brw_blorp_blit.cpp revision 602e9a0f3727b036caf3a7b228fe90d36d832ea7
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "main/teximage.h"
25#include "main/fbobject.h"
26
27#include "glsl/ralloc.h"
28
29#include "intel_fbo.h"
30
31#include "brw_blorp.h"
32#include "brw_context.h"
33#include "brw_eu.h"
34#include "brw_state.h"
35
36
37/**
38 * Helper function for handling mirror image blits.
39 *
40 * If coord0 > coord1, swap them and invert the "mirror" boolean.
41 */
42static inline void
43fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
44{
45   if (coord0 > coord1) {
46      mirror = !mirror;
47      GLint tmp = coord0;
48      coord0 = coord1;
49      coord1 = tmp;
50   }
51}
52
53
54/**
55 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
56 * destination coordinates.
57 *
58 * Return true if there is still blitting to do, false if all pixels got
59 * rejected by the clip and/or scissor.
60 *
61 * For clarity, the nomenclature of this function assumes we are clipping and
62 * scissoring the X coordinate; the exact same logic applies for Y
63 * coordinates.
64 *
65 * Note: this function may also be used to account for clipping of source
66 * coordinates, by swapping the roles of src and dst.
67 */
68static inline bool
69clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
70                GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
71{
72   /* If we are going to scissor everything away, stop. */
73   if (!(fb_xmin < fb_xmax &&
74         dst_x0 < fb_xmax &&
75         fb_xmin < dst_x1 &&
76         dst_x0 < dst_x1)) {
77      return false;
78   }
79
80   /* Clip the destination rectangle, and keep track of how many pixels we
81    * clipped off of the left and right sides of it.
82    */
83   GLint pixels_clipped_left = 0;
84   GLint pixels_clipped_right = 0;
85   if (dst_x0 < fb_xmin) {
86      pixels_clipped_left = fb_xmin - dst_x0;
87      dst_x0 = fb_xmin;
88   }
89   if (fb_xmax < dst_x1) {
90      pixels_clipped_right = dst_x1 - fb_xmax;
91      dst_x1 = fb_xmax;
92   }
93
94   /* If we are mirrored, then before applying pixels_clipped_{left,right} to
95    * the source coordinates, we need to flip them to account for the
96    * mirroring.
97    */
98   if (mirror) {
99      GLint tmp = pixels_clipped_left;
100      pixels_clipped_left = pixels_clipped_right;
101      pixels_clipped_right = tmp;
102   }
103
104   /* Adjust the source rectangle to remove the pixels corresponding to those
105    * that were clipped/scissored out of the destination rectangle.
106    */
107   src_x0 += pixels_clipped_left;
108   src_x1 -= pixels_clipped_right;
109
110   return true;
111}
112
113
114static struct intel_mipmap_tree *
115find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
116{
117   struct intel_mipmap_tree *mt = irb->mt;
118   if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
119      mt = mt->stencil_mt;
120   return mt;
121}
122
123void
124brw_blorp_blit_miptrees(struct intel_context *intel,
125                        struct intel_mipmap_tree *src_mt,
126                        struct intel_mipmap_tree *dst_mt,
127                        int src_x0, int src_y0,
128                        int dst_x0, int dst_y0,
129                        int dst_x1, int dst_y1,
130                        bool mirror_x, bool mirror_y)
131{
132   brw_blorp_blit_params params(brw_context(&intel->ctx),
133                                src_mt, dst_mt,
134                                src_x0, src_y0,
135                                dst_x0, dst_y0,
136                                dst_x1, dst_y1,
137                                mirror_x, mirror_y);
138   brw_blorp_exec(intel, &params);
139}
140
141static void
142do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit,
143              struct intel_renderbuffer *src_irb,
144              struct intel_renderbuffer *dst_irb,
145              GLint srcX0, GLint srcY0,
146              GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
147              bool mirror_x, bool mirror_y)
148{
149   /* Find source/dst miptrees */
150   struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
151   struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
152
153   /* Get ready to blit.  This includes depth resolving the src and dst
154    * buffers if necessary.
155    */
156   intel_renderbuffer_resolve_depth(intel, src_irb);
157   intel_renderbuffer_resolve_depth(intel, dst_irb);
158
159   /* Do the blit */
160   brw_blorp_blit_miptrees(intel, src_mt, dst_mt,
161                           srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
162                           mirror_x, mirror_y);
163
164   intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
165   intel_renderbuffer_set_needs_downsample(dst_irb);
166}
167
168
169static bool
170formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
171              struct intel_renderbuffer *dst_irb)
172{
173   /* Note: don't just check gl_renderbuffer::Format, because in some cases
174    * multiple gl_formats resolve to the same native type in the miptree (for
175    * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
176    * between those formats.
