linker.cpp revision 942d452047431f7463d3fad5e7cb92dfd81fd0ac
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 *   - Undefined references in each shader are resolve to definitions in
36 *     another shader.
37 *   - Types and qualifiers of uniforms, outputs, and global variables defined
38 *     in multiple shaders with the same name are verified to be the same.
39 *   - Initializers for uniforms and global variables defined
40 *     in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 *   - Each shader executable must define a \c main function.
49 *   - Each vertex shader executable must write to \c gl_Position.
50 *   - Each fragment shader executable must write to either \c gl_FragData or
51 *     \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 *   - Types of uniforms defined in multiple shader stages with the same name
57 *     are verified to be the same.
58 *   - Initializers for uniforms defined in multiple shader stages with the
59 *     same name are verified to be the same.
60 *   - Types and qualifiers of outputs defined in one stage are verified to
61 *     be the same as the types and qualifiers of inputs defined with the same
62 *     name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67#include "main/core.h"
68#include "glsl_symbol_table.h"
69#include "ir.h"
70#include "program.h"
71#include "program/hash_table.h"
72#include "linker.h"
73#include "ir_optimization.h"
74
75extern "C" {
76#include "main/shaderobj.h"
77}
78
79/**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82class find_assignment_visitor : public ir_hierarchical_visitor {
83public:
84   find_assignment_visitor(const char *name)
85      : name(name), found(false)
86   {
87      /* empty */
88   }
89
90   virtual ir_visitor_status visit_enter(ir_assignment *ir)
91   {
92      ir_variable *const var = ir->lhs->variable_referenced();
93
94      if (strcmp(name, var->name) == 0) {
95	 found = true;
96	 return visit_stop;
97      }
98
99      return visit_continue_with_parent;
100   }
101
102   virtual ir_visitor_status visit_enter(ir_call *ir)
103   {
104      exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
105      foreach_iter(exec_list_iterator, iter, *ir) {
106	 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107	 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109	 if (sig_param->mode == ir_var_out ||
110	     sig_param->mode == ir_var_inout) {
111	    ir_variable *var = param_rval->variable_referenced();
112	    if (var && strcmp(name, var->name) == 0) {
113	       found = true;
114	       return visit_stop;
115	    }
116	 }
117	 sig_iter.next();
118      }
119
120      return visit_continue_with_parent;
121   }
122
123   bool variable_found()
124   {
125      return found;
126   }
127
128private:
129   const char *name;       /**< Find writes to a variable with this name. */
130   bool found;             /**< Was a write to the variable found? */
131};
132
133
134/**
135 * Visitor that determines whether or not a variable is ever read.
136 */
137class find_deref_visitor : public ir_hierarchical_visitor {
138public:
139   find_deref_visitor(const char *name)
140      : name(name), found(false)
141   {
142      /* empty */
143   }
144
145   virtual ir_visitor_status visit(ir_dereference_variable *ir)
146   {
147      if (strcmp(this->name, ir->var->name) == 0) {
148	 this->found = true;
149	 return visit_stop;
150      }
151
152      return visit_continue;
153   }
154
155   bool variable_found() const
156   {
157      return this->found;
158   }
159
160private:
161   const char *name;       /**< Find writes to a variable with this name. */
162   bool found;             /**< Was a write to the variable found? */
163};
164
165
166void
167linker_error(gl_shader_program *prog, const char *fmt, ...)
168{
169   va_list ap;
170
171   ralloc_strcat(&prog->InfoLog, "error: ");
172   va_start(ap, fmt);
173   ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
174   va_end(ap);
175
176   prog->LinkStatus = false;
177}
178
179
180void
181linker_warning(gl_shader_program *prog, const char *fmt, ...)
182{
183   va_list ap;
184
185   ralloc_strcat(&prog->InfoLog, "error: ");
186   va_start(ap, fmt);
187   ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
188   va_end(ap);
189
190}
191
192
193void
194link_invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
195				   int generic_base)
196{
197   foreach_list(node, sh->ir) {
198      ir_variable *const var = ((ir_instruction *) node)->as_variable();
199
200      if ((var == NULL) || (var->mode != (unsigned) mode))
201	 continue;
202
203      /* Only assign locations for generic attributes / varyings / etc.
204       */
205      if ((var->location >= generic_base) && !var->explicit_location)
206	  var->location = -1;
207   }
208}
209
210
211/**
212 * Determine the number of attribute slots required for a particular type
213 *
214 * This code is here because it implements the language rules of a specific
215 * GLSL version.  Since it's a property of the language and not a property of
216 * types in general, it doesn't really belong in glsl_type.
217 */
218unsigned
219count_attribute_slots(const glsl_type *t)
220{
221   /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
222    *
223    *     "A scalar input counts the same amount against this limit as a vec4,
224    *     so applications may want to consider packing groups of four
225    *     unrelated float inputs together into a vector to better utilize the
226    *     capabilities of the underlying hardware. A matrix input will use up
227    *     multiple locations.  The number of locations used will equal the
228    *     number of columns in the matrix."
229    *
230    * The spec does not explicitly say how arrays are counted.  However, it
231    * should be safe to assume the total number of slots consumed by an array
232    * is the number of entries in the array multiplied by the number of slots
233    * consumed by a single element of the array.
234    */
235
236   if (t->is_array())
237      return t->array_size() * count_attribute_slots(t->element_type());
238
239   if (t->is_matrix())
240      return t->matrix_columns;
241
242   return 1;
243}
244
245
246/**
247 * Verify that a vertex shader executable meets all semantic requirements.
248 *
249 * Also sets prog->Vert.UsesClipDistance as a side effect.
250 *
251 * \param shader  Vertex shader executable to be verified
252 */
253bool
254validate_vertex_shader_executable(struct gl_shader_program *prog,
255				  struct gl_shader *shader)
256{
257   if (shader == NULL)
258      return true;
259
260   find_assignment_visitor find("gl_Position");
261   find.run(shader->ir);
262   if (!find.variable_found()) {
263      linker_error(prog, "vertex shader does not write to `gl_Position'\n");
264      return false;
265   }
266
267   if (prog->Version >= 130) {
268      /* From section 7.1 (Vertex Shader Special Variables) of the
269       * GLSL 1.30 spec:
270       *
271       *   "It is an error for a shader to statically write both
272       *   gl_ClipVertex and gl_ClipDistance."
273       */
274      find_assignment_visitor clip_vertex("gl_ClipVertex");
275      find_assignment_visitor clip_distance("gl_ClipDistance");
276
277      clip_vertex.run(shader->ir);
278      clip_distance.run(shader->ir);
279      if (clip_vertex.variable_found() && clip_distance.variable_found()) {
280         linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
281                      "and `gl_ClipDistance'\n");
282         return false;
283      }
284      prog->Vert.UsesClipDistance = clip_distance.variable_found();
285   }
286
287   return true;
288}
289
290
291/**
292 * Verify that a fragment shader executable meets all semantic requirements
293 *
294 * \param shader  Fragment shader executable to be verified
295 */
296bool
297validate_fragment_shader_executable(struct gl_shader_program *prog,
298				    struct gl_shader *shader)
299{
300   if (shader == NULL)
301      return true;
302
303   find_assignment_visitor frag_color("gl_FragColor");
304   find_assignment_visitor frag_data("gl_FragData");
305
306   frag_color.run(shader->ir);
307   frag_data.run(shader->ir);
308
309   if (frag_color.variable_found() && frag_data.variable_found()) {
310      linker_error(prog,  "fragment shader writes to both "
311		   "`gl_FragColor' and `gl_FragData'\n");
312      return false;
313   }
314
315   return true;
316}
317
318
319/**
320 * Generate a string describing the mode of a variable
321 */
322static const char *
323mode_string(const ir_variable *var)
324{
325   switch (var->mode) {
326   case ir_var_auto:
327      return (var->read_only) ? "global constant" : "global variable";
328
329   case ir_var_uniform: return "uniform";
330   case ir_var_in:      return "shader input";
331   case ir_var_out:     return "shader output";
332   case ir_var_inout:   return "shader inout";
333
334   case ir_var_const_in:
335   case ir_var_temporary:
336   default:
337      assert(!"Should not get here.");
338      return "invalid variable";
339   }
340}
341
342
343/**
344 * Perform validation of global variables used across multiple shaders
345 */
346bool
347cross_validate_globals(struct gl_shader_program *prog,
348		       struct gl_shader **shader_list,
349		       unsigned num_shaders,
350		       bool uniforms_only)
351{
352   /* Examine all of the uniforms in all of the shaders and cross validate
353    * them.
354    */
355   glsl_symbol_table variables;
356   for (unsigned i = 0; i < num_shaders; i++) {
357      if (shader_list[i] == NULL)
358	 continue;
359
360      foreach_list(node, shader_list[i]->ir) {
361	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
362
363	 if (var == NULL)
364	    continue;
365
366	 if (uniforms_only && (var->mode != ir_var_uniform))
367	    continue;
368
369	 /* Don't cross validate temporaries that are at global scope.  These
370	  * will eventually get pulled into the shaders 'main'.
