ir.h revision bc4034b243975089c06c4415d4e26edaaaec7a46
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#pragma once
26#ifndef IR_H
27#define IR_H
28
29#include <cstdio>
30#include <cstdlib>
31
32extern "C" {
33#include <talloc.h>
34}
35
36#include "list.h"
37#include "ir_visitor.h"
38#include "ir_hierarchical_visitor.h"
39
40#ifndef ARRAY_SIZE
41#define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42#endif
43
44enum ir_node_type {
45   ir_type_unset,
46   ir_type_variable,
47   ir_type_assignment,
48   ir_type_call,
49   ir_type_constant,
50   ir_type_dereference_array,
51   ir_type_dereference_record,
52   ir_type_dereference_variable,
53   ir_type_discard,
54   ir_type_expression,
55   ir_type_function,
56   ir_type_function_signature,
57   ir_type_if,
58   ir_type_loop,
59   ir_type_loop_jump,
60   ir_type_return,
61   ir_type_swizzle,
62   ir_type_texture,
63   ir_type_max, /**< maximum ir_type enum number, for validation */
64};
65
66/**
67 * Base class of all IR instructions
68 */
69class ir_instruction : public exec_node {
70public:
71   enum ir_node_type ir_type;
72   const struct glsl_type *type;
73
74   /** ir_print_visitor helper for debugging. */
75   void print(void) const;
76
77   virtual void accept(ir_visitor *) = 0;
78   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
79   virtual ir_instruction *clone(void *mem_ctx,
80				 struct hash_table *ht) const = 0;
81
82   /**
83    * \name IR instruction downcast functions
84    *
85    * These functions either cast the object to a derived class or return
86    * \c NULL if the object's type does not match the specified derived class.
87    * Additional downcast functions will be added as needed.
88    */
89   /*@{*/
90   virtual class ir_variable *          as_variable()         { return NULL; }
91   virtual class ir_function *          as_function()         { return NULL; }
92   virtual class ir_dereference *       as_dereference()      { return NULL; }
93   virtual class ir_dereference_array *	as_dereference_array() { return NULL; }
94   virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
95   virtual class ir_expression *        as_expression()       { return NULL; }
96   virtual class ir_rvalue *            as_rvalue()           { return NULL; }
97   virtual class ir_loop *              as_loop()             { return NULL; }
98   virtual class ir_assignment *        as_assignment()       { return NULL; }
99   virtual class ir_call *              as_call()             { return NULL; }
100   virtual class ir_return *            as_return()           { return NULL; }
101   virtual class ir_if *                as_if()               { return NULL; }
102   virtual class ir_swizzle *           as_swizzle()          { return NULL; }
103   virtual class ir_constant *          as_constant()         { return NULL; }
104   /*@}*/
105
106protected:
107   ir_instruction()
108   {
109      ir_type = ir_type_unset;
110      type = NULL;
111   }
112};
113
114
115class ir_rvalue : public ir_instruction {
116public:
117   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
118
119   virtual ir_constant *constant_expression_value() = 0;
120
121   virtual ir_rvalue * as_rvalue()
122   {
123      return this;
124   }
125
126   virtual bool is_lvalue()
127   {
128      return false;
129   }
130
131   /**
132    * Get the variable that is ultimately referenced by an r-value
133    */
134   virtual ir_variable *variable_referenced()
135   {
136      return NULL;
137   }
138
139
140   /**
141    * If an r-value is a reference to a whole variable, get that variable
142    *
143    * \return
144    * Pointer to a variable that is completely dereferenced by the r-value.  If
145    * the r-value is not a dereference or the dereference does not access the
146    * entire variable (i.e., it's just one array element, struct field), \c NULL
147    * is returned.
148    */
149   virtual ir_variable *whole_variable_referenced()
150   {
151      return NULL;
152   }
153
154protected:
155   ir_rvalue();
156};
157
158
159enum ir_variable_mode {
160   ir_var_auto = 0,
161   ir_var_uniform,
162   ir_var_in,
163   ir_var_out,
164   ir_var_inout,
165   ir_var_temporary	/**< Temporary variable generated during compilation. */
166};
167
168enum ir_variable_interpolation {
169   ir_var_smooth = 0,
170   ir_var_flat,
171   ir_var_noperspective
172};
173
174
175class ir_variable : public ir_instruction {
176public:
177   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
178
179   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
180
181   virtual ir_variable *as_variable()
182   {
183      return this;
184   }
185
186   virtual void accept(ir_visitor *v)
187   {
188      v->visit(this);
189   }
190
191   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
192
193
194   /**
195    * Get the string value for the interpolation qualifier
196    *
197    * \return The string that would be used in a shader to specify \c
198    * mode will be returned.