177    */
178   return find_miptree(buffer_bit, src_irb)->format ==
179      find_miptree(buffer_bit, dst_irb)->format;
180}
181
182
183static bool
184try_blorp_blit(struct intel_context *intel,
185               GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
186               GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
187               GLenum filter, GLbitfield buffer_bit)
188{
189   struct gl_context *ctx = &intel->ctx;
190
191   /* Sync up the state of window system buffers.  We need to do this before
192    * we go looking for the buffers.
193    */
194   intel_prepare_render(intel);
195
196   const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
197   const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
198
199   /* Detect if the blit needs to be mirrored */
200   bool mirror_x = false, mirror_y = false;
201   fixup_mirroring(mirror_x, srcX0, srcX1);
202   fixup_mirroring(mirror_x, dstX0, dstX1);
203   fixup_mirroring(mirror_y, srcY0, srcY1);
204   fixup_mirroring(mirror_y, dstY0, dstY1);
205
206   /* Make sure width and height match */
207   if (srcX1 - srcX0 != dstX1 - dstX0) return false;
208   if (srcY1 - srcY0 != dstY1 - dstY0) return false;
209
210   /* If the destination rectangle needs to be clipped or scissored, do so.
211    */
212   if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
213                         draw_fb->_Xmin, draw_fb->_Xmax) &&
214         clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
215                         draw_fb->_Ymin, draw_fb->_Ymax))) {
216      /* Everything got clipped/scissored away, so the blit was successful. */
217      return true;
218   }
219
220   /* If the source rectangle needs to be clipped or scissored, do so. */
221   if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
222                         0, read_fb->Width) &&
223         clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
224                         0, read_fb->Height))) {
225      /* Everything got clipped/scissored away, so the blit was successful. */
226      return true;
227   }
228
229   /* Account for the fact that in the system framebuffer, the origin is at
230    * the lower left.
231    */
232   if (_mesa_is_winsys_fbo(read_fb)) {
233      GLint tmp = read_fb->Height - srcY0;
234      srcY0 = read_fb->Height - srcY1;
235      srcY1 = tmp;
236      mirror_y = !mirror_y;
237   }
238   if (_mesa_is_winsys_fbo(draw_fb)) {
239      GLint tmp = draw_fb->Height - dstY0;
240      dstY0 = draw_fb->Height - dstY1;
241      dstY1 = tmp;
242      mirror_y = !mirror_y;
243   }
244
245   /* Find buffers */
246   struct intel_renderbuffer *src_irb;
247   struct intel_renderbuffer *dst_irb;
248   switch (buffer_bit) {
249   case GL_COLOR_BUFFER_BIT:
250      src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
251      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
252         dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
253         if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
254            return false;
255      }
256      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
257         dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
258         do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
259                       dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
260      }
261      break;
262   case GL_DEPTH_BUFFER_BIT:
263      src_irb =
264         intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
265      dst_irb =
266         intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
267      if (!formats_match(buffer_bit, src_irb, dst_irb))
268         return false;
269      do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
270                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
271      break;
272   case GL_STENCIL_BUFFER_BIT:
273      src_irb =
274         intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
275      dst_irb =
276         intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
277      if (!formats_match(buffer_bit, src_irb, dst_irb))
278         return false;
279      do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
280                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
281      break;
282   default:
283      assert(false);
284   }
285
286   return true;
287}
288
289GLbitfield
290brw_blorp_framebuffer(struct intel_context *intel,
291                      GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
292                      GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
293                      GLbitfield mask, GLenum filter)
294{
295   /* BLORP is not supported before Gen6. */
296   if (intel->gen < 6)
297      return mask;
298
299   static GLbitfield buffer_bits[] = {
300      GL_COLOR_BUFFER_BIT,
301      GL_DEPTH_BUFFER_BIT,
302      GL_STENCIL_BUFFER_BIT,
303   };
304
305   for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
306      if ((mask & buffer_bits[i]) &&
307       try_blorp_blit(intel,
308                      srcX0, srcY0, srcX1, srcY1,
309                      dstX0, dstY0, dstX1, dstY1,
310                      filter, buffer_bits[i])) {
311         mask &= ~buffer_bits[i];
312      }
313   }
314
315   return mask;
316}
317
318
319/**
320 * Enum to specify the order of arguments in a sampler message
321 */
322enum sampler_message_arg
323{
324   SAMPLER_MESSAGE_ARG_U_FLOAT,
325   SAMPLER_MESSAGE_ARG_V_FLOAT,
326   SAMPLER_MESSAGE_ARG_U_INT,
327   SAMPLER_MESSAGE_ARG_V_INT,
328   SAMPLER_MESSAGE_ARG_SI_INT,
329   SAMPLER_MESSAGE_ARG_MCS_INT,
330   SAMPLER_MESSAGE_ARG_ZERO_INT,
331};
332
333/**
334 * Generator for WM programs used in BLORP blits.
