ir.h revision 363c14ae0cd2baa624d85e8c9db12cd1677190ea
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#pragma once
26#ifndef IR_H
27#define IR_H
28
29#include <stdio.h>
30#include <stdlib.h>
31
32#include "ralloc.h"
33#include "glsl_types.h"
34#include "list.h"
35#include "ir_visitor.h"
36#include "ir_hierarchical_visitor.h"
37#include "main/mtypes.h"
38
39/**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45/**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor.  While using type tags is not very C++, it is extremely
51 * convenient.  For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types.  For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59enum ir_node_type {
60   /**
61    * Zero is unused so that the IR validator can detect cases where
62    * \c ir_instruction::ir_type has not been initialized.
63    */
64   ir_type_unset,
65   ir_type_variable,
66   ir_type_assignment,
67   ir_type_call,
68   ir_type_constant,
69   ir_type_dereference_array,
70   ir_type_dereference_record,
71   ir_type_dereference_variable,
72   ir_type_discard,
73   ir_type_expression,
74   ir_type_function,
75   ir_type_function_signature,
76   ir_type_if,
77   ir_type_loop,
78   ir_type_loop_jump,
79   ir_type_return,
80   ir_type_swizzle,
81   ir_type_texture,
82   ir_type_max /**< maximum ir_type enum number, for validation */
83};
84
85/**
86 * Base class of all IR instructions
87 */
88class ir_instruction : public exec_node {
89public:
90   enum ir_node_type ir_type;
91
92   /** ir_print_visitor helper for debugging. */
93   void print(void) const;
94
95   virtual void accept(ir_visitor *) = 0;
96   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97   virtual ir_instruction *clone(void *mem_ctx,
98				 struct hash_table *ht) const = 0;
99
100   /**
101    * \name IR instruction downcast functions
102    *
103    * These functions either cast the object to a derived class or return
104    * \c NULL if the object's type does not match the specified derived class.
105    * Additional downcast functions will be added as needed.
106    */
107   /*@{*/
108   virtual class ir_variable *          as_variable()         { return NULL; }
109   virtual class ir_function *          as_function()         { return NULL; }
110   virtual class ir_dereference *       as_dereference()      { return NULL; }
111   virtual class ir_dereference_array *	as_dereference_array() { return NULL; }
112   virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113   virtual class ir_expression *        as_expression()       { return NULL; }
114   virtual class ir_rvalue *            as_rvalue()           { return NULL; }
115   virtual class ir_loop *              as_loop()             { return NULL; }
116   virtual class ir_assignment *        as_assignment()       { return NULL; }
117   virtual class ir_call *              as_call()             { return NULL; }
118   virtual class ir_return *            as_return()           { return NULL; }
119   virtual class ir_if *                as_if()               { return NULL; }
120   virtual class ir_swizzle *           as_swizzle()          { return NULL; }
121   virtual class ir_constant *          as_constant()         { return NULL; }
122   virtual class ir_discard *           as_discard()          { return NULL; }
123   /*@}*/
124
125protected:
126   ir_instruction()
127   {
128      ir_type = ir_type_unset;
129   }
130};
131
132
133/**
134 * The base class for all "values"/expression trees.
135 */
136class ir_rvalue : public ir_instruction {
137public:
138   const struct glsl_type *type;
139
140   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142   virtual void accept(ir_visitor *v)
143   {
144      v->visit(this);
145   }
146
147   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
150
151   virtual ir_rvalue * as_rvalue()
152   {
153      return this;
154   }
155
156   ir_rvalue *as_rvalue_to_saturate();
157
158   virtual bool is_lvalue() const
159   {
160      return false;
161   }
162
163   /**
164    * Get the variable that is ultimately referenced by an r-value
165    */
166   virtual ir_variable *variable_referenced() const
167   {
168      return NULL;
169   }
170
171
172   /**
173    * If an r-value is a reference to a whole variable, get that variable
174    *
175    * \return
176    * Pointer to a variable that is completely dereferenced by the r-value.  If
177    * the r-value is not a dereference or the dereference does not access the
178    * entire variable (i.e., it's just one array element, struct field), \c NULL
179    * is returned.
180    */
181   virtual ir_variable *whole_variable_referenced()
182   {
183      return NULL;
184   }
185
186   /**
187    * Determine if an r-value has the value zero
188    *
189    * The base implementation of this function always returns \c false.  The
190    * \c ir_constant class over-rides this function to return \c true \b only
191    * for vector and scalar types that have all elements set to the value
192    * zero (or \c false for booleans).
193    *
194    * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195    */
196   virtual bool is_zero() const;
197
198   /**
199    * Determine if an r-value has the value one
200    *
201    * The base implementation of this function always returns \c false.  The
202    * \c ir_constant class over-rides this function to return \c true \b only
203    * for vector and scalar types that have all elements set to the value
204    * one (or \c true for booleans).
205    *
206    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207    */
208   virtual bool is_one() const;
209
210   /**
211    * Determine if an r-value has the value negative one
212    *
213    * The base implementation of this function always returns \c false.  The
214    * \c ir_constant class over-rides this function to return \c true \b only
215    * for vector and scalar types that have all elements set to the value
216    * negative one.  For boolean times, the result is always \c false.
217    *
218    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219    */
220   virtual bool is_negative_one() const;
221
222
223   /**
224    * Return a generic value of error_type.
225    *
226    * Allocation will be performed with 'mem_ctx' as ralloc owner.