199    *
200    * This function should only be used on a shader input or output variable.
201    */
202   const char *interpolation_string() const;
203
204   /**
205    * Calculate the number of slots required to hold this variable
206    *
207    * This is used to determine how many uniform or varying locations a variable
208    * occupies.  The count is in units of floating point components.
209    */
210   unsigned component_slots() const;
211
212   const char *name;
213
214   /**
215    * Highest element accessed with a constant expression array index
216    *
217    * Not used for non-array variables.
218    */
219   unsigned max_array_access;
220
221   unsigned read_only:1;
222   unsigned centroid:1;
223   unsigned invariant:1;
224
225   unsigned mode:3;
226   unsigned interpolation:2;
227
228   /**
229    * Flag that the whole array is assignable
230    *
231    * In GLSL 1.20 and later whole arrays are assignable (and comparable for
232    * equality).  This flag enables this behavior.
233    */
234   unsigned array_lvalue:1;
235
236   /* ARB_fragment_coord_conventions */
237   unsigned origin_upper_left:1;
238   unsigned pixel_center_integer:1;
239
240   /**
241    * Storage location of the base of this variable
242    *
243    * The precise meaning of this field depends on the nature of the variable.
244    *
245    *   - Vertex shader input: one of the values from \c gl_vert_attrib.
246    *   - Vertex shader output: one of the values from \c gl_vert_result.
247    *   - Fragment shader input: one of the values from \c gl_frag_attrib.
248    *   - Fragment shader output: one of the values from \c gl_frag_result.
249    *   - Uniforms: Per-stage uniform slot number.
250    *   - Other: This field is not currently used.
251    *
252    * If the variable is a uniform, shader input, or shader output, and the
253    * slot has not been assigned, the value will be -1.
254    */
255   int location;
256
257   /**
258    * Emit a warning if this variable is accessed.
259    */
260   const char *warn_extension;
261
262   /**
263    * Value assigned in the initializer of a variable declared "const"
264    */
265   ir_constant *constant_value;
266};
267
268
269/*@{*/
270/**
271 * The representation of a function instance; may be the full definition or
272 * simply a prototype.
273 */
274class ir_function_signature : public ir_instruction {
275   /* An ir_function_signature will be part of the list of signatures in
276    * an ir_function.
277    */
278public:
279   ir_function_signature(const glsl_type *return_type);
280
281   virtual ir_function_signature *clone(void *mem_ctx,
282					struct hash_table *ht) const;
283
284   virtual void accept(ir_visitor *v)
285   {
286      v->visit(this);
287   }
288
289   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
290
291   /**
292    * Get the name of the function for which this is a signature
293    */
294   const char *function_name() const;
295
296   /**
297    * Get a handle to the function for which this is a signature
298    *
299    * There is no setter function, this function returns a \c const pointer,
300    * and \c ir_function_signature::_function is private for a reason.  The
301    * only way to make a connection between a function and function signature
302    * is via \c ir_function::add_signature.  This helps ensure that certain
303    * invariants (i.e., a function signature is in the list of signatures for
304    * its \c _function) are met.
305    *
306    * \sa ir_function::add_signature
307    */
308   inline const class ir_function *function() const
309   {
310      return this->_function;
311   }
312
313   /**
314    * Check whether the qualifiers match between this signature's parameters
315    * and the supplied parameter list.  If not, returns the name of the first
316    * parameter with mismatched qualifiers (for use in error messages).
317    */
318   const char *qualifiers_match(exec_list *params);
319
320   /**
321    * Replace the current parameter list with the given one.  This is useful
322    * if the current information came from a prototype, and either has invalid
323    * or missing parameter names.
324    */
325   void replace_parameters(exec_list *new_params);
326
327   /**
328    * Function return type.
329    *
330    * \note This discards the optional precision qualifier.
331    */
332   const struct glsl_type *return_type;
333
334   /**
335    * List of ir_variable of function parameters.