335 *
336 * The bulk of the work done by the WM program is to wrap and unwrap the
337 * coordinate transformations used by the hardware to store surfaces in
338 * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
339 * sample index for a multisampled surface) to a memory offset by the
340 * following formulas:
341 *
342 *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
343 *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
344 *
345 * For a single-sampled surface, or for a multisampled surface using
346 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
347 * function:
348 *
349 *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
350 *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
351 *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
352 *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
353 *
354 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
355 * embeds the sample number into bit 1 of the X and Y coordinates:
356 *
357 *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
358 *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
359 *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
360 *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
361 *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
362 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
363 *           S = (Y & 0b10) | (X & 0b10) >> 1
364 *
365 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
366 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
367 * the Y coordinate:
368 *
369 *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
370 *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
371 *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
372 *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
373 *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
374 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
375 *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
376 *
377 * For X tiling, tile() combines together the low-order bits of the X and Y
378 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
379 * bytes wide and 8 rows high:
380 *
381 *   tile(x_tiled, X, Y, S) = A
382 *     where A = tile_num << 12 | offset
383 *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
384 *           offset = (Y' & 0b111) << 9
385 *                    | (X & 0b111111111)
386 *           X' = X * cpp
387 *           Y' = Y + S * qpitch
388 *   detile(x_tiled, A) = (X, Y, S)
389 *     where X = X' / cpp
390 *           Y = Y' % qpitch
391 *           S = Y' / qpitch
392 *           Y' = (tile_num / tile_pitch) << 3
393 *                | (A & 0b111000000000) >> 9
394 *           X' = (tile_num % tile_pitch) << 9
395 *                | (A & 0b111111111)
396 *
397 * (In all tiling formulas, cpp is the number of bytes occupied by a single
398 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
399 * to fill the width of the surface, and qpitch is the spacing (in rows)
400 * between array slices).
401 *
402 * For Y tiling, tile() combines together the low-order bits of the X and Y
403 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
404 * bytes wide and 32 rows high:
405 *
406 *   tile(y_tiled, X, Y, S) = A
407 *     where A = tile_num << 12 | offset
408 *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
409 *           offset = (X' & 0b1110000) << 5
410 *                    | (Y' & 0b11111) << 4
411 *                    | (X' & 0b1111)
412 *           X' = X * cpp
413 *           Y' = Y + S * qpitch
414 *   detile(y_tiled, A) = (X, Y, S)
415 *     where X = X' / cpp
416 *           Y = Y' % qpitch
417 *           S = Y' / qpitch
418 *           Y' = (tile_num / tile_pitch) << 5
419 *                | (A & 0b111110000) >> 4
420 *           X' = (tile_num % tile_pitch) << 7
421 *                | (A & 0b111000000000) >> 5
422 *                | (A & 0b1111)
423 *
424 * For W tiling, tile() combines together the low-order bits of the X and Y
425 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
426 * bytes wide and 64 rows high (note that W tiling is only used for stencil
427 * buffers, which always have cpp = 1 and S=0):
428 *
429 *   tile(w_tiled, X, Y, S) = A
430 *     where A = tile_num << 12 | offset
431 *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
432 *           offset = (X' & 0b111000) << 6
433 *                    | (Y' & 0b111100) << 3
434 *                    | (X' & 0b100) << 2
435 *                    | (Y' & 0b10) << 2
436 *                    | (X' & 0b10) << 1
437 *                    | (Y' & 0b1) << 1
438 *                    | (X' & 0b1)
439 *           X' = X * cpp = X
440 *           Y' = Y + S * qpitch
441 *   detile(w_tiled, A) = (X, Y, S)
442 *     where X = X' / cpp = X'
443 *           Y = Y' % qpitch = Y'
444 *           S = Y / qpitch = 0
445 *           Y' = (tile_num / tile_pitch) << 6
446 *                | (A & 0b111100000) >> 3
447 *                | (A & 0b1000) >> 2
448 *                | (A & 0b10) >> 1
449 *           X' = (tile_num % tile_pitch) << 6
450 *                | (A & 0b111000000000) >> 6
451 *                | (A & 0b10000) >> 2
452 *                | (A & 0b100) >> 1
453 *                | (A & 0b1)
454 *
455 * Finally, for a non-tiled surface, tile() simply combines together the X and
456 * Y coordinates in the natural way:
457 *
458 *   tile(untiled, X, Y, S) = A
459 *     where A = Y * pitch + X'
460 *           X' = X * cpp
461 *           Y' = Y + S * qpitch
462 *   detile(untiled, A) = (X, Y, S)
463 *     where X = X' / cpp
464 *           Y = Y' % qpitch
465 *           S = Y' / qpitch
466 *           X' = A % pitch
467 *           Y' = A / pitch
468 *
469 * (In these formulas, pitch is the number of bytes occupied by a single row
470 * of samples).
