brw_blorp_blit.cpp revision 082874e3891e588f674508be6578f600b35852c4
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "main/teximage.h"
25
26#include "glsl/ralloc.h"
27
28#include "intel_fbo.h"
29
30#include "brw_blorp.h"
31#include "brw_context.h"
32#include "brw_eu.h"
33#include "brw_state.h"
34
35
36/**
37 * Helper function for handling mirror image blits.
38 *
39 * If coord0 > coord1, swap them and invert the "mirror" boolean.
40 */
41static inline void
42fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
43{
44   if (coord0 > coord1) {
45      mirror = !mirror;
46      GLint tmp = coord0;
47      coord0 = coord1;
48      coord1 = tmp;
49   }
50}
51
52
53/**
54 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
55 * destination coordinates.
56 *
57 * Return true if there is still blitting to do, false if all pixels got
58 * rejected by the clip and/or scissor.
59 *
60 * For clarity, the nomenclature of this function assumes we are clipping and
61 * scissoring the X coordinate; the exact same logic applies for Y
62 * coordinates.
63 *
64 * Note: this function may also be used to account for clipping of source
65 * coordinates, by swapping the roles of src and dst.
66 */
67static inline bool
68clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
69                GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
70{
71   /* If we are going to scissor everything away, stop. */
72   if (!(fb_xmin < fb_xmax &&
73         dst_x0 < fb_xmax &&
74         fb_xmin < dst_x1 &&
75         dst_x0 < dst_x1)) {
76      return false;
77   }
78
79   /* Clip the destination rectangle, and keep track of how many pixels we
80    * clipped off of the left and right sides of it.
81    */
82   GLint pixels_clipped_left = 0;
83   GLint pixels_clipped_right = 0;
84   if (dst_x0 < fb_xmin) {
85      pixels_clipped_left = fb_xmin - dst_x0;
86      dst_x0 = fb_xmin;
87   }
88   if (fb_xmax < dst_x1) {
89      pixels_clipped_right = dst_x1 - fb_xmax;
90      dst_x1 = fb_xmax;
91   }
92
93   /* If we are mirrored, then before applying pixels_clipped_{left,right} to
94    * the source coordinates, we need to flip them to account for the
95    * mirroring.
96    */
97   if (mirror) {
98      GLint tmp = pixels_clipped_left;
99      pixels_clipped_left = pixels_clipped_right;
100      pixels_clipped_right = tmp;
101   }
102
103   /* Adjust the source rectangle to remove the pixels corresponding to those
104    * that were clipped/scissored out of the destination rectangle.
105    */
106   src_x0 += pixels_clipped_left;
107   src_x1 -= pixels_clipped_right;
108
109   return true;
110}
111
112
113static struct intel_mipmap_tree *
114find_miptree(GLbitfield buffer_bit, struct gl_renderbuffer *rb)
115{
116   struct intel_renderbuffer *irb = intel_renderbuffer(rb);
117   struct intel_mipmap_tree *mt = irb->mt;
118   if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
119      mt = mt->stencil_mt;
120   return mt;
121}
122
123
124static void
125do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit,
126              struct gl_renderbuffer *src_rb, struct gl_renderbuffer *dst_rb,
127              GLint srcX0, GLint srcY0,
128              GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
129              bool mirror_x, bool mirror_y)
130{
131   struct gl_context *ctx = &intel->ctx;
132
133   /* Find source/dst miptrees */
134   struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_rb);
135   struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_rb);
136
137   /* Get ready to blit.  This includes depth resolving the src and dst
138    * buffers if necessary.
139    */
140   intel_renderbuffer_resolve_depth(intel, intel_renderbuffer(src_rb));
141   intel_renderbuffer_resolve_depth(intel, intel_renderbuffer(dst_rb));
142
143   /* Do the blit */
144   brw_blorp_blit_params params(brw_context(ctx), src_mt, dst_mt,
145                                srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
146                                mirror_x, mirror_y);
147   brw_blorp_exec(intel, &params);
148
149   /* Mark the dst buffer as needing a HiZ resolve if necessary. */
150   intel_renderbuffer_set_needs_hiz_resolve(intel_renderbuffer(dst_rb));
151}
152
153
154static bool
155formats_match(GLbitfield buffer_bit, struct gl_renderbuffer *src_rb,
156              struct gl_renderbuffer *dst_rb)
157{
158   /* Note: don't just check gl_renderbuffer::Format, because in some cases
159    * multiple gl_formats resolve to the same native type in the miptree (for
160    * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
161    * between those formats.
162    */
163   return find_miptree(buffer_bit, src_rb)->format ==
164      find_miptree(buffer_bit, dst_rb)->format;
165}
166
167
168static bool
169try_blorp_blit(struct intel_context *intel,
170               GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
171               GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
172               GLenum filter, GLbitfield buffer_bit)
173{
174   struct gl_context *ctx = &intel->ctx;
175
176   /* Sync up the state of window system buffers.  We need to do this before
177    * we go looking for the buffers.
178    */
179   intel_prepare_render(intel);
180
181   const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
182   const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
183
184   /* Detect if the blit needs to be mirrored */
185   bool mirror_x = false, mirror_y = false;
186   fixup_mirroring(mirror_x, srcX0, srcX1);
187   fixup_mirroring(mirror_x, dstX0, dstX1);
188   fixup_mirroring(mirror_y, srcY0, srcY1);
189   fixup_mirroring(mirror_y, dstY0, dstY1);
190
191   /* Make sure width and height match */
192   if (srcX1 - srcX0 != dstX1 - dstX0) return false;
193   if (srcY1 - srcY0 != dstY1 - dstY0) return false;
194
195   /* If the destination rectangle needs to be clipped or scissored, do so.
196    */
197   if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
198                         draw_fb->_Xmin, draw_fb->_Xmax) &&
199         clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
200                         draw_fb->_Ymin, draw_fb->_Ymax))) {
201      /* Everything got clipped/scissored away, so the blit was successful. */
202      return true;
203   }
204
205   /* If the source rectangle needs to be clipped or scissored, do so. */
206   if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
207                         0, read_fb->Width) &&
208         clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
209                         0, read_fb->Height))) {
210      /* Everything got clipped/scissored away, so the blit was successful. */
211      return true;
212   }
213
214   /* Account for the fact that in the system framebuffer, the origin is at
215    * the lower left.