371	  */
372	 if (var->mode == ir_var_temporary)
373	    continue;
374
375	 /* If a global with this name has already been seen, verify that the
376	  * new instance has the same type.  In addition, if the globals have
377	  * initializers, the values of the initializers must be the same.
378	  */
379	 ir_variable *const existing = variables.get_variable(var->name);
380	 if (existing != NULL) {
381	    if (var->type != existing->type) {
382	       /* Consider the types to be "the same" if both types are arrays
383		* of the same type and one of the arrays is implicitly sized.
384		* In addition, set the type of the linked variable to the
385		* explicitly sized array.
386		*/
387	       if (var->type->is_array()
388		   && existing->type->is_array()
389		   && (var->type->fields.array == existing->type->fields.array)
390		   && ((var->type->length == 0)
391		       || (existing->type->length == 0))) {
392		  if (var->type->length != 0) {
393		     existing->type = var->type;
394		  }
395	       } else {
396		  linker_error(prog, "%s `%s' declared as type "
397			       "`%s' and type `%s'\n",
398			       mode_string(var),
399			       var->name, var->type->name,
400			       existing->type->name);
401		  return false;
402	       }
403	    }
404
405	    if (var->explicit_location) {
406	       if (existing->explicit_location
407		   && (var->location != existing->location)) {
408		     linker_error(prog, "explicit locations for %s "
409				  "`%s' have differing values\n",
410				  mode_string(var), var->name);
411		     return false;
412	       }
413
414	       existing->location = var->location;
415	       existing->explicit_location = true;
416	    }
417
418	    /* Validate layout qualifiers for gl_FragDepth.
419	     *
420	     * From the AMD/ARB_conservative_depth specs:
421	     *
422	     *    "If gl_FragDepth is redeclared in any fragment shader in a
423	     *    program, it must be redeclared in all fragment shaders in
424	     *    that program that have static assignments to
425	     *    gl_FragDepth. All redeclarations of gl_FragDepth in all
426	     *    fragment shaders in a single program must have the same set
427	     *    of qualifiers."
428	     */
429	    if (strcmp(var->name, "gl_FragDepth") == 0) {
430	       bool layout_declared = var->depth_layout != ir_depth_layout_none;
431	       bool layout_differs =
432		  var->depth_layout != existing->depth_layout;
433
434	       if (layout_declared && layout_differs) {
435		  linker_error(prog,
436			       "All redeclarations of gl_FragDepth in all "
437			       "fragment shaders in a single program must have "
438			       "the same set of qualifiers.");
439	       }
440
441	       if (var->used && layout_differs) {
442		  linker_error(prog,
443			       "If gl_FragDepth is redeclared with a layout "
444			       "qualifier in any fragment shader, it must be "
445			       "redeclared with the same layout qualifier in "
446			       "all fragment shaders that have assignments to "
447			       "gl_FragDepth");
448	       }
449	    }
450
451	    /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
452	     *
453	     *     "If a shared global has multiple initializers, the
454	     *     initializers must all be constant expressions, and they
455	     *     must all have the same value. Otherwise, a link error will
456	     *     result. (A shared global having only one initializer does
457	     *     not require that initializer to be a constant expression.)"
458	     *
459	     * Previous to 4.20 the GLSL spec simply said that initializers
460	     * must have the same value.  In this case of non-constant
461	     * initializers, this was impossible to determine.  As a result,
462	     * no vendor actually implemented that behavior.  The 4.20
463	     * behavior matches the implemented behavior of at least one other
464	     * vendor, so we'll implement that for all GLSL versions.
465	     */
466	    if (var->constant_initializer != NULL) {
467	       if (existing->constant_initializer != NULL) {
468		  if (!var->constant_initializer->has_value(existing->constant_initializer)) {
469		     linker_error(prog, "initializers for %s "
470				  "`%s' have differing values\n",
471				  mode_string(var), var->name);
472		     return false;
473		  }
474	       } else {
475		  /* If the first-seen instance of a particular uniform did not
476		   * have an initializer but a later instance does, copy the
477		   * initializer to the version stored in the symbol table.
478		   */
479		  /* FINISHME: This is wrong.  The constant_value field should
480		   * FINISHME: not be modified!  Imagine a case where a shader
481		   * FINISHME: without an initializer is linked in two different
482		   * FINISHME: programs with shaders that have differing
483		   * FINISHME: initializers.  Linking with the first will
484		   * FINISHME: modify the shader, and linking with the second
485		   * FINISHME: will fail.
486		   */
487		  existing->constant_initializer =
488		     var->constant_initializer->clone(ralloc_parent(existing),
489						      NULL);
490	       }
491	    }
492
493	    if (var->has_initializer) {
494	       if (existing->has_initializer
495		   && (var->constant_initializer == NULL
496		       || existing->constant_initializer == NULL)) {
497		  linker_error(prog,
498			       "shared global variable `%s' has multiple "
499			       "non-constant initializers.\n",
500			       var->name);
501		  return false;
502	       }
503
504	       /* Some instance had an initializer, so keep track of that.  In
505		* this location, all sorts of initializers (constant or
506		* otherwise) will propagate the existence to the variable
507		* stored in the symbol table.
508		*/
509	       existing->has_initializer = true;
510	    }
511
512	    if (existing->invariant != var->invariant) {
513	       linker_error(prog, "declarations for %s `%s' have "
514			    "mismatching invariant qualifiers\n",
515			    mode_string(var), var->name);
516	       return false;
517	    }
518            if (existing->centroid != var->centroid) {
519               linker_error(prog, "declarations for %s `%s' have "
520			    "mismatching centroid qualifiers\n",
521			    mode_string(var), var->name);
522               return false;
523            }
524	 } else
525	    variables.add_variable(var);
526      }
527   }
528
529   return true;
530}
531
532
533/**
534 * Perform validation of uniforms used across multiple shader stages
535 */
536bool
537cross_validate_uniforms(struct gl_shader_program *prog)
538{
539   return cross_validate_globals(prog, prog->_LinkedShaders,
540				 MESA_SHADER_TYPES, true);
541}
542
543
544/**
545 * Validate that outputs from one stage match inputs of another
546 */
547bool
548cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
549				 gl_shader *producer, gl_shader *consumer)
550{
551   glsl_symbol_table parameters;
552   /* FINISHME: Figure these out dynamically. */
553   const char *const producer_stage = "vertex";
554   const char *const consumer_stage = "fragment";
555
556   /* Find all shader outputs in the "producer" stage.
557    */
558   foreach_list(node, producer->ir) {
559      ir_variable *const var = ((ir_instruction *) node)->as_variable();
560
561      /* FINISHME: For geometry shaders, this should also look for inout
562       * FINISHME: variables.
563       */
564      if ((var == NULL) || (var->mode != ir_var_out))
565	 continue;
566
567      parameters.add_variable(var);
568   }
569
570
571   /* Find all shader inputs in the "consumer" stage.  Any variables that have
572    * matching outputs already in the symbol table must have the same type and
573    * qualifiers.
574    */
575   foreach_list(node, consumer->ir) {
576      ir_variable *const input = ((ir_instruction *) node)->as_variable();
577
578      /* FINISHME: For geometry shaders, this should also look for inout
579       * FINISHME: variables.
580       */
581      if ((input == NULL) || (input->mode != ir_var_in))
582	 continue;
583
584      ir_variable *const output = parameters.get_variable(input->name);
585      if (output != NULL) {
586	 /* Check that the types match between stages.
587	  */
588	 if (input->type != output->type) {
589	    /* There is a bit of a special case for gl_TexCoord.  This
590	     * built-in is unsized by default.  Applications that variable
591	     * access it must redeclare it with a size.  There is some
592	     * language in the GLSL spec that implies the fragment shader
593	     * and vertex shader do not have to agree on this size.  Other
594	     * driver behave this way, and one or two applications seem to
595	     * rely on it.
596	     *
597	     * Neither declaration needs to be modified here because the array
598	     * sizes are fixed later when update_array_sizes is called.
599	     *
600	     * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
601	     *
602	     *     "Unlike user-defined varying variables, the built-in
603	     *     varying variables don't have a strict one-to-one
604	     *     correspondence between the vertex language and the
605	     *     fragment language."
606	     */
607	    if (!output->type->is_array()
608		|| (strncmp("gl_", output->name, 3) != 0)) {
609	       linker_error(prog,
610			    "%s shader output `%s' declared as type `%s', "
611			    "but %s shader input declared as type `%s'\n",
612			    producer_stage, output->name,
613			    output->type->name,
614			    consumer_stage, input->type->name);
615	       return false;
616	    }
617	 }
618
619	 /* Check that all of the qualifiers match between stages.