227    */
228   static ir_rvalue *error_value(void *mem_ctx);
229
230protected:
231   ir_rvalue();
232};
233
234
235/**
236 * Variable storage classes
237 */
238enum ir_variable_mode {
239   ir_var_auto = 0,     /**< Function local variables and globals. */
240   ir_var_uniform,      /**< Variable declared as a uniform. */
241   ir_var_in,
242   ir_var_out,
243   ir_var_inout,
244   ir_var_const_in,	/**< "in" param that must be a constant expression */
245   ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246   ir_var_temporary	/**< Temporary variable generated during compilation. */
247};
248
249/**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255enum ir_depth_layout {
256    ir_depth_layout_none, /**< No depth layout is specified. */
257    ir_depth_layout_any,
258    ir_depth_layout_greater,
259    ir_depth_layout_less,
260    ir_depth_layout_unchanged
261};
262
263/**
264 * \brief Convert depth layout qualifier to string.
265 */
266const char*
267depth_layout_string(ir_depth_layout layout);
268
269/**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274struct ir_state_slot {
275   int tokens[5];
276   int swizzle;
277};
278
279class ir_variable : public ir_instruction {
280public:
281   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285   virtual ir_variable *as_variable()
286   {
287      return this;
288   }
289
290   virtual void accept(ir_visitor *v)
291   {
292      v->visit(this);
293   }
294
295   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298   /**
299    * Get the string value for the interpolation qualifier
300    *
301    * \return The string that would be used in a shader to specify \c
302    * mode will be returned.
303    *
304    * This function is used to generate error messages of the form "shader
305    * uses %s interpolation qualifier", so in the case where there is no
306    * interpolation qualifier, it returns "no".
307    *
308    * This function should only be used on a shader input or output variable.
309    */
310   const char *interpolation_string() const;
311
312   /**
313    * Determine how this variable should be interpolated based on its
314    * interpolation qualifier (if present), whether it is gl_Color or
315    * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316    * state.
317    *
318    * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319    * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320    */
321   glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323   /**
324    * Declared type of the variable
325    */
326   const struct glsl_type *type;
327
328   /**
329    * Delcared name of the variable
330    */
331   const char *name;
332
333   /**
334    * Highest element accessed with a constant expression array index
335    *
336    * Not used for non-array variables.
337    */
338   unsigned max_array_access;
339
340   /**
341    * Is the variable read-only?
342    *
343    * This is set for variables declared as \c const, shader inputs,
344    * and uniforms.
345    */
346   unsigned read_only:1;
347   unsigned centroid:1;
348   unsigned invariant:1;
349
350   /**
351    * Has this variable been used for reading or writing?
352    *
353    * Several GLSL semantic checks require knowledge of whether or not a
354    * variable has been used.  For example, it is an error to redeclare a
355    * variable as invariant after it has been used.
356    *
357    * This is only maintained in the ast_to_hir.cpp path, not in
358    * Mesa's fixed function or ARB program paths.
359    */
360   unsigned used:1;
361
362   /**
363    * Has this variable been statically assigned?
364    *
365    * This answers whether the variable was assigned in any path of
366    * the shader during ast_to_hir.  This doesn't answer whether it is
367    * still written after dead code removal, nor is it maintained in
368    * non-ast_to_hir.cpp (GLSL parsing) paths.
369    */
370   unsigned assigned:1;
371
372   /**
373    * Storage class of the variable.
374    *
375    * \sa ir_variable_mode
376    */
377   unsigned mode:3;
378
379   /**
380    * Interpolation mode for shader inputs / outputs
381    *
382    * \sa ir_variable_interpolation
383    */
384   unsigned interpolation:2;
385
386   /**
387    * \name ARB_fragment_coord_conventions
388    * @{
389    */
390   unsigned origin_upper_left:1;
391   unsigned pixel_center_integer:1;
392   /*@}*/
393
394   /**
395    * Was the location explicitly set in the shader?
396    *
397    * If the location is explicitly set in the shader, it \b cannot be changed
398    * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
399    * no effect).
400    */
401   unsigned explicit_location:1;
402   unsigned explicit_index:1;
403
404   /**
405    * Does this variable have an initializer?
406    *
407    * This is used by the linker to cross-validiate initializers of global
408    * variables.
409    */
410   unsigned has_initializer:1;
411
412   /**
413    * \brief Layout qualifier for gl_FragDepth.
414    *
415    * This is not equal to \c ir_depth_layout_none if and only if this
416    * variable is \c gl_FragDepth and a layout qualifier is specified.
417    */
418   ir_depth_layout depth_layout;
419
420   /**
421    * Storage location of the base of this variable
422    *
423    * The precise meaning of this field depends on the nature of the variable.
424    *
425    *   - Vertex shader input: one of the values from \c gl_vert_attrib.
426    *   - Vertex shader output: one of the values from \c gl_vert_result.
427    *   - Fragment shader input: one of the values from \c gl_frag_attrib.
428    *   - Fragment shader output: one of the values from \c gl_frag_result.
429    *   - Uniforms: Per-stage uniform slot number.
430    *   - Other: This field is not currently used.
431    *
432    * If the variable is a uniform, shader input, or shader output, and the
433    * slot has not been assigned, the value will be -1.
434    */
435   int location;
436
437   /**
438    * output index for dual source blending.
439    */
440   int index;
441
442   /**
443    * Built-in state that backs this uniform
444    *
445    * Once set at variable creation, \c state_slots must remain invariant.
446    * This is because, ideally, this array would be shared by all clones of
447    * this variable in the IR tree.  In other words, we'd really like for it
448    * to be a fly-weight.
449    *
450    * If the variable is not a uniform, \c num_state_slots will be zero and
451    * \c state_slots will be \c NULL.
452    */
453   /*@{*/
454   unsigned num_state_slots;    /**< Number of state slots used */
455   ir_state_slot *state_slots;  /**< State descriptors. */
456   /*@}*/
457
458   /**
459    * Emit a warning if this variable is accessed.
460    */
461   const char *warn_extension;
462
463   /**
464    * Value assigned in the initializer of a variable declared "const"
465    */
466   ir_constant *constant_value;
467
468   /**
469    * Constant expression assigned in the initializer of the variable
470    *
471    * \warning
472    * This field and \c ::constant_value are distinct.  Even if the two fields
473    * refer to constants with the same value, they must point to separate
474    * objects.