471 */
472class brw_blorp_blit_program
473{
474public:
475   brw_blorp_blit_program(struct brw_context *brw,
476                          const brw_blorp_blit_prog_key *key);
477   ~brw_blorp_blit_program();
478
479   const GLuint *compile(struct brw_context *brw, GLuint *program_size);
480
481   brw_blorp_prog_data prog_data;
482
483private:
484   void alloc_regs();
485   void alloc_push_const_regs(int base_reg);
486   void compute_frag_coords();
487   void translate_tiling(bool old_tiled_w, bool new_tiled_w);
488   void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
489   void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
490   void kill_if_outside_dst_rect();
491   void translate_dst_to_src();
492   void single_to_blend();
493   void manual_blend(unsigned num_samples);
494   void sample(struct brw_reg dst);
495   void texel_fetch(struct brw_reg dst);
496   void mcs_fetch();
497   void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
498   void texture_lookup(struct brw_reg dst, GLuint msg_type,
499                       const sampler_message_arg *args, int num_args);
500   void render_target_write();
501
502   /**
503    * Base-2 logarithm of the maximum number of samples that can be blended.
504    */
505   static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
506
507   void *mem_ctx;
508   struct brw_context *brw;
509   const brw_blorp_blit_prog_key *key;
510   struct brw_compile func;
511
512   /* Thread dispatch header */
513   struct brw_reg R0;
514
515   /* Pixel X/Y coordinates (always in R1). */
516   struct brw_reg R1;
517
518   /* Push constants */
519   struct brw_reg dst_x0;
520   struct brw_reg dst_x1;
521   struct brw_reg dst_y0;
522   struct brw_reg dst_y1;
523   struct {
524      struct brw_reg multiplier;
525      struct brw_reg offset;
526   } x_transform, y_transform;
527
528   /* Data read from texture (4 vec16's per array element) */
529   struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
530
531   /* Auxiliary storage for the contents of the MCS surface.
532    *
533    * Since the sampler always returns 8 registers worth of data, this is 8
534    * registers wide, even though we only use the first 2 registers of it.
535    */
536   struct brw_reg mcs_data;
537
538   /* X coordinates.  We have two of them so that we can perform coordinate
539    * transformations easily.
540    */
541   struct brw_reg x_coords[2];
542
543   /* Y coordinates.  We have two of them so that we can perform coordinate
544    * transformations easily.
545    */
546   struct brw_reg y_coords[2];
547
548   /* Which element of x_coords and y_coords is currently in use.
549    */
550   int xy_coord_index;
551
552   /* True if, at the point in the program currently being compiled, the
553    * sample index is known to be zero.
554    */
555   bool s_is_zero;
556
557   /* Register storing the sample index when s_is_zero is false. */
558   struct brw_reg sample_index;
559
560   /* Temporaries */
561   struct brw_reg t1;
562   struct brw_reg t2;
563
564   /* MRF used for sampling and render target writes */
565   GLuint base_mrf;
566};
567
568brw_blorp_blit_program::brw_blorp_blit_program(
569      struct brw_context *brw,
570      const brw_blorp_blit_prog_key *key)
571   : mem_ctx(ralloc_context(NULL)),
572     brw(brw),
573     key(key)
574{
575   brw_init_compile(brw, &func, mem_ctx);
576}
577
578brw_blorp_blit_program::~brw_blorp_blit_program()
579{
580   ralloc_free(mem_ctx);
581}
582
583const GLuint *
584brw_blorp_blit_program::compile(struct brw_context *brw,
585                                GLuint *program_size)
586{
587   /* Sanity checks */
588   if (key->dst_tiled_w && key->rt_samples > 0) {
589      /* If the destination image is W tiled and multisampled, then the thread
590       * must be dispatched once per sample, not once per pixel.  This is
591       * necessary because after conversion between W and Y tiling, there's no
592       * guarantee that all samples corresponding to a single pixel will still
593       * be together.
594       */
595      assert(key->persample_msaa_dispatch);
596   }
597
598   if (key->blend) {
599      /* We are blending, which means we won't have an opportunity to
600       * translate the tiling and sample count for the texture surface.  So
601       * the surface state for the texture must be configured with the correct
602       * tiling and sample count.
603       */
604      assert(!key->src_tiled_w);
605      assert(key->tex_samples == key->src_samples);
606      assert(key->tex_layout == key->src_layout);
607      assert(key->tex_samples > 0);
608   }
609
610   if (key->persample_msaa_dispatch) {
611      /* It only makes sense to do persample dispatch if the render target is
612       * configured as multisampled.