216    */
217   if (read_fb->Name == 0) {
218      GLint tmp = read_fb->Height - srcY0;
219      srcY0 = read_fb->Height - srcY1;
220      srcY1 = tmp;
221      mirror_y = !mirror_y;
222   }
223   if (draw_fb->Name == 0) {
224      GLint tmp = draw_fb->Height - dstY0;
225      dstY0 = draw_fb->Height - dstY1;
226      dstY1 = tmp;
227      mirror_y = !mirror_y;
228   }
229
230   /* Find buffers */
231   struct gl_renderbuffer *src_rb;
232   struct gl_renderbuffer *dst_rb;
233   switch (buffer_bit) {
234   case GL_COLOR_BUFFER_BIT:
235      src_rb = read_fb->_ColorReadBuffer;
236      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
237         dst_rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
238         if (dst_rb && !formats_match(buffer_bit, src_rb, dst_rb))
239            return false;
240      }
241      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
242         dst_rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
243         do_blorp_blit(intel, buffer_bit, src_rb, dst_rb, srcX0, srcY0,
244                       dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
245      }
246      break;
247   case GL_DEPTH_BUFFER_BIT:
248      src_rb = read_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
249      dst_rb = draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer;
250      if (!formats_match(buffer_bit, src_rb, dst_rb))
251         return false;
252      do_blorp_blit(intel, buffer_bit, src_rb, dst_rb, srcX0, srcY0,
253                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
254      break;
255   case GL_STENCIL_BUFFER_BIT:
256      src_rb = read_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
257      dst_rb = draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer;
258      if (!formats_match(buffer_bit, src_rb, dst_rb))
259         return false;
260      do_blorp_blit(intel, buffer_bit, src_rb, dst_rb, srcX0, srcY0,
261                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
262      break;
263   default:
264      assert(false);
265   }
266
267   return true;
268}
269
270GLbitfield
271brw_blorp_framebuffer(struct intel_context *intel,
272                      GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
273                      GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
274                      GLbitfield mask, GLenum filter)
275{
276   /* BLORP is not supported before Gen6. */
277   if (intel->gen < 6)
278      return mask;
279
280   static GLbitfield buffer_bits[] = {
281      GL_COLOR_BUFFER_BIT,
282      GL_DEPTH_BUFFER_BIT,
283      GL_STENCIL_BUFFER_BIT,
284   };
285
286   for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
287      if ((mask & buffer_bits[i]) &&
288       try_blorp_blit(intel,
289                      srcX0, srcY0, srcX1, srcY1,
290                      dstX0, dstY0, dstX1, dstY1,
291                      filter, buffer_bits[i])) {
292         mask &= ~buffer_bits[i];
293      }
294   }
295
296   return mask;
297}
298
299
300/**
301 * Enum to specify the order of arguments in a sampler message
302 */
303enum sampler_message_arg
304{
305   SAMPLER_MESSAGE_ARG_U_FLOAT,
306   SAMPLER_MESSAGE_ARG_V_FLOAT,
307   SAMPLER_MESSAGE_ARG_U_INT,
308   SAMPLER_MESSAGE_ARG_V_INT,
309   SAMPLER_MESSAGE_ARG_SI_INT,
310   SAMPLER_MESSAGE_ARG_MCS_INT,
311   SAMPLER_MESSAGE_ARG_ZERO_INT,
312};
313
314/**
315 * Generator for WM programs used in BLORP blits.
316 *
317 * The bulk of the work done by the WM program is to wrap and unwrap the
318 * coordinate transformations used by the hardware to store surfaces in
319 * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
320 * sample index for a multisampled surface) to a memory offset by the
321 * following formulas:
322 *
323 *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
324 *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
325 *
326 * For a single-sampled surface, or for a multisampled surface using
327 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
328 * function:
329 *
330 *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
331 *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
332 *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
333 *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
334 *
335 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
336 * embeds the sample number into bit 1 of the X and Y coordinates:
337 *
338 *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
339 *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
340 *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
341 *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
342 *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
343 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
344 *           S = (Y & 0b10) | (X & 0b10) >> 1
345 *
346 * For X tiling, tile() combines together the low-order bits of the X and Y
347 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
348 * bytes wide and 8 rows high:
349 *
350 *   tile(x_tiled, X, Y, S) = A
351 *     where A = tile_num << 12 | offset
352 *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
353 *           offset = (Y' & 0b111) << 9
354 *                    | (X & 0b111111111)
355 *           X' = X * cpp
356 *           Y' = Y + S * qpitch
357 *   detile(x_tiled, A) = (X, Y, S)
358 *     where X = X' / cpp
359 *           Y = Y' % qpitch
360 *           S = Y' / qpitch
361 *           Y' = (tile_num / tile_pitch) << 3
362 *                | (A & 0b111000000000) >> 9
363 *           X' = (tile_num % tile_pitch) << 9
364 *                | (A & 0b111111111)
365 *
366 * (In all tiling formulas, cpp is the number of bytes occupied by a single
367 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
368 * to fill the width of the surface, and qpitch is the spacing (in rows)
369 * between array slices).
370 *
371 * For Y tiling, tile() combines together the low-order bits of the X and Y
372 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
373 * bytes wide and 32 rows high:
374 *
375 *   tile(y_tiled, X, Y, S) = A
376 *     where A = tile_num << 12 | offset
377 *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
378 *           offset = (X' & 0b1110000) << 5
379 *                    | (Y' & 0b11111) << 4
380 *                    | (X' & 0b1111)
381 *           X' = X * cpp
382 *           Y' = Y + S * qpitch
383 *   detile(y_tiled, A) = (X, Y, S)
384 *     where X = X' / cpp
385 *           Y = Y' % qpitch
386 *           S = Y' / qpitch
387 *           Y' = (tile_num / tile_pitch) << 5
388 *                | (A & 0b111110000) >> 4
389 *           X' = (tile_num % tile_pitch) << 7
390 *                | (A & 0b111000000000) >> 5
391 *                | (A & 0b1111)
392 *
393 * For W tiling, tile() combines together the low-order bits of the X and Y
394 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
395 * bytes wide and 64 rows high (note that W tiling is only used for stencil
396 * buffers, which always have cpp = 1 and S=0):
397 *
398 *   tile(w_tiled, X, Y, S) = A
399 *     where A = tile_num << 12 | offset
400 *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
401 *           offset = (X' & 0b111000) << 6
402 *                    | (Y' & 0b111100) << 3
403 *                    | (X' & 0b100) << 2
404 *                    | (Y' & 0b10) << 2
405 *                    | (X' & 0b10) << 1
406 *                    | (Y' & 0b1) << 1
407 *                    | (X' & 0b1)
408 *           X' = X * cpp = X
409 *           Y' = Y + S * qpitch
410 *   detile(w_tiled, A) = (X, Y, S)
411 *     where X = X' / cpp = X'
412 *           Y = Y' % qpitch = Y'
413 *           S = Y / qpitch = 0
414 *           Y' = (tile_num / tile_pitch) << 6
415 *                | (A & 0b111100000) >> 3
416 *                | (A & 0b1000) >> 2
417 *                | (A & 0b10) >> 1
418 *           X' = (tile_num % tile_pitch) << 6
419 *                | (A & 0b111000000000) >> 6
420 *                | (A & 0b10000) >> 2
421 *                | (A & 0b100) >> 1
422 *                | (A & 0b1)
423 *
424 * Finally, for a non-tiled surface, tile() simply combines together the X and
425 * Y coordinates in the natural way:
426 *
427 *   tile(untiled, X, Y, S) = A
428 *     where A = Y * pitch + X'
429 *           X' = X * cpp
430 *           Y' = Y + S * qpitch
431 *   detile(untiled, A) = (X, Y, S)
432 *     where X = X' / cpp
433 *           Y = Y' % qpitch
434 *           S = Y' / qpitch
435 *           X' = A % pitch
436 *           Y' = A / pitch
437 *
438 * (In these formulas, pitch is the number of bytes occupied by a single row
439 * of samples).
