ir.h revision 81f03393982c29f8f4165b5629c8e8fb708b97a3
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#pragma once
26#ifndef IR_H
27#define IR_H
28
29#include <cstdio>
30#include <cstdlib>
31
32extern "C" {
33#include <talloc.h>
34}
35
36#include "list.h"
37#include "ir_visitor.h"
38#include "ir_hierarchical_visitor.h"
39
40#ifndef ARRAY_SIZE
41#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42#endif
43
44enum ir_node_type {
45   ir_type_unset,
46   ir_type_variable,
47   ir_type_assignment,
48   ir_type_call,
49   ir_type_constant,
50   ir_type_dereference_array,
51   ir_type_dereference_record,
52   ir_type_dereference_variable,
53   ir_type_discard,
54   ir_type_expression,
55   ir_type_function,
56   ir_type_function_signature,
57   ir_type_if,
58   ir_type_loop,
59   ir_type_loop_jump,
60   ir_type_return,
61   ir_type_swizzle,
62   ir_type_texture,
63   ir_type_max /**< maximum ir_type enum number, for validation */
64};
65
66/**
67 * Base class of all IR instructions
68 */
69class ir_instruction : public exec_node {
70public:
71   enum ir_node_type ir_type;
72   const struct glsl_type *type;
73
74   /** ir_print_visitor helper for debugging. */
75   void print(void) const;
76
77   virtual void accept(ir_visitor *) = 0;
78   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
79   virtual ir_instruction *clone(void *mem_ctx,
80				 struct hash_table *ht) const = 0;
81
82   /**
83    * \name IR instruction downcast functions
84    *
85    * These functions either cast the object to a derived class or return
86    * \c NULL if the object's type does not match the specified derived class.
87    * Additional downcast functions will be added as needed.
88    */
89   /*@{*/
90   virtual class ir_variable *          as_variable()         { return NULL; }
91   virtual class ir_function *          as_function()         { return NULL; }
92   virtual class ir_dereference *       as_dereference()      { return NULL; }
93   virtual class ir_dereference_array *	as_dereference_array() { return NULL; }
94   virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
95   virtual class ir_expression *        as_expression()       { return NULL; }
96   virtual class ir_rvalue *            as_rvalue()           { return NULL; }
97   virtual class ir_loop *              as_loop()             { return NULL; }
98   virtual class ir_assignment *        as_assignment()       { return NULL; }
99   virtual class ir_call *              as_call()             { return NULL; }
100   virtual class ir_return *            as_return()           { return NULL; }
101   virtual class ir_if *                as_if()               { return NULL; }
102   virtual class ir_swizzle *           as_swizzle()          { return NULL; }
103   virtual class ir_constant *          as_constant()         { return NULL; }
104   /*@}*/
105
106protected:
107   ir_instruction()
108   {
109      ir_type = ir_type_unset;
110      type = NULL;
111   }
112};
113
114
115class ir_rvalue : public ir_instruction {
116public:
117   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
118
119   virtual ir_constant *constant_expression_value() = 0;
120
121   virtual ir_rvalue * as_rvalue()
122   {
123      return this;
124   }
125
126   virtual bool is_lvalue()
127   {
128      return false;
129   }
130
131   /**
132    * Get the variable that is ultimately referenced by an r-value
133    */
134   virtual ir_variable *variable_referenced()
135   {
136      return NULL;
137   }
138
139
140   /**
141    * If an r-value is a reference to a whole variable, get that variable
142    *
143    * \return
144    * Pointer to a variable that is completely dereferenced by the r-value.  If
145    * the r-value is not a dereference or the dereference does not access the
146    * entire variable (i.e., it's just one array element, struct field), \c NULL
147    * is returned.
148    */
149   virtual ir_variable *whole_variable_referenced()
150   {
151      return NULL;
152   }
153
154protected:
155   ir_rvalue();
156};
157
158
159enum ir_variable_mode {
160   ir_var_auto = 0,
161   ir_var_uniform,
162   ir_var_in,
163   ir_var_out,
164   ir_var_inout,
165   ir_var_temporary	/**< Temporary variable generated during compilation. */
166};
167
168enum ir_variable_interpolation {
169   ir_var_smooth = 0,
170   ir_var_flat,
171   ir_var_noperspective
172};
173
174
175class ir_variable : public ir_instruction {
176public:
177   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
178
179   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
180
181   virtual ir_variable *as_variable()
182   {
183      return this;
184   }
185
186   virtual void accept(ir_visitor *v)
187   {
188      v->visit(this);
189   }
190
191   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
192
193
194   /**
195    * Get the string value for the interpolation qualifier
196    *
197    * \return The string that would be used in a shader to specify \c
198    * mode will be returned.