613       */
614      assert(key->rt_samples > 0);
615   }
616
617   /* Make sure layout is consistent with sample count */
618   assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
619          (key->tex_samples == 0));
620   assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
621          (key->rt_samples == 0));
622   assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
623          (key->src_samples == 0));
624   assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
625          (key->dst_samples == 0));
626
627   /* Set up prog_data */
628   memset(&prog_data, 0, sizeof(prog_data));
629   prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
630
631   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
632
633   alloc_regs();
634   compute_frag_coords();
635
636   /* Render target and texture hardware don't support W tiling. */
637   const bool rt_tiled_w = false;
638   const bool tex_tiled_w = false;
639
640   /* The address that data will be written to is determined by the
641    * coordinates supplied to the WM thread and the tiling and sample count of
642    * the render target, according to the formula:
643    *
644    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
645    *
646    * If the actual tiling and sample count of the destination surface are not
647    * the same as the configuration of the render target, then these
648    * coordinates are wrong and we have to adjust them to compensate for the
649    * difference.
650    */
651   if (rt_tiled_w != key->dst_tiled_w ||
652       key->rt_samples != key->dst_samples ||
653       key->rt_layout != key->dst_layout) {
654      encode_msaa(key->rt_samples, key->rt_layout);
655      /* Now (X, Y, S) = detile(rt_tiling, offset) */
656      translate_tiling(rt_tiled_w, key->dst_tiled_w);
657      /* Now (X, Y, S) = detile(dst_tiling, offset) */
658      decode_msaa(key->dst_samples, key->dst_layout);
659   }
660
661   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
662    *
663    * That is: X, Y and S now contain the true coordinates and sample index of
664    * the data that the WM thread should output.
665    *
666    * If we need to kill pixels that are outside the destination rectangle,
667    * now is the time to do it.
668    */
669
670   if (key->use_kill)
671      kill_if_outside_dst_rect();
672
673   /* Next, apply a translation to obtain coordinates in the source image. */
674   translate_dst_to_src();
675
676   /* If the source image is not multisampled, then we want to fetch sample
677    * number 0, because that's the only sample there is.
678    */
679   if (key->src_samples == 0)
680      s_is_zero = true;
681
682   /* X, Y, and S are now the coordinates of the pixel in the source image
683    * that we want to texture from.  Exception: if we are blending, then S is
684    * irrelevant, because we are going to fetch all samples.
685    */
686   if (key->blend) {
687      if (brw->intel.gen == 6) {
688         /* Gen6 hardware an automatically blend using the SAMPLE message */
689         single_to_blend();
690         sample(texture_data[0]);
691      } else {
692         /* Gen7+ hardware doesn't automaticaly blend. */
693         manual_blend(key->src_samples);
694      }
695   } else {
696      /* We aren't blending, which means we just want to fetch a single sample
697       * from the source surface.  The address that we want to fetch from is
698       * related to the X, Y and S values according to the formula:
699       *
700       * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
701       *
702       * If the actual tiling and sample count of the source surface are not
703       * the same as the configuration of the texture, then we need to adjust
704       * the coordinates to compensate for the difference.
705       */
706      if (tex_tiled_w != key->src_tiled_w ||
707          key->tex_samples != key->src_samples ||
708          key->tex_layout != key->src_layout) {
709         encode_msaa(key->src_samples, key->src_layout);
710         /* Now (X, Y, S) = detile(src_tiling, offset) */
711         translate_tiling(key->src_tiled_w, tex_tiled_w);
712         /* Now (X, Y, S) = detile(tex_tiling, offset) */
713         decode_msaa(key->tex_samples, key->tex_layout);
714      }
715
716      /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
717       *
718       * In other words: X, Y, and S now contain values which, when passed to
719       * the texturing unit, will cause data to be read from the correct
720       * memory location.  So we can fetch the texel now.
721       */
722      if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
723         mcs_fetch();
724      texel_fetch(texture_data[0]);
725   }
726
727   /* Finally, write the fetched (or blended) value to the render target and
728    * terminate the thread.
729    */
730   render_target_write();
731   return brw_get_program(&func, program_size);
732}
733
734void
735brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
736{
737#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
738#define ALLOC_REG(name) \
739   this->name = \
740      brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
741
742   ALLOC_REG(dst_x0);
743   ALLOC_REG(dst_x1);
744   ALLOC_REG(dst_y0);
745   ALLOC_REG(dst_y1);
746   ALLOC_REG(x_transform.multiplier);
747   ALLOC_REG(x_transform.offset);
748   ALLOC_REG(y_transform.multiplier);
749   ALLOC_REG(y_transform.offset);
750#undef CONST_LOC
751#undef ALLOC_REG
752}
753
754void
755brw_blorp_blit_program::alloc_regs()
756{
757   int reg = 0;
758   this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
759   this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
760   prog_data.first_curbe_grf = reg;
761   alloc_push_const_regs(reg);
762   reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
763   for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
764      this->texture_data[i] =
765         retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
766      reg += 8;
767   }
768   this->mcs_data =
769      retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
770   for (int i = 0; i < 2; ++i) {
771      this->x_coords[i]
772         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
773      this->y_coords[i]
774         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
775   }
776   this->xy_coord_index = 0;
777   this->sample_index
778      = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
779   this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
780   this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
781
782   /* Make sure we didn't run out of registers */
783   assert(reg <= GEN7_MRF_HACK_START);
784
785   int mrf = 2;
786   this->base_mrf = mrf;
787}
788
789/* In the code that follows, X and Y can be used to quickly refer to the
790 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
791 * prime") to the inactive elements.