440 */
441class brw_blorp_blit_program
442{
443public:
444   brw_blorp_blit_program(struct brw_context *brw,
445                          const brw_blorp_blit_prog_key *key);
446   ~brw_blorp_blit_program();
447
448   const GLuint *compile(struct brw_context *brw, GLuint *program_size);
449
450   brw_blorp_prog_data prog_data;
451
452private:
453   void alloc_regs();
454   void alloc_push_const_regs(int base_reg);
455   void compute_frag_coords();
456   void translate_tiling(bool old_tiled_w, bool new_tiled_w);
457   void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
458   void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
459   void kill_if_outside_dst_rect();
460   void translate_dst_to_src();
461   void single_to_blend();
462   void manual_blend(unsigned num_samples);
463   void sample(struct brw_reg dst);
464   void texel_fetch(struct brw_reg dst);
465   void mcs_fetch();
466   void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
467   void texture_lookup(struct brw_reg dst, GLuint msg_type,
468                       const sampler_message_arg *args, int num_args);
469   void render_target_write();
470
471   /**
472    * Base-2 logarithm of the maximum number of samples that can be blended.
473    */
474   static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
475
476   void *mem_ctx;
477   struct brw_context *brw;
478   const brw_blorp_blit_prog_key *key;
479   struct brw_compile func;
480
481   /* Thread dispatch header */
482   struct brw_reg R0;
483
484   /* Pixel X/Y coordinates (always in R1). */
485   struct brw_reg R1;
486
487   /* Push constants */
488   struct brw_reg dst_x0;
489   struct brw_reg dst_x1;
490   struct brw_reg dst_y0;
491   struct brw_reg dst_y1;
492   struct {
493      struct brw_reg multiplier;
494      struct brw_reg offset;
495   } x_transform, y_transform;
496
497   /* Data read from texture (4 vec16's per array element) */
498   struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
499
500   /* Auxiliary storage for the contents of the MCS surface.
501    *
502    * Since the sampler always returns 8 registers worth of data, this is 8
503    * registers wide, even though we only use the first 2 registers of it.
504    */
505   struct brw_reg mcs_data;
506
507   /* X coordinates.  We have two of them so that we can perform coordinate
508    * transformations easily.
509    */
510   struct brw_reg x_coords[2];
511
512   /* Y coordinates.  We have two of them so that we can perform coordinate
513    * transformations easily.
514    */
515   struct brw_reg y_coords[2];
516
517   /* Which element of x_coords and y_coords is currently in use.
518    */
519   int xy_coord_index;
520
521   /* True if, at the point in the program currently being compiled, the
522    * sample index is known to be zero.
523    */
524   bool s_is_zero;
525
526   /* Register storing the sample index when s_is_zero is false. */
527   struct brw_reg sample_index;
528
529   /* Temporaries */
530   struct brw_reg t1;
531   struct brw_reg t2;
532
533   /* MRF used for sampling and render target writes */
534   GLuint base_mrf;
535};
536
537brw_blorp_blit_program::brw_blorp_blit_program(
538      struct brw_context *brw,
539      const brw_blorp_blit_prog_key *key)
540   : mem_ctx(ralloc_context(NULL)),
541     brw(brw),
542     key(key)
543{
544   brw_init_compile(brw, &func, mem_ctx);
545}
546
547brw_blorp_blit_program::~brw_blorp_blit_program()
548{
549   ralloc_free(mem_ctx);
550}
551
552const GLuint *
553brw_blorp_blit_program::compile(struct brw_context *brw,
554                                GLuint *program_size)
555{
556   /* Sanity checks */
557   if (key->dst_tiled_w && key->rt_samples > 0) {
558      /* If the destination image is W tiled and multisampled, then the thread
559       * must be dispatched once per sample, not once per pixel.  This is
560       * necessary because after conversion between W and Y tiling, there's no
561       * guarantee that all samples corresponding to a single pixel will still
562       * be together.
563       */
564      assert(key->persample_msaa_dispatch);
565   }
566
567   if (key->blend) {
568      /* We are blending, which means we won't have an opportunity to
569       * translate the tiling and sample count for the texture surface.  So
570       * the surface state for the texture must be configured with the correct
571       * tiling and sample count.
572       */
573      assert(!key->src_tiled_w);
574      assert(key->tex_samples == key->src_samples);
575      assert(key->tex_layout == key->src_layout);
576      assert(key->tex_samples > 0);
577   }
578
579   if (key->persample_msaa_dispatch) {
580      /* It only makes sense to do persample dispatch if the render target is
581       * configured as multisampled.
582       */
583      assert(key->rt_samples > 0);
584   }
585
586   /* Make sure layout is consistent with sample count */
587   assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
588          (key->tex_samples == 0));
589   assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
590          (key->rt_samples == 0));
591   assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
592          (key->src_samples == 0));
593   assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
594          (key->dst_samples == 0));
595
596   /* Set up prog_data */
597   memset(&prog_data, 0, sizeof(prog_data));
598   prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
599
600   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
601
602   alloc_regs();
603   compute_frag_coords();
604
605   /* Render target and texture hardware don't support W tiling. */
606   const bool rt_tiled_w = false;
607   const bool tex_tiled_w = false;
608
609   /* The address that data will be written to is determined by the
610    * coordinates supplied to the WM thread and the tiling and sample count of
611    * the render target, according to the formula:
612    *
613    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
614    *
615    * If the actual tiling and sample count of the destination surface are not
616    * the same as the configuration of the render target, then these
617    * coordinates are wrong and we have to adjust them to compensate for the
618    * difference.
619    */
620   if (rt_tiled_w != key->dst_tiled_w ||
621       key->rt_samples != key->dst_samples ||
622       key->rt_layout != key->dst_layout) {
623      encode_msaa(key->rt_samples, key->rt_layout);
624      /* Now (X, Y, S) = detile(rt_tiling, offset) */
625      translate_tiling(rt_tiled_w, key->dst_tiled_w);
626      /* Now (X, Y, S) = detile(dst_tiling, offset) */
627      decode_msaa(key->dst_samples, key->dst_layout);
628   }
629
630   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
631    *
632    * That is: X, Y and S now contain the true coordinates and sample index of
633    * the data that the WM thread should output.
634    *
635    * If we need to kill pixels that are outside the destination rectangle,
636    * now is the time to do it.
637    */
638
639   if (key->use_kill)
640      kill_if_outside_dst_rect();
641
642   /* Next, apply a translation to obtain coordinates in the source image. */
643   translate_dst_to_src();
644
645   /* If the source image is not multisampled, then we want to fetch sample
646    * number 0, because that's the only sample there is.