199    *
200    * This function should only be used on a shader input or output variable.
201    */
202   const char *interpolation_string() const;
203
204   /**
205    * Calculate the number of slots required to hold this variable
206    *
207    * This is used to determine how many uniform or varying locations a variable
208    * occupies.  The count is in units of floating point components.
209    */
210   unsigned component_slots() const;
211
212   const char *name;
213
214   /**
215    * Highest element accessed with a constant expression array index
216    *
217    * Not used for non-array variables.
218    */
219   unsigned max_array_access;
220
221   unsigned read_only:1;
222   unsigned centroid:1;
223   unsigned invariant:1;
224
225   unsigned mode:3;
226   unsigned interpolation:2;
227
228   /**
229    * Flag that the whole array is assignable
230    *
231    * In GLSL 1.20 and later whole arrays are assignable (and comparable for
232    * equality).  This flag enables this behavior.
233    */
234   unsigned array_lvalue:1;
235
236   /* ARB_fragment_coord_conventions */
237   unsigned origin_upper_left:1;
238   unsigned pixel_center_integer:1;
239
240   /**
241    * Storage location of the base of this variable
242    *
243    * The precise meaning of this field depends on the nature of the variable.
244    *
245    *   - Vertex shader input: one of the values from \c gl_vert_attrib.
246    *   - Vertex shader output: one of the values from \c gl_vert_result.
247    *   - Fragment shader input: one of the values from \c gl_frag_attrib.
248    *   - Fragment shader output: one of the values from \c gl_frag_result.
249    *   - Uniforms: Per-stage uniform slot number.
250    *   - Other: This field is not currently used.
251    *
252    * If the variable is a uniform, shader input, or shader output, and the
253    * slot has not been assigned, the value will be -1.
254    */
255   int location;
256
257   /**
258    * Emit a warning if this variable is accessed.
259    */
260   const char *warn_extension;
261
262   /**
263    * Value assigned in the initializer of a variable declared "const"
264    */
265   ir_constant *constant_value;
266};
267
268
269/*@{*/
270/**
271 * The representation of a function instance; may be the full definition or
272 * simply a prototype.
273 */
274class ir_function_signature : public ir_instruction {
275   /* An ir_function_signature will be part of the list of signatures in
276    * an ir_function.
277    */
278public:
279   ir_function_signature(const glsl_type *return_type);
280
281   virtual ir_function_signature *clone(void *mem_ctx,
282					struct hash_table *ht) const;
283
284   virtual void accept(ir_visitor *v)
285   {
286      v->visit(this);
287   }
288
289   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
290
291   /**
292    * Get the name of the function for which this is a signature
293    */
294   const char *function_name() const;
295
296   /**
297    * Get a handle to the function for which this is a signature
298    *
299    * There is no setter function, this function returns a \c const pointer,
300    * and \c ir_function_signature::_function is private for a reason.  The
301    * only way to make a connection between a function and function signature
302    * is via \c ir_function::add_signature.  This helps ensure that certain
303    * invariants (i.e., a function signature is in the list of signatures for
304    * its \c _function) are met.
305    *
306    * \sa ir_function::add_signature
307    */
308   inline const class ir_function *function() const
309   {
310      return this->_function;
311   }
312
313   /**
314    * Check whether the qualifiers match between this signature's parameters
315    * and the supplied parameter list.  If not, returns the name of the first
316    * parameter with mismatched qualifiers (for use in error messages).
317    */
318   const char *qualifiers_match(exec_list *params);
319
320   /**
321    * Replace the current parameter list with the given one.  This is useful
322    * if the current information came from a prototype, and either has invalid
323    * or missing parameter names.
324    */
325   void replace_parameters(exec_list *new_params);
326
327   /**
328    * Function return type.
329    *
330    * \note This discards the optional precision qualifier.
331    */
332   const struct glsl_type *return_type;
333
334   /**
335    * List of ir_variable of function parameters.
336    *
337    * This represents the storage.  The paramaters passed in a particular
338    * call will be in ir_call::actual_paramaters.