792 *
793 * S can be used to quickly refer to sample_index.
794 */
795#define X x_coords[xy_coord_index]
796#define Y y_coords[xy_coord_index]
797#define Xp x_coords[!xy_coord_index]
798#define Yp y_coords[!xy_coord_index]
799#define S sample_index
800
801/* Quickly swap the roles of (X, Y) and (Xp, Yp).  Saves us from having to do
802 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
803 */
804#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
805
806/**
807 * Emit code to compute the X and Y coordinates of the pixels being rendered
808 * by this WM invocation.
809 *
810 * Assuming the render target is set up for Y tiling, these (X, Y) values are
811 * related to the address offset where outputs will be written by the formula:
812 *
813 *   (X, Y, S) = decode_msaa(detile(offset)).
814 *
815 * (See brw_blorp_blit_program).
816 */
817void
818brw_blorp_blit_program::compute_frag_coords()
819{
820   /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
821    * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
822    * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
823    * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
824    *
825    * Pixels within a subspan are laid out in this arrangement:
826    * 0 1
827    * 2 3
828    *
829    * So, to compute the coordinates of each pixel, we need to read every 2nd
830    * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
831    * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
832    * In other words, the data we want to access is R1.4<2;4,0>UW.
833    *
834    * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
835    * result, since pixels n+1 and n+3 are in the right half of the subspan.
836    */
837   brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
838
839   /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
840    * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
841    * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
842    * R1.4<2;4,0>UW).
843    *
844    * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
845    * pixels n+2 and n+3 are in the bottom half of the subspan.
846    */
847   brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
848
849   if (key->persample_msaa_dispatch) {
850      switch (key->rt_samples) {
851      case 4:
852         /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
853          * Therefore, subspan 0 will represent sample 0, subspan 1 will
854          * represent sample 1, and so on.
855          *
856          * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
857          * 1, 2, 2, 2, 2, 3, 3, 3, 3).  The easiest way to do this is to
858          * populate a temporary variable with the sequence (0, 1, 2, 3), and
859          * then copy from it using vstride=1, width=4, hstride=0.
860          */
861         brw_MOV(&func, t1, brw_imm_v(0x3210));
862         brw_MOV(&func, S, stride(t1, 1, 4, 0));
863         break;
864      case 8: {
865         /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
866          * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
867          * subspan 1 will represent sample 1, and so on.  We can find the
868          * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
869          * Index") and multiplying by two (since samples are always delivered
870          * in pairs).  That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
871          * 0xc0) >> 5.
872          *
873          * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
874          * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
875          * variable with the sequence (0, 1, 2, 3), and then reading from it
876          * using vstride=1, width=4, hstride=0.
877          */
878         struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
879         struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
880         brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
881         brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
882         brw_MOV(&func, t2, brw_imm_v(0x3210));
883         brw_ADD(&func, S, retype(t1_ud1, BRW_REGISTER_TYPE_UW),
884                 stride(t2, 1, 4, 0));
885         break;
886      }
887      default:
888         assert(!"Unrecognized sample count in "
889                "brw_blorp_blit_program::compute_frag_coords()");
890         break;
891      }
892      s_is_zero = false;
893   } else {
894      /* Either the destination surface is single-sampled, or the WM will be
895       * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
896       * per pixel).  In either case, it's not meaningful to compute a sample
897       * value.  Just set it to 0.
898       */
899      s_is_zero = true;
900   }
901}
902
903/**
904 * Emit code to compensate for the difference between Y and W tiling.
905 *
906 * This code modifies the X and Y coordinates according to the formula:
907 *
908 *   (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
909 *
910 * (See brw_blorp_blit_program).
911 *
912 * It can only translate between W and Y tiling, so new_tiling and old_tiling
913 * are booleans where true represents W tiling and false represents Y tiling.
914 */
915void
916brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
917{
918   if (old_tiled_w == new_tiled_w)
919      return;
920
921   /* In the code that follows, we can safely assume that S = 0, because W
922    * tiling formats always use IMS layout.
923    */
924   assert(s_is_zero);
925
926   if (new_tiled_w) {
927      /* Given X and Y coordinates that describe an address using Y tiling,
928       * translate to the X and Y coordinates that describe the same address
929       * using W tiling.