647    */
648   if (key->src_samples == 0)
649      s_is_zero = true;
650
651   /* X, Y, and S are now the coordinates of the pixel in the source image
652    * that we want to texture from.  Exception: if we are blending, then S is
653    * irrelevant, because we are going to fetch all samples.
654    */
655   if (key->blend) {
656      if (brw->intel.gen == 6) {
657         /* Gen6 hardware an automatically blend using the SAMPLE message */
658         single_to_blend();
659         sample(texture_data[0]);
660      } else {
661         /* Gen7+ hardware doesn't automaticaly blend. */
662         manual_blend(key->src_samples);
663      }
664   } else {
665      /* We aren't blending, which means we just want to fetch a single sample
666       * from the source surface.  The address that we want to fetch from is
667       * related to the X, Y and S values according to the formula:
668       *
669       * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
670       *
671       * If the actual tiling and sample count of the source surface are not
672       * the same as the configuration of the texture, then we need to adjust
673       * the coordinates to compensate for the difference.
674       */
675      if (tex_tiled_w != key->src_tiled_w ||
676          key->tex_samples != key->src_samples ||
677          key->tex_layout != key->src_layout) {
678         encode_msaa(key->src_samples, key->src_layout);
679         /* Now (X, Y, S) = detile(src_tiling, offset) */
680         translate_tiling(key->src_tiled_w, tex_tiled_w);
681         /* Now (X, Y, S) = detile(tex_tiling, offset) */
682         decode_msaa(key->tex_samples, key->tex_layout);
683      }
684
685      /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
686       *
687       * In other words: X, Y, and S now contain values which, when passed to
688       * the texturing unit, will cause data to be read from the correct
689       * memory location.  So we can fetch the texel now.
690       */
691      if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
692         mcs_fetch();
693      texel_fetch(texture_data[0]);
694   }
695
696   /* Finally, write the fetched (or blended) value to the render target and
697    * terminate the thread.
698    */
699   render_target_write();
700   return brw_get_program(&func, program_size);
701}
702
703void
704brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
705{
706#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
707#define ALLOC_REG(name) \
708   this->name = \
709      brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
710
711   ALLOC_REG(dst_x0);
712   ALLOC_REG(dst_x1);
713   ALLOC_REG(dst_y0);
714   ALLOC_REG(dst_y1);
715   ALLOC_REG(x_transform.multiplier);
716   ALLOC_REG(x_transform.offset);
717   ALLOC_REG(y_transform.multiplier);
718   ALLOC_REG(y_transform.offset);
719#undef CONST_LOC
720#undef ALLOC_REG
721}
722
723void
724brw_blorp_blit_program::alloc_regs()
725{
726   int reg = 0;
727   this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
728   this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
729   prog_data.first_curbe_grf = reg;
730   alloc_push_const_regs(reg);
731   reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
732   for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
733      this->texture_data[i] =
734         retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
735      reg += 8;
736   }
737   this->mcs_data =
738      retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
739   for (int i = 0; i < 2; ++i) {
740      this->x_coords[i]
741         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
742      this->y_coords[i]
743         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
744   }
745   this->xy_coord_index = 0;
746   this->sample_index
747      = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
748   this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
749   this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
750
751   /* Make sure we didn't run out of registers */
752   assert(reg <= GEN7_MRF_HACK_START);
753
754   int mrf = 2;
755   this->base_mrf = mrf;
756}
757
758/* In the code that follows, X and Y can be used to quickly refer to the
759 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
760 * prime") to the inactive elements.
761 *
762 * S can be used to quickly refer to sample_index.
763 */
764#define X x_coords[xy_coord_index]
765#define Y y_coords[xy_coord_index]
766#define Xp x_coords[!xy_coord_index]
767#define Yp y_coords[!xy_coord_index]
768#define S sample_index
769
770/* Quickly swap the roles of (X, Y) and (Xp, Yp).  Saves us from having to do
771 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
772 */
773#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
774
775/**
776 * Emit code to compute the X and Y coordinates of the pixels being rendered
777 * by this WM invocation.
778 *
779 * Assuming the render target is set up for Y tiling, these (X, Y) values are
780 * related to the address offset where outputs will be written by the formula:
781 *
782 *   (X, Y, S) = decode_msaa(detile(offset)).
783 *
784 * (See brw_blorp_blit_program).
785 */
786void
787brw_blorp_blit_program::compute_frag_coords()
788{
789   /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
790    * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
791    * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
792    * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
793    *
794    * Pixels within a subspan are laid out in this arrangement:
795    * 0 1
796    * 2 3
797    *
798    * So, to compute the coordinates of each pixel, we need to read every 2nd
799    * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
800    * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
801    * In other words, the data we want to access is R1.4<2;4,0>UW.
802    *
803    * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
804    * result, since pixels n+1 and n+3 are in the right half of the subspan.
805    */
806   brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
807
808   /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
809    * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
810    * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
811    * R1.4<2;4,0>UW).
812    *
813    * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
814    * pixels n+2 and n+3 are in the bottom half of the subspan.
815    */
816   brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
817
818   if (key->persample_msaa_dispatch) {
819      /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples > 0.
820       * Therefore, subspan 0 will represent sample 0, subspan 1 will
821       * represent sample 1, and so on.
822       *
823       * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 1,
824       * 2, 2, 2, 2, 3, 3, 3, 3).  The easiest way to do this is to populate a
825       * temporary variable with the sequence (0, 1, 2, 3), and then copy from
826       * it using vstride=1, width=4, hstride=0.
827       *
828       * TODO: implement the necessary calculation for 8x multisampling.
829       */
830      brw_MOV(&func, t1, brw_imm_v(0x3210));
831      brw_MOV(&func, S, stride(t1, 1, 4, 0));
832      s_is_zero = false;
833   } else {
834      /* Either the destination surface is single-sampled, or the WM will be
835       * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
836       * per pixel).  In either case, it's not meaningful to compute a sample
837       * value.  Just set it to 0.
838       */
839      s_is_zero = true;
840   }
841}
842
843/**
844 * Emit code to compensate for the difference between Y and W tiling.
845 *
846 * This code modifies the X and Y coordinates according to the formula:
847 *
848 *   (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
849 *
850 * (See brw_blorp_blit_program).
851 *
852 * It can only translate between W and Y tiling, so new_tiling and old_tiling
853 * are booleans where true represents W tiling and false represents Y tiling.
854 */
855void
856brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
857{
858   if (old_tiled_w == new_tiled_w)
859      return;
860
861   /* In the code that follows, we can safely assume that S = 0, because W
862    * tiling formats always use IMS layout.
863    */
864   assert(s_is_zero);
865
866   if (new_tiled_w) {
867      /* Given X and Y coordinates that describe an address using Y tiling,
868       * translate to the X and Y coordinates that describe the same address
869       * using W tiling.