336    *
337    * This represents the storage.  The paramaters passed in a particular
338    * call will be in ir_call::actual_paramaters.
339    */
340   struct exec_list parameters;
341
342   /** Whether or not this function has a body (which may be empty). */
343   unsigned is_defined:1;
344
345   /** Whether or not this function signature is a built-in. */
346   unsigned is_built_in:1;
347
348   /** Body of instructions in the function. */
349   struct exec_list body;
350
351private:
352   /** Function of which this signature is one overload. */
353   class ir_function *_function;
354
355   friend class ir_function;
356};
357
358
359/**
360 * Header for tracking multiple overloaded functions with the same name.
361 * Contains a list of ir_function_signatures representing each of the
362 * actual functions.
363 */
364class ir_function : public ir_instruction {
365public:
366   ir_function(const char *name);
367
368   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
369
370   virtual ir_function *as_function()
371   {
372      return this;
373   }
374
375   virtual void accept(ir_visitor *v)
376   {
377      v->visit(this);
378   }
379
380   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
381
382   void add_signature(ir_function_signature *sig)
383   {
384      sig->_function = this;
385      this->signatures.push_tail(sig);
386   }
387
388   /**
389    * Get an iterator for the set of function signatures
390    */
391   exec_list_iterator iterator()
392   {
393      return signatures.iterator();
394   }
395
396   /**
397    * Find a signature that matches a set of actual parameters, taking implicit
398    * conversions into account.
399    */
400   ir_function_signature *matching_signature(const exec_list *actual_param);
401
402   /**
403    * Find a signature that exactly matches a set of actual parameters without
404    * any implicit type conversions.
405    */
406   ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
407
408   /**
409    * Name of the function.
410    */
411   const char *name;
412
413   /**
414    * List of ir_function_signature for each overloaded function with this name.
415    */
416   struct exec_list signatures;
417};
418
419inline const char *ir_function_signature::function_name() const
420{
421   return this->_function->name;
422}
423/*@}*/
424
425
426/**
427 * IR instruction representing high-level if-statements
428 */
429class ir_if : public ir_instruction {
430public:
431   ir_if(ir_rvalue *condition)
432      : condition(condition)
433   {
434      ir_type = ir_type_if;
435   }
436
437   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
438
439   virtual ir_if *as_if()
440   {
441      return this;
442   }
443
444   virtual void accept(ir_visitor *v)
445   {
446      v->visit(this);
447   }
448
449   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
450
451   ir_rvalue *condition;
452   /** List of ir_instruction for the body of the then branch */
453   exec_list  then_instructions;
454   /** List of ir_instruction for the body of the else branch */
455   exec_list  else_instructions;
456};
457
458
459/**
460 * IR instruction representing a high-level loop structure.
461 */
462class ir_loop : public ir_instruction {
463public:
464   ir_loop() : from(NULL), to(NULL), increment(NULL), counter(NULL)
465   {
466      ir_type = ir_type_loop;
467   }
468
469   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
470
471   virtual void accept(ir_visitor *v)
472   {
473      v->visit(this);
474   }
475
476   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478   virtual ir_loop *as_loop()
479   {
480      return this;
481   }
482
483   /**
484    * Get an iterator for the instructions of the loop body
485    */
486   exec_list_iterator iterator()
487   {
488      return body_instructions.iterator();
489   }
490
491   /** List of ir_instruction that make up the body of the loop. */
492   exec_list body_instructions;
493
494   /**
495    * \name Loop counter and controls
496    */
497   /*@{*/
498   ir_rvalue *from;
499   ir_rvalue *to;
500   ir_rvalue *increment;
501   ir_variable *counter;
502   /*@}*/
503};
504
505
506class ir_assignment : public ir_instruction {
507public:
508   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
509
510   /**
511    * Construct an assignment with an explicit write mask
512    *
513    * \note
514    * Since a write mask is supplied, the LHS must already be a bare
515    * \c ir_dereference.  The cannot be any swizzles in the LHS.