930       *
931       * If we break down the low order bits of X and Y, using a
932       * single letter to represent each low-order bit:
933       *
934       *   X = A << 7 | 0bBCDEFGH
935       *   Y = J << 5 | 0bKLMNP                                       (1)
936       *
937       * Then we can apply the Y tiling formula to see the memory offset being
938       * addressed:
939       *
940       *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
941       *
942       * If we apply the W detiling formula to this memory location, that the
943       * corresponding X' and Y' coordinates are:
944       *
945       *   X' = A << 6 | 0bBCDPFH                                     (3)
946       *   Y' = J << 6 | 0bKLMNEG
947       *
948       * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
949       * we need to make the following computation:
950       *
951       *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
952       *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
953       */
954      brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
955      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
956      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
957      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
958      brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
959      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
960      brw_OR(&func, Xp, t1, t2);
961      brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
962      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
963      brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
964      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
965      brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
966      brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
967      brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
968      brw_OR(&func, Yp, t1, t2);
969      SWAP_XY_AND_XPYP();
970   } else {
971      /* Applying the same logic as above, but in reverse, we obtain the
972       * formulas:
973       *
974       * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
975       * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
976       */
977      brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
978      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
979      brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
980      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
981      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
982      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
983      brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
984      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
985                                    | (Y & 0b1) << 1 */
986      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
987      brw_OR(&func, Xp, t1, t2);
988      brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
989      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
990      brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
991      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
992      brw_OR(&func, Yp, t1, t2);
993      SWAP_XY_AND_XPYP();
994   }
995}
996
997/**
998 * Emit code to compensate for the difference between MSAA and non-MSAA
999 * surfaces.
1000 *
1001 * This code modifies the X and Y coordinates according to the formula:
1002 *
1003 *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1004 *
1005 * (See brw_blorp_blit_program).
1006 */
1007void
1008brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1009                                    intel_msaa_layout layout)
1010{
1011   switch (layout) {
1012   case INTEL_MSAA_LAYOUT_NONE:
1013      /* No translation necessary, and S should already be zero. */
1014      assert(s_is_zero);
1015      break;
1016   case INTEL_MSAA_LAYOUT_CMS:
1017      /* We can't compensate for compressed layout since at this point in the
1018       * program we haven't read from the MCS buffer.
1019       */
1020      assert(!"Bad layout in encode_msaa");
1021      break;
1022   case INTEL_MSAA_LAYOUT_UMS:
1023      /* No translation necessary. */
1024      break;
1025   case INTEL_MSAA_LAYOUT_IMS:
1026      switch (num_samples) {
1027      case 4:
1028         /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1029          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1030          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1031          */
1032         brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1033         if (!s_is_zero) {
1034            brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1035            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1036         }
1037         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1038                                                   | (S & 0b1) << 1 */
1039         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1040         brw_OR(&func, Xp, t1, t2);
1041         brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1042         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1043         if (!s_is_zero) {
1044            brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1045            brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1046         }
1047         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1048         brw_OR(&func, Yp, t1, t2);
1049         break;
1050      case 8:
1051         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1052          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1053          *              | (X & 0b1)
1054          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1055          */
1056         brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1057         brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1058         if (!s_is_zero) {
1059            brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
1060            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1061            brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1062            brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1063            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1064                                          | (S & 0b1) << 1 */
1065         }
1066         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1067         brw_OR(&func, Xp, t1, t2);
1068         brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1069         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1070         if (!s_is_zero) {
1071            brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1072            brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1073         }
1074         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1075         brw_OR(&func, Yp, t1, t2);
1076         break;
1077      }
1078      SWAP_XY_AND_XPYP();
1079      s_is_zero = true;
1080      break;
1081   }
1082}
1083
1084/**
1085 * Emit code to compensate for the difference between MSAA and non-MSAA
1086 * surfaces.
1087 *
1088 * This code modifies the X and Y coordinates according to the formula:
1089 *
1090 *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1091 *
1092 * (See brw_blorp_blit_program).
1093 */
1094void
1095brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1096                                    intel_msaa_layout layout)
1097{
1098   switch (layout) {
1099   case INTEL_MSAA_LAYOUT_NONE:
1100      /* No translation necessary, and S should already be zero. */
1101      assert(s_is_zero);
1102      break;
1103   case INTEL_MSAA_LAYOUT_CMS:
1104      /* We can't compensate for compressed layout since at this point in the
1105       * program we don't have access to the MCS buffer.