475    */
476   ir_constant *constant_initializer;
477};
478
479
480/*@{*/
481/**
482 * The representation of a function instance; may be the full definition or
483 * simply a prototype.
484 */
485class ir_function_signature : public ir_instruction {
486   /* An ir_function_signature will be part of the list of signatures in
487    * an ir_function.
488    */
489public:
490   ir_function_signature(const glsl_type *return_type);
491
492   virtual ir_function_signature *clone(void *mem_ctx,
493					struct hash_table *ht) const;
494   ir_function_signature *clone_prototype(void *mem_ctx,
495					  struct hash_table *ht) const;
496
497   virtual void accept(ir_visitor *v)
498   {
499      v->visit(this);
500   }
501
502   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
503
504   /**
505    * Attempt to evaluate this function as a constant expression,
506    * given a list of the actual parameters and the variable context.
507    * Returns NULL for non-built-ins.
508    */
509   ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
510
511   /**
512    * Get the name of the function for which this is a signature
513    */
514   const char *function_name() const;
515
516   /**
517    * Get a handle to the function for which this is a signature
518    *
519    * There is no setter function, this function returns a \c const pointer,
520    * and \c ir_function_signature::_function is private for a reason.  The
521    * only way to make a connection between a function and function signature
522    * is via \c ir_function::add_signature.  This helps ensure that certain
523    * invariants (i.e., a function signature is in the list of signatures for
524    * its \c _function) are met.
525    *
526    * \sa ir_function::add_signature
527    */
528   inline const class ir_function *function() const
529   {
530      return this->_function;
531   }
532
533   /**
534    * Check whether the qualifiers match between this signature's parameters
535    * and the supplied parameter list.  If not, returns the name of the first
536    * parameter with mismatched qualifiers (for use in error messages).
537    */
538   const char *qualifiers_match(exec_list *params);
539
540   /**
541    * Replace the current parameter list with the given one.  This is useful
542    * if the current information came from a prototype, and either has invalid
543    * or missing parameter names.
544    */
545   void replace_parameters(exec_list *new_params);
546
547   /**
548    * Function return type.
549    *
550    * \note This discards the optional precision qualifier.
551    */
552   const struct glsl_type *return_type;
553
554   /**
555    * List of ir_variable of function parameters.
556    *
557    * This represents the storage.  The paramaters passed in a particular
558    * call will be in ir_call::actual_paramaters.
559    */
560   struct exec_list parameters;
561
562   /** Whether or not this function has a body (which may be empty). */
563   unsigned is_defined:1;
564
565   /** Whether or not this function signature is a built-in. */
566   unsigned is_builtin:1;
567
568   /** Body of instructions in the function. */
569   struct exec_list body;
570
571private:
572   /** Function of which this signature is one overload. */
573   class ir_function *_function;
574
575   /** Function signature of which this one is a prototype clone */
576   const ir_function_signature *origin;
577
578   friend class ir_function;
579
580   /**
581    * Helper function to run a list of instructions for constant
582    * expression evaluation.
583    *
584    * The hash table represents the values of the visible variables.
585    * There are no scoping issues because the table is indexed on
586    * ir_variable pointers, not variable names.
587    *
588    * Returns false if the expression is not constant, true otherwise,
589    * and the value in *result if result is non-NULL.
590    */
591   bool constant_expression_evaluate_expression_list(const struct exec_list &body,
592						     struct hash_table *variable_context,
593						     ir_constant **result);
594};
595
596
597/**
598 * Header for tracking multiple overloaded functions with the same name.
599 * Contains a list of ir_function_signatures representing each of the
600 * actual functions.
601 */
602class ir_function : public ir_instruction {
603public:
604   ir_function(const char *name);
605
606   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
607
608   virtual ir_function *as_function()
609   {
610      return this;
611   }
612
613   virtual void accept(ir_visitor *v)
614   {
615      v->visit(this);
616   }
617
618   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
619
620   void add_signature(ir_function_signature *sig)
621   {
622      sig->_function = this;
623      this->signatures.push_tail(sig);
624   }
625
626   /**
627    * Get an iterator for the set of function signatures
628    */
629   exec_list_iterator iterator()
630   {
631      return signatures.iterator();
632   }
633
634   /**
635    * Find a signature that matches a set of actual parameters, taking implicit
636    * conversions into account.  Also flags whether the match was exact.
637    */
638   ir_function_signature *matching_signature(const exec_list *actual_param,
639					     bool *match_is_exact);
640
641   /**
642    * Find a signature that matches a set of actual parameters, taking implicit
643    * conversions into account.
644    */
645   ir_function_signature *matching_signature(const exec_list *actual_param);
646
647   /**
648    * Find a signature that exactly matches a set of actual parameters without
649    * any implicit type conversions.
650    */
651   ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
652
653   /**
654    * Name of the function.
655    */
656   const char *name;
657
658   /** Whether or not this function has a signature that isn't a built-in. */
659   bool has_user_signature();
660
661   /**
662    * List of ir_function_signature for each overloaded function with this name.
663    */
664   struct exec_list signatures;
665};
666
667inline const char *ir_function_signature::function_name() const
668{
669   return this->_function->name;
670}
671/*@}*/
672
673
674/**
675 * IR instruction representing high-level if-statements
676 */
677class ir_if : public ir_instruction {
678public:
679   ir_if(ir_rvalue *condition)
680      : condition(condition)
681   {
682      ir_type = ir_type_if;
683   }
684
685   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
686
687   virtual ir_if *as_if()
688   {
689      return this;
690   }
691
692   virtual void accept(ir_visitor *v)
693   {
694      v->visit(this);
695   }
696
697   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
698
699   ir_rvalue *condition;
700   /** List of ir_instruction for the body of the then branch */
701   exec_list  then_instructions;
702   /** List of ir_instruction for the body of the else branch */
703   exec_list  else_instructions;
704};
705
706
707/**
708 * IR instruction representing a high-level loop structure.
