}
761
762static void
763mark_whole_array_access(ir_rvalue *access)
764{
765   ir_dereference_variable *deref = access->as_dereference_variable();
766
767   if (deref) {
768      deref->var->max_array_access = deref->type->length - 1;
769   }
770}
771
772static ir_rvalue *
773do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
774{
775   int join_op;
776   ir_rvalue *cmp = NULL;
777
778   if (operation == ir_binop_all_equal)
779      join_op = ir_binop_logic_and;
780   else
781      join_op = ir_binop_logic_or;
782
783   switch (op0->type->base_type) {
784   case GLSL_TYPE_FLOAT:
785   case GLSL_TYPE_UINT:
786   case GLSL_TYPE_INT:
787   case GLSL_TYPE_BOOL:
788      return new(mem_ctx) ir_expression(operation, op0, op1);
789
790   case GLSL_TYPE_ARRAY: {
791      for (unsigned int i = 0; i < op0->type->length; i++) {
792	 ir_rvalue *e0, *e1, *result;
793
794	 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
795						new(mem_ctx) ir_constant(i));
796	 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
797						new(mem_ctx) ir_constant(i));
798	 result = do_comparison(mem_ctx, operation, e0, e1);
799
800	 if (cmp) {
801	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
802	 } else {
803	    cmp = result;
804	 }
805      }
806
807      mark_whole_array_access(op0);
808      mark_whole_array_access(op1);
809      break;
810   }
811
812   case GLSL_TYPE_STRUCT: {
813      for (unsigned int i = 0; i < op0->type->length; i++) {
814	 ir_rvalue *e0, *e1, *result;
815	 const char *field_name = op0->type->fields.structure[i].name;
816
817	 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
818						 field_name);
819	 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
820						 field_name);
821	 result = do_comparison(mem_ctx, operation, e0, e1);
822
823	 if (cmp) {
824	    cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
825	 } else {
826	    cmp = result;
827	 }
828      }
829      break;
830   }
831
832   case GLSL_TYPE_ERROR:
833   case GLSL_TYPE_VOID:
834   case GLSL_TYPE_SAMPLER:
835      /* I assume a comparison of a struct containing a sampler just
836       * ignores the sampler present in the type.
837       */
838      break;
839
840   default:
841      assert(!"Should not get here.");
842      break;
843   }
844
845   if (cmp == NULL)
846      cmp = new(mem_ctx) ir_constant(true);
847
848   return cmp;
849}
850
851ir_rvalue *
852ast_expression::hir(exec_list *instructions,
853		    struct _mesa_glsl_parse_state *state)
854{
855   void *ctx = state;
856   static const int operations[AST_NUM_OPERATORS] = {
857      -1,               /* ast_assign doesn't convert to ir_expression. */
858      -1,               /* ast_plus doesn't convert to ir_expression. */
859      ir_unop_neg,
860      ir_binop_add,
861      ir_binop_sub,
862      ir_binop_mul,
863      ir_binop_div,
864      ir_binop_mod,
865      ir_binop_lshift,
866      ir_binop_rshift,
867      ir_binop_less,
868      ir_binop_greater,
869      ir_binop_lequal,
870      ir_binop_gequal,
871      ir_binop_all_equal,
872      ir_binop_any_nequal,
873      ir_binop_bit_and,
874      ir_binop_bit_xor,
875      ir_binop_bit_or,
876      ir_unop_bit_not,
877      ir_binop_logic_and,
878      ir_binop_logic_xor,
879      ir_binop_logic_or,
880      ir_unop_logic_not,
881
882      /* Note: The following block of expression types actually convert
883       * to multiple IR instructions.
884       */
885      ir_binop_mul,     /* ast_mul_assign */
886      ir_binop_div,     /* ast_div_assign */
887      ir_binop_mod,     /* ast_mod_assign */
888      ir_binop_add,     /* ast_add_assign */
889      ir_binop_sub,     /* ast_sub_assign */
890      ir_binop_lshift,  /* ast_ls_assign */
891      ir_binop_rshift,  /* ast_rs_assign */
892      ir_binop_bit_and, /* ast_and_assign */
893      ir_binop_bit_xor, /* ast_xor_assign */
894      ir_binop_bit_or,  /* ast_or_assign */
895
896      -1,               /* ast_conditional doesn't convert to ir_expression. */
897      ir_binop_add,     /* ast_pre_inc. */
898      ir_binop_sub,     /* ast_pre_dec. */
899      ir_binop_add,     /* ast_post_inc. */
900      ir_binop_sub,     /* ast_post_dec. */
901      -1,               /* ast_field_selection doesn't conv to ir_expression. */
902      -1,               /* ast_array_index doesn't convert to ir_expression. */
903      -1,               /* ast_function_call doesn't conv to ir_expression. */
904      -1,               /* ast_identifier doesn't convert to ir_expression. */
905      -1,               /* ast_int_constant doesn't convert to ir_expression. */
906      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
907      -1,               /* ast_float_constant doesn't conv to ir_expression. */
908      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
909      -1,               /* ast_sequence doesn't convert to ir_expression. */
910   };
911   ir_rvalue *result = NULL;
912   ir_rvalue *op[3];
913   const struct glsl_type *type = glsl_type::error_type;
914   bool error_emitted = false;
915   YYLTYPE loc;
916
917   loc = this->get_location();
918
919   switch (this->oper) {
920   case ast_assign: {
921      op[0] = this->subexpressions[0]->hir(instructions, state);
922      op[1] = this->subexpressions[1]->hir(instructions, state);
923
924      result = do_assignment(instructions, state, op[0], op[1], false,
925			     this->subexpressions[0]->get_location());
926      error_emitted = result->type->is_error();
927      type = result->type;
928      break;
929   }
930
931   case ast_plus:
932      op[0] = this->subexpressions[0]->hir(instructions, state);
933
934      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
935
936      error_emitted = type->is_error();
937
938      result = op[0];
939      break;
940
941   case ast_neg:
942      op[0] = this->subexpressions[0]->hir(instructions, state);
943
944      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
945
946      error_emitted = type->is_error();
947
948      result = new(ctx) ir_expression(operations[this->oper], type,
949				      op[0], NULL);
950      break;
951
952   case ast_add:
953   case ast_sub:
954   case ast_mul:
955   case ast_div:
956      op[0] = this->subexpressions[0]->hir(instructions, state);
957      op[1] = this->subexpressions[1]->hir(instructions, state);
958
959      type = arithmetic_result_type(op[0], op[1],
960				    (this->oper == ast_mul),
961				    state, & loc);
962      error_emitted = type->is_error();
963
964      result = new(ctx) ir_expression(operations[this->oper], type,
965				      op[0], op[1]);
966      break;
967
968   case ast_mod:
969      op[0] = this->subexpressions[0]->hir(instructions, state);
970      op[1] = this->subexpressions[1]->hir(instructions, state);
971
972      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
973
974      assert(operations[this->oper] == ir_binop_mod);
975
976      result = new(ctx) ir_expression(operations[this->oper], type,
977				      op[0], op[1]);
978      error_emitted = type->is_error();
979      break;
980
981   case ast_lshift:
982   case ast_rshift:
983       if (state->language_version < 130) {
984          _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
985              operator_string(this->oper));
986          error_emitted = true;
987       }
988
989       op[0] = this->subexpressions[0]->hir(instructions, state);
990       op[1] = this->subexpressions[1]->hir(instructions, state);
991       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
992                                &loc);
993       result = new(ctx) ir_expression(operations[this->oper], type,
994                                       op[0], op[1]);
995       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
996       break;
997
998   case ast_less:
999   case ast_greater:
1000   case ast_lequal:
1001   case ast_gequal:
1002      op[0] = this->subexpressions[0]->hir(instructions, state);
1003      op[1] = this->subexpressions[1]->hir(instructions, state);
1004
1005      type = relational_result_type(op[0], op[1], state, & loc);
1006
1007      /* The relational operators must either generate an error or result
1008       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1009       */
1010      assert(type->is_error()
1011	     || ((type->base_type == GLSL_TYPE_BOOL)
1012		 && type->is_scalar()));
1013
1014      result = new(ctx) ir_expression(operations[this->oper], type,
1015				      op[0], op[1]);
1016      error_emitted = type->is_error();
1017      break;
1018
1019   case ast_nequal:
1020   case ast_equal:
1021      op[0] = this->subexpressions[0]->hir(instructions, state);
1022      op[1] = this->subexpressions[1]->hir(instructions, state);
1023
1024      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1025       *
1026       *    "The equality operators equal (==), and not equal (!=)
1027       *    operate on all types. They result in a scalar Boolean. If
1028       *    the operand types do not match, then there must be a
1029       *    conversion from Section 4.1.10 "Implicit Conversions"
1030       *    applied to one operand that can make them match, in which
1031       *    case this conversion is done."