620	  */
621	 if (input->centroid != output->centroid) {
622	    linker_error(prog,
623			 "%s shader output `%s' %s centroid qualifier, "
624			 "but %s shader input %s centroid qualifier\n",
625			 producer_stage,
626			 output->name,
627			 (output->centroid) ? "has" : "lacks",
628			 consumer_stage,
629			 (input->centroid) ? "has" : "lacks");
630	    return false;
631	 }
632
633	 if (input->invariant != output->invariant) {
634	    linker_error(prog,
635			 "%s shader output `%s' %s invariant qualifier, "
636			 "but %s shader input %s invariant qualifier\n",
637			 producer_stage,
638			 output->name,
639			 (output->invariant) ? "has" : "lacks",
640			 consumer_stage,
641			 (input->invariant) ? "has" : "lacks");
642	    return false;
643	 }
644
645	 if (input->interpolation != output->interpolation) {
646	    linker_error(prog,
647			 "%s shader output `%s' specifies %s "
648			 "interpolation qualifier, "
649			 "but %s shader input specifies %s "
650			 "interpolation qualifier\n",
651			 producer_stage,
652			 output->name,
653			 output->interpolation_string(),
654			 consumer_stage,
655			 input->interpolation_string());
656	    return false;
657	 }
658      }
659   }
660
661   return true;
662}
663
664
665/**
666 * Populates a shaders symbol table with all global declarations
667 */
668static void
669populate_symbol_table(gl_shader *sh)
670{
671   sh->symbols = new(sh) glsl_symbol_table;
672
673   foreach_list(node, sh->ir) {
674      ir_instruction *const inst = (ir_instruction *) node;
675      ir_variable *var;
676      ir_function *func;
677
678      if ((func = inst->as_function()) != NULL) {
679	 sh->symbols->add_function(func);
680      } else if ((var = inst->as_variable()) != NULL) {
681	 sh->symbols->add_variable(var);
682      }
683   }
684}
685
686
687/**
688 * Remap variables referenced in an instruction tree
689 *
690 * This is used when instruction trees are cloned from one shader and placed in
691 * another.  These trees will contain references to \c ir_variable nodes that
692 * do not exist in the target shader.  This function finds these \c ir_variable
693 * references and replaces the references with matching variables in the target
694 * shader.
695 *
696 * If there is no matching variable in the target shader, a clone of the
697 * \c ir_variable is made and added to the target shader.  The new variable is
698 * added to \b both the instruction stream and the symbol table.
699 *
700 * \param inst         IR tree that is to be processed.
701 * \param symbols      Symbol table containing global scope symbols in the
702 *                     linked shader.
703 * \param instructions Instruction stream where new variable declarations
704 *                     should be added.
705 */
706void
707remap_variables(ir_instruction *inst, struct gl_shader *target,
708		hash_table *temps)
709{
710   class remap_visitor : public ir_hierarchical_visitor {
711   public:
712	 remap_visitor(struct gl_shader *target,
713		    hash_table *temps)
714      {
715	 this->target = target;
716	 this->symbols = target->symbols;
717	 this->instructions = target->ir;
718	 this->temps = temps;
719      }
720
721      virtual ir_visitor_status visit(ir_dereference_variable *ir)
722      {
723	 if (ir->var->mode == ir_var_temporary) {
724	    ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
725
726	    assert(var != NULL);
727	    ir->var = var;
728	    return visit_continue;
729	 }
730
731	 ir_variable *const existing =
732	    this->symbols->get_variable(ir->var->name);
733	 if (existing != NULL)
734	    ir->var = existing;
735	 else {
736	    ir_variable *copy = ir->var->clone(this->target, NULL);
737
738	    this->symbols->add_variable(copy);
739	    this->instructions->push_head(copy);
740	    ir->var = copy;
741	 }
742
743	 return visit_continue;
744      }
745
746   private:
747      struct gl_shader *target;
748      glsl_symbol_table *symbols;
749      exec_list *instructions;
750      hash_table *temps;
751   };
752
753   remap_visitor v(target, temps);
754
755   inst->accept(&v);
756}
757
758
759/**
760 * Move non-declarations from one instruction stream to another
761 *
762 * The intended usage pattern of this function is to pass the pointer to the
763 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
764 * pointer) for \c last and \c false for \c make_copies on the first
765 * call.  Successive calls pass the return value of the previous call for
766 * \c last and \c true for \c make_copies.
767 *
768 * \param instructions Source instruction stream
769 * \param last         Instruction after which new instructions should be
770 *                     inserted in the target instruction stream
771 * \param make_copies  Flag selecting whether instructions in \c instructions
772 *                     should be copied (via \c ir_instruction::clone) into the
773 *                     target list or moved.
774 *
775 * \return
776 * The new "last" instruction in the target instruction stream.  This pointer
777 * is suitable for use as the \c last parameter of a later call to this
778 * function.
779 */
780exec_node *
781move_non_declarations(exec_list *instructions, exec_node *last,
782		      bool make_copies, gl_shader *target)
783{
784   hash_table *temps = NULL;
785
786   if (make_copies)
787      temps = hash_table_ctor(0, hash_table_pointer_hash,
788			      hash_table_pointer_compare);
789
790   foreach_list_safe(node, instructions) {
791      ir_instruction *inst = (ir_instruction *) node;
792
793      if (inst->as_function())
794	 continue;
795
796      ir_variable *var = inst->as_variable();
797      if ((var != NULL) && (var->mode != ir_var_temporary))
798	 continue;
799
800      assert(inst->as_assignment()
801	     || ((var != NULL) && (var->mode == ir_var_temporary)));
802
803      if (make_copies) {
804	 inst = inst->clone(target, NULL);
805
806	 if (var != NULL)
807	    hash_table_insert(temps, inst, var);
808	 else
809	    remap_variables(inst, target, temps);
810      } else {
811	 inst->remove();
812      }
813
814      last->insert_after(inst);
815      last = inst;
816   }
817
818   if (make_copies)
819      hash_table_dtor(temps);
820
821   return last;
822}
823
824/**
825 * Get the function signature for main from a shader
826 */
827static ir_function_signature *
828get_main_function_signature(gl_shader *sh)
829{
830   ir_function *const f = sh->symbols->get_function("main");
831   if (f != NULL) {
832      exec_list void_parameters;
833
834      /* Look for the 'void main()' signature and ensure that it's defined.
835       * This keeps the linker from accidentally pick a shader that just
836       * contains a prototype for main.
837       *
838       * We don't have to check for multiple definitions of main (in multiple
839       * shaders) because that would have already been caught above.
840       */
841      ir_function_signature *sig = f->matching_signature(&void_parameters);
842      if ((sig != NULL) && sig->is_defined) {
843	 return sig;
844      }
845   }
846
847   return NULL;
848}
849
850
851/**
852 * Combine a group of shaders for a single stage to generate a linked shader
853 *
854 * \note
855 * If this function is supplied a single shader, it is cloned, and the new
856 * shader is returned.
857 */
858static struct gl_shader *
859link_intrastage_shaders(void *mem_ctx,
860			struct gl_context *ctx,
861			struct gl_shader_program *prog,
862			struct gl_shader **shader_list,
863			unsigned num_shaders)
864{
865   /* Check that global variables defined in multiple shaders are consistent.
866    */
867   if (!cross_validate_globals(prog, shader_list, num_shaders, false))
868      return NULL;
869
870   /* Check that there is only a single definition of each function signature
871    * across all shaders.
872    */
873   for (unsigned i = 0; i < (num_shaders - 1); i++) {
874      foreach_list(node, shader_list[i]->ir) {
875	 ir_function *const f = ((ir_instruction *) node)->as_function();
876
877	 if (f == NULL)
878	    continue;
879
880	 for (unsigned j = i + 1; j < num_shaders; j++) {
881	    ir_function *const other =
882	       shader_list[j]->symbols->get_function(f->name);
883
884	    /* If the other shader has no function (and therefore no function
885	     * signatures) with the same name, skip to the next shader.
886	     */
887	    if (other == NULL)
888	       continue;
889
890	    foreach_iter (exec_list_iterator, iter, *f) {
891	       ir_function_signature *sig =
892		  (ir_function_signature *) iter.get();
893
894	       if (!sig->is_defined || sig->is_builtin)
895		  continue;
896
897	       ir_function_signature *other_sig =
898		  other->exact_matching_signature(& sig->parameters);
899
900	       if ((other_sig != NULL) && other_sig->is_defined
901		   && !other_sig->is_builtin) {
902		  linker_error(prog, "function `%s' is multiply defined",
903			       f->name);
904		  return NULL;
905	       }
906	    }
907	 }
908      }
909   }
910
911   /* Find the shader that defines main, and make a clone of it.