709 */
710class ir_loop : public ir_instruction {
711public:
712   ir_loop();
713
714   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
715
716   virtual void accept(ir_visitor *v)
717   {
718      v->visit(this);
719   }
720
721   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
722
723   virtual ir_loop *as_loop()
724   {
725      return this;
726   }
727
728   /**
729    * Get an iterator for the instructions of the loop body
730    */
731   exec_list_iterator iterator()
732   {
733      return body_instructions.iterator();
734   }
735
736   /** List of ir_instruction that make up the body of the loop. */
737   exec_list body_instructions;
738
739   /**
740    * \name Loop counter and controls
741    *
742    * Represents a loop like a FORTRAN \c do-loop.
743    *
744    * \note
745    * If \c from and \c to are the same value, the loop will execute once.
746    */
747   /*@{*/
748   ir_rvalue *from;             /** Value of the loop counter on the first
749				 * iteration of the loop.
750				 */
751   ir_rvalue *to;               /** Value of the loop counter on the last
752				 * iteration of the loop.
753				 */
754   ir_rvalue *increment;
755   ir_variable *counter;
756
757   /**
758    * Comparison operation in the loop terminator.
759    *
760    * If any of the loop control fields are non-\c NULL, this field must be
761    * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
762    * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
763    */
764   int cmp;
765   /*@}*/
766};
767
768
769class ir_assignment : public ir_instruction {
770public:
771   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
772
773   /**
774    * Construct an assignment with an explicit write mask
775    *
776    * \note
777    * Since a write mask is supplied, the LHS must already be a bare
778    * \c ir_dereference.  The cannot be any swizzles in the LHS.
779    */
780   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
781		 unsigned write_mask);
782
783   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
784
785   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
786
787   virtual void accept(ir_visitor *v)
788   {
789      v->visit(this);
790   }
791
792   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
793
794   virtual ir_assignment * as_assignment()
795   {
796      return this;
797   }
798
799   /**
800    * Get a whole variable written by an assignment
801    *
802    * If the LHS of the assignment writes a whole variable, the variable is
803    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
804    * assignment are:
805    *
806    *  - Assigning to a scalar
807    *  - Assigning to all components of a vector
808    *  - Whole array (or matrix) assignment
809    *  - Whole structure assignment
810    */
811   ir_variable *whole_variable_written();
812
813   /**
814    * Set the LHS of an assignment
815    */
816   void set_lhs(ir_rvalue *lhs);
817
818   /**
819    * Left-hand side of the assignment.
820    *
821    * This should be treated as read only.  If you need to set the LHS of an
822    * assignment, use \c ir_assignment::set_lhs.
823    */
824   ir_dereference *lhs;
825
826   /**
827    * Value being assigned
828    */
829   ir_rvalue *rhs;
830
831   /**
832    * Optional condition for the assignment.
833    */
834   ir_rvalue *condition;
835
836
837   /**
838    * Component mask written
839    *
840    * For non-vector types in the LHS, this field will be zero.  For vector
841    * types, a bit will be set for each component that is written.  Note that
842    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
843    *
844    * A partially-set write mask means that each enabled channel gets
845    * the value from a consecutive channel of the rhs.  For example,
846    * to write just .xyw of gl_FrontColor with color:
847    *
848    * (assign (constant bool (1)) (xyw)
849    *     (var_ref gl_FragColor)
850    *     (swiz xyw (var_ref color)))
851    */
852   unsigned write_mask:4;
853};
854
855/* Update ir_expression::num_operands() and operator_strs when
856 * updating this list.
857 */
858enum ir_expression_operation {
859   ir_unop_bit_not,
860   ir_unop_logic_not,
861   ir_unop_neg,
862   ir_unop_abs,
863   ir_unop_sign,
864   ir_unop_rcp,
865   ir_unop_rsq,
866   ir_unop_sqrt,
867   ir_unop_exp,      /**< Log base e on gentype */
868   ir_unop_log,	     /**< Natural log on gentype */
869   ir_unop_exp2,
870   ir_unop_log2,
871   ir_unop_f2i,      /**< Float-to-integer conversion. */
872   ir_unop_i2f,      /**< Integer-to-float conversion. */
873   ir_unop_f2b,      /**< Float-to-boolean conversion */
874   ir_unop_b2f,      /**< Boolean-to-float conversion */
875   ir_unop_i2b,      /**< int-to-boolean conversion */
876   ir_unop_b2i,      /**< Boolean-to-int conversion */
877   ir_unop_u2f,      /**< Unsigned-to-float conversion. */
878   ir_unop_i2u,      /**< Integer-to-unsigned conversion. */
879   ir_unop_u2i,      /**< Unsigned-to-integer conversion. */
880   ir_unop_any,
881
882   /**
883    * \name Unary floating-point rounding operations.
884    */
885   /*@{*/
886   ir_unop_trunc,
887   ir_unop_ceil,
888   ir_unop_floor,
889   ir_unop_fract,
890   ir_unop_round_even,
891   /*@}*/
892
893   /**
894    * \name Trigonometric operations.
895    */
896   /*@{*/
897   ir_unop_sin,
898   ir_unop_cos,
899   ir_unop_sin_reduced,    /**< Reduced range sin. [-pi, pi] */
900   ir_unop_cos_reduced,    /**< Reduced range cos. [-pi, pi] */
901   /*@}*/
902
903   /**
904    * \name Partial derivatives.
905    */
906   /*@{*/
907   ir_unop_dFdx,
908   ir_unop_dFdy,
909   /*@}*/
910
911   ir_unop_noise,
912
913   /**
914    * A sentinel marking the last of the unary operations.