870       *
871       * If we break down the low order bits of X and Y, using a
872       * single letter to represent each low-order bit:
873       *
874       *   X = A << 7 | 0bBCDEFGH
875       *   Y = J << 5 | 0bKLMNP                                       (1)
876       *
877       * Then we can apply the Y tiling formula to see the memory offset being
878       * addressed:
879       *
880       *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
881       *
882       * If we apply the W detiling formula to this memory location, that the
883       * corresponding X' and Y' coordinates are:
884       *
885       *   X' = A << 6 | 0bBCDPFH                                     (3)
886       *   Y' = J << 6 | 0bKLMNEG
887       *
888       * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
889       * we need to make the following computation:
890       *
891       *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
892       *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
893       */
894      brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
895      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
896      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
897      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
898      brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
899      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
900      brw_OR(&func, Xp, t1, t2);
901      brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
902      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
903      brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
904      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
905      brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
906      brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
907      brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
908      brw_OR(&func, Yp, t1, t2);
909      SWAP_XY_AND_XPYP();
910   } else {
911      /* Applying the same logic as above, but in reverse, we obtain the
912       * formulas:
913       *
914       * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
915       * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
916       */
917      brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
918      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
919      brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
920      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
921      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
922      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
923      brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
924      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
925                                    | (Y & 0b1) << 1 */
926      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
927      brw_OR(&func, Xp, t1, t2);
928      brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
929      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
930      brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
931      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
932      brw_OR(&func, Yp, t1, t2);
933      SWAP_XY_AND_XPYP();
934   }
935}
936
937/**
938 * Emit code to compensate for the difference between MSAA and non-MSAA
939 * surfaces.
940 *
941 * This code modifies the X and Y coordinates according to the formula:
942 *
943 *   (X', Y', S') = encode_msaa_4x(X, Y, S)
944 *
945 * (See brw_blorp_blit_program).
946 */
947void
948brw_blorp_blit_program::encode_msaa(unsigned num_samples,
949                                    intel_msaa_layout layout)
950{
951   switch (layout) {
952   case INTEL_MSAA_LAYOUT_NONE:
953      /* No translation necessary, and S should already be zero. */
954      assert(s_is_zero);
955      break;
956   case INTEL_MSAA_LAYOUT_CMS:
957      /* We can't compensate for compressed layout since at this point in the
958       * program we haven't read from the MCS buffer.
959       */
960      assert(!"Bad layout in encode_msaa");
961      break;
962   case INTEL_MSAA_LAYOUT_UMS:
963      /* No translation necessary. */
964      break;
965   case INTEL_MSAA_LAYOUT_IMS:
966      /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
967       *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
968       *         Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
969       */
970      brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
971      if (!s_is_zero) {
972         brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
973         brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
974      }
975      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
976                                                | (S & 0b1) << 1 */
977      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
978      brw_OR(&func, Xp, t1, t2);
979      brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
980      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
981      if (!s_is_zero) {
982         brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
983         brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
984      }
985      brw_AND(&func, t2, Y, brw_imm_uw(1));
986      brw_OR(&func, Yp, t1, t2);
987      SWAP_XY_AND_XPYP();
988      s_is_zero = true;
989      break;
990   }
991}
992
993/**
994 * Emit code to compensate for the difference between MSAA and non-MSAA
995 * surfaces.
996 *
997 * This code modifies the X and Y coordinates according to the formula:
998 *
999 *   (X', Y', S) = decode_msaa(num_samples, X, Y, S)
1000 *
1001 * (See brw_blorp_blit_program).
1002 */
1003void
1004brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1005                                    intel_msaa_layout layout)
1006{
1007   switch (layout) {
1008   case INTEL_MSAA_LAYOUT_NONE:
1009      /* No translation necessary, and S should already be zero. */
1010      assert(s_is_zero);
1011      break;
1012   case INTEL_MSAA_LAYOUT_CMS:
1013      /* We can't compensate for compressed layout since at this point in the
1014       * program we don't have access to the MCS buffer.
1015       */
1016      assert(!"Bad layout in encode_msaa");
1017      break;
1018   case INTEL_MSAA_LAYOUT_UMS:
1019      /* No translation necessary. */
1020      break;
1021   case INTEL_MSAA_LAYOUT_IMS:
1022      /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1023       *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
1024       *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1025       *         S = (Y & 0b10) | (X & 0b10) >> 1
1026       */
1027      assert(s_is_zero);
1028      brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1029      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1030      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1031      brw_OR(&func, Xp, t1, t2);
1032      brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1033      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1034      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1035      brw_OR(&func, Yp, t1, t2);
1036      brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1037      brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1038      brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1039      brw_OR(&func, S, t1, t2);
1040      s_is_zero = false;
1041      SWAP_XY_AND_XPYP();
1042      break;
1043   }
1044}
1045
1046/**
1047 * Emit code that kills pixels whose X and Y coordinates are outside the
1048 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1049 * dst_x1, dst_y1).
1050 */
1051void
1052brw_blorp_blit_program::kill_if_outside_dst_rect()
1053{
1054   struct brw_reg f0 = brw_flag_reg();
1055   struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1056   struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
1057
1058   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
1059   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
1060   brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
1061   brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1062
1063   brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1064   brw_push_insn_state(&func);
1065   brw_set_mask_control(&func, BRW_MASK_DISABLE);
1066   brw_AND(&func, g1, f0, g1);
1067   brw_pop_insn_state(&func);
1068}
1069
1070/**
1071 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1072 * coordinates.
1073 */
1074void
1075brw_blorp_blit_program::translate_dst_to_src()
1076{
1077   brw_MUL(&func, Xp, X, x_transform.multiplier);
1078   brw_MUL(&func, Yp, Y, y_transform.multiplier);
1079   brw_ADD(&func, Xp, Xp, x_transform.offset);
1080   brw_ADD(&func, Yp, Yp, y_transform.offset);
1081   SWAP_XY_AND_XPYP();
1082}
1083
1084/**
1085 * Emit code to transform the X and Y coordinates as needed for blending
1086 * together the different samples in an MSAA texture.
1087 */
1088void
1089brw_blorp_blit_program::single_to_blend()
1090{
1091   /* When looking up samples in an MSAA texture using the SAMPLE message,
1092    * Gen6 requires the texture coordinates to be odd integers (so that they
1093    * correspond to the center of a 2x2 block representing the four samples
1094    * that maxe up a pixel).  So we need to multiply our X and Y coordinates
1095    * each by 2 and then add 1.