339    */
340   struct exec_list parameters;
341
342   /** Whether or not this function has a body (which may be empty). */
343   unsigned is_defined:1;
344
345   /** Whether or not this function signature is a built-in. */
346   unsigned is_builtin:1;
347
348   /** Body of instructions in the function. */
349   struct exec_list body;
350
351private:
352   /** Function of which this signature is one overload. */
353   class ir_function *_function;
354
355   friend class ir_function;
356};
357
358
359/**
360 * Header for tracking multiple overloaded functions with the same name.
361 * Contains a list of ir_function_signatures representing each of the
362 * actual functions.
363 */
364class ir_function : public ir_instruction {
365public:
366   ir_function(const char *name);
367
368   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
369
370   virtual ir_function *as_function()
371   {
372      return this;
373   }
374
375   virtual void accept(ir_visitor *v)
376   {
377      v->visit(this);
378   }
379
380   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
381
382   void add_signature(ir_function_signature *sig)
383   {
384      sig->_function = this;
385      this->signatures.push_tail(sig);
386   }
387
388   /**
389    * Get an iterator for the set of function signatures
390    */
391   exec_list_iterator iterator()
392   {
393      return signatures.iterator();
394   }
395
396   /**
397    * Find a signature that matches a set of actual parameters, taking implicit
398    * conversions into account.
399    */
400   ir_function_signature *matching_signature(const exec_list *actual_param);
401
402   /**
403    * Find a signature that exactly matches a set of actual parameters without
404    * any implicit type conversions.
405    */
406   ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
407
408   /**
409    * Name of the function.
410    */
411   const char *name;
412
413   /** Whether or not this function has a signature that isn't a built-in. */
414   bool has_user_signature();
415
416   /**
417    * List of ir_function_signature for each overloaded function with this name.
418    */
419   struct exec_list signatures;
420};
421
422inline const char *ir_function_signature::function_name() const
423{
424   return this->_function->name;
425}
426/*@}*/
427
428
429/**
430 * IR instruction representing high-level if-statements
431 */
432class ir_if : public ir_instruction {
433public:
434   ir_if(ir_rvalue *condition)
435      : condition(condition)
436   {
437      ir_type = ir_type_if;
438   }
439
440   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
441
442   virtual ir_if *as_if()
443   {
444      return this;
445   }
446
447   virtual void accept(ir_visitor *v)
448   {
449      v->visit(this);
450   }
451
452   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
453
454   ir_rvalue *condition;
455   /** List of ir_instruction for the body of the then branch */
456   exec_list  then_instructions;
457   /** List of ir_instruction for the body of the else branch */
458   exec_list  else_instructions;
459};
460
461
462/**
463 * IR instruction representing a high-level loop structure.
464 */
465class ir_loop : public ir_instruction {
466public:
467   ir_loop();
468
469   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
470
471   virtual void accept(ir_visitor *v)
472   {
473      v->visit(this);
474   }
475
476   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478   virtual ir_loop *as_loop()
479   {
480      return this;
481   }
482
483   /**
484    * Get an iterator for the instructions of the loop body
485    */
486   exec_list_iterator iterator()
487   {
488      return body_instructions.iterator();
489   }
490
491   /** List of ir_instruction that make up the body of the loop. */
492   exec_list body_instructions;
493
494   /**
495    * \name Loop counter and controls
496    *
497    * Represents a loop like a FORTRAN \c do-loop.
498    *
499    * \note
500    * If \c from and \c to are the same value, the loop will execute once.
501    */
502   /*@{*/
503   ir_rvalue *from;             /** Value of the loop counter on the first
504				 * iteration of the loop.
505				 */
506   ir_rvalue *to;               /** Value of the loop counter on the last
507				 * iteration of the loop.
508				 */
509   ir_rvalue *increment;
510   ir_variable *counter;
511
512   /**
513    * Comparison operation in the loop terminator.
514    *
515    * If any of the loop control fields are non-\c NULL, this field must be
516    * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
517    * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
518    */
519   int cmp;
520   /*@}*/
521};
522
523
524class ir_assignment : public ir_instruction {
525public:
526   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
527
528   /**
529    * Construct an assignment with an explicit write mask
530    *
531    * \note
532    * Since a write mask is supplied, the LHS must already be a bare
533    * \c ir_dereference.  The cannot be any swizzles in the LHS.