516    */
517   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
518		 unsigned write_mask);
519
520   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
521
522   virtual ir_constant *constant_expression_value();
523
524   virtual void accept(ir_visitor *v)
525   {
526      v->visit(this);
527   }
528
529   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
530
531   virtual ir_assignment * as_assignment()
532   {
533      return this;
534   }
535
536   /**
537    * Get a whole variable written by an assignment
538    *
539    * If the LHS of the assignment writes a whole variable, the variable is
540    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
541    * assignment are:
542    *
543    *  - Assigning to a scalar
544    *  - Assigning to all components of a vector
545    *  - Whole array (or matrix) assignment
546    *  - Whole structure assignment
547    */
548   ir_variable *whole_variable_written();
549
550   /**
551    * Set the LHS of an assignment
552    */
553   void set_lhs(ir_rvalue *lhs);
554
555   /**
556    * Left-hand side of the assignment.
557    *
558    * This should be treated as read only.  If you need to set the LHS of an
559    * assignment, use \c ir_assignment::set_lhs.
560    */
561   ir_dereference *lhs;
562
563   /**
564    * Value being assigned
565    */
566   ir_rvalue *rhs;
567
568   /**
569    * Optional condition for the assignment.
570    */
571   ir_rvalue *condition;
572
573
574   /**
575    * Component mask written
576    *
577    * For non-vector types in the LHS, this field will be zero.  For vector
578    * types, a bit will be set for each component that is written.  Note that
579    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
580    */
581   unsigned write_mask:4;
582};
583
584/* Update ir_expression::num_operands() and operator_strs when
585 * updating this list.
586 */
587enum ir_expression_operation {
588   ir_unop_bit_not,
589   ir_unop_logic_not,
590   ir_unop_neg,
591   ir_unop_abs,
592   ir_unop_sign,
593   ir_unop_rcp,
594   ir_unop_rsq,
595   ir_unop_sqrt,
596   ir_unop_exp,      /**< Log base e on gentype */
597   ir_unop_log,	     /**< Natural log on gentype */
598   ir_unop_exp2,
599   ir_unop_log2,
600   ir_unop_f2i,      /**< Float-to-integer conversion. */
601   ir_unop_i2f,      /**< Integer-to-float conversion. */
602   ir_unop_f2b,      /**< Float-to-boolean conversion */
603   ir_unop_b2f,      /**< Boolean-to-float conversion */
604   ir_unop_i2b,      /**< int-to-boolean conversion */
605   ir_unop_b2i,      /**< Boolean-to-int conversion */
606   ir_unop_u2f,      /**< Unsigned-to-float conversion. */
607
608   /**
609    * \name Unary floating-point rounding operations.
610    */
611   /*@{*/
612   ir_unop_trunc,
613   ir_unop_ceil,
614   ir_unop_floor,
615   ir_unop_fract,
616   /*@}*/
617
618   /**
619    * \name Trigonometric operations.
620    */
621   /*@{*/
622   ir_unop_sin,
623   ir_unop_cos,
624   /*@}*/
625
626   /**
627    * \name Partial derivatives.
628    */
629   /*@{*/
630   ir_unop_dFdx,
631   ir_unop_dFdy,
632   /*@}*/
633
634   ir_binop_add,
635   ir_binop_sub,
636   ir_binop_mul,
637   ir_binop_div,
638
639   /**
640    * Takes one of two combinations of arguments:
641    *
642    * - mod(vecN, vecN)
643    * - mod(vecN, float)
644    *
645    * Does not take integer types.
646    */
647   ir_binop_mod,
648
649   /**
650    * \name Binary comparison operators
651    */
652   /*@{*/
653   ir_binop_less,
654   ir_binop_greater,
655   ir_binop_lequal,
656   ir_binop_gequal,
657   /**
658    * Returns single boolean for whether all components of operands[0]
659    * equal the components of operands[1].
660    */
661   ir_binop_equal,
662   /**
663    * Returns single boolean for whether any component of operands[0]
664    * is not equal to the corresponding component of operands[1].
665    */
666   ir_binop_nequal,
667   /*@}*/
668
669   /**
670    * \name Bit-wise binary operations.