1032       */
1033      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1034	   && !apply_implicit_conversion(op[1]->type, op[0], state))
1035	  || (op[0]->type != op[1]->type)) {
1036	 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1037			  "type", (this->oper == ast_equal) ? "==" : "!=");
1038	 error_emitted = true;
1039      } else if ((state->language_version <= 110)
1040		 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1041	 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1042			  "GLSL 1.10");
1043	 error_emitted = true;
1044      }
1045
1046      result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1047      type = glsl_type::bool_type;
1048
1049      assert(error_emitted || (result->type == glsl_type::bool_type));
1050      break;
1051
1052   case ast_bit_and:
1053   case ast_bit_xor:
1054   case ast_bit_or:
1055      op[0] = this->subexpressions[0]->hir(instructions, state);
1056      op[1] = this->subexpressions[1]->hir(instructions, state);
1057      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1058                                   state, &loc);
1059      result = new(ctx) ir_expression(operations[this->oper], type,
1060				      op[0], op[1]);
1061      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1062      break;
1063
1064   case ast_bit_not:
1065      op[0] = this->subexpressions[0]->hir(instructions, state);
1066
1067      if (state->language_version < 130) {
1068	 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1069	 error_emitted = true;
1070      }
1071
1072      if (!op[0]->type->is_integer()) {
1073	 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1074	 error_emitted = true;
1075      }
1076
1077      type = op[0]->type;
1078      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1079      break;
1080
1081   case ast_logic_and: {
1082      op[0] = this->subexpressions[0]->hir(instructions, state);
1083
1084      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1085	 YYLTYPE loc = this->subexpressions[0]->get_location();
1086
1087	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1088			  operator_string(this->oper));
1089	 error_emitted = true;
1090      }
1091
1092      ir_constant *op0_const = op[0]->constant_expression_value();
1093      if (op0_const) {
1094	 if (op0_const->value.b[0]) {
1095	    op[1] = this->subexpressions[1]->hir(instructions, state);
1096
1097	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1098	       YYLTYPE loc = this->subexpressions[1]->get_location();
1099
1100	       _mesa_glsl_error(& loc, state,
1101				"RHS of `%s' must be scalar boolean",
1102				operator_string(this->oper));
1103	       error_emitted = true;
1104	    }
1105	    result = op[1];
1106	 } else {
1107	    result = op0_const;
1108	 }
1109	 type = glsl_type::bool_type;
1110      } else {
1111	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1112						       "and_tmp",
1113						       ir_var_temporary);
1114	 instructions->push_tail(tmp);
1115
1116	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1117	 instructions->push_tail(stmt);
1118
1119	 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1120
1121	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1122	    YYLTYPE loc = this->subexpressions[1]->get_location();
1123
1124	    _mesa_glsl_error(& loc, state,
1125			     "RHS of `%s' must be scalar boolean",
1126			     operator_string(this->oper));
1127	    error_emitted = true;
1128	 }
1129
1130	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1131	 ir_assignment *const then_assign =
1132	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1133	 stmt->then_instructions.push_tail(then_assign);
1134
1135	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1136	 ir_assignment *const else_assign =
1137	    new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1138	 stmt->else_instructions.push_tail(else_assign);
1139
1140	 result = new(ctx) ir_dereference_variable(tmp);
1141	 type = tmp->type;
1142      }
1143      break;
1144   }
1145
1146   case ast_logic_or: {
1147      op[0] = this->subexpressions[0]->hir(instructions, state);
1148
1149      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1150	 YYLTYPE loc = this->subexpressions[0]->get_location();
1151
1152	 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1153			  operator_string(this->oper));
1154	 error_emitted = true;
1155      }
1156
1157      ir_constant *op0_const = op[0]->constant_expression_value();
1158      if (op0_const) {
1159	 if (op0_const->value.b[0]) {
1160	    result = op0_const;
1161	 } else {
1162	    op[1] = this->subexpressions[1]->hir(instructions, state);
1163
1164	    if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1165	       YYLTYPE loc = this->subexpressions[1]->get_location();
1166
1167	       _mesa_glsl_error(& loc, state,
1168				"RHS of `%s' must be scalar boolean",
1169				operator_string(this->oper));
1170	       error_emitted = true;
1171	    }
1172	    result = op[1];
1173	 }
1174	 type = glsl_type::bool_type;
1175      } else {
1176	 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1177						       "or_tmp",
1178						       ir_var_temporary);
1179	 instructions->push_tail(tmp);
1180
1181	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1182	 instructions->push_tail(stmt);
1183
1184	 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1185
1186	 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1187	    YYLTYPE loc = this->subexpressions[1]->get_location();
1188
1189	    _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1190			     operator_string(this->oper));
1191	    error_emitted = true;
1192	 }
1193
1194	 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1195	 ir_assignment *const then_assign =
1196	    new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1197	 stmt->then_instructions.push_tail(then_assign);
1198
1199	 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1200	 ir_assignment *const else_assign =
1201	    new(ctx) ir_assignment(else_deref, op[1], NULL);
1202	 stmt->else_instructions.push_tail(else_assign);
1203
1204	 result = new(ctx) ir_dereference_variable(tmp);
1205	 type = tmp->type;
1206      }
1207      break;
1208   }
1209
1210   case ast_logic_xor:
1211      op[0] = this->subexpressions[0]->hir(instructions, state);
1212      op[1] = this->subexpressions[1]->hir(instructions, state);
1213
1214
1215      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1216				      op[0], op[1]);
1217      type = glsl_type::bool_type;
1218      break;
1219
1220   case ast_logic_not:
1221      op[0] = this->subexpressions[0]->hir(instructions, state);
1222
1223      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1224	 YYLTYPE loc = this->subexpressions[0]->get_location();
1225
1226	 _mesa_glsl_error(& loc, state,
1227			  "operand of `!' must be scalar boolean");
1228	 error_emitted = true;
1229      }
1230
1231      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1232				      op[0], NULL);
1233      type = glsl_type::bool_type;
1234      break;
1235
1236   case ast_mul_assign:
1237   case ast_div_assign:
1238   case ast_add_assign:
1239   case ast_sub_assign: {
1240      op[0] = this->subexpressions[0]->hir(instructions, state);
1241      op[1] = this->subexpressions[1]->hir(instructions, state);
1242
1243      type = arithmetic_result_type(op[0], op[1],
1244				    (this->oper == ast_mul_assign),
1245				    state, & loc);
1246
1247      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1248						   op[0], op[1]);
1249
1250      result = do_assignment(instructions, state,
1251			     op[0]->clone(ctx, NULL), temp_rhs, false,
1252			     this->subexpressions[0]->get_location());
1253      type = result->type;
1254      error_emitted = (op[0]->type->is_error());
1255
1256      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1257       * explicitly test for this because none of the binary expression
1258       * operators allow array operands either.
1259       */
1260
1261      break;
1262   }
1263
1264   case ast_mod_assign: {
1265      op[0] = this->subexpressions[0]->hir(instructions, state);
1266      op[1] = this->subexpressions[1]->hir(instructions, state);
1267
1268      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1269
1270      assert(operations[this->oper] == ir_binop_mod);
1271
1272      ir_rvalue *temp_rhs;
1273      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1274					op[0], op[1]);
1275
1276      result = do_assignment(instructions, state,
1277			     op[0]->clone(ctx, NULL), temp_rhs, false,
1278			     this->subexpressions[0]->get_location());
1279      type = result->type;
1280      error_emitted = type->is_error();
1281      break;
1282   }
1283
1284   case ast_ls_assign:
1285   case ast_rs_assign: {
1286      op[0] = this->subexpressions[0]->hir(instructions, state);
1287      op[1] = this->subexpressions[1]->hir(instructions, state);
1288      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1289                               &loc);
1290      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1291                                                   type, op[0], op[1]);
1292      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1293                             temp_rhs, false,
1294                             this->subexpressions[0]->get_location());
1295      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1296      break;
1297   }
1298
1299   case ast_and_assign:
1300   case ast_xor_assign:
1301   case ast_or_assign: {
1302      op[0] = this->subexpressions[0]->hir(instructions, state);
1303      op[1] = this->subexpressions[1]->hir(instructions, state);
1304      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1305                                   state, &loc);
1306      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1307                                                   type, op[0], op[1]);
1308      result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1309                             temp_rhs, false,
1310                             this->subexpressions[0]->get_location());
1311      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1312      break;
1313   }
1314
1315   case ast_conditional: {
1316      op[0] = this->subexpressions[0]->hir(instructions, state);
1317
1318      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1319       *
1320       *    "The ternary selection operator (?:). It operates on three
1321       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1322       *    first expression, which must result in a scalar Boolean."
1323       */
1324      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1325	 YYLTYPE loc = this->subexpressions[0]->get_location();
1326
1327	 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1328	 error_emitted = true;
1329      }
1330
1331      /* The :? operator is implemented by generating an anonymous temporary
1332       * followed by an if-statement.  The last instruction in each branch of
1333       * the if-statement assigns a value to the anonymous temporary.  This
1334       * temporary is the r-value of the expression.
1335       */
1336      exec_list then_instructions;
1337      exec_list else_instructions;
1338
1339      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1340      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1341
1342      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1343       *
1344       *     "The second and third expressions can be any type, as
1345       *     long their types match, or there is a conversion in
1346       *     Section 4.1.10 "Implicit Conversions" that can be applied
1347       *     to one of the expressions to make their types match. This
1348       *     resulting matching type is the type of the entire
1349       *     expression."
1350       */
1351      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1352	   && !apply_implicit_conversion(op[2]->type, op[1], state))
1353	  || (op[1]->type != op[2]->type)) {
1354	 YYLTYPE loc = this->subexpressions[1]->get_location();
1355
1356	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1357			  "operator must have matching types.");
1358	 error_emitted = true;
1359	 type = glsl_type::error_type;
1360      } else {
1361	 type = op[1]->type;
1362      }
1363
1364      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1365       *
1366       *    "The second and third expressions must be the same type, but can
1367       *    be of any type other than an array."
1368       */
1369      if ((state->language_version <= 110) && type->is_array()) {
1370	 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1371			  "operator must not be arrays.");
1372	 error_emitted = true;
1373      }
1374
1375      ir_constant *cond_val = op[0]->constant_expression_value();
1376      ir_constant *then_val = op[1]->constant_expression_value();
1377      ir_constant *else_val = op[2]->constant_expression_value();
1378
1379      if (then_instructions.is_empty()
1380	  && else_instructions.is_empty()
1381	  && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1382	 result = (cond_val->value.b[0]) ? then_val : else_val;
1383      } else {
1384	 ir_variable *const tmp =
1385	    new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1386	 instructions->push_tail(tmp);
1387
1388	 ir_if *const stmt = new(ctx) ir_if(op[0]);
1389	 instructions->push_tail(stmt);
1390
1391	 then_instructions.move_nodes_to(& stmt->then_instructions);
1392	 ir_dereference *const then_deref =
1393	    new(ctx) ir_dereference_variable(tmp);
1394	 ir_assignment *const then_assign =
1395	    new(ctx) ir_assignment(then_deref, op[1], NULL);
1396	 stmt->then_instructions.push_tail(then_assign);
1397
1398	 else_instructions.move_nodes_to(& stmt->else_instructions);
1399	 ir_dereference *const else_deref =
1400	    new(ctx) ir_dereference_variable(tmp);
1401	 ir_assignment *const else_assign =
1402	    new(ctx) ir_assignment(else_deref, op[2], NULL);
1403	 stmt->else_instructions.push_tail(else_assign);
1404
1405	 result = new(ctx) ir_dereference_variable(tmp);
1406      }
1407      break;
1408   }
1409
1410   case ast_pre_inc:
1411   case ast_pre_dec: {
1412      op[0] = this->subexpressions[0]->hir(instructions, state);
1413      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1414	 op[1] = new(ctx) ir_constant(1.0f);
1415      else
1416	 op[1] = new(ctx) ir_constant(1);
1417
1418      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1419
1420      ir_rvalue *temp_rhs;
1421      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1422					op[0], op[1]);
1423
1424      result = do_assignment(instructions, state,
1425			     op[0]->clone(ctx, NULL), temp_rhs, false,
1426			     this->subexpressions[0]->get_location());
1427      type = result->type;
1428      error_emitted = op[0]->type->is_error();
1429      break;
1430   }
1431
1432   case ast_post_inc:
1433   case ast_post_dec: {
1434      op[0] = this->subexpressions[0]->hir(instructions, state);
1435      if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1436	 op[1] = new(ctx) ir_constant(1.0f);
1437      else
1438	 op[1] = new(ctx) ir_constant(1);
1439
1440      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1441
1442      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1443
1444      ir_rvalue *temp_rhs;
1445      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1446					op[0], op[1]);
1447
1448      /* Get a temporary of a copy of the lvalue before it's modified.
1449       * This may get thrown away later.
1450       */
1451      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1452
1453      (void)do_assignment(instructions, state,
1454			  op[0]->clone(ctx, NULL), temp_rhs, false,
1455			  this->subexpressions[0]->get_location());
1456
1457      type = result->type;
1458      error_emitted = op[0]->type->is_error();
1459      break;
1460   }
1461
1462   case ast_field_selection:
1463      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1464      type = result->type;
1465      break;
1466
1467   case ast_array_index: {
1468      YYLTYPE index_loc = subexpressions[1]->get_location();
1469
1470      op[0] = subexpressions[0]->hir(instructions, state);
1471      op[1] = subexpressions[1]->hir(instructions, state);
1472
1473      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1474
1475      ir_rvalue *const array = op[0];
1476
1477      result = new(ctx) ir_dereference_array(op[0], op[1]);
1478
1479      /* Do not use op[0] after this point.  Use array.