915    */
916   ir_last_unop = ir_unop_noise,
917
918   ir_binop_add,
919   ir_binop_sub,
920   ir_binop_mul,
921   ir_binop_div,
922
923   /**
924    * Takes one of two combinations of arguments:
925    *
926    * - mod(vecN, vecN)
927    * - mod(vecN, float)
928    *
929    * Does not take integer types.
930    */
931   ir_binop_mod,
932
933   /**
934    * \name Binary comparison operators which return a boolean vector.
935    * The type of both operands must be equal.
936    */
937   /*@{*/
938   ir_binop_less,
939   ir_binop_greater,
940   ir_binop_lequal,
941   ir_binop_gequal,
942   ir_binop_equal,
943   ir_binop_nequal,
944   /**
945    * Returns single boolean for whether all components of operands[0]
946    * equal the components of operands[1].
947    */
948   ir_binop_all_equal,
949   /**
950    * Returns single boolean for whether any component of operands[0]
951    * is not equal to the corresponding component of operands[1].
952    */
953   ir_binop_any_nequal,
954   /*@}*/
955
956   /**
957    * \name Bit-wise binary operations.
958    */
959   /*@{*/
960   ir_binop_lshift,
961   ir_binop_rshift,
962   ir_binop_bit_and,
963   ir_binop_bit_xor,
964   ir_binop_bit_or,
965   /*@}*/
966
967   ir_binop_logic_and,
968   ir_binop_logic_xor,
969   ir_binop_logic_or,
970
971   ir_binop_dot,
972   ir_binop_min,
973   ir_binop_max,
974
975   ir_binop_pow,
976
977   /**
978    * A sentinel marking the last of the binary operations.
979    */
980   ir_last_binop = ir_binop_pow,
981
982   ir_quadop_vector,
983
984   /**
985    * A sentinel marking the last of all operations.
986    */
987   ir_last_opcode = ir_last_binop
988};
989
990class ir_expression : public ir_rvalue {
991public:
992   /**
993    * Constructor for unary operation expressions
994    */
995   ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
996   ir_expression(int op, ir_rvalue *);
997
998   /**
999    * Constructor for binary operation expressions
1000    */
1001   ir_expression(int op, const struct glsl_type *type,
1002		 ir_rvalue *, ir_rvalue *);
1003   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1004
1005   /**
1006    * Constructor for quad operator expressions
1007    */
1008   ir_expression(int op, const struct glsl_type *type,
1009		 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1010
1011   virtual ir_expression *as_expression()
1012   {
1013      return this;
1014   }
1015
1016   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1017
1018   /**
1019    * Attempt to constant-fold the expression
1020    *
1021    * The "variable_context" hash table links ir_variable * to ir_constant *
1022    * that represent the variables' values.  \c NULL represents an empty
1023    * context.
1024    *
1025    * If the expression cannot be constant folded, this method will return
1026    * \c NULL.
1027    */
1028   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1029
1030   /**
1031    * Determine the number of operands used by an expression
1032    */
1033   static unsigned int get_num_operands(ir_expression_operation);
1034
1035   /**
1036    * Determine the number of operands used by an expression
1037    */
1038   unsigned int get_num_operands() const
1039   {
1040      return (this->operation == ir_quadop_vector)
1041	 ? this->type->vector_elements : get_num_operands(operation);
1042   }
1043
1044   /**
1045    * Return a string representing this expression's operator.
1046    */
1047   const char *operator_string();
1048
1049   /**
1050    * Return a string representing this expression's operator.
1051    */
1052   static const char *operator_string(ir_expression_operation);
1053
1054
1055   /**
1056    * Do a reverse-lookup to translate the given string into an operator.
1057    */
1058   static ir_expression_operation get_operator(const char *);
1059
1060   virtual void accept(ir_visitor *v)
1061   {
1062      v->visit(this);
1063   }
1064
1065   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1066
1067   ir_expression_operation operation;
1068   ir_rvalue *operands[4];
1069};
1070
1071
1072/**
1073 * HIR instruction representing a high-level function call, containing a list
1074 * of parameters and returning a value in the supplied temporary.
1075 */
1076class ir_call : public ir_instruction {
1077public:
1078   ir_call(ir_function_signature *callee,
1079	   ir_dereference_variable *return_deref,
1080	   exec_list *actual_parameters)
1081      : return_deref(return_deref), callee(callee)
1082   {
1083      ir_type = ir_type_call;
1084      assert(callee->return_type != NULL);
1085      actual_parameters->move_nodes_to(& this->actual_parameters);
1086      this->use_builtin = callee->is_builtin;
1087   }
1088
1089   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1090
1091   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1092
1093   virtual ir_call *as_call()
1094   {
1095      return this;
1096   }
1097
1098   virtual void accept(ir_visitor *v)
1099   {
1100      v->visit(this);
1101   }
1102
1103   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1104
1105   /**
1106    * Get an iterator for the set of acutal parameters
1107    */
1108   exec_list_iterator iterator()
1109   {
1110      return actual_parameters.iterator();
1111   }
1112
1113   /**
1114    * Get the name of the function being called.
1115    */
1116   const char *callee_name() const
1117   {
1118      return callee->function_name();
1119   }
1120
1121   /**
1122    * Generates an inline version of the function before @ir,
1123    * storing the return value in return_deref.
1124    */
1125   void generate_inline(ir_instruction *ir);
1126
1127   /**
1128    * Storage for the function's return value.
1129    * This must be NULL if the return type is void.
1130    */
1131   ir_dereference_variable *return_deref;
1132
1133   /**
1134    * The specific function signature being called.
1135    */
1136   ir_function_signature *callee;
1137
1138   /* List of ir_rvalue of paramaters passed in this call. */
1139   exec_list actual_parameters;
1140
1141   /** Should this call only bind to a built-in function? */
1142   bool use_builtin;
1143};
1144
1145
1146/**
1147 * \name Jump-like IR instructions.
1148 *
1149 * These include \c break, \c continue, \c return, and \c discard.