534    */
535   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
536		 unsigned write_mask);
537
538   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
539
540   virtual ir_constant *constant_expression_value();
541
542   virtual void accept(ir_visitor *v)
543   {
544      v->visit(this);
545   }
546
547   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
548
549   virtual ir_assignment * as_assignment()
550   {
551      return this;
552   }
553
554   /**
555    * Get a whole variable written by an assignment
556    *
557    * If the LHS of the assignment writes a whole variable, the variable is
558    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
559    * assignment are:
560    *
561    *  - Assigning to a scalar
562    *  - Assigning to all components of a vector
563    *  - Whole array (or matrix) assignment
564    *  - Whole structure assignment
565    */
566   ir_variable *whole_variable_written();
567
568   /**
569    * Set the LHS of an assignment
570    */
571   void set_lhs(ir_rvalue *lhs);
572
573   /**
574    * Left-hand side of the assignment.
575    *
576    * This should be treated as read only.  If you need to set the LHS of an
577    * assignment, use \c ir_assignment::set_lhs.
578    */
579   ir_dereference *lhs;
580
581   /**
582    * Value being assigned
583    */
584   ir_rvalue *rhs;
585
586   /**
587    * Optional condition for the assignment.
588    */
589   ir_rvalue *condition;
590
591
592   /**
593    * Component mask written
594    *
595    * For non-vector types in the LHS, this field will be zero.  For vector
596    * types, a bit will be set for each component that is written.  Note that
597    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
598    */
599   unsigned write_mask:4;
600};
601
602/* Update ir_expression::num_operands() and operator_strs when
603 * updating this list.
604 */
605enum ir_expression_operation {
606   ir_unop_bit_not,
607   ir_unop_logic_not,
608   ir_unop_neg,
609   ir_unop_abs,
610   ir_unop_sign,
611   ir_unop_rcp,
612   ir_unop_rsq,
613   ir_unop_sqrt,
614   ir_unop_exp,      /**< Log base e on gentype */
615   ir_unop_log,	     /**< Natural log on gentype */
616   ir_unop_exp2,
617   ir_unop_log2,
618   ir_unop_f2i,      /**< Float-to-integer conversion. */
619   ir_unop_i2f,      /**< Integer-to-float conversion. */
620   ir_unop_f2b,      /**< Float-to-boolean conversion */
621   ir_unop_b2f,      /**< Boolean-to-float conversion */
622   ir_unop_i2b,      /**< int-to-boolean conversion */
623   ir_unop_b2i,      /**< Boolean-to-int conversion */
624   ir_unop_u2f,      /**< Unsigned-to-float conversion. */
625   ir_unop_any,
626
627   /**
628    * \name Unary floating-point rounding operations.
629    */
630   /*@{*/
631   ir_unop_trunc,
632   ir_unop_ceil,
633   ir_unop_floor,
634   ir_unop_fract,
635   /*@}*/
636
637   /**
638    * \name Trigonometric operations.
639    */
640   /*@{*/
641   ir_unop_sin,
642   ir_unop_cos,
643   /*@}*/
644
645   /**
646    * \name Partial derivatives.
647    */
648   /*@{*/
649   ir_unop_dFdx,
650   ir_unop_dFdy,
651   /*@}*/
652
653   ir_unop_noise,
654
655   ir_binop_add,
656   ir_binop_sub,
657   ir_binop_mul,
658   ir_binop_div,
659
660   /**
661    * Takes one of two combinations of arguments:
662    *
663    * - mod(vecN, vecN)
664    * - mod(vecN, float)
665    *
666    * Does not take integer types.
667    */
668   ir_binop_mod,
669
670   /**
671    * \name Binary comparison operators
672    */
673   /*@{*/
674   ir_binop_less,
675   ir_binop_greater,
676   ir_binop_lequal,
677   ir_binop_gequal,
678   ir_binop_equal,
679   ir_binop_nequal,
680   /**
681    * Returns single boolean for whether all components of operands[0]
682    * equal the components of operands[1].
683    */
684   ir_binop_all_equal,
685   /**
686    * Returns single boolean for whether any component of operands[0]
687    * is not equal to the corresponding component of operands[1].
688    */
689   ir_binop_any_nequal,
690   /*@}*/
691
692   /**
693    * \name Bit-wise binary operations.