912    *
913    * Starting with the clone, search for undefined references.  If one is
914    * found, find the shader that defines it.  Clone the reference and add
915    * it to the shader.  Repeat until there are no undefined references or
916    * until a reference cannot be resolved.
917    */
918   gl_shader *main = NULL;
919   for (unsigned i = 0; i < num_shaders; i++) {
920      if (get_main_function_signature(shader_list[i]) != NULL) {
921	 main = shader_list[i];
922	 break;
923      }
924   }
925
926   if (main == NULL) {
927      linker_error(prog, "%s shader lacks `main'\n",
928		   (shader_list[0]->Type == GL_VERTEX_SHADER)
929		   ? "vertex" : "fragment");
930      return NULL;
931   }
932
933   gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
934   linked->ir = new(linked) exec_list;
935   clone_ir_list(mem_ctx, linked->ir, main->ir);
936
937   populate_symbol_table(linked);
938
939   /* The a pointer to the main function in the final linked shader (i.e., the
940    * copy of the original shader that contained the main function).
941    */
942   ir_function_signature *const main_sig = get_main_function_signature(linked);
943
944   /* Move any instructions other than variable declarations or function
945    * declarations into main.
946    */
947   exec_node *insertion_point =
948      move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
949			    linked);
950
951   for (unsigned i = 0; i < num_shaders; i++) {
952      if (shader_list[i] == main)
953	 continue;
954
955      insertion_point = move_non_declarations(shader_list[i]->ir,
956					      insertion_point, true, linked);
957   }
958
959   /* Resolve initializers for global variables in the linked shader.
960    */
961   unsigned num_linking_shaders = num_shaders;
962   for (unsigned i = 0; i < num_shaders; i++)
963      num_linking_shaders += shader_list[i]->num_builtins_to_link;
964
965   gl_shader **linking_shaders =
966      (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
967
968   memcpy(linking_shaders, shader_list,
969	  sizeof(linking_shaders[0]) * num_shaders);
970
971   unsigned idx = num_shaders;
972   for (unsigned i = 0; i < num_shaders; i++) {
973      memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
974	     sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
975      idx += shader_list[i]->num_builtins_to_link;
976   }
977
978   assert(idx == num_linking_shaders);
979
980   if (!link_function_calls(prog, linked, linking_shaders,
981			    num_linking_shaders)) {
982      ctx->Driver.DeleteShader(ctx, linked);
983      linked = NULL;
984   }
985
986   free(linking_shaders);
987
988#ifdef DEBUG
989   /* At this point linked should contain all of the linked IR, so
990    * validate it to make sure nothing went wrong.
991    */
992   if (linked)
993      validate_ir_tree(linked->ir);
994#endif
995
996   /* Make a pass over all variable declarations to ensure that arrays with
997    * unspecified sizes have a size specified.  The size is inferred from the
998    * max_array_access field.
999    */
1000   if (linked != NULL) {
1001      class array_sizing_visitor : public ir_hierarchical_visitor {
1002      public:
1003	 virtual ir_visitor_status visit(ir_variable *var)
1004	 {
1005	    if (var->type->is_array() && (var->type->length == 0)) {
1006	       const glsl_type *type =
1007		  glsl_type::get_array_instance(var->type->fields.array,
1008						var->max_array_access + 1);
1009
1010	       assert(type != NULL);
1011	       var->type = type;
1012	    }
1013
1014	    return visit_continue;
1015	 }
1016      } v;
1017
1018      v.run(linked->ir);
1019   }
1020
1021   return linked;
1022}
1023
1024/**
1025 * Update the sizes of linked shader uniform arrays to the maximum
1026 * array index used.
1027 *
1028 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1029 *
1030 *     If one or more elements of an array are active,
1031 *     GetActiveUniform will return the name of the array in name,
1032 *     subject to the restrictions listed above. The type of the array
1033 *     is returned in type. The size parameter contains the highest
1034 *     array element index used, plus one. The compiler or linker
1035 *     determines the highest index used.  There will be only one
1036 *     active uniform reported by the GL per uniform array.
1037
1038 */
1039static void
1040update_array_sizes(struct gl_shader_program *prog)
1041{
1042   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1043	 if (prog->_LinkedShaders[i] == NULL)
1044	    continue;
1045
1046      foreach_list(node, prog->_LinkedShaders[i]->ir) {
1047	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1048
1049	 if ((var == NULL) || (var->mode != ir_var_uniform &&
1050			       var->mode != ir_var_in &&
1051			       var->mode != ir_var_out) ||
1052	     !var->type->is_array())
1053	    continue;
1054
1055	 unsigned int size = var->max_array_access;
1056	 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1057	       if (prog->_LinkedShaders[j] == NULL)
1058		  continue;
1059
1060	    foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1061	       ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1062	       if (!other_var)
1063		  continue;
1064
1065	       if (strcmp(var->name, other_var->name) == 0 &&
1066		   other_var->max_array_access > size) {
1067		  size = other_var->max_array_access;
1068	       }
1069	    }
1070	 }
1071
1072	 if (size + 1 != var->type->fields.array->length) {
1073	    /* If this is a built-in uniform (i.e., it's backed by some
1074	     * fixed-function state), adjust the number of state slots to
1075	     * match the new array size.  The number of slots per array entry
1076	     * is not known.  It seems safe to assume that the total number of
1077	     * slots is an integer multiple of the number of array elements.
1078	     * Determine the number of slots per array element by dividing by
1079	     * the old (total) size.
1080	     */
1081	    if (var->num_state_slots > 0) {
1082	       var->num_state_slots = (size + 1)
1083		  * (var->num_state_slots / var->type->length);
1084	    }
1085
1086	    var->type = glsl_type::get_array_instance(var->type->fields.array,
1087						      size + 1);
1088	    /* FINISHME: We should update the types of array
1089	     * dereferences of this variable now.
1090	     */
1091	 }
1092      }
1093   }
1094}
1095
1096/**
1097 * Find a contiguous set of available bits in a bitmask.
1098 *
1099 * \param used_mask     Bits representing used (1) and unused (0) locations
1100 * \param needed_count  Number of contiguous bits needed.
1101 *
1102 * \return
1103 * Base location of the available bits on success or -1 on failure.
1104 */
1105int
1106find_available_slots(unsigned used_mask, unsigned needed_count)
1107{
1108   unsigned needed_mask = (1 << needed_count) - 1;
1109   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1110
1111   /* The comparison to 32 is redundant, but without it GCC emits "warning:
1112    * cannot optimize possibly infinite loops" for the loop below.
1113    */
1114   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1115      return -1;
1116
1117   for (int i = 0; i <= max_bit_to_test; i++) {
1118      if ((needed_mask & ~used_mask) == needed_mask)
1119	 return i;
1120
1121      needed_mask <<= 1;
1122   }
1123
1124   return -1;
1125}
1126
1127
1128/**
1129 * Assign locations for either VS inputs for FS outputs
1130 *
1131 * \param prog          Shader program whose variables need locations assigned
1132 * \param target_index  Selector for the program target to receive location
1133 *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
1134 *                      \c MESA_SHADER_FRAGMENT.
1135 * \param max_index     Maximum number of generic locations.  This corresponds
1136 *                      to either the maximum number of draw buffers or the
1137 *                      maximum number of generic attributes.
1138 *
1139 * \return
1140 * If locations are successfully assigned, true is returned.  Otherwise an
1141 * error is emitted to the shader link log and false is returned.
1142 */
1143bool
1144assign_attribute_or_color_locations(gl_shader_program *prog,
1145				    unsigned target_index,
1146				    unsigned max_index)
1147{
1148   /* Mark invalid locations as being used.
1149    */
1150   unsigned used_locations = (max_index >= 32)
1151      ? ~0 : ~((1 << max_index) - 1);
1152
1153   assert((target_index == MESA_SHADER_VERTEX)
1154	  || (target_index == MESA_SHADER_FRAGMENT));
1155
1156   gl_shader *const sh = prog->_LinkedShaders[target_index];
1157   if (sh == NULL)
1158      return true;
1159
1160   /* Operate in a total of four passes.
1161    *
1162    * 1. Invalidate the location assignments for all vertex shader inputs.
1163    *
1164    * 2. Assign locations for inputs that have user-defined (via
1165    *    glBindVertexAttribLocation) locations and outputs that have
1166    *    user-defined locations (via glBindFragDataLocation).
1167    *
1168    * 3. Sort the attributes without assigned locations by number of slots
1169    *    required in decreasing order.  Fragmentation caused by attribute
1170    *    locations assigned by the application may prevent large attributes
1171    *    from having enough contiguous space.
1172    *
1173    * 4. Assign locations to any inputs without assigned locations.
1174    */
1175
1176   const int generic_base = (target_index == MESA_SHADER_VERTEX)
1177      ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1178
1179   const enum ir_variable_mode direction =
1180      (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1181
1182
1183   link_invalidate_variable_locations(sh, direction, generic_base);
1184
1185   /* Temporary storage for the set of attributes that need locations assigned.