1480       */
1481      op[0] = NULL;
1482
1483
1484      if (error_emitted)
1485	 break;
1486
1487      if (!array->type->is_array()
1488	  && !array->type->is_matrix()
1489	  && !array->type->is_vector()) {
1490	 _mesa_glsl_error(& index_loc, state,
1491			  "cannot dereference non-array / non-matrix / "
1492			  "non-vector");
1493	 error_emitted = true;
1494      }
1495
1496      if (!op[1]->type->is_integer()) {
1497	 _mesa_glsl_error(& index_loc, state,
1498			  "array index must be integer type");
1499	 error_emitted = true;
1500      } else if (!op[1]->type->is_scalar()) {
1501	 _mesa_glsl_error(& index_loc, state,
1502			  "array index must be scalar");
1503	 error_emitted = true;
1504      }
1505
1506      /* If the array index is a constant expression and the array has a
1507       * declared size, ensure that the access is in-bounds.  If the array
1508       * index is not a constant expression, ensure that the array has a
1509       * declared size.
1510       */
1511      ir_constant *const const_index = op[1]->constant_expression_value();
1512      if (const_index != NULL) {
1513	 const int idx = const_index->value.i[0];
1514	 const char *type_name;
1515	 unsigned bound = 0;
1516
1517	 if (array->type->is_matrix()) {
1518	    type_name = "matrix";
1519	 } else if (array->type->is_vector()) {
1520	    type_name = "vector";
1521	 } else {
1522	    type_name = "array";
1523	 }
1524
1525	 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1526	  *
1527	  *    "It is illegal to declare an array with a size, and then
1528	  *    later (in the same shader) index the same array with an
1529	  *    integral constant expression greater than or equal to the
1530	  *    declared size. It is also illegal to index an array with a
1531	  *    negative constant expression."
1532	  */
1533	 if (array->type->is_matrix()) {
1534	    if (array->type->row_type()->vector_elements <= idx) {
1535	       bound = array->type->row_type()->vector_elements;
1536	    }
1537	 } else if (array->type->is_vector()) {
1538	    if (array->type->vector_elements <= idx) {
1539	       bound = array->type->vector_elements;
1540	    }
1541	 } else {
1542	    if ((array->type->array_size() > 0)
1543		&& (array->type->array_size() <= idx)) {
1544	       bound = array->type->array_size();
1545	    }
1546	 }
1547
1548	 if (bound > 0) {
1549	    _mesa_glsl_error(& loc, state, "%s index must be < %u",
1550			     type_name, bound);
1551	    error_emitted = true;
1552	 } else if (idx < 0) {
1553	    _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1554			     type_name);
1555	    error_emitted = true;
1556	 }
1557
1558	 if (array->type->is_array()) {
1559	    /* If the array is a variable dereference, it dereferences the
1560	     * whole array, by definition.  Use this to get the variable.
1561	     *
1562	     * FINISHME: Should some methods for getting / setting / testing
1563	     * FINISHME: array access limits be added to ir_dereference?
1564	     */
1565	    ir_variable *const v = array->whole_variable_referenced();
1566	    if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1567	       v->max_array_access = idx;
1568	 }
1569      } else if (array->type->array_size() == 0) {
1570	 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1571      } else {
1572	 if (array->type->is_array()) {
1573	    /* whole_variable_referenced can return NULL if the array is a
1574	     * member of a structure.  In this case it is safe to not update
1575	     * the max_array_access field because it is never used for fields
1576	     * of structures.
1577	     */
1578	    ir_variable *v = array->whole_variable_referenced();
1579	    if (v != NULL)
1580	       v->max_array_access = array->type->array_size();
1581	 }
1582      }
1583
1584      /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1585       *
1586       *    "Samplers aggregated into arrays within a shader (using square
1587       *    brackets [ ]) can only be indexed with integral constant
1588       *    expressions [...]."
1589       *
1590       * This restriction was added in GLSL 1.30.  Shaders using earlier version
1591       * of the language should not be rejected by the compiler front-end for
1592       * using this construct.  This allows useful things such as using a loop
1593       * counter as the index to an array of samplers.  If the loop in unrolled,
1594       * the code should compile correctly.  Instead, emit a warning.
1595       */
1596      if (array->type->is_array() &&
1597          array->type->element_type()->is_sampler() &&
1598          const_index == NULL) {
1599
1600	 if (state->language_version == 100) {
1601	    _mesa_glsl_warning(&loc, state,
1602			       "sampler arrays indexed with non-constant "
1603			       "expressions is optional in GLSL ES 1.00");
1604	 } else if (state->language_version < 130) {
1605	    _mesa_glsl_warning(&loc, state,
1606			       "sampler arrays indexed with non-constant "
1607			       "expressions is forbidden in GLSL 1.30 and "
1608			       "later");
1609	 } else {
1610	    _mesa_glsl_error(&loc, state,
1611			     "sampler arrays indexed with non-constant "
1612			     "expressions is forbidden in GLSL 1.30 and "
1613			     "later");
1614	    error_emitted = true;
1615	 }
1616      }
1617
1618      if (error_emitted)
1619	 result->type = glsl_type::error_type;
1620
1621      type = result->type;
1622      break;
1623   }
1624
1625   case ast_function_call:
1626      /* Should *NEVER* get here.  ast_function_call should always be handled
1627       * by ast_function_expression::hir.
1628       */
1629      assert(0);
1630      break;
1631
1632   case ast_identifier: {
1633      /* ast_identifier can appear several places in a full abstract syntax
1634       * tree.  This particular use must be at location specified in the grammar
1635       * as 'variable_identifier'.
1636       */
1637      ir_variable *var =
1638	 state->symbols->get_variable(this->primary_expression.identifier);
1639
1640      result = new(ctx) ir_dereference_variable(var);
1641
1642      if (var != NULL) {
1643	 var->used = true;
1644	 type = result->type;
1645      } else {
1646	 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1647			  this->primary_expression.identifier);
1648
1649	 error_emitted = true;
1650      }
1651      break;
1652   }
1653
1654   case ast_int_constant:
1655      type = glsl_type::int_type;
1656      result = new(ctx) ir_constant(this->primary_expression.int_constant);
1657      break;
1658
1659   case ast_uint_constant:
1660      type = glsl_type::uint_type;
1661      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1662      break;
1663
1664   case ast_float_constant:
1665      type = glsl_type::float_type;
1666      result = new(ctx) ir_constant(this->primary_expression.float_constant);
1667      break;
1668
1669   case ast_bool_constant:
1670      type = glsl_type::bool_type;
1671      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1672      break;
1673
1674   case ast_sequence: {
1675      /* It should not be possible to generate a sequence in the AST without
1676       * any expressions in it.
1677       */
1678      assert(!this->expressions.is_empty());
1679
1680      /* The r-value of a sequence is the last expression in the sequence.  If
1681       * the other expressions in the sequence do not have side-effects (and
1682       * therefore add instructions to the instruction list), they get dropped
1683       * on the floor.
1684       */
1685      foreach_list_typed (ast_node, ast, link, &this->expressions)
1686	 result = ast->hir(instructions, state);
1687
1688      type = result->type;
1689
1690      /* Any errors should have already been emitted in the loop above.
1691       */
1692      error_emitted = true;
1693      break;
1694   }
1695   }
1696
1697   if (type->is_error() && !error_emitted)
1698      _mesa_glsl_error(& loc, state, "type mismatch");
1699
1700   return result;
1701}
1702
1703
1704ir_rvalue *
1705ast_expression_statement::hir(exec_list *instructions,
1706			      struct _mesa_glsl_parse_state *state)
1707{
1708   /* It is possible to have expression statements that don't have an
1709    * expression.  This is the solitary semicolon:
1710    *
1711    * for (i = 0; i < 5; i++)
1712    *     ;
1713    *
1714    * In this case the expression will be NULL.  Test for NULL and don't do
1715    * anything in that case.
1716    */
1717   if (expression != NULL)
1718      expression->hir(instructions, state);
1719
1720   /* Statements do not have r-values.
1721    */
1722   return NULL;
1723}
1724
1725
1726ir_rvalue *
1727ast_compound_statement::hir(exec_list *instructions,
1728			    struct _mesa_glsl_parse_state *state)
1729{
1730   if (new_scope)
1731      state->symbols->push_scope();
1732
1733   foreach_list_typed (ast_node, ast, link, &this->statements)
1734      ast->hir(instructions, state);
1735
1736   if (new_scope)
1737      state->symbols->pop_scope();
1738
1739   /* Compound statements do not have r-values.
1740    */
1741   return NULL;
1742}
1743
1744
1745static const glsl_type *
1746process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1747		   struct _mesa_glsl_parse_state *state)
1748{
1749   unsigned length = 0;
1750
1751   /* FINISHME: Reject delcarations of multidimensional arrays. */
1752
1753   if (array_size != NULL) {
1754      exec_list dummy_instructions;
1755      ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1756      YYLTYPE loc = array_size->get_location();
1757
1758      /* FINISHME: Verify that the grammar forbids side-effects in array
1759       * FINISHME: sizes.   i.e., 'vec4 [x = 12] data'
1760       */
1761      assert(dummy_instructions.is_empty());
1762
1763      if (ir != NULL) {
1764	 if (!ir->type->is_integer()) {
1765	    _mesa_glsl_error(& loc, state, "array size must be integer type");
1766	 } else if (!ir->type->is_scalar()) {
1767	    _mesa_glsl_error(& loc, state, "array size must be scalar type");
1768	 } else {
1769	    ir_constant *const size = ir->constant_expression_value();
1770
1771	    if (size == NULL) {
1772	       _mesa_glsl_error(& loc, state, "array size must be a "
1773				"constant valued expression");
1774	    } else if (size->value.i[0] <= 0) {
1775	       _mesa_glsl_error(& loc, state, "array size must be > 0");
1776	    } else {
1777	       assert(size->type == ir->type);
1778	       length = size->value.u[0];
1779	    }
1780	 }
1781      }
1782   } else if (state->es_shader) {
1783      /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1784       * array declarations have been removed from the language.
1785       */
1786      _mesa_glsl_error(loc, state, "unsized array declarations are not "
1787		       "allowed in GLSL ES 1.00.");
1788   }
1789
1790   return glsl_type::get_array_instance(base, length);
1791}
1792
1793
1794const glsl_type *
1795ast_type_specifier::glsl_type(const char **name,
1796			      struct _mesa_glsl_parse_state *state) const
1797{
1798   const struct glsl_type *type;
1799
1800   type = state->symbols->get_type(this->type_name);
1801   *name = this->type_name;
1802
1803   if (this->is_array) {
1804      YYLTYPE loc = this->get_location();
1805      type = process_array_type(&loc, type, this->array_size, state);
1806   }
1807
1808   return type;
1809}
1810
1811
1812static void
1813apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1814				 ir_variable *var,
1815				 struct _mesa_glsl_parse_state *state,
1816				 YYLTYPE *loc)
1817{
1818   if (qual->flags.q.invariant) {
1819      if (var->used) {
1820	 _mesa_glsl_error(loc, state,
1821			  "variable `%s' may not be redeclared "
1822			  "`invariant' after being used",
1823			  var->name);
1824      } else {
1825	 var->invariant = 1;
1826      }
1827   }
1828
1829   if (qual->flags.q.constant || qual->flags.q.attribute
1830       || qual->flags.q.uniform
1831       || (qual->flags.q.varying && (state->target == fragment_shader)))
1832      var->read_only = 1;
1833
1834   if (qual->flags.q.centroid)
1835      var->centroid = 1;
1836
1837   if (qual->flags.q.attribute && state->target != vertex_shader) {
1838      var->type = glsl_type::error_type;
1839      _mesa_glsl_error(loc, state,
1840		       "`attribute' variables may not be declared in the "
1841		       "%s shader",
1842		       _mesa_glsl_shader_target_name(state->target));
1843   }
1844
1845   /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1846    *
1847    *     "The varying qualifier can be used only with the data types
1848    *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1849    *     these."