1150 */
1151/*@{*/
1152class ir_jump : public ir_instruction {
1153protected:
1154   ir_jump()
1155   {
1156      ir_type = ir_type_unset;
1157   }
1158};
1159
1160class ir_return : public ir_jump {
1161public:
1162   ir_return()
1163      : value(NULL)
1164   {
1165      this->ir_type = ir_type_return;
1166   }
1167
1168   ir_return(ir_rvalue *value)
1169      : value(value)
1170   {
1171      this->ir_type = ir_type_return;
1172   }
1173
1174   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1175
1176   virtual ir_return *as_return()
1177   {
1178      return this;
1179   }
1180
1181   ir_rvalue *get_value() const
1182   {
1183      return value;
1184   }
1185
1186   virtual void accept(ir_visitor *v)
1187   {
1188      v->visit(this);
1189   }
1190
1191   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1192
1193   ir_rvalue *value;
1194};
1195
1196
1197/**
1198 * Jump instructions used inside loops
1199 *
1200 * These include \c break and \c continue.  The \c break within a loop is
1201 * different from the \c break within a switch-statement.
1202 *
1203 * \sa ir_switch_jump
1204 */
1205class ir_loop_jump : public ir_jump {
1206public:
1207   enum jump_mode {
1208      jump_break,
1209      jump_continue
1210   };
1211
1212   ir_loop_jump(jump_mode mode)
1213   {
1214      this->ir_type = ir_type_loop_jump;
1215      this->mode = mode;
1216      this->loop = loop;
1217   }
1218
1219   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1220
1221   virtual void accept(ir_visitor *v)
1222   {
1223      v->visit(this);
1224   }
1225
1226   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1227
1228   bool is_break() const
1229   {
1230      return mode == jump_break;
1231   }
1232
1233   bool is_continue() const
1234   {
1235      return mode == jump_continue;
1236   }
1237
1238   /** Mode selector for the jump instruction. */
1239   enum jump_mode mode;
1240private:
1241   /** Loop containing this break instruction. */
1242   ir_loop *loop;
1243};
1244
1245/**
1246 * IR instruction representing discard statements.
1247 */
1248class ir_discard : public ir_jump {
1249public:
1250   ir_discard()
1251   {
1252      this->ir_type = ir_type_discard;
1253      this->condition = NULL;
1254   }
1255
1256   ir_discard(ir_rvalue *cond)
1257   {
1258      this->ir_type = ir_type_discard;
1259      this->condition = cond;
1260   }
1261
1262   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1263
1264   virtual void accept(ir_visitor *v)
1265   {
1266      v->visit(this);
1267   }
1268
1269   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1270
1271   virtual ir_discard *as_discard()
1272   {
1273      return this;
1274   }
1275
1276   ir_rvalue *condition;
1277};
1278/*@}*/
1279
1280
1281/**
1282 * Texture sampling opcodes used in ir_texture
1283 */
1284enum ir_texture_opcode {
1285   ir_tex,		/**< Regular texture look-up */
1286   ir_txb,		/**< Texture look-up with LOD bias */
1287   ir_txl,		/**< Texture look-up with explicit LOD */
1288   ir_txd,		/**< Texture look-up with partial derivatvies */
1289   ir_txf,		/**< Texel fetch with explicit LOD */
1290   ir_txs		/**< Texture size */
1291};
1292
1293
1294/**
1295 * IR instruction to sample a texture
1296 *
1297 * The specific form of the IR instruction depends on the \c mode value
1298 * selected from \c ir_texture_opcodes.  In the printed IR, these will
1299 * appear as:
1300 *
1301 *                                    Texel offset (0 or an expression)
1302 *                                    | Projection divisor
1303 *                                    | |  Shadow comparitor
1304 *                                    | |  |
1305 *                                    v v  v
1306 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1307 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1308 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1309 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1310 * (txf <type> <sampler> <coordinate> 0       <lod>)
1311 * (txs <type> <sampler> <lod>)
1312 */
1313class ir_texture : public ir_rvalue {
1314public:
1315   ir_texture(enum ir_texture_opcode op)
1316      : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1317   {
1318      this->ir_type = ir_type_texture;
1319   }
1320
1321   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1322
1323   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1324
1325   virtual void accept(ir_visitor *v)
1326   {
1327      v->visit(this);
1328   }
1329
1330   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1331
1332   /**
1333    * Return a string representing the ir_texture_opcode.
1334    */
1335   const char *opcode_string();
1336
1337   /** Set the sampler and type. */
1338   void set_sampler(ir_dereference *sampler, const glsl_type *type);
1339
1340   /**
1341    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1342    */
1343   static ir_texture_opcode get_opcode(const char *);
1344
1345   enum ir_texture_opcode op;
1346
1347   /** Sampler to use for the texture access. */
1348   ir_dereference *sampler;
1349
1350   /** Texture coordinate to sample */
1351   ir_rvalue *coordinate;
1352
1353   /**
1354    * Value used for projective divide.
1355    *
1356    * If there is no projective divide (the common case), this will be
1357    * \c NULL.  Optimization passes should check for this to point to a constant
1358    * of 1.0 and replace that with \c NULL.
1359    */
1360   ir_rvalue *projector;
1361
1362   /**
1363    * Coordinate used for comparison on shadow look-ups.
1364    *
1365    * If there is no shadow comparison, this will be \c NULL.  For the
1366    * \c ir_txf opcode, this *must* be \c NULL.
1367    */
1368   ir_rvalue *shadow_comparitor;
1369
1370   /** Texel offset. */
1371   ir_rvalue *offset;
1372
1373   union {
1374      ir_rvalue *lod;		/**< Floating point LOD */
1375      ir_rvalue *bias;		/**< Floating point LOD bias */
1376      struct {
1377	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1378	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1379      } grad;
1380   } lod_info;
1381};
1382
1383
1384struct ir_swizzle_mask {
1385   unsigned x:2;
1386   unsigned y:2;
1387   unsigned z:2;
1388   unsigned w:2;
1389
1390   /**
1391    * Number of components in the swizzle.