1186    */
1187   struct temp_attr {
1188      unsigned slots;
1189      ir_variable *var;
1190
1191      /* Used below in the call to qsort. */
1192      static int compare(const void *a, const void *b)
1193      {
1194	 const temp_attr *const l = (const temp_attr *) a;
1195	 const temp_attr *const r = (const temp_attr *) b;
1196
1197	 /* Reversed because we want a descending order sort below. */
1198	 return r->slots - l->slots;
1199      }
1200   } to_assign[16];
1201
1202   unsigned num_attr = 0;
1203
1204   foreach_list(node, sh->ir) {
1205      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1206
1207      if ((var == NULL) || (var->mode != (unsigned) direction))
1208	 continue;
1209
1210      if (var->explicit_location) {
1211	 if ((var->location >= (int)(max_index + generic_base))
1212	     || (var->location < 0)) {
1213	    linker_error(prog,
1214			 "invalid explicit location %d specified for `%s'\n",
1215			 (var->location < 0)
1216			 ? var->location : var->location - generic_base,
1217			 var->name);
1218	    return false;
1219	 }
1220      } else if (target_index == MESA_SHADER_VERTEX) {
1221	 unsigned binding;
1222
1223	 if (prog->AttributeBindings->get(binding, var->name)) {
1224	    assert(binding >= VERT_ATTRIB_GENERIC0);
1225	    var->location = binding;
1226	 }
1227      } else if (target_index == MESA_SHADER_FRAGMENT) {
1228	 unsigned binding;
1229
1230	 if (prog->FragDataBindings->get(binding, var->name)) {
1231	    assert(binding >= FRAG_RESULT_DATA0);
1232	    var->location = binding;
1233	 }
1234      }
1235
1236      /* If the variable is not a built-in and has a location statically
1237       * assigned in the shader (presumably via a layout qualifier), make sure
1238       * that it doesn't collide with other assigned locations.  Otherwise,
1239       * add it to the list of variables that need linker-assigned locations.
1240       */
1241      const unsigned slots = count_attribute_slots(var->type);
1242      if (var->location != -1) {
1243	 if (var->location >= generic_base) {
1244	    /* From page 61 of the OpenGL 4.0 spec:
1245	     *
1246	     *     "LinkProgram will fail if the attribute bindings assigned
1247	     *     by BindAttribLocation do not leave not enough space to
1248	     *     assign a location for an active matrix attribute or an
1249	     *     active attribute array, both of which require multiple
1250	     *     contiguous generic attributes."
1251	     *
1252	     * Previous versions of the spec contain similar language but omit
1253	     * the bit about attribute arrays.
1254	     *
1255	     * Page 61 of the OpenGL 4.0 spec also says:
1256	     *
1257	     *     "It is possible for an application to bind more than one
1258	     *     attribute name to the same location. This is referred to as
1259	     *     aliasing. This will only work if only one of the aliased
1260	     *     attributes is active in the executable program, or if no
1261	     *     path through the shader consumes more than one attribute of
1262	     *     a set of attributes aliased to the same location. A link
1263	     *     error can occur if the linker determines that every path
1264	     *     through the shader consumes multiple aliased attributes,
1265	     *     but implementations are not required to generate an error
1266	     *     in this case."
1267	     *
1268	     * These two paragraphs are either somewhat contradictory, or I
1269	     * don't fully understand one or both of them.
1270	     */
1271	    /* FINISHME: The code as currently written does not support
1272	     * FINISHME: attribute location aliasing (see comment above).
1273	     */
1274	    /* Mask representing the contiguous slots that will be used by
1275	     * this attribute.
1276	     */
1277	    const unsigned attr = var->location - generic_base;
1278	    const unsigned use_mask = (1 << slots) - 1;
1279
1280	    /* Generate a link error if the set of bits requested for this
1281	     * attribute overlaps any previously allocated bits.
1282	     */
1283	    if ((~(use_mask << attr) & used_locations) != used_locations) {
1284	       linker_error(prog,
1285			    "insufficient contiguous attribute locations "
1286			    "available for vertex shader input `%s'",
1287			    var->name);
1288	       return false;
1289	    }
1290
1291	    used_locations |= (use_mask << attr);
1292	 }
1293
1294	 continue;
1295      }
1296
1297      to_assign[num_attr].slots = slots;
1298      to_assign[num_attr].var = var;
1299      num_attr++;
1300   }
1301
1302   /* If all of the attributes were assigned locations by the application (or
1303    * are built-in attributes with fixed locations), return early.  This should
1304    * be the common case.
1305    */
1306   if (num_attr == 0)
1307      return true;
1308
1309   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1310
1311   if (target_index == MESA_SHADER_VERTEX) {
1312      /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
1313       * only be explicitly assigned by via glBindAttribLocation.  Mark it as
1314       * reserved to prevent it from being automatically allocated below.
1315       */
1316      find_deref_visitor find("gl_Vertex");
1317      find.run(sh->ir);
1318      if (find.variable_found())
1319	 used_locations |= (1 << 0);
1320   }
1321
1322   for (unsigned i = 0; i < num_attr; i++) {
1323      /* Mask representing the contiguous slots that will be used by this
1324       * attribute.
1325       */
1326      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1327
1328      int location = find_available_slots(used_locations, to_assign[i].slots);
1329
1330      if (location < 0) {
1331	 const char *const string = (target_index == MESA_SHADER_VERTEX)
1332	    ? "vertex shader input" : "fragment shader output";
1333
1334	 linker_error(prog,
1335		      "insufficient contiguous attribute locations "
1336		      "available for %s `%s'",
1337		      string, to_assign[i].var->name);
1338	 return false;
1339      }
1340
1341      to_assign[i].var->location = generic_base + location;
1342      used_locations |= (use_mask << location);
1343   }
1344
1345   return true;
1346}
1347
1348
1349/**
1350 * Demote shader inputs and outputs that are not used in other stages
1351 */
1352void
1353demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1354{
1355   foreach_list(node, sh->ir) {
1356      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1357
1358      if ((var == NULL) || (var->mode != int(mode)))
1359	 continue;
1360
1361      /* A shader 'in' or 'out' variable is only really an input or output if
1362       * its value is used by other shader stages.  This will cause the variable
1363       * to have a location assigned.
1364       */
1365      if (var->location == -1) {
1366	 var->mode = ir_var_auto;
1367      }
1368   }
1369}
1370
1371
1372/**
1373 * Data structure tracking information about a transform feedback declaration
1374 * during linking.
1375 */
1376class tfeedback_decl
1377{
1378public:
1379   bool init(struct gl_shader_program *prog, const void *mem_ctx,
1380             const char *input);
1381   static bool is_same(const tfeedback_decl &x, const tfeedback_decl &y);
1382   bool assign_location(struct gl_context *ctx, struct gl_shader_program *prog,
1383                        ir_variable *output_var);
1384   bool store(struct gl_shader_program *prog,
1385              struct gl_transform_feedback_info *info, unsigned buffer) const;
1386
1387
1388   /**
1389    * True if assign_location() has been called for this object.
1390    */
1391   bool is_assigned() const
1392   {
1393      return this->location != -1;
1394   }
1395
1396   /**
1397    * Determine whether this object refers to the variable var.
1398    */
1399   bool matches_var(ir_variable *var) const
1400   {
1401      return strcmp(var->name, this->var_name) == 0;
1402   }
1403
1404   /**
1405    * The total number of varying components taken up by this variable.  Only
1406    * valid if is_assigned() is true.
1407    */
1408   unsigned num_components() const
1409   {
1410      return this->vector_elements * this->matrix_columns;
1411   }
1412
1413private:
1414   /**
1415    * The name that was supplied to glTransformFeedbackVaryings.  Used for
1416    * error reporting.
1417    */
1418   const char *orig_name;
1419
1420   /**
1421    * The name of the variable, parsed from orig_name.
1422    */
1423   char *var_name;
1424
1425   /**
1426    * True if the declaration in orig_name represents an array.
1427    */
1428   bool is_array;
1429
1430   /**
1431    * If is_array is true, the array index that was specified in orig_name.
1432    */
1433   unsigned array_index;
1434
1435   /**
1436    * The vertex shader output location that the linker assigned for this
1437    * variable.  -1 if a location hasn't been assigned yet.
1438    */
1439   int location;
1440
1441   /**
1442    * If location != -1, the number of vector elements in this variable, or 1
1443    * if this variable is a scalar.
1444    */
1445   unsigned vector_elements;
1446
1447   /**
1448    * If location != -1, the number of matrix columns in this variable, or 1
1449    * if this variable is not a matrix.