1850    */
1851   if (qual->flags.q.varying) {
1852      const glsl_type *non_array_type;
1853
1854      if (var->type && var->type->is_array())
1855	 non_array_type = var->type->fields.array;
1856      else
1857	 non_array_type = var->type;
1858
1859      if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1860	 var->type = glsl_type::error_type;
1861	 _mesa_glsl_error(loc, state,
1862			  "varying variables must be of base type float");
1863      }
1864   }
1865
1866   /* If there is no qualifier that changes the mode of the variable, leave
1867    * the setting alone.
1868    */
1869   if (qual->flags.q.in && qual->flags.q.out)
1870      var->mode = ir_var_inout;
1871   else if (qual->flags.q.attribute || qual->flags.q.in
1872	    || (qual->flags.q.varying && (state->target == fragment_shader)))
1873      var->mode = ir_var_in;
1874   else if (qual->flags.q.out
1875	    || (qual->flags.q.varying && (state->target == vertex_shader)))
1876      var->mode = ir_var_out;
1877   else if (qual->flags.q.uniform)
1878      var->mode = ir_var_uniform;
1879
1880   if (state->all_invariant && (state->current_function == NULL)) {
1881      switch (state->target) {
1882      case vertex_shader:
1883	 if (var->mode == ir_var_out)
1884	    var->invariant = true;
1885	 break;
1886      case geometry_shader:
1887	 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1888	    var->invariant = true;
1889	 break;
1890      case fragment_shader:
1891	 if (var->mode == ir_var_in)
1892	    var->invariant = true;
1893	 break;
1894      }
1895   }
1896
1897   if (qual->flags.q.flat)
1898      var->interpolation = ir_var_flat;
1899   else if (qual->flags.q.noperspective)
1900      var->interpolation = ir_var_noperspective;
1901   else
1902      var->interpolation = ir_var_smooth;
1903
1904   var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1905   var->origin_upper_left = qual->flags.q.origin_upper_left;
1906   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1907       && (strcmp(var->name, "gl_FragCoord") != 0)) {
1908      const char *const qual_string = (qual->flags.q.origin_upper_left)
1909	 ? "origin_upper_left" : "pixel_center_integer";
1910
1911      _mesa_glsl_error(loc, state,
1912		       "layout qualifier `%s' can only be applied to "
1913		       "fragment shader input `gl_FragCoord'",
1914		       qual_string);
1915   }
1916
1917   if (qual->flags.q.explicit_location) {
1918      const bool global_scope = (state->current_function == NULL);
1919      bool fail = false;
1920      const char *string = "";
1921
1922      /* In the vertex shader only shader inputs can be given explicit
1923       * locations.
1924       *
1925       * In the fragment shader only shader outputs can be given explicit
1926       * locations.
1927       */
1928      switch (state->target) {
1929      case vertex_shader:
1930	 if (!global_scope || (var->mode != ir_var_in)) {
1931	    fail = true;
1932	    string = "input";
1933	 }
1934	 break;
1935
1936      case geometry_shader:
1937	 _mesa_glsl_error(loc, state,
1938			  "geometry shader variables cannot be given "
1939			  "explicit locations\n");
1940	 break;
1941
1942      case fragment_shader:
1943	 if (!global_scope || (var->mode != ir_var_in)) {
1944	    fail = true;
1945	    string = "output";
1946	 }
1947	 break;
1948      };
1949
1950      if (fail) {
1951	 _mesa_glsl_error(loc, state,
1952			  "only %s shader %s variables can be given an "
1953			  "explicit location\n",
1954			  _mesa_glsl_shader_target_name(state->target),
1955			  string);
1956      } else {
1957	 var->explicit_location = true;
1958
1959	 /* This bit of silliness is needed because invalid explicit locations
1960	  * are supposed to be flagged during linking.  Small negative values
1961	  * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1962	  * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1963	  * The linker needs to be able to differentiate these cases.  This
1964	  * ensures that negative values stay negative.
1965	  */
1966	 if (qual->location >= 0) {
1967	    var->location = (state->target == vertex_shader)
1968	       ? (qual->location + VERT_ATTRIB_GENERIC0)
1969	       : (qual->location + FRAG_RESULT_DATA0);
1970	 } else {
1971	    var->location = qual->location;
1972	 }
1973      }
1974   }
1975
1976   /* Does the declaration use the 'layout' keyword?
1977    */
1978   const bool uses_layout = qual->flags.q.pixel_center_integer
1979      || qual->flags.q.origin_upper_left
1980      || qual->flags.q.explicit_location;
1981
1982   /* Does the declaration use the deprecated 'attribute' or 'varying'
1983    * keywords?
1984    */
1985   const bool uses_deprecated_qualifier = qual->flags.q.attribute
1986      || qual->flags.q.varying;
1987
1988   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1989    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1990    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1991    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1992    * These extensions and all following extensions that add the 'layout'
1993    * keyword have been modified to require the use of 'in' or 'out'.
1994    *
1995    * The following extension do not allow the deprecated keywords:
1996    *
1997    *    GL_AMD_conservative_depth
1998    *    GL_ARB_gpu_shader5
1999    *    GL_ARB_separate_shader_objects
2000    *    GL_ARB_tesselation_shader
2001    *    GL_ARB_transform_feedback3
2002    *    GL_ARB_uniform_buffer_object
2003    *
2004    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2005    * allow layout with the deprecated keywords.
2006    */
2007   const bool relaxed_layout_qualifier_checking =
2008      state->ARB_fragment_coord_conventions_enable;
2009
2010   if (uses_layout && uses_deprecated_qualifier) {
2011      if (relaxed_layout_qualifier_checking) {
2012	 _mesa_glsl_warning(loc, state,
2013			    "`layout' qualifier may not be used with "
2014			    "`attribute' or `varying'");
2015      } else {
2016	 _mesa_glsl_error(loc, state,
2017			  "`layout' qualifier may not be used with "
2018			  "`attribute' or `varying'");
2019      }
2020   }
2021
2022   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2023    * AMD_conservative_depth.
2024    */
2025   int depth_layout_count = qual->flags.q.depth_any
2026      + qual->flags.q.depth_greater
2027      + qual->flags.q.depth_less
2028      + qual->flags.q.depth_unchanged;
2029   if (depth_layout_count > 0
2030       && !state->AMD_conservative_depth_enable) {
2031       _mesa_glsl_error(loc, state,
2032                        "extension GL_AMD_conservative_depth must be enabled "
2033			"to use depth layout qualifiers");
2034   } else if (depth_layout_count > 0
2035              && strcmp(var->name, "gl_FragDepth") != 0) {
2036       _mesa_glsl_error(loc, state,
2037                        "depth layout qualifiers can be applied only to "
2038                        "gl_FragDepth");
2039   } else if (depth_layout_count > 1
2040              && strcmp(var->name, "gl_FragDepth") == 0) {
2041      _mesa_glsl_error(loc, state,
2042                       "at most one depth layout qualifier can be applied to "
2043                       "gl_FragDepth");
2044   }
2045   if (qual->flags.q.depth_any)
2046      var->depth_layout = ir_depth_layout_any;
2047   else if (qual->flags.q.depth_greater)
2048      var->depth_layout = ir_depth_layout_greater;
2049   else if (qual->flags.q.depth_less)
2050      var->depth_layout = ir_depth_layout_less;
2051   else if (qual->flags.q.depth_unchanged)
2052       var->depth_layout = ir_depth_layout_unchanged;
2053   else
2054       var->depth_layout = ir_depth_layout_none;
2055
2056   if (var->type->is_array() && state->language_version != 110) {
2057      var->array_lvalue = true;
2058   }
2059}
2060
2061/**
2062 * Get the variable that is being redeclared by this declaration
2063 *
2064 * Semantic checks to verify the validity of the redeclaration are also
2065 * performed.  If semantic checks fail, compilation error will be emitted via
2066 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2067 *
2068 * \returns
2069 * A pointer to an existing variable in the current scope if the declaration
2070 * is a redeclaration, \c NULL otherwise.
2071 */
2072ir_variable *
2073get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2074			      struct _mesa_glsl_parse_state *state)
2075{
2076   /* Check if this declaration is actually a re-declaration, either to
2077    * resize an array or add qualifiers to an existing variable.
2078    *
2079    * This is allowed for variables in the current scope, or when at
2080    * global scope (for built-ins in the implicit outer scope).
2081    */
2082   ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2083   if (earlier == NULL ||
2084       (state->current_function != NULL &&
2085	!state->symbols->name_declared_this_scope(decl->identifier))) {
2086      return NULL;
2087   }
2088
2089
2090   YYLTYPE loc = decl->get_location();
2091
2092   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2093    *
2094    * "It is legal to declare an array without a size and then
2095    *  later re-declare the same name as an array of the same
2096    *  type and specify a size."
2097    */
2098   if ((earlier->type->array_size() == 0)
2099       && var->type->is_array()
2100       && (var->type->element_type() == earlier->type->element_type())) {
2101      /* FINISHME: This doesn't match the qualifiers on the two
2102       * FINISHME: declarations.  It's not 100% clear whether this is
2103       * FINISHME: required or not.
2104       */
2105
2106      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2107       *
2108       *     "The size [of gl_TexCoord] can be at most
2109       *     gl_MaxTextureCoords."
2110       */
2111      const unsigned size = unsigned(var->type->array_size());
2112      if ((strcmp("gl_TexCoord", var->name) == 0)
2113	  && (size > state->Const.MaxTextureCoords)) {
2114	 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2115			  "be larger than gl_MaxTextureCoords (%u)\n",
2116			  state->Const.MaxTextureCoords);
2117      } else if ((size > 0) && (size <= earlier->max_array_access)) {
2118	 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2119			  "previous access",
2120			  earlier->max_array_access);
2121      }
2122
2123      earlier->type = var->type;
2124      delete var;
2125      var = NULL;
2126   } else if (state->ARB_fragment_coord_conventions_enable
2127	      && strcmp(var->name, "gl_FragCoord") == 0
2128	      && earlier->type == var->type
2129	      && earlier->mode == var->mode) {
2130      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2131       * qualifiers.