694    */
695   /*@{*/
696   ir_binop_lshift,
697   ir_binop_rshift,
698   ir_binop_bit_and,
699   ir_binop_bit_xor,
700   ir_binop_bit_or,
701   /*@}*/
702
703   ir_binop_logic_and,
704   ir_binop_logic_xor,
705   ir_binop_logic_or,
706
707   ir_binop_dot,
708   ir_binop_cross,
709   ir_binop_min,
710   ir_binop_max,
711
712   ir_binop_pow
713};
714
715class ir_expression : public ir_rvalue {
716public:
717   ir_expression(int op, const struct glsl_type *type,
718		 ir_rvalue *, ir_rvalue *);
719
720   virtual ir_expression *as_expression()
721   {
722      return this;
723   }
724
725   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
726
727   virtual ir_constant *constant_expression_value();
728
729   static unsigned int get_num_operands(ir_expression_operation);
730   unsigned int get_num_operands() const
731   {
732      return get_num_operands(operation);
733   }
734
735   /**
736    * Return a string representing this expression's operator.
737    */
738   const char *operator_string();
739
740   /**
741    * Return a string representing this expression's operator.
742    */
743   static const char *operator_string(ir_expression_operation);
744
745
746   /**
747    * Do a reverse-lookup to translate the given string into an operator.
748    */
749   static ir_expression_operation get_operator(const char *);
750
751   virtual void accept(ir_visitor *v)
752   {
753      v->visit(this);
754   }
755
756   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
757
758   ir_expression_operation operation;
759   ir_rvalue *operands[2];
760};
761
762
763/**
764 * IR instruction representing a function call
765 */
766class ir_call : public ir_rvalue {
767public:
768   ir_call(ir_function_signature *callee, exec_list *actual_parameters)
769      : callee(callee)
770   {
771      ir_type = ir_type_call;
772      assert(callee->return_type != NULL);
773      type = callee->return_type;
774      actual_parameters->move_nodes_to(& this->actual_parameters);
775   }
776
777   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
778
779   virtual ir_constant *constant_expression_value();
780
781   virtual ir_call *as_call()
782   {
783      return this;
784   }
785
786   virtual void accept(ir_visitor *v)
787   {
788      v->visit(this);
789   }
790
791   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
792
793   /**
794    * Get a generic ir_call object when an error occurs
795    *
796    * Any allocation will be performed with 'ctx' as talloc owner.
797    */
798   static ir_call *get_error_instruction(void *ctx);
799
800   /**
801    * Get an iterator for the set of acutal parameters
802    */
803   exec_list_iterator iterator()
804   {
805      return actual_parameters.iterator();
806   }
807
808   /**
809    * Get the name of the function being called.
810    */
811   const char *callee_name() const
812   {
813      return callee->function_name();
814   }
815
816   ir_function_signature *get_callee()
817   {
818      return callee;
819   }
820
821   /**
822    * Set the function call target
823    */
824   void set_callee(ir_function_signature *sig);
825
826   /**
827    * Generates an inline version of the function before @ir,
828    * returning the return value of the function.
829    */
830   ir_rvalue *generate_inline(ir_instruction *ir);
831
832   /* List of ir_rvalue of paramaters passed in this call. */
833   exec_list actual_parameters;
834
835private:
836   ir_call()
837      : callee(NULL)
838   {
839      this->ir_type = ir_type_call;
840   }
841
842   ir_function_signature *callee;
843};
844
845
846/**
847 * \name Jump-like IR instructions.
848 *
849 * These include \c break, \c continue, \c return, and \c discard.
850 */
851/*@{*/
852class ir_jump : public ir_instruction {
853protected:
854   ir_jump()
855   {
856      ir_type = ir_type_unset;
857   }
858};
859
860class ir_return : public ir_jump {
861public:
862   ir_return()
863      : value(NULL)
864   {
865      this->ir_type = ir_type_return;
866   }
867
868   ir_return(ir_rvalue *value)
869      : value(value)
870   {
871      this->ir_type = ir_type_return;
872   }
873
874   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
875
876   virtual ir_return *as_return()
877   {
878      return this;
879   }
880
881   ir_rvalue *get_value() const
882   {
883      return value;
884   }
885
886   virtual void accept(ir_visitor *v)
887   {
888      v->visit(this);
889   }
890
891   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
892
893   ir_rvalue *value;
894};
895
896
897/**
898 * Jump instructions used inside loops
899 *
900 * These include \c break and \c continue.  The \c break within a loop is
901 * different from the \c break within a switch-statement.