1450    */
1451   unsigned matrix_columns;
1452};
1453
1454
1455/**
1456 * Initialize this object based on a string that was passed to
1457 * glTransformFeedbackVaryings.  If there is a parse error, the error is
1458 * reported using linker_error(), and false is returned.
1459 */
1460bool
1461tfeedback_decl::init(struct gl_shader_program *prog, const void *mem_ctx,
1462                     const char *input)
1463{
1464   /* We don't have to be pedantic about what is a valid GLSL variable name,
1465    * because any variable with an invalid name can't exist in the IR anyway.
1466    */
1467
1468   this->location = -1;
1469   this->orig_name = input;
1470
1471   const char *bracket = strrchr(input, '[');
1472
1473   if (bracket) {
1474      this->var_name = ralloc_strndup(mem_ctx, input, bracket - input);
1475      if (sscanf(bracket, "[%u]", &this->array_index) == 1) {
1476         this->is_array = true;
1477         return true;
1478      }
1479   } else {
1480      this->var_name = ralloc_strdup(mem_ctx, input);
1481      this->is_array = false;
1482      return true;
1483   }
1484
1485   linker_error(prog, "Cannot parse transform feedback varying %s", input);
1486   return false;
1487}
1488
1489
1490/**
1491 * Determine whether two tfeedback_decl objects refer to the same variable and
1492 * array index (if applicable).
1493 */
1494bool
1495tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1496{
1497   if (strcmp(x.var_name, y.var_name) != 0)
1498      return false;
1499   if (x.is_array != y.is_array)
1500      return false;
1501   if (x.is_array && x.array_index != y.array_index)
1502      return false;
1503   return true;
1504}
1505
1506
1507/**
1508 * Assign a location for this tfeedback_decl object based on the location
1509 * assignment in output_var.
1510 *
1511 * If an error occurs, the error is reported through linker_error() and false
1512 * is returned.
1513 */
1514bool
1515tfeedback_decl::assign_location(struct gl_context *ctx,
1516                                struct gl_shader_program *prog,
1517                                ir_variable *output_var)
1518{
1519   if (output_var->type->is_array()) {
1520      /* Array variable */
1521      if (!this->is_array) {
1522         linker_error(prog, "Transform feedback varying %s found, "
1523                      "but it's not an array ([] not expected).",
1524                      this->orig_name);
1525         return false;
1526      }
1527      /* Check array bounds. */
1528      if (this->array_index >=
1529          (unsigned) output_var->type->array_size()) {
1530         linker_error(prog, "Transform feedback varying %s has index "
1531                      "%i, but the array size is %i.",
1532                      this->orig_name, this->array_index,
1533                      output_var->type->array_size());
1534         return false;
1535      }
1536      const unsigned matrix_cols =
1537         output_var->type->fields.array->matrix_columns;
1538      this->location = output_var->location + this->array_index * matrix_cols;
1539      this->vector_elements = output_var->type->fields.array->vector_elements;
1540      this->matrix_columns = matrix_cols;
1541   } else {
1542      /* Regular variable (scalar, vector, or matrix) */
1543      if (this->is_array) {
1544         linker_error(prog, "Transform feedback varying %s found, "
1545                      "but it's an array ([] expected).",
1546                      this->orig_name);
1547         return false;
1548      }
1549      this->location = output_var->location;
1550      this->vector_elements = output_var->type->vector_elements;
1551      this->matrix_columns = output_var->type->matrix_columns;
1552   }
1553   /* From GL_EXT_transform_feedback:
1554    *   A program will fail to link if:
1555    *
1556    *   * the total number of components to capture in any varying
1557    *     variable in <varyings> is greater than the constant
1558    *     MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1559    *     buffer mode is SEPARATE_ATTRIBS_EXT;
1560    */
1561   if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1562       this->num_components() >
1563       ctx->Const.MaxTransformFeedbackSeparateComponents) {
1564      linker_error(prog, "Transform feedback varying %s exceeds "
1565                   "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1566                   this->orig_name);
1567      return false;
1568   }
1569
1570   return true;
1571}
1572
1573
1574/**
1575 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1576 *
1577 * If an error occurs, the error is reported through linker_error() and false
1578 * is returned.
1579 */
1580bool
1581tfeedback_decl::store(struct gl_shader_program *prog,
1582                      struct gl_transform_feedback_info *info,
1583                      unsigned buffer) const
1584{
1585   if (!this->is_assigned()) {
1586      /* From GL_EXT_transform_feedback:
1587       *   A program will fail to link if:
1588       *
1589       *   * any variable name specified in the <varyings> array is not
1590       *     declared as an output in the geometry shader (if present) or
1591       *     the vertex shader (if no geometry shader is present);
1592       */
1593      linker_error(prog, "Transform feedback varying %s undeclared.",
1594                   this->orig_name);
1595      return false;
1596   }
1597   for (unsigned v = 0; v < this->matrix_columns; ++v) {
1598      info->Outputs[info->NumOutputs].OutputRegister = this->location + v;
1599      info->Outputs[info->NumOutputs].NumComponents = this->vector_elements;
1600      info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1601      info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
1602      ++info->NumOutputs;
1603      info->BufferStride[buffer] += this->vector_elements;
1604   }
1605   return true;
1606}
1607
1608
1609/**
1610 * Parse all the transform feedback declarations that were passed to
1611 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1612 *
1613 * If an error occurs, the error is reported through linker_error() and false
1614 * is returned.
1615 */
1616static bool
1617parse_tfeedback_decls(struct gl_shader_program *prog, const void *mem_ctx,
1618                      unsigned num_names, char **varying_names,
1619                      tfeedback_decl *decls)
1620{
1621   for (unsigned i = 0; i < num_names; ++i) {
1622      if (!decls[i].init(prog, mem_ctx, varying_names[i]))
1623         return false;
1624      /* From GL_EXT_transform_feedback:
1625       *   A program will fail to link if:
1626       *
1627       *   * any two entries in the <varyings> array specify the same varying
1628       *     variable;
1629       *
1630       * We interpret this to mean "any two entries in the <varyings> array
1631       * specify the same varying variable and array index", since transform
1632       * feedback of arrays would be useless otherwise.
1633       */
1634      for (unsigned j = 0; j < i; ++j) {
1635         if (tfeedback_decl::is_same(decls[i], decls[j])) {
1636            linker_error(prog, "Transform feedback varying %s specified "
1637                         "more than once.", varying_names[i]);
1638            return false;
1639         }
1640      }
1641   }
1642   return true;
1643}
1644
1645
1646/**
1647 * Assign a location for a variable that is produced in one pipeline stage
1648 * (the "producer") and consumed in the next stage (the "consumer").
1649 *
1650 * \param input_var is the input variable declaration in the consumer.
1651 *
1652 * \param output_var is the output variable declaration in the producer.
1653 *
1654 * \param input_index is the counter that keeps track of assigned input
1655 *        locations in the consumer.
1656 *
1657 * \param output_index is the counter that keeps track of assigned output
1658 *        locations in the producer.
1659 *
1660 * It is permissible for \c input_var to be NULL (this happens if a variable
1661 * is output by the producer and consumed by transform feedback, but not
1662 * consumed by the consumer).
1663 *
1664 * If the variable has already been assigned a location, this function has no
1665 * effect.
1666 */
1667void
1668assign_varying_location(ir_variable *input_var, ir_variable *output_var,
1669                        unsigned *input_index, unsigned *output_index)
1670{
1671   if (output_var->location != -1) {
1672      /* Location already assigned. */
1673      return;
1674   }
1675
1676   if (input_var) {
1677      assert(input_var->location == -1);
1678      input_var->location = *input_index;
1679   }
1680
1681   output_var->location = *output_index;
1682
1683   /* FINISHME: Support for "varying" records in GLSL 1.50. */
1684   assert(!output_var->type->is_record());
1685
1686   if (output_var->type->is_array()) {
1687      const unsigned slots = output_var->type->length
1688         * output_var->type->fields.array->matrix_columns;
1689
1690      *output_index += slots;
1691      *input_index += slots;
1692   } else {
1693      const unsigned slots = output_var->type->matrix_columns;
1694
1695      *output_index += slots;
1696      *input_index += slots;
1697   }
1698}
1699
1700
1701/**
1702 * Assign locations for all variables that are produced in one pipeline stage
1703 * (the "producer") and consumed in the next stage (the "consumer").
1704 *
1705 * Variables produced by the producer may also be consumed by transform
1706 * feedback.
1707 *
1708 * \param num_tfeedback_decls is the number of declarations indicating
1709 *        variables that may be consumed by transform feedback.
1710 *
1711 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1712 *        representing the result of parsing the strings passed to
1713 *        glTransformFeedbackVaryings().  assign_location() will be called for
1714 *        each of these objects that matches one of the outputs of the
1715 *        producer.
1716 *
1717 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1718 * be NULL.  In this case, varying locations are assigned solely based on the
1719 * requirements of transform feedback.