2132       */
2133      earlier->origin_upper_left = var->origin_upper_left;
2134      earlier->pixel_center_integer = var->pixel_center_integer;
2135
2136      /* According to section 4.3.7 of the GLSL 1.30 spec,
2137       * the following built-in varaibles can be redeclared with an
2138       * interpolation qualifier:
2139       *    * gl_FrontColor
2140       *    * gl_BackColor
2141       *    * gl_FrontSecondaryColor
2142       *    * gl_BackSecondaryColor
2143       *    * gl_Color
2144       *    * gl_SecondaryColor
2145       */
2146   } else if (state->language_version >= 130
2147	      && (strcmp(var->name, "gl_FrontColor") == 0
2148		  || strcmp(var->name, "gl_BackColor") == 0
2149		  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2150		  || strcmp(var->name, "gl_BackSecondaryColor") == 0
2151		  || strcmp(var->name, "gl_Color") == 0
2152		  || strcmp(var->name, "gl_SecondaryColor") == 0)
2153	      && earlier->type == var->type
2154	      && earlier->mode == var->mode) {
2155      earlier->interpolation = var->interpolation;
2156
2157      /* Layout qualifiers for gl_FragDepth. */
2158   } else if (state->AMD_conservative_depth_enable
2159	      && strcmp(var->name, "gl_FragDepth") == 0
2160	      && earlier->type == var->type
2161	      && earlier->mode == var->mode) {
2162
2163      /** From the AMD_conservative_depth spec:
2164       *     Within any shader, the first redeclarations of gl_FragDepth
2165       *     must appear before any use of gl_FragDepth.
2166       */
2167      if (earlier->used) {
2168	 _mesa_glsl_error(&loc, state,
2169			  "the first redeclaration of gl_FragDepth "
2170			  "must appear before any use of gl_FragDepth");
2171      }
2172
2173      /* Prevent inconsistent redeclaration of depth layout qualifier. */
2174      if (earlier->depth_layout != ir_depth_layout_none
2175	  && earlier->depth_layout != var->depth_layout) {
2176	 _mesa_glsl_error(&loc, state,
2177			  "gl_FragDepth: depth layout is declared here "
2178			  "as '%s, but it was previously declared as "
2179			  "'%s'",
2180			  depth_layout_string(var->depth_layout),
2181			  depth_layout_string(earlier->depth_layout));
2182      }
2183
2184      earlier->depth_layout = var->depth_layout;
2185
2186   } else {
2187      _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2188   }
2189
2190   return earlier;
2191}
2192
2193/**
2194 * Generate the IR for an initializer in a variable declaration
2195 */
2196ir_rvalue *
2197process_initializer(ir_variable *var, ast_declaration *decl,
2198		    ast_fully_specified_type *type,
2199		    exec_list *initializer_instructions,
2200		    struct _mesa_glsl_parse_state *state)
2201{
2202   ir_rvalue *result = NULL;
2203
2204   YYLTYPE initializer_loc = decl->initializer->get_location();
2205
2206   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2207    *
2208    *    "All uniform variables are read-only and are initialized either
2209    *    directly by an application via API commands, or indirectly by
2210    *    OpenGL."
2211    */
2212   if ((state->language_version <= 110)
2213       && (var->mode == ir_var_uniform)) {
2214      _mesa_glsl_error(& initializer_loc, state,
2215		       "cannot initialize uniforms in GLSL 1.10");
2216   }
2217
2218   if (var->type->is_sampler()) {
2219      _mesa_glsl_error(& initializer_loc, state,
2220		       "cannot initialize samplers");
2221   }
2222
2223   if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2224      _mesa_glsl_error(& initializer_loc, state,
2225		       "cannot initialize %s shader input / %s",
2226		       _mesa_glsl_shader_target_name(state->target),
2227		       (state->target == vertex_shader)
2228		       ? "attribute" : "varying");
2229   }
2230
2231   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2232   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2233					   state);
2234
2235   /* Calculate the constant value if this is a const or uniform
2236    * declaration.
2237    */
2238   if (type->qualifier.flags.q.constant
2239       || type->qualifier.flags.q.uniform) {
2240      ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2241      if (new_rhs != NULL) {
2242	 rhs = new_rhs;
2243
2244	 ir_constant *constant_value = rhs->constant_expression_value();
2245	 if (!constant_value) {
2246	    _mesa_glsl_error(& initializer_loc, state,
2247			     "initializer of %s variable `%s' must be a "
2248			     "constant expression",
2249			     (type->qualifier.flags.q.constant)
2250			     ? "const" : "uniform",
2251			     decl->identifier);
2252	    if (var->type->is_numeric()) {
2253	       /* Reduce cascading errors. */
2254	       var->constant_value = ir_constant::zero(state, var->type);
2255	    }
2256	 } else {
2257	    rhs = constant_value;
2258	    var->constant_value = constant_value;
2259	 }
2260      } else {
2261	 _mesa_glsl_error(&initializer_loc, state,
2262			  "initializer of type %s cannot be assigned to "
2263			  "variable of type %s",
2264			  rhs->type->name, var->type->name);
2265	 if (var->type->is_numeric()) {
2266	    /* Reduce cascading errors. */
2267	    var->constant_value = ir_constant::zero(state, var->type);
2268	 }
2269      }
2270   }
2271
2272   if (rhs && !rhs->type->is_error()) {
2273      bool temp = var->read_only;
2274      if (type->qualifier.flags.q.constant)
2275	 var->read_only = false;
2276
2277      /* Never emit code to initialize a uniform.
2278       */
2279      const glsl_type *initializer_type;
2280      if (!type->qualifier.flags.q.uniform) {
2281	 result = do_assignment(initializer_instructions, state,
2282				lhs, rhs, true,
2283				type->get_location());
2284	 initializer_type = result->type;
2285      } else
2286	 initializer_type = rhs->type;
2287
2288      /* If the declared variable is an unsized array, it must inherrit
2289       * its full type from the initializer.  A declaration such as
2290       *
2291       *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2292       *
2293       * becomes
2294       *
2295       *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2296       *
2297       * The assignment generated in the if-statement (below) will also
2298       * automatically handle this case for non-uniforms.
2299       *
2300       * If the declared variable is not an array, the types must
2301       * already match exactly.  As a result, the type assignment
2302       * here can be done unconditionally.  For non-uniforms the call
2303       * to do_assignment can change the type of the initializer (via
2304       * the implicit conversion rules).  For uniforms the initializer
2305       * must be a constant expression, and the type of that expression
2306       * was validated above.
2307       */
2308      var->type = initializer_type;
2309
2310      var->read_only = temp;
2311   }
2312
2313   return result;
2314}
2315
2316ir_rvalue *
2317ast_declarator_list::hir(exec_list *instructions,
2318			 struct _mesa_glsl_parse_state *state)
2319{
2320   void *ctx = state;
2321   const struct glsl_type *decl_type;
2322   const char *type_name = NULL;
2323   ir_rvalue *result = NULL;
2324   YYLTYPE loc = this->get_location();
2325
2326   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2327    *
2328    *     "To ensure that a particular output variable is invariant, it is
2329    *     necessary to use the invariant qualifier. It can either be used to
2330    *     qualify a previously declared variable as being invariant
2331    *
2332    *         invariant gl_Position; // make existing gl_Position be invariant"
2333    *
2334    * In these cases the parser will set the 'invariant' flag in the declarator
2335    * list, and the type will be NULL.
2336    */
2337   if (this->invariant) {
2338      assert(this->type == NULL);
2339
2340      if (state->current_function != NULL) {
2341	 _mesa_glsl_error(& loc, state,
2342			  "All uses of `invariant' keyword must be at global "
2343			  "scope\n");
2344      }
2345
2346      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2347	 assert(!decl->is_array);
2348	 assert(decl->array_size == NULL);
2349	 assert(decl->initializer == NULL);
2350
2351	 ir_variable *const earlier =
2352	    state->symbols->get_variable(decl->identifier);
2353	 if (earlier == NULL) {
2354	    _mesa_glsl_error(& loc, state,
2355			     "Undeclared variable `%s' cannot be marked "
2356			     "invariant\n", decl->identifier);
2357	 } else if ((state->target == vertex_shader)
2358	       && (earlier->mode != ir_var_out)) {
2359	    _mesa_glsl_error(& loc, state,
2360			     "`%s' cannot be marked invariant, vertex shader "
2361			     "outputs only\n", decl->identifier);
2362	 } else if ((state->target == fragment_shader)
2363	       && (earlier->mode != ir_var_in)) {
2364	    _mesa_glsl_error(& loc, state,
2365			     "`%s' cannot be marked invariant, fragment shader "
2366			     "inputs only\n", decl->identifier);
2367	 } else if (earlier->used) {
2368	    _mesa_glsl_error(& loc, state,
2369			     "variable `%s' may not be redeclared "
2370			     "`invariant' after being used",
2371			     earlier->name);
2372	 } else {
2373	    earlier->invariant = true;
2374	 }
2375      }
2376
2377      /* Invariant redeclarations do not have r-values.
2378       */
2379      return NULL;
2380   }
2381
2382   assert(this->type != NULL);
2383   assert(!this->invariant);
2384
2385   /* The type specifier may contain a structure definition.  Process that
2386    * before any of the variable declarations.
2387    */
2388   (void) this->type->specifier->hir(instructions, state);
2389
2390   decl_type = this->type->specifier->glsl_type(& type_name, state);
2391   if (this->declarations.is_empty()) {
2392      /* The only valid case where the declaration list can be empty is when
2393       * the declaration is setting the default precision of a built-in type
2394       * (e.g., 'precision highp vec4;').
2395       */
2396
2397      if (decl_type != NULL) {
2398      } else {
2399	    _mesa_glsl_error(& loc, state, "incomplete declaration");
2400      }
2401   }
2402
2403   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2404      const struct glsl_type *var_type;
2405      ir_variable *var;
2406
2407      /* FINISHME: Emit a warning if a variable declaration shadows a
2408       * FINISHME: declaration at a higher scope.
2409       */
2410
2411      if ((decl_type == NULL) || decl_type->is_void()) {
2412	 if (type_name != NULL) {
2413	    _mesa_glsl_error(& loc, state,
2414			     "invalid type `%s' in declaration of `%s'",
2415			     type_name, decl->identifier);
2416	 } else {
2417	    _mesa_glsl_error(& loc, state,
2418			     "invalid type in declaration of `%s'",
2419			     decl->identifier);
2420	 }
2421	 continue;
2422      }
2423
2424      if (decl->is_array) {
2425	 var_type = process_array_type(&loc, decl_type, decl->array_size,
2426				       state);
2427      } else {
2428	 var_type = decl_type;
2429      }
2430
2431      var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2432
2433      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2434       *
2435       *     "Global variables can only use the qualifiers const,
2436       *     attribute, uni form, or varying. Only one may be
2437       *     specified.
2438       *
2439       *     Local variables can only use the qualifier const."
2440       *
2441       * This is relaxed in GLSL 1.30.  It is also relaxed by any extension
2442       * that adds the 'layout' keyword.