1096    */
1097   brw_SHL(&func, t1, X, brw_imm_w(1));
1098   brw_SHL(&func, t2, Y, brw_imm_w(1));
1099   brw_ADD(&func, Xp, t1, brw_imm_w(1));
1100   brw_ADD(&func, Yp, t2, brw_imm_w(1));
1101   SWAP_XY_AND_XPYP();
1102}
1103
1104
1105/**
1106 * Count the number of trailing 1 bits in the given value.  For example:
1107 *
1108 * count_trailing_one_bits(0) == 0
1109 * count_trailing_one_bits(7) == 3
1110 * count_trailing_one_bits(11) == 2
1111 */
1112inline int count_trailing_one_bits(unsigned value)
1113{
1114#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1115   return __builtin_ctz(~value);
1116#else
1117   return _mesa_bitcount(value & ~(value + 1));
1118#endif
1119}
1120
1121
1122void
1123brw_blorp_blit_program::manual_blend(unsigned num_samples)
1124{
1125   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1126      mcs_fetch();
1127
1128   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1129    *
1130    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1131    *
1132    * This ensures that when all samples have the same value, no numerical
1133    * precision is lost, since each addition operation always adds two equal
1134    * values, and summing two equal floating point values does not lose
1135    * precision.
1136    *
1137    * We perform this computation by treating the texture_data array as a
1138    * stack and performing the following operations:
1139    *
1140    * - push sample 0 onto stack
1141    * - push sample 1 onto stack
1142    * - add top two stack entries
1143    * - push sample 2 onto stack
1144    * - push sample 3 onto stack
1145    * - add top two stack entries
1146    * - add top two stack entries
1147    * - divide top stack entry by 4
1148    *
1149    * Note that after pushing sample i onto the stack, the number of add
1150    * operations we do is equal to the number of trailing 1 bits in i.  This
1151    * works provided the total number of samples is a power of two, which it
1152    * always is for i965.
1153    *
1154    * For integer formats, we replace the add operations with average
1155    * operations and skip the final division.
1156    */
1157   typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1158                                                  struct brw_reg,
1159                                                  struct brw_reg,
1160                                                  struct brw_reg);
1161   brw_op2_ptr combine_op =
1162      key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1163   unsigned stack_depth = 0;
1164   for (unsigned i = 0; i < num_samples; ++i) {
1165      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1166
1167      /* Push sample i onto the stack */
1168      assert(stack_depth < ARRAY_SIZE(texture_data));
1169      if (i == 0) {
1170         s_is_zero = true;
1171      } else {
1172         s_is_zero = false;
1173         brw_MOV(&func, S, brw_imm_uw(i));
1174      }
1175      texel_fetch(texture_data[stack_depth++]);
1176
1177      if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1178         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1179          * suggests an optimization:
1180          *
1181          *     "A simple optimization with probable large return in
1182          *     performance is to compare the MCS value to zero (indicating
1183          *     all samples are on sample slice 0), and sample only from
1184          *     sample slice 0 using ld2dss if MCS is zero."
1185          *
1186          * Note that in the case where the MCS value is zero, sampling from
1187          * sample slice 0 using ld2dss and sampling from sample 0 using
1188          * ld2dms are equivalent (since all samples are on sample slice 0).
1189          * Since we have already sampled from sample 0, all we need to do is
1190          * skip the remaining fetches and averaging if MCS is zero.
1191          */
1192         brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1193                 mcs_data, brw_imm_ud(0));
1194         brw_IF(&func, BRW_EXECUTE_16);
1195      }
1196
1197      /* Do count_trailing_one_bits(i) times */
1198      for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1199         assert(stack_depth >= 2);
1200         --stack_depth;
1201
1202         /* TODO: should use a smaller loop bound for non_RGBA formats */
1203         for (int k = 0; k < 4; ++k) {
1204            combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1205                       offset(vec8(texture_data[stack_depth - 1]), 2*k),
1206                       offset(vec8(texture_data[stack_depth]), 2*k));
1207         }
1208      }
1209   }
1210
1211   /* We should have just 1 sample on the stack now. */
1212   assert(stack_depth == 1);
1213
1214   if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1215      /* Scale the result down by a factor of num_samples */
1216      /* TODO: should use a smaller loop bound for non-RGBA formats */
1217      for (int j = 0; j < 4; ++j) {
1218         brw_MUL(&func, offset(texture_data[0], 2*j),
1219                 offset(vec8(texture_data[0]), 2*j),
1220                 brw_imm_f(1.0/num_samples));
1221      }
1222   }
1223
1224   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1225      brw_ENDIF(&func);
1226}
1227
1228/**
1229 * Emit code to look up a value in the texture using the SAMPLE message (which
1230 * does blending of MSAA surfaces).
1231 */
1232void
1233brw_blorp_blit_program::sample(struct brw_reg dst)
1234{
1235   static const sampler_message_arg args[2] = {
1236      SAMPLER_MESSAGE_ARG_U_FLOAT,
1237      SAMPLER_MESSAGE_ARG_V_FLOAT
1238   };
1239
1240   texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1241}
1242
1243/**
1244 * Emit code to look up a value in the texture using the SAMPLE_LD message
1245 * (which does a simple texel fetch).
1246 */
1247void
1248brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1249{
1250   static const sampler_message_arg gen6_args[5] = {
1251      SAMPLER_MESSAGE_ARG_U_INT,
1252      SAMPLER_MESSAGE_ARG_V_INT,
1253      SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1254      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1255      SAMPLER_MESSAGE_ARG_SI_INT
1256   };
1257   static const sampler_message_arg gen7_ld_args[3] = {
1258      SAMPLER_MESSAGE_ARG_U_INT,
1259      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1260      SAMPLER_MESSAGE_ARG_V_INT
1261   };
1262   static const sampler_message_arg gen7_ld2dss_args[3] = {
1263      SAMPLER_MESSAGE_ARG_SI_INT,
1264      SAMPLER_MESSAGE_ARG_U_INT,
1265      SAMPLER_MESSAGE_ARG_V_INT
1266   };
1267   static const sampler_message_arg gen7_ld2dms_args[4] = {
1268      SAMPLER_MESSAGE_ARG_SI_INT,
1269      SAMPLER_MESSAGE_ARG_MCS_INT,
1270      SAMPLER_MESSAGE_ARG_U_INT,
1271      SAMPLER_MESSAGE_ARG_V_INT
1272   };
1273
1274   switch (brw->intel.gen) {
1275   case 6:
1276      texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1277                     s_is_zero ? 2 : 5);
1278      break;
1279   case 7:
1280      switch (key->tex_layout) {
1281      case INTEL_MSAA_LAYOUT_IMS:
1282         /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1283          * Format):
1284          *
1285          *     If this field is MSFMT_DEPTH_STENCIL
1286          *     [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1287          *     messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1288          *
1289          * So fall through to emit the same message as we use for
1290          * INTEL_MSAA_LAYOUT_CMS.