1720 */
1721bool
1722assign_varying_locations(struct gl_context *ctx,
1723			 struct gl_shader_program *prog,
1724			 gl_shader *producer, gl_shader *consumer,
1725                         unsigned num_tfeedback_decls,
1726                         tfeedback_decl *tfeedback_decls)
1727{
1728   /* FINISHME: Set dynamically when geometry shader support is added. */
1729   unsigned output_index = VERT_RESULT_VAR0;
1730   unsigned input_index = FRAG_ATTRIB_VAR0;
1731
1732   /* Operate in a total of three passes.
1733    *
1734    * 1. Assign locations for any matching inputs and outputs.
1735    *
1736    * 2. Mark output variables in the producer that do not have locations as
1737    *    not being outputs.  This lets the optimizer eliminate them.
1738    *
1739    * 3. Mark input variables in the consumer that do not have locations as
1740    *    not being inputs.  This lets the optimizer eliminate them.
1741    */
1742
1743   link_invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1744   if (consumer)
1745      link_invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1746
1747   foreach_list(node, producer->ir) {
1748      ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1749
1750      if ((output_var == NULL) || (output_var->mode != ir_var_out))
1751	 continue;
1752
1753      ir_variable *input_var =
1754	 consumer ? consumer->symbols->get_variable(output_var->name) : NULL;
1755
1756      if (input_var && input_var->mode != ir_var_in)
1757         input_var = NULL;
1758
1759      if (input_var) {
1760         assign_varying_location(input_var, output_var, &input_index,
1761                                 &output_index);
1762      }
1763
1764      for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1765         if (!tfeedback_decls[i].is_assigned() &&
1766             tfeedback_decls[i].matches_var(output_var)) {
1767            if (output_var->location == -1) {
1768               assign_varying_location(input_var, output_var, &input_index,
1769                                       &output_index);
1770            }
1771            if (!tfeedback_decls[i].assign_location(ctx, prog, output_var))
1772               return false;
1773         }
1774      }
1775   }
1776
1777   unsigned varying_vectors = 0;
1778
1779   if (consumer) {
1780      foreach_list(node, consumer->ir) {
1781         ir_variable *const var = ((ir_instruction *) node)->as_variable();
1782
1783         if ((var == NULL) || (var->mode != ir_var_in))
1784            continue;
1785
1786         if (var->location == -1) {
1787            if (prog->Version <= 120) {
1788               /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1789                *
1790                *     Only those varying variables used (i.e. read) in
1791                *     the fragment shader executable must be written to
1792                *     by the vertex shader executable; declaring
1793                *     superfluous varying variables in a vertex shader is
1794                *     permissible.
1795                *
1796                * We interpret this text as meaning that the VS must
1797                * write the variable for the FS to read it.  See
1798                * "glsl1-varying read but not written" in piglit.
1799                */
1800
1801               linker_error(prog, "fragment shader varying %s not written "
1802                            "by vertex shader\n.", var->name);
1803            }
1804
1805            /* An 'in' variable is only really a shader input if its
1806             * value is written by the previous stage.
1807             */
1808            var->mode = ir_var_auto;
1809         } else {
1810            /* The packing rules are used for vertex shader inputs are also
1811             * used for fragment shader inputs.
1812             */
1813            varying_vectors += count_attribute_slots(var->type);
1814         }
1815      }
1816   }
1817
1818   if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1819      if (varying_vectors > ctx->Const.MaxVarying) {
1820         if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1821            linker_warning(prog, "shader uses too many varying vectors "
1822                           "(%u > %u), but the driver will try to optimize "
1823                           "them out; this is non-portable out-of-spec "
1824                           "behavior\n",
1825                           varying_vectors, ctx->Const.MaxVarying);
1826         } else {
1827            linker_error(prog, "shader uses too many varying vectors "
1828                         "(%u > %u)\n",
1829                         varying_vectors, ctx->Const.MaxVarying);
1830            return false;
1831         }
1832      }
1833   } else {
1834      const unsigned float_components = varying_vectors * 4;
1835      if (float_components > ctx->Const.MaxVarying * 4) {
1836         if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1837            linker_warning(prog, "shader uses too many varying components "
1838                           "(%u > %u), but the driver will try to optimize "
1839                           "them out; this is non-portable out-of-spec "
1840                           "behavior\n",
1841                           float_components, ctx->Const.MaxVarying * 4);
1842         } else {
1843            linker_error(prog, "shader uses too many varying components "
1844                         "(%u > %u)\n",
1845                         float_components, ctx->Const.MaxVarying * 4);
1846            return false;
1847         }
1848      }
1849   }
1850
1851   return true;
1852}
1853
1854
1855/**
1856 * Store transform feedback location assignments into
1857 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1858 *
1859 * If an error occurs, the error is reported through linker_error() and false
1860 * is returned.
1861 */
1862static bool
1863store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1864                     unsigned num_tfeedback_decls,
1865                     tfeedback_decl *tfeedback_decls)
1866{
1867   unsigned total_tfeedback_components = 0;
1868   memset(&prog->LinkedTransformFeedback, 0,
1869          sizeof(prog->LinkedTransformFeedback));
1870   for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1871      unsigned buffer =
1872         prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS ? i : 0;
1873      if (!tfeedback_decls[i].store(prog, &prog->LinkedTransformFeedback,
1874                                    buffer))
1875         return false;
1876      total_tfeedback_components += tfeedback_decls[i].num_components();
1877   }
1878
1879   /* From GL_EXT_transform_feedback:
1880    *   A program will fail to link if:
1881    *
1882    *     * the total number of components to capture is greater than
1883    *       the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1884    *       and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1885    */
1886   if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
1887       total_tfeedback_components >
1888       ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1889      linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1890                   "limit has been exceeded.");
1891      return false;
1892   }
1893
1894   return true;
1895}
1896
1897/**
1898 * Store the gl_FragDepth layout in the gl_shader_program struct.
1899 */
1900static void
1901store_fragdepth_layout(struct gl_shader_program *prog)
1902{
1903   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1904      return;
1905   }
1906
1907   struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1908
1909   /* We don't look up the gl_FragDepth symbol directly because if
1910    * gl_FragDepth is not used in the shader, it's removed from the IR.
1911    * However, the symbol won't be removed from the symbol table.
1912    *
1913    * We're only interested in the cases where the variable is NOT removed
1914    * from the IR.
1915    */
1916   foreach_list(node, ir) {
1917      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1918
1919      if (var == NULL || var->mode != ir_var_out) {
1920         continue;
1921      }
1922
1923      if (strcmp(var->name, "gl_FragDepth") == 0) {
1924         switch (var->depth_layout) {
1925         case ir_depth_layout_none:
1926            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1927            return;
1928         case ir_depth_layout_any:
1929            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1930            return;
1931         case ir_depth_layout_greater:
1932            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1933            return;
1934         case ir_depth_layout_less:
1935            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1936            return;
1937         case ir_depth_layout_unchanged:
1938            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1939            return;
1940         default:
1941            assert(0);
1942            return;
1943         }
1944      }
1945   }
1946}
1947
1948/**
1949 * Validate the resources used by a program versus the implementation limits
1950 */
1951static bool
1952check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1953{
1954   static const char *const shader_names[MESA_SHADER_TYPES] = {
1955      "vertex", "fragment", "geometry"
1956   };
1957
1958   const unsigned max_samplers[MESA_SHADER_TYPES] = {
1959      ctx->Const.MaxVertexTextureImageUnits,
1960      ctx->Const.MaxTextureImageUnits,
1961      ctx->Const.MaxGeometryTextureImageUnits
1962   };
1963
1964   const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
1965      ctx->Const.VertexProgram.MaxUniformComponents,
1966      ctx->Const.FragmentProgram.MaxUniformComponents,
1967      0          /* FINISHME: Geometry shaders. */
1968   };
1969
1970   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1971      struct gl_shader *sh = prog->_LinkedShaders[i];
1972
1973      if (sh == NULL)
1974	 continue;
1975
1976      if (sh->num_samplers > max_samplers[i]) {
1977	 linker_error(prog, "Too many %s shader texture samplers",
1978		      shader_names[i]);
1979      }
1980
1981      if (sh->num_uniform_components > max_uniform_components[i]) {
1982         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1983            linker_warning(prog, "Too many %s shader uniform components, "
1984                           "but the driver will try to optimize them out; "
1985                           "this is non-portable out-of-spec behavior\n",
1986                           shader_names[i]);
1987         } else {
1988            linker_error(prog, "Too many %s shader uniform components",
1989                         shader_names[i]);
1990         }
1991      }
1992   }
1993
1994   return prog->LinkStatus;
1995}
1996
1997void
1998link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1999{
2000   tfeedback_decl *tfeedback_decls = NULL;
2001   unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2002
2003   void *mem_ctx = ralloc_context(NULL); // temporary linker context
2004
2005   prog->LinkStatus = false;
2006   prog->Validated = false;
2007   prog->_Used = false;
2008
2009   if (prog->InfoLog != NULL)
2010      ralloc_free(prog->InfoLog);
2011
2012   prog->InfoLog = ralloc_strdup(NULL, "");
2013
2014   /* Separate the shaders into groups based on their type.