902 *
903 * \sa ir_switch_jump
904 */
905class ir_loop_jump : public ir_jump {
906public:
907   enum jump_mode {
908      jump_break,
909      jump_continue
910   };
911
912   ir_loop_jump(jump_mode mode)
913   {
914      this->ir_type = ir_type_loop_jump;
915      this->mode = mode;
916      this->loop = loop;
917   }
918
919   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
920
921   virtual void accept(ir_visitor *v)
922   {
923      v->visit(this);
924   }
925
926   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
927
928   bool is_break() const
929   {
930      return mode == jump_break;
931   }
932
933   bool is_continue() const
934   {
935      return mode == jump_continue;
936   }
937
938   /** Mode selector for the jump instruction. */
939   enum jump_mode mode;
940private:
941   /** Loop containing this break instruction. */
942   ir_loop *loop;
943};
944
945/**
946 * IR instruction representing discard statements.
947 */
948class ir_discard : public ir_jump {
949public:
950   ir_discard()
951   {
952      this->ir_type = ir_type_discard;
953      this->condition = NULL;
954   }
955
956   ir_discard(ir_rvalue *cond)
957   {
958      this->ir_type = ir_type_discard;
959      this->condition = cond;
960   }
961
962   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
963
964   virtual void accept(ir_visitor *v)
965   {
966      v->visit(this);
967   }
968
969   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
970
971   ir_rvalue *condition;
972};
973/*@}*/
974
975
976/**
977 * Texture sampling opcodes used in ir_texture
978 */
979enum ir_texture_opcode {
980   ir_tex,		/* Regular texture look-up */
981   ir_txb,		/* Texture look-up with LOD bias */
982   ir_txl,		/* Texture look-up with explicit LOD */
983   ir_txd,		/* Texture look-up with partial derivatvies */
984   ir_txf		/* Texel fetch with explicit LOD */
985};
986
987
988/**
989 * IR instruction to sample a texture
990 *
991 * The specific form of the IR instruction depends on the \c mode value
992 * selected from \c ir_texture_opcodes.  In the printed IR, these will
993 * appear as:
994 *
995 *                              Texel offset
996 *                              |       Projection divisor
997 *                              |       |   Shadow comparitor
998 *                              |       |   |
999 *                              v       v   v
1000 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1001 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1002 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1003 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1004 * (txf (sampler) (coordinate) (0 0 0)         (lod))
1005 */
1006class ir_texture : public ir_rvalue {
1007public:
1008   ir_texture(enum ir_texture_opcode op)
1009      : op(op), projector(NULL), shadow_comparitor(NULL)
1010   {
1011      this->ir_type = ir_type_texture;
1012   }
1013
1014   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1015
1016   virtual ir_constant *constant_expression_value();
1017
1018   virtual void accept(ir_visitor *v)
1019   {
1020      v->visit(this);
1021   }
1022
1023   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1024
1025   /**
1026    * Return a string representing the ir_texture_opcode.
1027    */
1028   const char *opcode_string();
1029
1030   /** Set the sampler and infer the type. */
1031   void set_sampler(ir_dereference *sampler);
1032
1033   /**
1034    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1035    */
1036   static ir_texture_opcode get_opcode(const char *);
1037
1038   enum ir_texture_opcode op;
1039
1040   /** Sampler to use for the texture access. */
1041   ir_dereference *sampler;
1042
1043   /** Texture coordinate to sample */
1044   ir_rvalue *coordinate;
1045
1046   /**
1047    * Value used for projective divide.
1048    *
1049    * If there is no projective divide (the common case), this will be
1050    * \c NULL.  Optimization passes should check for this to point to a constant
1051    * of 1.0 and replace that with \c NULL.
1052    */
1053   ir_rvalue *projector;
1054
1055   /**
1056    * Coordinate used for comparison on shadow look-ups.
1057    *
1058    * If there is no shadow comparison, this will be \c NULL.  For the
1059    * \c ir_txf opcode, this *must* be \c NULL.
1060    */
1061   ir_rvalue *shadow_comparitor;
1062
1063   /** Explicit texel offsets. */
1064   signed char offsets[3];
1065
1066   union {
1067      ir_rvalue *lod;		/**< Floating point LOD */
1068      ir_rvalue *bias;		/**< Floating point LOD bias */
1069      struct {
1070	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1071	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1072      } grad;
1073   } lod_info;
1074};
1075
1076
1077struct ir_swizzle_mask {
1078   unsigned x:2;
1079   unsigned y:2;
1080   unsigned z:2;
1081   unsigned w:2;
1082
1083   /**
1084    * Number of components in the swizzle.