2443       */
2444      if ((state->language_version < 130)
2445	  && !state->ARB_explicit_attrib_location_enable
2446	  && !state->ARB_fragment_coord_conventions_enable) {
2447	 if (this->type->qualifier.flags.q.out) {
2448	    _mesa_glsl_error(& loc, state,
2449			     "`out' qualifier in declaration of `%s' "
2450			     "only valid for function parameters in %s.",
2451			     decl->identifier, state->version_string);
2452	 }
2453	 if (this->type->qualifier.flags.q.in) {
2454	    _mesa_glsl_error(& loc, state,
2455			     "`in' qualifier in declaration of `%s' "
2456			     "only valid for function parameters in %s.",
2457			     decl->identifier, state->version_string);
2458	 }
2459	 /* FINISHME: Test for other invalid qualifiers. */
2460      }
2461
2462      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2463				       & loc);
2464
2465      if (this->type->qualifier.flags.q.invariant) {
2466	 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2467						   var->mode == ir_var_inout)) {
2468	    /* FINISHME: Note that this doesn't work for invariant on
2469	     * a function signature outval
2470	     */
2471	    _mesa_glsl_error(& loc, state,
2472			     "`%s' cannot be marked invariant, vertex shader "
2473			     "outputs only\n", var->name);
2474	 } else if ((state->target == fragment_shader) &&
2475		    !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2476	    /* FINISHME: Note that this doesn't work for invariant on
2477	     * a function signature inval
2478	     */
2479	    _mesa_glsl_error(& loc, state,
2480			     "`%s' cannot be marked invariant, fragment shader "
2481			     "inputs only\n", var->name);
2482	 }
2483      }
2484
2485      if (state->current_function != NULL) {
2486	 const char *mode = NULL;
2487	 const char *extra = "";
2488
2489	 /* There is no need to check for 'inout' here because the parser will
2490	  * only allow that in function parameter lists.
2491	  */
2492	 if (this->type->qualifier.flags.q.attribute) {
2493	    mode = "attribute";
2494	 } else if (this->type->qualifier.flags.q.uniform) {
2495	    mode = "uniform";
2496	 } else if (this->type->qualifier.flags.q.varying) {
2497	    mode = "varying";
2498	 } else if (this->type->qualifier.flags.q.in) {
2499	    mode = "in";
2500	    extra = " or in function parameter list";
2501	 } else if (this->type->qualifier.flags.q.out) {
2502	    mode = "out";
2503	    extra = " or in function parameter list";
2504	 }
2505
2506	 if (mode) {
2507	    _mesa_glsl_error(& loc, state,
2508			     "%s variable `%s' must be declared at "
2509			     "global scope%s",
2510			     mode, var->name, extra);
2511	 }
2512      } else if (var->mode == ir_var_in) {
2513         var->read_only = true;
2514
2515	 if (state->target == vertex_shader) {
2516	    bool error_emitted = false;
2517
2518	    /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2519	     *
2520	     *    "Vertex shader inputs can only be float, floating-point
2521	     *    vectors, matrices, signed and unsigned integers and integer
2522	     *    vectors. Vertex shader inputs can also form arrays of these
2523	     *    types, but not structures."
2524	     *
2525	     * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2526	     *
2527	     *    "Vertex shader inputs can only be float, floating-point
2528	     *    vectors, matrices, signed and unsigned integers and integer
2529	     *    vectors. They cannot be arrays or structures."
2530	     *
2531	     * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2532	     *
2533	     *    "The attribute qualifier can be used only with float,
2534	     *    floating-point vectors, and matrices. Attribute variables
2535	     *    cannot be declared as arrays or structures."
2536	     */
2537	    const glsl_type *check_type = var->type->is_array()
2538	       ? var->type->fields.array : var->type;
2539
2540	    switch (check_type->base_type) {
2541	    case GLSL_TYPE_FLOAT:
2542	       break;
2543	    case GLSL_TYPE_UINT:
2544	    case GLSL_TYPE_INT:
2545	       if (state->language_version > 120)
2546		  break;
2547	       /* FALLTHROUGH */
2548	    default:
2549	       _mesa_glsl_error(& loc, state,
2550				"vertex shader input / attribute cannot have "
2551				"type %s`%s'",
2552				var->type->is_array() ? "array of " : "",
2553				check_type->name);
2554	       error_emitted = true;
2555	    }
2556
2557	    if (!error_emitted && (state->language_version <= 130)
2558		&& var->type->is_array()) {
2559	       _mesa_glsl_error(& loc, state,
2560				"vertex shader input / attribute cannot have "
2561				"array type");
2562	       error_emitted = true;
2563	    }
2564	 }
2565      }
2566
2567      /* Integer vertex outputs must be qualified with 'flat'.
2568       *
2569       * From section 4.3.6 of the GLSL 1.30 spec:
2570       *    "If a vertex output is a signed or unsigned integer or integer
2571       *    vector, then it must be qualified with the interpolation qualifier
2572       *    flat."
2573       */
2574      if (state->language_version >= 130
2575          && state->target == vertex_shader
2576          && state->current_function == NULL
2577          && var->type->is_integer()
2578          && var->mode == ir_var_out
2579          && var->interpolation != ir_var_flat) {
2580
2581         _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2582                          "then it must be qualified with 'flat'");
2583      }
2584
2585
2586      /* Interpolation qualifiers cannot be applied to 'centroid' and
2587       * 'centroid varying'.
2588       *
2589       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2590       *    "interpolation qualifiers may only precede the qualifiers in,
2591       *    centroid in, out, or centroid out in a declaration. They do not apply
2592       *    to the deprecated storage qualifiers varying or centroid varying."
2593       */
2594      if (state->language_version >= 130
2595          && this->type->qualifier.has_interpolation()
2596          && this->type->qualifier.flags.q.varying) {
2597
2598         const char *i = this->type->qualifier.interpolation_string();
2599         assert(i != NULL);
2600         const char *s;
2601         if (this->type->qualifier.flags.q.centroid)
2602            s = "centroid varying";
2603         else
2604            s = "varying";
2605
2606         _mesa_glsl_error(&loc, state,
2607                          "qualifier '%s' cannot be applied to the "
2608                          "deprecated storage qualifier '%s'", i, s);
2609      }
2610
2611
2612      /* Interpolation qualifiers can only apply to vertex shader outputs and
2613       * fragment shader inputs.
2614       *
2615       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2616       *    "Outputs from a vertex shader (out) and inputs to a fragment
2617       *    shader (in) can be further qualified with one or more of these
2618       *    interpolation qualifiers"
2619       */
2620      if (state->language_version >= 130
2621          && this->type->qualifier.has_interpolation()) {
2622
2623         const char *i = this->type->qualifier.interpolation_string();
2624         assert(i != NULL);
2625
2626         switch (state->target) {
2627         case vertex_shader:
2628            if (this->type->qualifier.flags.q.in) {
2629               _mesa_glsl_error(&loc, state,
2630                                "qualifier '%s' cannot be applied to vertex "
2631                                "shader inputs", i);
2632            }
2633            break;
2634         case fragment_shader:
2635            if (this->type->qualifier.flags.q.out) {
2636               _mesa_glsl_error(&loc, state,
2637                                "qualifier '%s' cannot be applied to fragment "
2638                                "shader outputs", i);
2639            }
2640            break;
2641         default:
2642            assert(0);
2643         }
2644      }
2645
2646
2647      /* From section 4.3.4 of the GLSL 1.30 spec:
2648       *    "It is an error to use centroid in in a vertex shader."
2649       */
2650      if (state->language_version >= 130
2651          && this->type->qualifier.flags.q.centroid
2652          && this->type->qualifier.flags.q.in
2653          && state->target == vertex_shader) {
2654
2655         _mesa_glsl_error(&loc, state,
2656                          "'centroid in' cannot be used in a vertex shader");
2657      }
2658
2659
2660      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2661       */
2662      if (this->type->specifier->precision != ast_precision_none
2663          && state->language_version != 100
2664          && state->language_version < 130) {
2665
2666         _mesa_glsl_error(&loc, state,
2667                          "precision qualifiers are supported only in GLSL ES "
2668                          "1.00, and GLSL 1.30 and later");
2669      }
2670
2671
2672      /* Precision qualifiers only apply to floating point and integer types.
2673       *
2674       * From section 4.5.2 of the GLSL 1.30 spec:
2675       *    "Any floating point or any integer declaration can have the type
2676       *    preceded by one of these precision qualifiers [...] Literal
2677       *    constants do not have precision qualifiers. Neither do Boolean
2678       *    variables.
2679       */
2680      if (this->type->specifier->precision != ast_precision_none
2681          && !var->type->is_float()
2682          && !var->type->is_integer()
2683          && !(var->type->is_array()
2684               && (var->type->fields.array->is_float()
2685                   || var->type->fields.array->is_integer()))) {
2686
2687         _mesa_glsl_error(&loc, state,
2688                          "precision qualifiers apply only to floating point "
2689                          "and integer types");
2690      }
2691
2692      /* Process the initializer and add its instructions to a temporary
2693       * list.  This list will be added to the instruction stream (below) after
2694       * the declaration is added.  This is done because in some cases (such as
2695       * redeclarations) the declaration may not actually be added to the
2696       * instruction stream.
2697       */
2698      exec_list initializer_instructions;
2699      ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2700
2701      if (decl->initializer != NULL) {
2702	 result = process_initializer((earlier == NULL) ? var : earlier,
2703				      decl, this->type,
2704				      &initializer_instructions, state);
2705      }
2706
2707      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2708       *
2709       *     "It is an error to write to a const variable outside of
2710       *      its declaration, so they must be initialized when
2711       *      declared."
2712       */
2713      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2714	 _mesa_glsl_error(& loc, state,
2715			  "const declaration of `%s' must be initialized",
2716			  decl->identifier);
2717      }
2718
2719      /* If the declaration is not a redeclaration, there are a few additional
2720       * semantic checks that must be applied.  In addition, variable that was
2721       * created for the declaration should be added to the IR stream.
2722       */
2723      if (earlier == NULL) {
2724	 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2725	  *
2726	  *   "Identifiers starting with "gl_" are reserved for use by
2727	  *   OpenGL, and may not be declared in a shader as either a
2728	  *   variable or a function."
2729	  */
2730	 if (strncmp(decl->identifier, "gl_", 3) == 0)
2731	    _mesa_glsl_error(& loc, state,
2732			     "identifier `%s' uses reserved `gl_' prefix",
2733			     decl->identifier);
2734
2735	 /* Add the variable to the symbol table.  Note that the initializer's
2736	  * IR was already processed earlier (though it hasn't been emitted
2737	  * yet), without the variable in scope.
2738	  *
2739	  * This differs from most C-like languages, but it follows the GLSL
2740	  * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
2741	  * spec:
2742	  *
2743	  *     "Within a declaration, the scope of a name starts immediately
2744	  *     after the initializer if present or immediately after the name
2745	  *     being declared if not."
2746	  */
2747	 if (!state->symbols->add_variable(var)) {
2748	    YYLTYPE loc = this->get_location();
2749	    _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2750			     "current scope", decl->identifier);
2751	    continue;
2752	 }
2753
2754	 /* Push the variable declaration to the top.  It means that all the
2755	  * variable declarations will appear in a funny last-to-first order,
2756	  * but otherwise we run into trouble if a function is prototyped, a
2757	  * global var is decled, then the function is defined with usage of
2758	  * the global var.  See glslparsertest's CorrectModule.frag.
2759	  */
2760	 instructions->push_head(var);
2761      }
2762
2763      instructions->append_list(&initializer_instructions);
2764   }
2765
2766
2767   /* Generally, variable declarations do not have r-values.  However,
2768    * one is used for the declaration in
2769    *
2770    * while (bool b = some_condition()) {
2771    *   ...
2772    * }
2773    *
2774    * so we return the rvalue from the last seen declaration here.