671    */
672   /*@{*/
673   ir_binop_lshift,
674   ir_binop_rshift,
675   ir_binop_bit_and,
676   ir_binop_bit_xor,
677   ir_binop_bit_or,
678   /*@}*/
679
680   ir_binop_logic_and,
681   ir_binop_logic_xor,
682   ir_binop_logic_or,
683
684   ir_binop_dot,
685   ir_binop_cross,
686   ir_binop_min,
687   ir_binop_max,
688
689   ir_binop_pow
690};
691
692class ir_expression : public ir_rvalue {
693public:
694   ir_expression(int op, const struct glsl_type *type,
695		 ir_rvalue *, ir_rvalue *);
696
697   virtual ir_expression *as_expression()
698   {
699      return this;
700   }
701
702   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
703
704   virtual ir_constant *constant_expression_value();
705
706   static unsigned int get_num_operands(ir_expression_operation);
707   unsigned int get_num_operands() const
708   {
709      return get_num_operands(operation);
710   }
711
712   /**
713    * Return a string representing this expression's operator.
714    */
715   const char *operator_string();
716
717   /**
718    * Do a reverse-lookup to translate the given string into an operator.
719    */
720   static ir_expression_operation get_operator(const char *);
721
722   virtual void accept(ir_visitor *v)
723   {
724      v->visit(this);
725   }
726
727   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
728
729   ir_expression_operation operation;
730   ir_rvalue *operands[2];
731};
732
733
734/**
735 * IR instruction representing a function call
736 */
737class ir_call : public ir_rvalue {
738public:
739   ir_call(ir_function_signature *callee, exec_list *actual_parameters)
740      : callee(callee)
741   {
742      ir_type = ir_type_call;
743      assert(callee->return_type != NULL);
744      type = callee->return_type;
745      actual_parameters->move_nodes_to(& this->actual_parameters);
746   }
747
748   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
749
750   virtual ir_constant *constant_expression_value();
751
752   virtual ir_call *as_call()
753   {
754      return this;
755   }
756
757   virtual void accept(ir_visitor *v)
758   {
759      v->visit(this);
760   }
761
762   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
763
764   /**
765    * Get a generic ir_call object when an error occurs
766    *
767    * Any allocation will be performed with 'ctx' as talloc owner.
768    */
769   static ir_call *get_error_instruction(void *ctx);
770
771   /**
772    * Get an iterator for the set of acutal parameters
773    */
774   exec_list_iterator iterator()
775   {
776      return actual_parameters.iterator();
777   }
778
779   /**
780    * Get the name of the function being called.
781    */
782   const char *callee_name() const
783   {
784      return callee->function_name();
785   }
786
787   ir_function_signature *get_callee()
788   {
789      return callee;
790   }
791
792   /**
793    * Set the function call target
794    */
795   void set_callee(ir_function_signature *sig);
796
797   /**
798    * Generates an inline version of the function before @ir,
799    * returning the return value of the function.
800    */
801   ir_rvalue *generate_inline(ir_instruction *ir);
802
803   /* List of ir_rvalue of paramaters passed in this call. */
804   exec_list actual_parameters;
805
806private:
807   ir_call()
808      : callee(NULL)
809   {
810      this->ir_type = ir_type_call;
811   }
812
813   ir_function_signature *callee;
814};
815
816
817/**
818 * \name Jump-like IR instructions.
819 *
820 * These include \c break, \c continue, \c return, and \c discard.
821 */
822/*@{*/
823class ir_jump : public ir_instruction {
824protected:
825   ir_jump()
826   {
827      ir_type = ir_type_unset;
828   }
829};
830
831class ir_return : public ir_jump {
832public:
833   ir_return()
834      : value(NULL)
835   {
836      this->ir_type = ir_type_return;
837   }
838
839   ir_return(ir_rvalue *value)
840      : value(value)
841   {
842      this->ir_type = ir_type_return;
843   }
844
845   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
846
847   virtual ir_return *as_return()
848   {
849      return this;
850   }
851
852   ir_rvalue *get_value() const
853   {
854      return value;
855   }
856
857   virtual void accept(ir_visitor *v)
858   {
859      v->visit(this);
860   }
861
862   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
863
864   ir_rvalue *value;
865};
866
867
868/**
869 * Jump instructions used inside loops
870 *
871 * These include \c break and \c continue.  The \c break within a loop is
872 * different from the \c break within a switch-statement.