1085    */
1086   unsigned num_components:3;
1087
1088   /**
1089    * Does the swizzle contain duplicate components?
1090    *
1091    * L-value swizzles cannot contain duplicate components.
1092    */
1093   unsigned has_duplicates:1;
1094};
1095
1096
1097class ir_swizzle : public ir_rvalue {
1098public:
1099   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1100              unsigned count);
1101
1102   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1103
1104   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1105
1106   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1107
1108   virtual ir_constant *constant_expression_value();
1109
1110   virtual ir_swizzle *as_swizzle()
1111   {
1112      return this;
1113   }
1114
1115   /**
1116    * Construct an ir_swizzle from the textual representation.  Can fail.
1117    */
1118   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1119
1120   virtual void accept(ir_visitor *v)
1121   {
1122      v->visit(this);
1123   }
1124
1125   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1126
1127   bool is_lvalue()
1128   {
1129      return val->is_lvalue() && !mask.has_duplicates;
1130   }
1131
1132   /**
1133    * Get the variable that is ultimately referenced by an r-value
1134    */
1135   virtual ir_variable *variable_referenced();
1136
1137   ir_rvalue *val;
1138   ir_swizzle_mask mask;
1139
1140private:
1141   /**
1142    * Initialize the mask component of a swizzle
1143    *
1144    * This is used by the \c ir_swizzle constructors.
1145    */
1146   void init_mask(const unsigned *components, unsigned count);
1147};
1148
1149
1150class ir_dereference : public ir_rvalue {
1151public:
1152   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1153
1154   virtual ir_dereference *as_dereference()
1155   {
1156      return this;
1157   }
1158
1159   bool is_lvalue();
1160
1161   /**
1162    * Get the variable that is ultimately referenced by an r-value
1163    */
1164   virtual ir_variable *variable_referenced() = 0;
1165};
1166
1167
1168class ir_dereference_variable : public ir_dereference {
1169public:
1170   ir_dereference_variable(ir_variable *var);
1171
1172   virtual ir_dereference_variable *clone(void *mem_ctx,
1173					  struct hash_table *) const;
1174
1175   virtual ir_constant *constant_expression_value();
1176
1177   virtual ir_dereference_variable *as_dereference_variable()
1178   {
1179      return this;
1180   }
1181
1182   /**
1183    * Get the variable that is ultimately referenced by an r-value
1184    */
1185   virtual ir_variable *variable_referenced()
1186   {
1187      return this->var;
1188   }
1189
1190   virtual ir_variable *whole_variable_referenced()
1191   {
1192      /* ir_dereference_variable objects always dereference the entire
1193       * variable.  However, if this dereference is dereferenced by anything
1194       * else, the complete deferefernce chain is not a whole-variable
1195       * dereference.  This method should only be called on the top most
1196       * ir_rvalue in a dereference chain.
1197       */
1198      return this->var;
1199   }
1200
1201   virtual void accept(ir_visitor *v)
1202   {
1203      v->visit(this);
1204   }
1205
1206   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1207
1208   /**
1209    * Object being dereferenced.
1210    */
1211   ir_variable *var;
1212};
1213
1214
1215class ir_dereference_array : public ir_dereference {
1216public:
1217   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1218
1219   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1220
1221   virtual ir_dereference_array *clone(void *mem_ctx,
1222				       struct hash_table *) const;
1223
1224   virtual ir_constant *constant_expression_value();
1225
1226   virtual ir_dereference_array *as_dereference_array()
1227   {
1228      return this;
1229   }
1230
1231   /**
1232    * Get the variable that is ultimately referenced by an r-value
1233    */
1234   virtual ir_variable *variable_referenced()
1235   {
1236      return this->array->variable_referenced();
1237   }
1238
1239   virtual void accept(ir_visitor *v)
1240   {
1241      v->visit(this);
1242   }
1243
1244   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1245
1246   ir_rvalue *array;
1247   ir_rvalue *array_index;
1248
1249private:
1250   void set_array(ir_rvalue *value);
1251};
1252
1253
1254class ir_dereference_record : public ir_dereference {
1255public:
1256   ir_dereference_record(ir_rvalue *value, const char *field);
1257
1258   ir_dereference_record(ir_variable *var, const char *field);
1259
1260   virtual ir_dereference_record *clone(void *mem_ctx,
1261					struct hash_table *) const;
1262
1263   virtual ir_constant *constant_expression_value();
1264
1265   /**
1266    * Get the variable that is ultimately referenced by an r-value
1267    */
1268   virtual ir_variable *variable_referenced()
1269   {
1270      return this->record->variable_referenced();
1271   }
1272
1273   virtual void accept(ir_visitor *v)
1274   {
1275      v->visit(this);
1276   }
1277
1278   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1279
1280   ir_rvalue *record;
1281   const char *field;
1282};
1283
1284
1285/**
1286 * Data stored in an ir_constant
1287 */
1288union ir_constant_data {
1289      unsigned u[16];
1290      int i[16];
1291      float f[16];
1292      bool b[16];
1293};
1294
1295
1296class ir_constant : public ir_rvalue {
1297public:
1298   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1299   ir_constant(bool b);
1300   ir_constant(unsigned int u);
1301   ir_constant(int i);
1302   ir_constant(float f);
1303
1304   /**
1305    * Construct an ir_constant from a list of ir_constant values
1306    */
1307   ir_constant(const struct glsl_type *type, exec_list *values);
1308
1309   /**
1310    * Construct an ir_constant from a scalar component of another ir_constant
1311    *
1312    * The new \c ir_constant inherits the type of the component from the
1313    * source constant.