2775    */
2776   return result;
2777}
2778
2779
2780ir_rvalue *
2781ast_parameter_declarator::hir(exec_list *instructions,
2782			      struct _mesa_glsl_parse_state *state)
2783{
2784   void *ctx = state;
2785   const struct glsl_type *type;
2786   const char *name = NULL;
2787   YYLTYPE loc = this->get_location();
2788
2789   type = this->type->specifier->glsl_type(& name, state);
2790
2791   if (type == NULL) {
2792      if (name != NULL) {
2793	 _mesa_glsl_error(& loc, state,
2794			  "invalid type `%s' in declaration of `%s'",
2795			  name, this->identifier);
2796      } else {
2797	 _mesa_glsl_error(& loc, state,
2798			  "invalid type in declaration of `%s'",
2799			  this->identifier);
2800      }
2801
2802      type = glsl_type::error_type;
2803   }
2804
2805   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2806    *
2807    *    "Functions that accept no input arguments need not use void in the
2808    *    argument list because prototypes (or definitions) are required and
2809    *    therefore there is no ambiguity when an empty argument list "( )" is
2810    *    declared. The idiom "(void)" as a parameter list is provided for
2811    *    convenience."
2812    *
2813    * Placing this check here prevents a void parameter being set up
2814    * for a function, which avoids tripping up checks for main taking
2815    * parameters and lookups of an unnamed symbol.
2816    */
2817   if (type->is_void()) {
2818      if (this->identifier != NULL)
2819	 _mesa_glsl_error(& loc, state,
2820			  "named parameter cannot have type `void'");
2821
2822      is_void = true;
2823      return NULL;
2824   }
2825
2826   if (formal_parameter && (this->identifier == NULL)) {
2827      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2828      return NULL;
2829   }
2830
2831   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
2832    * call already handled the "vec4[..] foo" case.
2833    */
2834   if (this->is_array) {
2835      type = process_array_type(&loc, type, this->array_size, state);
2836   }
2837
2838   if (type->array_size() == 0) {
2839      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2840		       "a declared size.");
2841      type = glsl_type::error_type;
2842   }
2843
2844   is_void = false;
2845   ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2846
2847   /* Apply any specified qualifiers to the parameter declaration.  Note that
2848    * for function parameters the default mode is 'in'.
2849    */
2850   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2851
2852   instructions->push_tail(var);
2853
2854   /* Parameter declarations do not have r-values.
2855    */
2856   return NULL;
2857}
2858
2859
2860void
2861ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2862					    bool formal,
2863					    exec_list *ir_parameters,
2864					    _mesa_glsl_parse_state *state)
2865{
2866   ast_parameter_declarator *void_param = NULL;
2867   unsigned count = 0;
2868
2869   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2870      param->formal_parameter = formal;
2871      param->hir(ir_parameters, state);
2872
2873      if (param->is_void)
2874	 void_param = param;
2875
2876      count++;
2877   }
2878
2879   if ((void_param != NULL) && (count > 1)) {
2880      YYLTYPE loc = void_param->get_location();
2881
2882      _mesa_glsl_error(& loc, state,
2883		       "`void' parameter must be only parameter");
2884   }
2885}
2886
2887
2888void
2889emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2890	      ir_function *f)
2891{
2892   /* Emit the new function header */
2893   if (state->current_function == NULL) {
2894      instructions->push_tail(f);
2895   } else {
2896      /* IR invariants disallow function declarations or definitions nested
2897       * within other function definitions.  Insert the new ir_function
2898       * block in the instruction sequence before the ir_function block
2899       * containing the current ir_function_signature.
2900       */
2901      ir_function *const curr =
2902	 const_cast<ir_function *>(state->current_function->function());
2903
2904      curr->insert_before(f);
2905   }
2906}
2907
2908
2909ir_rvalue *
2910ast_function::hir(exec_list *instructions,
2911		  struct _mesa_glsl_parse_state *state)
2912{
2913   void *ctx = state;
2914   ir_function *f = NULL;
2915   ir_function_signature *sig = NULL;
2916   exec_list hir_parameters;
2917
2918   const char *const name = identifier;
2919
2920   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2921    *
2922    *   "Function declarations (prototypes) cannot occur inside of functions;
2923    *   they must be at global scope, or for the built-in functions, outside
2924    *   the global scope."
2925    *
2926    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2927    *
2928    *   "User defined functions may only be defined within the global scope."
2929    *
2930    * Note that this language does not appear in GLSL 1.10.
2931    */
2932   if ((state->current_function != NULL) && (state->language_version != 110)) {
2933      YYLTYPE loc = this->get_location();
2934      _mesa_glsl_error(&loc, state,
2935		       "declaration of function `%s' not allowed within "
2936		       "function body", name);
2937   }
2938
2939   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2940    *
2941    *   "Identifiers starting with "gl_" are reserved for use by
2942    *   OpenGL, and may not be declared in a shader as either a
2943    *   variable or a function."
2944    */
2945   if (strncmp(name, "gl_", 3) == 0) {
2946      YYLTYPE loc = this->get_location();
2947      _mesa_glsl_error(&loc, state,
2948		       "identifier `%s' uses reserved `gl_' prefix", name);
2949   }
2950
2951   /* Convert the list of function parameters to HIR now so that they can be
2952    * used below to compare this function's signature with previously seen
2953    * signatures for functions with the same name.
2954    */
2955   ast_parameter_declarator::parameters_to_hir(& this->parameters,
2956					       is_definition,
2957					       & hir_parameters, state);
2958
2959   const char *return_type_name;
2960   const glsl_type *return_type =
2961      this->return_type->specifier->glsl_type(& return_type_name, state);
2962
2963   if (!return_type) {
2964      YYLTYPE loc = this->get_location();
2965      _mesa_glsl_error(&loc, state,
2966		       "function `%s' has undeclared return type `%s'",
2967		       name, return_type_name);
2968      return_type = glsl_type::error_type;
2969   }
2970
2971   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2972    * "No qualifier is allowed on the return type of a function."
2973    */
2974   if (this->return_type->has_qualifiers()) {
2975      YYLTYPE loc = this->get_location();
2976      _mesa_glsl_error(& loc, state,
2977		       "function `%s' return type has qualifiers", name);
2978   }
2979
2980   /* Verify that this function's signature either doesn't match a previously
2981    * seen signature for a function with the same name, or, if a match is found,
2982    * that the previously seen signature does not have an associated definition.
2983    */
2984   f = state->symbols->get_function(name);
2985   if (f != NULL && (state->es_shader || f->has_user_signature())) {
2986      sig = f->exact_matching_signature(&hir_parameters);
2987      if (sig != NULL) {
2988	 const char *badvar = sig->qualifiers_match(&hir_parameters);
2989	 if (badvar != NULL) {
2990	    YYLTYPE loc = this->get_location();
2991
2992	    _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2993			     "qualifiers don't match prototype", name, badvar);
2994	 }
2995
2996	 if (sig->return_type != return_type) {
2997	    YYLTYPE loc = this->get_location();
2998
2999	    _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3000			     "match prototype", name);
3001	 }
3002
3003	 if (is_definition && sig->is_defined) {
3004	    YYLTYPE loc = this->get_location();
3005
3006	    _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3007	 }
3008      }
3009   } else {
3010      f = new(ctx) ir_function(name);
3011      if (!state->symbols->add_function(f)) {
3012	 /* This function name shadows a non-function use of the same name. */
3013	 YYLTYPE loc = this->get_location();
3014
3015	 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3016			  "non-function", name);
3017	 return NULL;
3018      }
3019
3020      emit_function(state, instructions, f);
3021   }
3022
3023   /* Verify the return type of main() */
3024   if (strcmp(name, "main") == 0) {
3025      if (! return_type->is_void()) {
3026	 YYLTYPE loc = this->get_location();
3027
3028	 _mesa_glsl_error(& loc, state, "main() must return void");
3029      }
3030
3031      if (!hir_parameters.is_empty()) {
3032	 YYLTYPE loc = this->get_location();
3033
3034	 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3035      }
3036   }
3037
3038   /* Finish storing the information about this new function in its signature.
3039    */
3040   if (sig == NULL) {
3041      sig = new(ctx) ir_function_signature(return_type);
3042      f->add_signature(sig);
3043   }
3044
3045   sig->replace_parameters(&hir_parameters);
3046   signature = sig;
3047
3048   /* Function declarations (prototypes) do not have r-values.
3049    */
3050   return NULL;
3051}
3052
3053
3054ir_rvalue *
3055ast_function_definition::hir(exec_list *instructions,
3056			     struct _mesa_glsl_parse_state *state)
3057{
3058   prototype->is_definition = true;
3059   prototype->hir(instructions, state);
3060
3061   ir_function_signature *signature = prototype->signature;
3062   if (signature == NULL)
3063      return NULL;
3064
3065   assert(state->current_function == NULL);
3066   state->current_function = signature;
3067   state->found_return = false;
3068
3069   /* Duplicate parameters declared in the prototype as concrete variables.
3070    * Add these to the symbol table.
3071    */
3072   state->symbols->push_scope();
3073   foreach_iter(exec_list_iterator, iter, signature->parameters) {
3074      ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3075
3076      assert(var != NULL);
3077
3078      /* The only way a parameter would "exist" is if two parameters have
3079       * the same name.
3080       */
3081      if (state->symbols->name_declared_this_scope(var->name)) {
3082	 YYLTYPE loc = this->get_location();
3083
3084	 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3085      } else {
3086	 state->symbols->add_variable(var);
3087      }
3088   }
3089
3090   /* Convert the body of the function to HIR. */
3091   this->body->hir(&signature->body, state);
3092   signature->is_defined = true;
3093
3094   state->symbols->pop_scope();
3095
3096   assert(state->current_function == signature);
3097   state->current_function = NULL;
3098
3099   if (!signature->return_type->is_void() && !state->found_return) {
3100      YYLTYPE loc = this->get_location();
3101      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3102		       "%s, but no return statement",
3103		       signature->function_name(),
3104		       signature->return_type->name);
3105   }
3106
3107   /* Function definitions do not have r-values.
3108    */
3109   return NULL;
3110}
3111
3112
3113ir_rvalue *
3114ast_jump_statement::hir(exec_list *instructions,
3115			struct _mesa_glsl_parse_state *state)
3116{
3117   void *ctx = state;
3118
3119   switch (mode) {
3120   case ast_return: {
3121      ir_return *inst;
3122      assert(state->current_function);
3123
3124      if (opt_return_value) {
3125	 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3126
3127	 /* The value of the return type can be NULL if the shader says
3128	  * 'return foo();' and foo() is a function that returns void.
3129	  *
3130	  * NOTE: The GLSL spec doesn't say that this is an error.  The type
3131	  * of the return value is void.  If the return type of the function is
3132	  * also void, then this should compile without error.  Seriously.