1291          */
1292      case INTEL_MSAA_LAYOUT_CMS:
1293         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1294                        gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1295         break;
1296      case INTEL_MSAA_LAYOUT_UMS:
1297         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1298                        gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1299         break;
1300      case INTEL_MSAA_LAYOUT_NONE:
1301         assert(s_is_zero);
1302         texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1303                        ARRAY_SIZE(gen7_ld_args));
1304         break;
1305      }
1306      break;
1307   default:
1308      assert(!"Should not get here.");
1309      break;
1310   };
1311}
1312
1313void
1314brw_blorp_blit_program::mcs_fetch()
1315{
1316   static const sampler_message_arg gen7_ld_mcs_args[2] = {
1317      SAMPLER_MESSAGE_ARG_U_INT,
1318      SAMPLER_MESSAGE_ARG_V_INT
1319   };
1320   texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1321                  gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1322}
1323
1324void
1325brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1326                                          struct brw_reg dst)
1327{
1328   brw_MOV(&func, vec8(dst), vec8(src));
1329   brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1330   brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1331   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1332}
1333
1334void
1335brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1336                                       GLuint msg_type,
1337                                       const sampler_message_arg *args,
1338                                       int num_args)
1339{
1340   struct brw_reg mrf =
1341      retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1342   for (int arg = 0; arg < num_args; ++arg) {
1343      switch (args[arg]) {
1344      case SAMPLER_MESSAGE_ARG_U_FLOAT:
1345         expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1346         break;
1347      case SAMPLER_MESSAGE_ARG_V_FLOAT:
1348         expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1349         break;
1350      case SAMPLER_MESSAGE_ARG_U_INT:
1351         expand_to_32_bits(X, mrf);
1352         break;
1353      case SAMPLER_MESSAGE_ARG_V_INT:
1354         expand_to_32_bits(Y, mrf);
1355         break;
1356      case SAMPLER_MESSAGE_ARG_SI_INT:
1357         /* Note: on Gen7, this code may be reached with s_is_zero==true
1358          * because in Gen7's ld2dss message, the sample index is the first
1359          * argument.  When this happens, we need to move a 0 into the
1360          * appropriate message register.
1361          */
1362         if (s_is_zero)
1363            brw_MOV(&func, mrf, brw_imm_ud(0));
1364         else
1365            expand_to_32_bits(S, mrf);
1366         break;
1367      case SAMPLER_MESSAGE_ARG_MCS_INT:
1368         switch (key->tex_layout) {
1369         case INTEL_MSAA_LAYOUT_CMS:
1370            brw_MOV(&func, mrf, mcs_data);
1371            break;
1372         case INTEL_MSAA_LAYOUT_IMS:
1373            /* When sampling from an IMS surface, MCS data is not relevant,
1374             * and the hardware ignores it.  So don't bother populating it.
1375             */
1376            break;
1377         default:
1378            /* We shouldn't be trying to send MCS data with any other
1379             * layouts.
1380             */
1381            assert (!"Unsupported layout for MCS data");
1382            break;
1383         }
1384         break;
1385      case SAMPLER_MESSAGE_ARG_ZERO_INT:
1386         brw_MOV(&func, mrf, brw_imm_ud(0));
1387         break;
1388      }
1389      mrf.nr += 2;
1390   }
1391
1392   brw_SAMPLE(&func,
1393              retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1394              base_mrf /* msg_reg_nr */,
1395              brw_message_reg(base_mrf) /* src0 */,
1396              BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1397              0 /* sampler */,
1398              WRITEMASK_XYZW,
1399              msg_type,
1400              8 /* response_length.  TODO: should be smaller for non-RGBA formats? */,
1401              mrf.nr - base_mrf /* msg_length */,
1402              0 /* header_present */,
1403              BRW_SAMPLER_SIMD_MODE_SIMD16,
1404              BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1405}
1406
1407#undef X
1408#undef Y
1409#undef U
1410#undef V
1411#undef S
1412#undef SWAP_XY_AND_XPYP
1413
1414void
1415brw_blorp_blit_program::render_target_write()
1416{
1417   struct brw_reg mrf_rt_write =
1418      retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1419   int mrf_offset = 0;
1420
1421   /* If we may have killed pixels, then we need to send R0 and R1 in a header
1422    * so that the render target knows which pixels we killed.
1423    */
1424   bool use_header = key->use_kill;
1425   if (use_header) {
1426      /* Copy R0/1 to MRF */
1427      brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1428              retype(R0, BRW_REGISTER_TYPE_UD));
1429      mrf_offset += 2;
1430   }
1431
1432   /* Copy texture data to MRFs */
1433   for (int i = 0; i < 4; ++i) {
1434      /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1435      brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1436              offset(vec8(texture_data[0]), 2*i));
1437      mrf_offset += 2;
1438   }
1439
1440   /* Now write to the render target and terminate the thread */
1441   brw_fb_WRITE(&func,
1442                16 /* dispatch_width */,
1443                base_mrf /* msg_reg_nr */,
1444                mrf_rt_write /* src0 */,
1445                BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1446                BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1447                mrf_offset /* msg_length.  TODO: Should be smaller for non-RGBA formats. */,
1448                0 /* response_length */,
1449                true /* eot */,
1450                use_header);
1451}
1452
1453
1454void
1455brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1456                                        bool mirror)
1457{
1458   if (!mirror) {
1459      /* When not mirroring a coordinate (say, X), we need:
1460       *   x' - src_x0 = x - dst_x0
1461       * Therefore:
1462       *   x' = 1*x + (src_x0 - dst_x0)
1463       */
1464      multiplier = 1;
1465      offset = src0 - dst0;
1466   } else {
1467      /* When mirroring X we need:
1468       *   x' - src_x0 = dst_x1 - x - 1
1469       * Therefore:
1470       *   x' = -1*x + (src_x0 + dst_x1 - 1)
1471       */
1472      multiplier = -1;
1473      offset = src0 + dst1 - 1;
1474   }
1475}
1476
1477
1478/**
1479 * Determine which MSAA layout the GPU pipeline should be configured for,
1480 * based on the chip generation, the number of samples, and the true layout of
1481 * the image in memory.
1482 */
1483inline intel_msaa_layout
1484compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1485                                 intel_msaa_layout true_layout)
1486{
1487   if (num_samples == 0) {
1488      /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1489       * format buffers, by transforming coordinates appropriately.
1490       */
1491      assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1492             true_layout == INTEL_MSAA_LAYOUT_IMS);
1493      return INTEL_MSAA_LAYOUT_NONE;
1494   } else {
1495      assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1496   }
1497
1498   /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1499   if (brw->intel.gen == 6) {
1500      assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1501   }
1502
1503   return true_layout;
1504}
1505
1506
1507brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1508                                             struct intel_mipmap_tree *src_mt,
1509                                             struct intel_mipmap_tree *dst_mt,
1510                                             GLuint src_x0, GLuint src_y0,
1511                                             GLuint dst_x0, GLuint dst_y0,
1512                                             GLuint dst_x1, GLuint dst_y1,
1513                                             bool mirror_x, bool mirror_y)
1514{
1515   src.set(brw, src_mt, 0, 0);
1516   dst.set(brw, dst_mt, 0, 0);
1517
1518   use_wm_prog = true;
1519   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1520
1521   /* texture_data_type indicates the register type that should be used to
1522    * manipulate texture data.