1314    *
1315    * \note
1316    * In the case of a matrix constant, the new constant is a scalar, \b not
1317    * a vector.
1318    */
1319   ir_constant(const ir_constant *c, unsigned i);
1320
1321   /**
1322    * Return a new ir_constant of the specified type containing all zeros.
1323    */
1324   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1325
1326   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1327
1328   virtual ir_constant *constant_expression_value();
1329
1330   virtual ir_constant *as_constant()
1331   {
1332      return this;
1333   }
1334
1335   virtual void accept(ir_visitor *v)
1336   {
1337      v->visit(this);
1338   }
1339
1340   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
1342   /**
1343    * Get a particular component of a constant as a specific type
1344    *
1345    * This is useful, for example, to get a value from an integer constant
1346    * as a float or bool.  This appears frequently when constructors are
1347    * called with all constant parameters.
1348    */
1349   /*@{*/
1350   bool get_bool_component(unsigned i) const;
1351   float get_float_component(unsigned i) const;
1352   int get_int_component(unsigned i) const;
1353   unsigned get_uint_component(unsigned i) const;
1354   /*@}*/
1355
1356   ir_constant *get_array_element(unsigned i) const;
1357
1358   ir_constant *get_record_field(const char *name);
1359
1360   /**
1361    * Determine whether a constant has the same value as another constant
1362    */
1363   bool has_value(const ir_constant *) const;
1364
1365   /**
1366    * Value of the constant.
1367    *
1368    * The field used to back the values supplied by the constant is determined
1369    * by the type associated with the \c ir_instruction.  Constants may be
1370    * scalars, vectors, or matrices.
1371    */
1372   union ir_constant_data value;
1373
1374   /* Array elements */
1375   ir_constant **array_elements;
1376
1377   /* Structure fields */
1378   exec_list components;
1379
1380private:
1381   /**
1382    * Parameterless constructor only used by the clone method
1383    */
1384   ir_constant(void);
1385};
1386
1387void
1388visit_exec_list(exec_list *list, ir_visitor *visitor);
1389
1390void validate_ir_tree(exec_list *instructions);
1391
1392/**
1393 * Make a clone of each IR instruction in a list
1394 *
1395 * \param in   List of IR instructions that are to be cloned
1396 * \param out  List to hold the cloned instructions
1397 */
1398void
1399clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1400
1401extern void
1402_mesa_glsl_initialize_variables(exec_list *instructions,
1403				struct _mesa_glsl_parse_state *state);
1404
1405extern void
1406_mesa_glsl_initialize_functions(exec_list *instructions,
1407				struct _mesa_glsl_parse_state *state);
1408
1409extern void
1410_mesa_glsl_release_functions(void);
1411
1412extern void
1413reparent_ir(exec_list *list, void *mem_ctx);
1414
1415struct glsl_symbol_table;
1416
1417extern void
1418import_prototypes(const exec_list *source, exec_list *dest,
1419		  struct glsl_symbol_table *symbols, void *mem_ctx);
1420
1421extern bool
1422ir_has_call(ir_instruction *ir);
1423
1424extern void
1425do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1426
1427#endif /* IR_H */
1428