873 *
874 * \sa ir_switch_jump
875 */
876class ir_loop_jump : public ir_jump {
877public:
878   enum jump_mode {
879      jump_break,
880      jump_continue
881   };
882
883   ir_loop_jump(jump_mode mode)
884   {
885      this->ir_type = ir_type_loop_jump;
886      this->mode = mode;
887      this->loop = loop;
888   }
889
890   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
891
892   virtual void accept(ir_visitor *v)
893   {
894      v->visit(this);
895   }
896
897   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
898
899   bool is_break() const
900   {
901      return mode == jump_break;
902   }
903
904   bool is_continue() const
905   {
906      return mode == jump_continue;
907   }
908
909   /** Mode selector for the jump instruction. */
910   enum jump_mode mode;
911private:
912   /** Loop containing this break instruction. */
913   ir_loop *loop;
914};
915
916/**
917 * IR instruction representing discard statements.
918 */
919class ir_discard : public ir_jump {
920public:
921   ir_discard()
922   {
923      this->ir_type = ir_type_discard;
924      this->condition = NULL;
925   }
926
927   ir_discard(ir_rvalue *cond)
928   {
929      this->ir_type = ir_type_discard;
930      this->condition = cond;
931   }
932
933   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
934
935   virtual void accept(ir_visitor *v)
936   {
937      v->visit(this);
938   }
939
940   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
941
942   ir_rvalue *condition;
943};
944/*@}*/
945
946
947/**
948 * Texture sampling opcodes used in ir_texture
949 */
950enum ir_texture_opcode {
951   ir_tex,		/* Regular texture look-up */
952   ir_txb,		/* Texture look-up with LOD bias */
953   ir_txl,		/* Texture look-up with explicit LOD */
954   ir_txd,		/* Texture look-up with partial derivatvies */
955   ir_txf		/* Texel fetch with explicit LOD */
956};
957
958
959/**
960 * IR instruction to sample a texture
961 *
962 * The specific form of the IR instruction depends on the \c mode value
963 * selected from \c ir_texture_opcodes.  In the printed IR, these will
964 * appear as:
965 *
966 *                              Texel offset
967 *                              |       Projection divisor
968 *                              |       |   Shadow comparitor
969 *                              |       |   |
970 *                              v       v   v
971 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
972 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
973 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
974 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
975 * (txf (sampler) (coordinate) (0 0 0)         (lod))
976 */
977class ir_texture : public ir_rvalue {
978public:
979   ir_texture(enum ir_texture_opcode op)
980      : op(op), projector(NULL), shadow_comparitor(NULL)
981   {
982      this->ir_type = ir_type_texture;
983   }
984
985   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
986
987   virtual ir_constant *constant_expression_value();
988
989   virtual void accept(ir_visitor *v)
990   {
991      v->visit(this);
992   }
993
994   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
995
996   /**
997    * Return a string representing the ir_texture_opcode.
998    */
999   const char *opcode_string();
1000
1001   /** Set the sampler and infer the type. */
1002   void set_sampler(ir_dereference *sampler);
1003
1004   /**
1005    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1006    */
1007   static ir_texture_opcode get_opcode(const char *);
1008
1009   enum ir_texture_opcode op;
1010
1011   /** Sampler to use for the texture access. */
1012   ir_dereference *sampler;
1013
1014   /** Texture coordinate to sample */
1015   ir_rvalue *coordinate;
1016
1017   /**
1018    * Value used for projective divide.
1019    *
1020    * If there is no projective divide (the common case), this will be
1021    * \c NULL.  Optimization passes should check for this to point to a constant
1022    * of 1.0 and replace that with \c NULL.
1023    */
1024   ir_rvalue *projector;
1025
1026   /**
1027    * Coordinate used for comparison on shadow look-ups.
1028    *
1029    * If there is no shadow comparison, this will be \c NULL.  For the
1030    * \c ir_txf opcode, this *must* be \c NULL.
1031    */
1032   ir_rvalue *shadow_comparitor;
1033
1034   /** Explicit texel offsets. */
1035   signed char offsets[3];
1036
1037   union {
1038      ir_rvalue *lod;		/**< Floating point LOD */
1039      ir_rvalue *bias;		/**< Floating point LOD bias */
1040      struct {
1041	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1042	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1043      } grad;
1044   } lod_info;
1045};
1046
1047
1048struct ir_swizzle_mask {
1049   unsigned x:2;
1050   unsigned y:2;
1051   unsigned z:2;
1052   unsigned w:2;
1053
1054   /**
1055    * Number of components in the swizzle.
1056    */
1057   unsigned num_components:3;
1058
1059   /**
1060    * Does the swizzle contain duplicate components?