1392    */
1393   unsigned num_components:3;
1394
1395   /**
1396    * Does the swizzle contain duplicate components?
1397    *
1398    * L-value swizzles cannot contain duplicate components.
1399    */
1400   unsigned has_duplicates:1;
1401};
1402
1403
1404class ir_swizzle : public ir_rvalue {
1405public:
1406   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1407              unsigned count);
1408
1409   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1410
1411   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1412
1413   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1414
1415   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1416
1417   virtual ir_swizzle *as_swizzle()
1418   {
1419      return this;
1420   }
1421
1422   /**
1423    * Construct an ir_swizzle from the textual representation.  Can fail.
1424    */
1425   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1426
1427   virtual void accept(ir_visitor *v)
1428   {
1429      v->visit(this);
1430   }
1431
1432   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1433
1434   bool is_lvalue() const
1435   {
1436      return val->is_lvalue() && !mask.has_duplicates;
1437   }
1438
1439   /**
1440    * Get the variable that is ultimately referenced by an r-value
1441    */
1442   virtual ir_variable *variable_referenced() const;
1443
1444   ir_rvalue *val;
1445   ir_swizzle_mask mask;
1446
1447private:
1448   /**
1449    * Initialize the mask component of a swizzle
1450    *
1451    * This is used by the \c ir_swizzle constructors.
1452    */
1453   void init_mask(const unsigned *components, unsigned count);
1454};
1455
1456
1457class ir_dereference : public ir_rvalue {
1458public:
1459   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1460
1461   virtual ir_dereference *as_dereference()
1462   {
1463      return this;
1464   }
1465
1466   bool is_lvalue() const;
1467
1468   /**
1469    * Get the variable that is ultimately referenced by an r-value
1470    */
1471   virtual ir_variable *variable_referenced() const = 0;
1472
1473   /**
1474    * Get the constant that is ultimately referenced by an r-value,
1475    * in a constant expression evaluation context.
1476    *
1477    * The offset is used when the reference is to a specific column of
1478    * a matrix.
1479    */
1480  virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1481};
1482
1483
1484class ir_dereference_variable : public ir_dereference {
1485public:
1486   ir_dereference_variable(ir_variable *var);
1487
1488   virtual ir_dereference_variable *clone(void *mem_ctx,
1489					  struct hash_table *) const;
1490
1491   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1492
1493   virtual ir_dereference_variable *as_dereference_variable()
1494   {
1495      return this;
1496   }
1497
1498   /**
1499    * Get the variable that is ultimately referenced by an r-value
1500    */
1501   virtual ir_variable *variable_referenced() const
1502   {
1503      return this->var;
1504   }
1505
1506   /**
1507    * Get the constant that is ultimately referenced by an r-value,
1508    * in a constant expression evaluation context.
1509    *
1510    * The offset is used when the reference is to a specific column of
1511    * a matrix.
1512    */
1513   virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1514
1515   virtual ir_variable *whole_variable_referenced()
1516   {
1517      /* ir_dereference_variable objects always dereference the entire
1518       * variable.  However, if this dereference is dereferenced by anything
1519       * else, the complete deferefernce chain is not a whole-variable
1520       * dereference.  This method should only be called on the top most
1521       * ir_rvalue in a dereference chain.
1522       */
1523      return this->var;
1524   }
1525
1526   virtual void accept(ir_visitor *v)
1527   {
1528      v->visit(this);
1529   }
1530
1531   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1532
1533   /**
1534    * Object being dereferenced.
1535    */
1536   ir_variable *var;
1537};
1538
1539
1540class ir_dereference_array : public ir_dereference {
1541public:
1542   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1543
1544   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1545
1546   virtual ir_dereference_array *clone(void *mem_ctx,
1547				       struct hash_table *) const;
1548
1549   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1550
1551   virtual ir_dereference_array *as_dereference_array()
1552   {
1553      return this;
1554   }
1555
1556   /**
1557    * Get the variable that is ultimately referenced by an r-value
1558    */
1559   virtual ir_variable *variable_referenced() const
1560   {
1561      return this->array->variable_referenced();
1562   }
1563
1564   /**
1565    * Get the constant that is ultimately referenced by an r-value,
1566    * in a constant expression evaluation context.
1567    *
1568    * The offset is used when the reference is to a specific column of
1569    * a matrix.
1570    */
1571   virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1572
1573   virtual void accept(ir_visitor *v)
1574   {
1575      v->visit(this);
1576   }
1577
1578   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1579
1580   ir_rvalue *array;
1581   ir_rvalue *array_index;
1582
1583private:
1584   void set_array(ir_rvalue *value);
1585};
1586
1587
1588class ir_dereference_record : public ir_dereference {
1589public:
1590   ir_dereference_record(ir_rvalue *value, const char *field);
1591
1592   ir_dereference_record(ir_variable *var, const char *field);
1593
1594   virtual ir_dereference_record *clone(void *mem_ctx,
1595					struct hash_table *) const;
1596
1597   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1598
1599   /**
1600    * Get the variable that is ultimately referenced by an r-value
1601    */
1602   virtual ir_variable *variable_referenced() const
1603   {
1604      return this->record->variable_referenced();
1605   }
1606
1607   /**
1608    * Get the constant that is ultimately referenced by an r-value,
1609    * in a constant expression evaluation context.
1610    *
1611    * The offset is used when the reference is to a specific column of
1612    * a matrix.