3133	  */
3134	 const glsl_type *const ret_type =
3135	    (ret == NULL) ? glsl_type::void_type : ret->type;
3136
3137	 /* Implicit conversions are not allowed for return values. */
3138	 if (state->current_function->return_type != ret_type) {
3139	    YYLTYPE loc = this->get_location();
3140
3141	    _mesa_glsl_error(& loc, state,
3142			     "`return' with wrong type %s, in function `%s' "
3143			     "returning %s",
3144			     ret_type->name,
3145			     state->current_function->function_name(),
3146			     state->current_function->return_type->name);
3147	 }
3148
3149	 inst = new(ctx) ir_return(ret);
3150      } else {
3151	 if (state->current_function->return_type->base_type !=
3152	     GLSL_TYPE_VOID) {
3153	    YYLTYPE loc = this->get_location();
3154
3155	    _mesa_glsl_error(& loc, state,
3156			     "`return' with no value, in function %s returning "
3157			     "non-void",
3158			     state->current_function->function_name());
3159	 }
3160	 inst = new(ctx) ir_return;
3161      }
3162
3163      state->found_return = true;
3164      instructions->push_tail(inst);
3165      break;
3166   }
3167
3168   case ast_discard:
3169      if (state->target != fragment_shader) {
3170	 YYLTYPE loc = this->get_location();
3171
3172	 _mesa_glsl_error(& loc, state,
3173			  "`discard' may only appear in a fragment shader");
3174      }
3175      instructions->push_tail(new(ctx) ir_discard);
3176      break;
3177
3178   case ast_break:
3179   case ast_continue:
3180      /* FINISHME: Handle switch-statements.  They cannot contain 'continue',
3181       * FINISHME: and they use a different IR instruction for 'break'.
3182       */
3183      /* FINISHME: Correctly handle the nesting.  If a switch-statement is
3184       * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3185       * FINISHME: loop.
3186       */
3187      if (state->loop_or_switch_nesting == NULL) {
3188	 YYLTYPE loc = this->get_location();
3189
3190	 _mesa_glsl_error(& loc, state,
3191			  "`%s' may only appear in a loop",
3192			  (mode == ast_break) ? "break" : "continue");
3193      } else {
3194	 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3195
3196	 /* Inline the for loop expression again, since we don't know
3197	  * where near the end of the loop body the normal copy of it
3198	  * is going to be placed.
3199	  */
3200	 if (mode == ast_continue &&
3201	     state->loop_or_switch_nesting_ast->rest_expression) {
3202	    state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3203								    state);
3204	 }
3205
3206	 if (loop != NULL) {
3207	    ir_loop_jump *const jump =
3208	       new(ctx) ir_loop_jump((mode == ast_break)
3209				     ? ir_loop_jump::jump_break
3210				     : ir_loop_jump::jump_continue);
3211	    instructions->push_tail(jump);
3212	 }
3213      }
3214
3215      break;
3216   }
3217
3218   /* Jump instructions do not have r-values.
3219    */
3220   return NULL;
3221}
3222
3223
3224ir_rvalue *
3225ast_selection_statement::hir(exec_list *instructions,
3226			     struct _mesa_glsl_parse_state *state)
3227{
3228   void *ctx = state;
3229
3230   ir_rvalue *const condition = this->condition->hir(instructions, state);
3231
3232   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3233    *
3234    *    "Any expression whose type evaluates to a Boolean can be used as the
3235    *    conditional expression bool-expression. Vector types are not accepted
3236    *    as the expression to if."
3237    *
3238    * The checks are separated so that higher quality diagnostics can be
3239    * generated for cases where both rules are violated.
3240    */
3241   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3242      YYLTYPE loc = this->condition->get_location();
3243
3244      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3245		       "boolean");
3246   }
3247
3248   ir_if *const stmt = new(ctx) ir_if(condition);
3249
3250   if (then_statement != NULL) {
3251      state->symbols->push_scope();
3252      then_statement->hir(& stmt->then_instructions, state);
3253      state->symbols->pop_scope();
3254   }
3255
3256   if (else_statement != NULL) {
3257      state->symbols->push_scope();
3258      else_statement->hir(& stmt->else_instructions, state);
3259      state->symbols->pop_scope();
3260   }
3261
3262   instructions->push_tail(stmt);
3263
3264   /* if-statements do not have r-values.
3265    */
3266   return NULL;
3267}
3268
3269
3270void
3271ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3272					  struct _mesa_glsl_parse_state *state)
3273{
3274   void *ctx = state;
3275
3276   if (condition != NULL) {
3277      ir_rvalue *const cond =
3278	 condition->hir(& stmt->body_instructions, state);
3279
3280      if ((cond == NULL)
3281	  || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3282	 YYLTYPE loc = condition->get_location();
3283
3284	 _mesa_glsl_error(& loc, state,
3285			  "loop condition must be scalar boolean");
3286      } else {
3287	 /* As the first code in the loop body, generate a block that looks
3288	  * like 'if (!condition) break;' as the loop termination condition.
3289	  */
3290	 ir_rvalue *const not_cond =
3291	    new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3292				   NULL);
3293
3294	 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3295
3296	 ir_jump *const break_stmt =
3297	    new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3298
3299	 if_stmt->then_instructions.push_tail(break_stmt);
3300	 stmt->body_instructions.push_tail(if_stmt);
3301      }
3302   }
3303}
3304
3305
3306ir_rvalue *
3307ast_iteration_statement::hir(exec_list *instructions,
3308			     struct _mesa_glsl_parse_state *state)
3309{
3310   void *ctx = state;
3311
3312   /* For-loops and while-loops start a new scope, but do-while loops do not.
3313    */
3314   if (mode != ast_do_while)
3315      state->symbols->push_scope();
3316
3317   if (init_statement != NULL)
3318      init_statement->hir(instructions, state);
3319
3320   ir_loop *const stmt = new(ctx) ir_loop();
3321   instructions->push_tail(stmt);
3322
3323   /* Track the current loop and / or switch-statement nesting.
3324    */
3325   ir_instruction *const nesting = state->loop_or_switch_nesting;
3326   ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3327
3328   state->loop_or_switch_nesting = stmt;
3329   state->loop_or_switch_nesting_ast = this;
3330
3331   if (mode != ast_do_while)
3332      condition_to_hir(stmt, state);
3333
3334   if (body != NULL)
3335      body->hir(& stmt->body_instructions, state);
3336
3337   if (rest_expression != NULL)
3338      rest_expression->hir(& stmt->body_instructions, state);
3339
3340   if (mode == ast_do_while)
3341      condition_to_hir(stmt, state);
3342
3343   if (mode != ast_do_while)
3344      state->symbols->pop_scope();
3345
3346   /* Restore previous nesting before returning.
3347    */
3348   state->loop_or_switch_nesting = nesting;
3349   state->loop_or_switch_nesting_ast = nesting_ast;
3350
3351   /* Loops do not have r-values.
3352    */
3353   return NULL;
3354}
3355
3356
3357ir_rvalue *
3358ast_type_specifier::hir(exec_list *instructions,
3359			  struct _mesa_glsl_parse_state *state)
3360{
3361   if (!this->is_precision_statement && this->structure == NULL)
3362      return NULL;
3363
3364   YYLTYPE loc = this->get_location();
3365
3366   if (this->precision != ast_precision_none
3367       && state->language_version != 100
3368       && state->language_version < 130) {
3369      _mesa_glsl_error(&loc, state,
3370                       "precision qualifiers exist only in "
3371                       "GLSL ES 1.00, and GLSL 1.30 and later");
3372      return NULL;
3373   }
3374   if (this->precision != ast_precision_none
3375       && this->structure != NULL) {
3376      _mesa_glsl_error(&loc, state,
3377                       "precision qualifiers do not apply to structures");
3378      return NULL;
3379   }
3380
3381   /* If this is a precision statement, check that the type to which it is
3382    * applied is either float or int.
3383    *
3384    * From section 4.5.3 of the GLSL 1.30 spec:
3385    *    "The precision statement
3386    *       precision precision-qualifier type;
3387    *    can be used to establish a default precision qualifier. The type
3388    *    field can be either int or float [...].  Any other types or
3389    *    qualifiers will result in an error.
3390    */
3391   if (this->is_precision_statement) {
3392      assert(this->precision != ast_precision_none);
3393      assert(this->structure == NULL); /* The check for structures was
3394                                        * performed above. */
3395      if (this->is_array) {
3396         _mesa_glsl_error(&loc, state,
3397                          "default precision statements do not apply to "
3398                          "arrays");
3399         return NULL;
3400      }
3401      if (this->type_specifier != ast_float
3402          && this->type_specifier != ast_int) {
3403         _mesa_glsl_error(&loc, state,
3404                          "default precision statements apply only to types "
3405                          "float and int");
3406         return NULL;
3407      }
3408
3409      /* FINISHME: Translate precision statements into IR. */
3410      return NULL;
3411   }
3412
3413   if (this->structure != NULL)
3414      return this->structure->hir(instructions, state);
3415
3416   return NULL;
3417}
3418
3419
3420ir_rvalue *
3421ast_struct_specifier::hir(exec_list *instructions,
3422			  struct _mesa_glsl_parse_state *state)
3423{
3424   unsigned decl_count = 0;
3425
3426   /* Make an initial pass over the list of structure fields to determine how
3427    * many there are.  Each element in this list is an ast_declarator_list.
3428    * This means that we actually need to count the number of elements in the
3429    * 'declarations' list in each of the elements.
3430    */
3431   foreach_list_typed (ast_declarator_list, decl_list, link,
3432		       &this->declarations) {
3433      foreach_list_const (decl_ptr, & decl_list->declarations) {
3434	 decl_count++;
3435      }
3436   }
3437
3438   /* Allocate storage for the structure fields and process the field
3439    * declarations.  As the declarations are processed, try to also convert
3440    * the types to HIR.  This ensures that structure definitions embedded in
3441    * other structure definitions are processed.
3442    */
3443   glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3444						  decl_count);
3445
3446   unsigned i = 0;
3447   foreach_list_typed (ast_declarator_list, decl_list, link,
3448		       &this->declarations) {
3449      const char *type_name;
3450
3451      decl_list->type->specifier->hir(instructions, state);
3452
3453      /* Section 10.9 of the GLSL ES 1.00 specification states that
3454       * embedded structure definitions have been removed from the language.
3455       */
3456      if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3457	 YYLTYPE loc = this->get_location();
3458	 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3459			  "not allowed in GLSL ES 1.00.");
3460      }
3461
3462      const glsl_type *decl_type =
3463	 decl_list->type->specifier->glsl_type(& type_name, state);
3464
3465      foreach_list_typed (ast_declaration, decl, link,
3466			  &decl_list->declarations) {
3467	 const struct glsl_type *field_type = decl_type;
3468	 if (decl->is_array) {
3469	    YYLTYPE loc = decl->get_location();
3470	    field_type = process_array_type(&loc, decl_type, decl->array_size,
3471					    state);
3472	 }
3473	 fields[i].type = (field_type != NULL)
3474	    ? field_type : glsl_type::error_type;
3475	 fields[i].name = decl->identifier;
3476	 i++;
3477      }
3478   }
3479
3480   assert(i == decl_count);
3481
3482   const glsl_type *t =
3483      glsl_type::get_record_instance(fields, decl_count, this->name);
3484
3485   YYLTYPE loc = this->get_location();
3486   if (!state->symbols->add_type(name, t)) {
3487      _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3488   } else {
3489      const glsl_type **s = reralloc(state, state->user_structures,
3490				     const glsl_type *,
3491				     state->num_user_structures + 1);
3492      if (s != NULL) {
3493	 s[state->num_user_structures] = t;
3494	 state->user_structures = s;
3495	 state->num_user_structures++;
3496      }
3497   }
3498
3499   /* Structure type definitions do not have r-values.
3500    */
3501   return NULL;
3502}
3503