2015    */
2016   struct gl_shader **vert_shader_list;
2017   unsigned num_vert_shaders = 0;
2018   struct gl_shader **frag_shader_list;
2019   unsigned num_frag_shaders = 0;
2020
2021   vert_shader_list = (struct gl_shader **)
2022      calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
2023   frag_shader_list =  &vert_shader_list[prog->NumShaders];
2024
2025   unsigned min_version = UINT_MAX;
2026   unsigned max_version = 0;
2027   for (unsigned i = 0; i < prog->NumShaders; i++) {
2028      min_version = MIN2(min_version, prog->Shaders[i]->Version);
2029      max_version = MAX2(max_version, prog->Shaders[i]->Version);
2030
2031      switch (prog->Shaders[i]->Type) {
2032      case GL_VERTEX_SHADER:
2033	 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2034	 num_vert_shaders++;
2035	 break;
2036      case GL_FRAGMENT_SHADER:
2037	 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2038	 num_frag_shaders++;
2039	 break;
2040      case GL_GEOMETRY_SHADER:
2041	 /* FINISHME: Support geometry shaders. */
2042	 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
2043	 break;
2044      }
2045   }
2046
2047   /* Previous to GLSL version 1.30, different compilation units could mix and
2048    * match shading language versions.  With GLSL 1.30 and later, the versions
2049    * of all shaders must match.
2050    */
2051   assert(min_version >= 100);
2052   assert(max_version <= 130);
2053   if ((max_version >= 130 || min_version == 100)
2054       && min_version != max_version) {
2055      linker_error(prog, "all shaders must use same shading "
2056		   "language version\n");
2057      goto done;
2058   }
2059
2060   prog->Version = max_version;
2061
2062   for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2063      if (prog->_LinkedShaders[i] != NULL)
2064	 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2065
2066      prog->_LinkedShaders[i] = NULL;
2067   }
2068
2069   /* Link all shaders for a particular stage and validate the result.
2070    */
2071   if (num_vert_shaders > 0) {
2072      gl_shader *const sh =
2073	 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2074				 num_vert_shaders);
2075
2076      if (sh == NULL)
2077	 goto done;
2078
2079      if (!validate_vertex_shader_executable(prog, sh))
2080	 goto done;
2081
2082      _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2083			     sh);
2084   }
2085
2086   if (num_frag_shaders > 0) {
2087      gl_shader *const sh =
2088	 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2089				 num_frag_shaders);
2090
2091      if (sh == NULL)
2092	 goto done;
2093
2094      if (!validate_fragment_shader_executable(prog, sh))
2095	 goto done;
2096
2097      _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2098			     sh);
2099   }
2100
2101   /* Here begins the inter-stage linking phase.  Some initial validation is
2102    * performed, then locations are assigned for uniforms, attributes, and
2103    * varyings.
2104    */
2105   if (cross_validate_uniforms(prog)) {
2106      unsigned prev;
2107
2108      for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2109	 if (prog->_LinkedShaders[prev] != NULL)
2110	    break;
2111      }
2112
2113      /* Validate the inputs of each stage with the output of the preceding
2114       * stage.
2115       */
2116      for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2117	 if (prog->_LinkedShaders[i] == NULL)
2118	    continue;
2119
2120	 if (!cross_validate_outputs_to_inputs(prog,
2121					       prog->_LinkedShaders[prev],
2122					       prog->_LinkedShaders[i]))
2123	    goto done;
2124
2125	 prev = i;
2126      }
2127
2128      prog->LinkStatus = true;
2129   }
2130
2131   /* Do common optimization before assigning storage for attributes,
2132    * uniforms, and varyings.  Later optimization could possibly make
2133    * some of that unused.
2134    */
2135   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2136      if (prog->_LinkedShaders[i] == NULL)
2137	 continue;
2138
2139      detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2140      if (!prog->LinkStatus)
2141	 goto done;
2142
2143      if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
2144         lower_clip_distance(prog->_LinkedShaders[i]->ir);
2145
2146      while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, 32))
2147	 ;
2148   }
2149
2150   /* FINISHME: The value of the max_attribute_index parameter is
2151    * FINISHME: implementation dependent based on the value of
2152    * FINISHME: GL_MAX_VERTEX_ATTRIBS.  GL_MAX_VERTEX_ATTRIBS must be
2153    * FINISHME: at least 16, so hardcode 16 for now.
2154    */
2155   if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2156      goto done;
2157   }
2158
2159   if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, ctx->Const.MaxDrawBuffers)) {
2160      goto done;
2161   }
2162
2163   unsigned prev;
2164   for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2165      if (prog->_LinkedShaders[prev] != NULL)
2166	 break;
2167   }
2168
2169   if (num_tfeedback_decls != 0) {
2170      /* From GL_EXT_transform_feedback:
2171       *   A program will fail to link if:
2172       *
2173       *   * the <count> specified by TransformFeedbackVaryingsEXT is
2174       *     non-zero, but the program object has no vertex or geometry
2175       *     shader;
2176       */
2177      if (prev >= MESA_SHADER_FRAGMENT) {
2178         linker_error(prog, "Transform feedback varyings specified, but "
2179                      "no vertex or geometry shader is present.");
2180         goto done;
2181      }
2182
2183      tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2184                                     prog->TransformFeedback.NumVarying);
2185      if (!parse_tfeedback_decls(prog, mem_ctx, num_tfeedback_decls,
2186                                 prog->TransformFeedback.VaryingNames,
2187                                 tfeedback_decls))
2188         goto done;
2189   }
2190
2191   for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2192      if (prog->_LinkedShaders[i] == NULL)
2193	 continue;
2194
2195      if (!assign_varying_locations(
2196             ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
2197             i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2198             tfeedback_decls))
2199	 goto done;
2200
2201      prev = i;
2202   }
2203
2204   if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
2205      /* There was no fragment shader, but we still have to assign varying
2206       * locations for use by transform feedback.
2207       */
2208      if (!assign_varying_locations(
2209             ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
2210             tfeedback_decls))
2211         goto done;
2212   }
2213
2214   if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2215      goto done;
2216
2217   if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2218      demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
2219				       ir_var_out);
2220
2221      /* Eliminate code that is now dead due to unused vertex outputs being
2222       * demoted.
2223       */
2224      while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
2225	 ;
2226   }
2227
2228   if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2229      gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
2230
2231      demote_shader_inputs_and_outputs(sh, ir_var_in);
2232      demote_shader_inputs_and_outputs(sh, ir_var_inout);
2233      demote_shader_inputs_and_outputs(sh, ir_var_out);
2234
2235      /* Eliminate code that is now dead due to unused geometry outputs being
2236       * demoted.
2237       */
2238      while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
2239	 ;
2240   }
2241
2242   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2243      gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2244
2245      demote_shader_inputs_and_outputs(sh, ir_var_in);
2246
2247      /* Eliminate code that is now dead due to unused fragment inputs being
2248       * demoted.  This shouldn't actually do anything other than remove
2249       * declarations of the (now unused) global variables.
2250       */
2251      while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
2252	 ;
2253   }
2254
2255   update_array_sizes(prog);
2256   link_assign_uniform_locations(prog);
2257   store_fragdepth_layout(prog);
2258
2259   if (!check_resources(ctx, prog))
2260      goto done;
2261
2262   /* OpenGL ES requires that a vertex shader and a fragment shader both be
2263    * present in a linked program.  By checking for use of shading language
2264    * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
2265    */
2266   if (!prog->InternalSeparateShader &&
2267       (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
2268      if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2269	 linker_error(prog, "program lacks a vertex shader\n");
2270      } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2271	 linker_error(prog, "program lacks a fragment shader\n");
2272      }
2273   }
2274
2275   /* FINISHME: Assign fragment shader output locations. */
2276
2277done:
2278   free(vert_shader_list);
2279
2280   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2281      if (prog->_LinkedShaders[i] == NULL)
2282	 continue;
2283
2284      /* Retain any live IR, but trash the rest. */
2285      reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2286
2287      /* The symbol table in the linked shaders may contain references to
2288       * variables that were removed (e.g., unused uniforms).  Since it may
2289       * contain junk, there is no possible valid use.  Delete it and set the
2290       * pointer to NULL.
2291       */
2292      delete prog->_LinkedShaders[i]->symbols;
2293      prog->_LinkedShaders[i]->symbols = NULL;
2294   }
2295
2296   ralloc_free(mem_ctx);
2297}
2298