1613    */
1614   virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1615
1616   virtual void accept(ir_visitor *v)
1617   {
1618      v->visit(this);
1619   }
1620
1621   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1622
1623   ir_rvalue *record;
1624   const char *field;
1625};
1626
1627
1628/**
1629 * Data stored in an ir_constant
1630 */
1631union ir_constant_data {
1632      unsigned u[16];
1633      int i[16];
1634      float f[16];
1635      bool b[16];
1636};
1637
1638
1639class ir_constant : public ir_rvalue {
1640public:
1641   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1642   ir_constant(bool b);
1643   ir_constant(unsigned int u);
1644   ir_constant(int i);
1645   ir_constant(float f);
1646
1647   /**
1648    * Construct an ir_constant from a list of ir_constant values
1649    */
1650   ir_constant(const struct glsl_type *type, exec_list *values);
1651
1652   /**
1653    * Construct an ir_constant from a scalar component of another ir_constant
1654    *
1655    * The new \c ir_constant inherits the type of the component from the
1656    * source constant.
1657    *
1658    * \note
1659    * In the case of a matrix constant, the new constant is a scalar, \b not
1660    * a vector.
1661    */
1662   ir_constant(const ir_constant *c, unsigned i);
1663
1664   /**
1665    * Return a new ir_constant of the specified type containing all zeros.
1666    */
1667   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1668
1669   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1670
1671   virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1672
1673   virtual ir_constant *as_constant()
1674   {
1675      return this;
1676   }
1677
1678   virtual void accept(ir_visitor *v)
1679   {
1680      v->visit(this);
1681   }
1682
1683   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1684
1685   /**
1686    * Get a particular component of a constant as a specific type
1687    *
1688    * This is useful, for example, to get a value from an integer constant
1689    * as a float or bool.  This appears frequently when constructors are
1690    * called with all constant parameters.
1691    */
1692   /*@{*/
1693   bool get_bool_component(unsigned i) const;
1694   float get_float_component(unsigned i) const;
1695   int get_int_component(unsigned i) const;
1696   unsigned get_uint_component(unsigned i) const;
1697   /*@}*/
1698
1699   ir_constant *get_array_element(unsigned i) const;
1700
1701   ir_constant *get_record_field(const char *name);
1702
1703   /**
1704    * Copy the values on another constant at a given offset.
1705    *
1706    * The offset is ignored for array or struct copies, it's only for
1707    * scalars or vectors into vectors or matrices.
1708    *
1709    * With identical types on both sides and zero offset it's clone()
1710    * without creating a new object.
1711    */
1712
1713   void copy_offset(ir_constant *src, int offset);
1714
1715   /**
1716    * Copy the values on another constant at a given offset and
1717    * following an assign-like mask.
1718    *
1719    * The mask is ignored for scalars.
1720    *
1721    * Note that this function only handles what assign can handle,
1722    * i.e. at most a vector as source and a column of a matrix as
1723    * destination.
1724    */
1725
1726   void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1727
1728   /**
1729    * Determine whether a constant has the same value as another constant
1730    *
1731    * \sa ir_constant::is_zero, ir_constant::is_one,
1732    * ir_constant::is_negative_one
1733    */
1734   bool has_value(const ir_constant *) const;
1735
1736   virtual bool is_zero() const;
1737   virtual bool is_one() const;
1738   virtual bool is_negative_one() const;
1739
1740   /**
1741    * Value of the constant.
1742    *
1743    * The field used to back the values supplied by the constant is determined
1744    * by the type associated with the \c ir_instruction.  Constants may be
1745    * scalars, vectors, or matrices.
1746    */
1747   union ir_constant_data value;
1748
1749   /* Array elements */
1750   ir_constant **array_elements;
1751
1752   /* Structure fields */
1753   exec_list components;
1754
1755private:
1756   /**
1757    * Parameterless constructor only used by the clone method
1758    */
1759   ir_constant(void);
1760};
1761
1762/*@}*/
1763
1764/**
1765 * Apply a visitor to each IR node in a list
1766 */
1767void
1768visit_exec_list(exec_list *list, ir_visitor *visitor);
1769
1770/**
1771 * Validate invariants on each IR node in a list
1772 */
1773void validate_ir_tree(exec_list *instructions);
1774
1775struct _mesa_glsl_parse_state;
1776struct gl_shader_program;
1777
1778/**
1779 * Detect whether an unlinked shader contains static recursion
1780 *
1781 * If the list of instructions is determined to contain static recursion,
1782 * \c _mesa_glsl_error will be called to emit error messages for each function
1783 * that is in the recursion cycle.
1784 */
1785void
1786detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1787			  exec_list *instructions);
1788
1789/**
1790 * Detect whether a linked shader contains static recursion
1791 *
1792 * If the list of instructions is determined to contain static recursion,
1793 * \c link_error_printf will be called to emit error messages for each function
1794 * that is in the recursion cycle.  In addition,
1795 * \c gl_shader_program::LinkStatus will be set to false.
1796 */
1797void
1798detect_recursion_linked(struct gl_shader_program *prog,
1799			exec_list *instructions);
1800
1801/**
1802 * Make a clone of each IR instruction in a list
1803 *
1804 * \param in   List of IR instructions that are to be cloned
1805 * \param out  List to hold the cloned instructions
1806 */
1807void
1808clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1809
1810extern void
1811_mesa_glsl_initialize_variables(exec_list *instructions,
1812				struct _mesa_glsl_parse_state *state);
1813
1814extern void
1815_mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1816
1817extern void
1818_mesa_glsl_release_functions(void);
1819
1820extern void
1821reparent_ir(exec_list *list, void *mem_ctx);
1822
1823struct glsl_symbol_table;
1824
1825extern void
1826import_prototypes(const exec_list *source, exec_list *dest,
1827		  struct glsl_symbol_table *symbols, void *mem_ctx);
1828
1829extern bool
1830ir_has_call(ir_instruction *ir);
1831
1832extern void
1833do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1834                      bool is_fragment_shader);
1835
1836extern char *
1837prototype_string(const glsl_type *return_type, const char *name,
1838		 exec_list *parameters);
1839
1840#endif /* IR_H */
1841