1061    *
1062    * L-value swizzles cannot contain duplicate components.
1063    */
1064   unsigned has_duplicates:1;
1065};
1066
1067
1068class ir_swizzle : public ir_rvalue {
1069public:
1070   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1071              unsigned count);
1072
1073   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1074
1075   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1076
1077   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1078
1079   virtual ir_constant *constant_expression_value();
1080
1081   virtual ir_swizzle *as_swizzle()
1082   {
1083      return this;
1084   }
1085
1086   /**
1087    * Construct an ir_swizzle from the textual representation.  Can fail.
1088    */
1089   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1090
1091   virtual void accept(ir_visitor *v)
1092   {
1093      v->visit(this);
1094   }
1095
1096   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1097
1098   bool is_lvalue()
1099   {
1100      return val->is_lvalue() && !mask.has_duplicates;
1101   }
1102
1103   /**
1104    * Get the variable that is ultimately referenced by an r-value
1105    */
1106   virtual ir_variable *variable_referenced();
1107
1108   ir_rvalue *val;
1109   ir_swizzle_mask mask;
1110
1111private:
1112   /**
1113    * Initialize the mask component of a swizzle
1114    *
1115    * This is used by the \c ir_swizzle constructors.
1116    */
1117   void init_mask(const unsigned *components, unsigned count);
1118};
1119
1120
1121class ir_dereference : public ir_rvalue {
1122public:
1123   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1124
1125   virtual ir_dereference *as_dereference()
1126   {
1127      return this;
1128   }
1129
1130   bool is_lvalue();
1131
1132   /**
1133    * Get the variable that is ultimately referenced by an r-value
1134    */
1135   virtual ir_variable *variable_referenced() = 0;
1136};
1137
1138
1139class ir_dereference_variable : public ir_dereference {
1140public:
1141   ir_dereference_variable(ir_variable *var);
1142
1143   virtual ir_dereference_variable *clone(void *mem_ctx,
1144					  struct hash_table *) const;
1145
1146   virtual ir_constant *constant_expression_value();
1147
1148   virtual ir_dereference_variable *as_dereference_variable()
1149   {
1150      return this;
1151   }
1152
1153   /**
1154    * Get the variable that is ultimately referenced by an r-value
1155    */
1156   virtual ir_variable *variable_referenced()
1157   {
1158      return this->var;
1159   }
1160
1161   virtual ir_variable *whole_variable_referenced()
1162   {
1163      /* ir_dereference_variable objects always dereference the entire
1164       * variable.  However, if this dereference is dereferenced by anything
1165       * else, the complete deferefernce chain is not a whole-variable
1166       * dereference.  This method should only be called on the top most
1167       * ir_rvalue in a dereference chain.
1168       */
1169      return this->var;
1170   }
1171
1172   virtual void accept(ir_visitor *v)
1173   {
1174      v->visit(this);
1175   }
1176
1177   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1178
1179   /**
1180    * Object being dereferenced.
1181    */
1182   ir_variable *var;
1183};
1184
1185
1186class ir_dereference_array : public ir_dereference {
1187public:
1188   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1189
1190   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1191
1192   virtual ir_dereference_array *clone(void *mem_ctx,
1193				       struct hash_table *) const;
1194
1195   virtual ir_constant *constant_expression_value();
1196
1197   virtual ir_dereference_array *as_dereference_array()
1198   {
1199      return this;
1200   }
1201
1202   /**
1203    * Get the variable that is ultimately referenced by an r-value
1204    */
1205   virtual ir_variable *variable_referenced()
1206   {
1207      return this->array->variable_referenced();
1208   }
1209
1210   virtual void accept(ir_visitor *v)
1211   {
1212      v->visit(this);
1213   }
1214
1215   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1216
1217   ir_rvalue *array;
1218   ir_rvalue *array_index;
1219
1220private:
1221   void set_array(ir_rvalue *value);
1222};
1223
1224
1225class ir_dereference_record : public ir_dereference {
1226public:
1227   ir_dereference_record(ir_rvalue *value, const char *field);
1228
1229   ir_dereference_record(ir_variable *var, const char *field);
1230
1231   virtual ir_dereference_record *clone(void *mem_ctx,
1232					struct hash_table *) const;
1233
1234   virtual ir_constant *constant_expression_value();
1235
1236   /**
1237    * Get the variable that is ultimately referenced by an r-value
1238    */
1239   virtual ir_variable *variable_referenced()
1240   {
1241      return this->record->variable_referenced();
1242   }
1243
1244   virtual void accept(ir_visitor *v)
1245   {
1246      v->visit(this);
1247   }
1248
1249   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1250
1251   ir_rvalue *record;
1252   const char *field;
1253};
1254
1255
1256/**
1257 * Data stored in an ir_constant
1258 */
1259union ir_constant_data {
1260      unsigned u[16];
1261      int i[16];
1262      float f[16];
1263      bool b[16];
1264};
1265
1266
1267class ir_constant : public ir_rvalue {
1268public:
1269   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1270   ir_constant(bool b);
1271   ir_constant(unsigned int u);
1272   ir_constant(int i);
1273   ir_constant(float f);
1274
1275   /**
1276    * Construct an ir_constant from a list of ir_constant values
1277    */
1278   ir_constant(const struct glsl_type *type, exec_list *values);
1279
1280   /**
1281    * Construct an ir_constant from a scalar component of another ir_constant
1282    *
1283    * The new \c ir_constant inherits the type of the component from the
1284    * source constant.