1523    */
1524   switch (_mesa_get_format_datatype(src_mt->format)) {
1525   case GL_UNSIGNED_NORMALIZED:
1526   case GL_SIGNED_NORMALIZED:
1527   case GL_FLOAT:
1528      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1529      break;
1530   case GL_UNSIGNED_INT:
1531      if (src_mt->format == MESA_FORMAT_S8) {
1532         /* We process stencil as though it's an unsigned normalized color */
1533         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1534      } else {
1535         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1536      }
1537      break;
1538   case GL_INT:
1539      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1540      break;
1541   default:
1542      assert(!"Unrecognized blorp format");
1543      break;
1544   }
1545
1546   if (brw->intel.gen > 6) {
1547      /* Gen7's rendering hardware only supports the IMS layout for depth and
1548       * stencil render targets.  Blorp always maps its destination surface as
1549       * a color render target (even if it's actually a depth or stencil
1550       * buffer).  So if the destination is IMS, we'll have to map it as a
1551       * single-sampled texture and interleave the samples ourselves.
1552       */
1553      if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1554         dst.num_samples = 0;
1555   }
1556
1557   if (dst.map_stencil_as_y_tiled && dst.num_samples > 0) {
1558      /* If the destination surface is a W-tiled multisampled stencil buffer
1559       * that we're mapping as Y tiled, then we need to arrange for the WM
1560       * program to run once per sample rather than once per pixel, because
1561       * the memory layout of related samples doesn't match between W and Y
1562       * tiling.
1563       */
1564      wm_prog_key.persample_msaa_dispatch = true;
1565   }
1566
1567   if (src.num_samples > 0 && dst.num_samples > 0) {
1568      /* We are blitting from a multisample buffer to a multisample buffer, so
1569       * we must preserve samples within a pixel.  This means we have to
1570       * arrange for the WM program to run once per sample rather than once
1571       * per pixel.
1572       */
1573      wm_prog_key.persample_msaa_dispatch = true;
1574   }
1575
1576   /* The render path must be configured to use the same number of samples as
1577    * the destination buffer.
1578    */
1579   num_samples = dst.num_samples;
1580
1581   GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1582   if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1583       base_format != GL_STENCIL_INDEX &&
1584       src_mt->num_samples > 0 && dst_mt->num_samples == 0) {
1585      /* We are downsampling a color buffer, so blend. */
1586      wm_prog_key.blend = true;
1587   }
1588
1589   /* src_samples and dst_samples are the true sample counts */
1590   wm_prog_key.src_samples = src_mt->num_samples;
1591   wm_prog_key.dst_samples = dst_mt->num_samples;
1592
1593   /* tex_samples and rt_samples are the sample counts that are set up in
1594    * SURFACE_STATE.
1595    */
1596   wm_prog_key.tex_samples = src.num_samples;
1597   wm_prog_key.rt_samples  = dst.num_samples;
1598
1599   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1600    * use to access the source and destination surfaces.
1601    */
1602   wm_prog_key.tex_layout =
1603      compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1604   wm_prog_key.rt_layout =
1605      compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1606
1607   /* src_layout and dst_layout indicate the true MSAA layout used by src and
1608    * dst.
1609    */
1610   wm_prog_key.src_layout = src_mt->msaa_layout;
1611   wm_prog_key.dst_layout = dst_mt->msaa_layout;
1612
1613   wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1614   wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1615   x0 = wm_push_consts.dst_x0 = dst_x0;
1616   y0 = wm_push_consts.dst_y0 = dst_y0;
1617   x1 = wm_push_consts.dst_x1 = dst_x1;
1618   y1 = wm_push_consts.dst_y1 = dst_y1;
1619   wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1620   wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1621
1622   if (dst.num_samples == 0 && dst_mt->num_samples > 0) {
1623      /* We must expand the rectangle we send through the rendering pipeline,
1624       * to account for the fact that we are mapping the destination region as
1625       * single-sampled when it is in fact multisampled.  We must also align
1626       * it to a multiple of the multisampling pattern, because the
1627       * differences between multisampled and single-sampled surface formats
1628       * will mean that pixels are scrambled within the multisampling pattern.
1629       * TODO: what if this makes the coordinates too large?
1630       *
1631       * Note: this only works if the destination surface uses the IMS layout.
1632       * If it's UMS, then we have no choice but to set up the rendering
1633       * pipeline as multisampled.
1634       */
1635      assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
1636      switch (dst_mt->num_samples) {
1637      case 4:
1638         x0 = (x0 * 2) & ~3;
1639         y0 = (y0 * 2) & ~3;
1640         x1 = ALIGN(x1 * 2, 4);
1641         y1 = ALIGN(y1 * 2, 4);
1642         break;
1643      case 8:
1644         x0 = (x0 * 4) & ~7;
1645         y0 = (y0 * 2) & ~3;
1646         x1 = ALIGN(x1 * 4, 8);
1647         y1 = ALIGN(y1 * 2, 4);
1648         break;
1649      default:
1650         assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
1651         break;
1652      }
1653      wm_prog_key.use_kill = true;
1654   }
1655
1656   if (dst.map_stencil_as_y_tiled) {
1657      /* We must modify the rectangle we send through the rendering pipeline,
1658       * to account for the fact that we are mapping it as Y-tiled when it is
1659       * in fact W-tiled.  Y tiles have dimensions 128x32 whereas W tiles have
1660       * dimensions 64x64.  We must also align it to a multiple of the tile
1661       * size, because the differences between W and Y tiling formats will
1662       * mean that pixels are scrambled within the tile.
1663       *
1664       * Note: if the destination surface configured to use IMS layout, then
1665       * the effective tile size we need to align it to is smaller, because
1666       * each pixel covers a 2x2 or a 4x2 block of samples.
1667       *
1668       * TODO: what if this makes the coordinates too large?
1669       */
1670      unsigned x_align = 64, y_align = 64;
1671      if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
1672         x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1673         y_align /= 2;
1674      }
1675      x0 = (x0 & ~(x_align - 1)) * 2;
1676      y0 = (y0 & ~(y_align - 1)) / 2;
1677      x1 = ALIGN(x1, x_align) * 2;
1678      y1 = ALIGN(y1, y_align) / 2;
1679      wm_prog_key.use_kill = true;
1680   }
1681}
1682
1683uint32_t
1684brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1685                                   brw_blorp_prog_data **prog_data) const
1686{
1687   uint32_t prog_offset;
1688   if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1689                         &this->wm_prog_key, sizeof(this->wm_prog_key),
1690                         &prog_offset, prog_data)) {
1691      brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1692      GLuint program_size;
1693      const GLuint *program = prog.compile(brw, &program_size);
1694      brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1695                       &this->wm_prog_key, sizeof(this->wm_prog_key),
1696                       program, program_size,
1697                       &prog.prog_data, sizeof(prog.prog_data),
1698                       &prog_offset, prog_data);
1699   }
1700   return prog_offset;
1701}
1702