1285    *
1286    * \note
1287    * In the case of a matrix constant, the new constant is a scalar, \b not
1288    * a vector.
1289    */
1290   ir_constant(const ir_constant *c, unsigned i);
1291
1292   /**
1293    * Return a new ir_constant of the specified type containing all zeros.
1294    */
1295   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1296
1297   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1298
1299   virtual ir_constant *constant_expression_value();
1300
1301   virtual ir_constant *as_constant()
1302   {
1303      return this;
1304   }
1305
1306   virtual void accept(ir_visitor *v)
1307   {
1308      v->visit(this);
1309   }
1310
1311   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1312
1313   /**
1314    * Get a particular component of a constant as a specific type
1315    *
1316    * This is useful, for example, to get a value from an integer constant
1317    * as a float or bool.  This appears frequently when constructors are
1318    * called with all constant parameters.
1319    */
1320   /*@{*/
1321   bool get_bool_component(unsigned i) const;
1322   float get_float_component(unsigned i) const;
1323   int get_int_component(unsigned i) const;
1324   unsigned get_uint_component(unsigned i) const;
1325   /*@}*/
1326
1327   ir_constant *get_array_element(unsigned i) const;
1328
1329   ir_constant *get_record_field(const char *name);
1330
1331   /**
1332    * Determine whether a constant has the same value as another constant
1333    */
1334   bool has_value(const ir_constant *) const;
1335
1336   /**
1337    * Value of the constant.
1338    *
1339    * The field used to back the values supplied by the constant is determined
1340    * by the type associated with the \c ir_instruction.  Constants may be
1341    * scalars, vectors, or matrices.
1342    */
1343   union ir_constant_data value;
1344
1345   /* Array elements */
1346   ir_constant **array_elements;
1347
1348   /* Structure fields */
1349   exec_list components;
1350
1351private:
1352   /**
1353    * Parameterless constructor only used by the clone method
1354    */
1355   ir_constant(void);
1356};
1357
1358void
1359visit_exec_list(exec_list *list, ir_visitor *visitor);
1360
1361void validate_ir_tree(exec_list *instructions);
1362
1363/**
1364 * Make a clone of each IR instruction in a list
1365 *
1366 * \param in   List of IR instructions that are to be cloned
1367 * \param out  List to hold the cloned instructions
1368 */
1369void
1370clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1371
1372extern void
1373_mesa_glsl_initialize_variables(exec_list *instructions,
1374				struct _mesa_glsl_parse_state *state);
1375
1376extern void
1377_mesa_glsl_initialize_functions(exec_list *instructions,
1378				struct _mesa_glsl_parse_state *state);
1379
1380extern void
1381_mesa_glsl_release_functions(void);
1382
1383extern void
1384reparent_ir(exec_list *list, void *mem_ctx);
1385
1386class glsl_symbol_table;
1387
1388extern void
1389import_prototypes(const exec_list *source, exec_list *dest,
1390		  class glsl_symbol_table *symbols, void *mem_ctx);
1391
1392extern bool
1393ir_has_call(ir_instruction *ir);
1394
1395#endif /* IR_H */
1396