1106       */
1107      assert(!"Bad layout in encode_msaa");
1108      break;
1109   case INTEL_MSAA_LAYOUT_UMS:
1110      /* No translation necessary. */
1111      break;
1112   case INTEL_MSAA_LAYOUT_IMS:
1113      assert(s_is_zero);
1114      switch (num_samples) {
1115      case 4:
1116         /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1117          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
1118          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1119          *         S = (Y & 0b10) | (X & 0b10) >> 1
1120          */
1121         brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1122         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1123         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1124         brw_OR(&func, Xp, t1, t2);
1125         brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1126         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1127         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1128         brw_OR(&func, Yp, t1, t2);
1129         brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1130         brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1131         brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1132         brw_OR(&func, S, t1, t2);
1133         break;
1134      case 8:
1135         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1136          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
1137          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1138          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1139          */
1140         brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1141         brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1142         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1143         brw_OR(&func, Xp, t1, t2);
1144         brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1145         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1146         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1147         brw_OR(&func, Yp, t1, t2);
1148         brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
1149         brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1150         brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1151         brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1152         brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1153         brw_OR(&func, S, t1, t2);
1154         break;
1155      }
1156      s_is_zero = false;
1157      SWAP_XY_AND_XPYP();
1158      break;
1159   }
1160}
1161
1162/**
1163 * Emit code that kills pixels whose X and Y coordinates are outside the
1164 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1165 * dst_x1, dst_y1).
1166 */
1167void
1168brw_blorp_blit_program::kill_if_outside_dst_rect()
1169{
1170   struct brw_reg f0 = brw_flag_reg();
1171   struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1172   struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
1173
1174   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
1175   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
1176   brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
1177   brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1178
1179   brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1180   brw_push_insn_state(&func);
1181   brw_set_mask_control(&func, BRW_MASK_DISABLE);
1182   brw_AND(&func, g1, f0, g1);
1183   brw_pop_insn_state(&func);
1184}
1185
1186/**
1187 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1188 * coordinates.
1189 */
1190void
1191brw_blorp_blit_program::translate_dst_to_src()
1192{
1193   brw_MUL(&func, Xp, X, x_transform.multiplier);
1194   brw_MUL(&func, Yp, Y, y_transform.multiplier);
1195   brw_ADD(&func, Xp, Xp, x_transform.offset);
1196   brw_ADD(&func, Yp, Yp, y_transform.offset);
1197   SWAP_XY_AND_XPYP();
1198}
1199
1200/**
1201 * Emit code to transform the X and Y coordinates as needed for blending
1202 * together the different samples in an MSAA texture.
1203 */
1204void
1205brw_blorp_blit_program::single_to_blend()
1206{
1207   /* When looking up samples in an MSAA texture using the SAMPLE message,
1208    * Gen6 requires the texture coordinates to be odd integers (so that they
1209    * correspond to the center of a 2x2 block representing the four samples
1210    * that maxe up a pixel).  So we need to multiply our X and Y coordinates
1211    * each by 2 and then add 1.
1212    */
1213   brw_SHL(&func, t1, X, brw_imm_w(1));
1214   brw_SHL(&func, t2, Y, brw_imm_w(1));
1215   brw_ADD(&func, Xp, t1, brw_imm_w(1));
1216   brw_ADD(&func, Yp, t2, brw_imm_w(1));
1217   SWAP_XY_AND_XPYP();
1218}
1219
1220
1221/**
1222 * Count the number of trailing 1 bits in the given value.  For example:
1223 *
1224 * count_trailing_one_bits(0) == 0
1225 * count_trailing_one_bits(7) == 3
1226 * count_trailing_one_bits(11) == 2
1227 */
1228inline int count_trailing_one_bits(unsigned value)
1229{
1230#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1231   return __builtin_ctz(~value);
1232#else
1233   return _mesa_bitcount(value & ~(value + 1));
1234#endif
1235}
1236
1237
1238void
1239brw_blorp_blit_program::manual_blend(unsigned num_samples)
1240{
1241   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1242      mcs_fetch();
1243
1244   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1245    *
1246    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1247    *
1248    * This ensures that when all samples have the same value, no numerical
1249    * precision is lost, since each addition operation always adds two equal
1250    * values, and summing two equal floating point values does not lose
1251    * precision.
1252    *
1253    * We perform this computation by treating the texture_data array as a
1254    * stack and performing the following operations:
1255    *
1256    * - push sample 0 onto stack
1257    * - push sample 1 onto stack
1258    * - add top two stack entries
1259    * - push sample 2 onto stack
1260    * - push sample 3 onto stack
1261    * - add top two stack entries
1262    * - add top two stack entries
1263    * - divide top stack entry by 4
1264    *
1265    * Note that after pushing sample i onto the stack, the number of add
1266    * operations we do is equal to the number of trailing 1 bits in i.  This
1267    * works provided the total number of samples is a power of two, which it
1268    * always is for i965.
1269    *
1270    * For integer formats, we replace the add operations with average
1271    * operations and skip the final division.
1272    */
1273   typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1274                                                  struct brw_reg,
1275                                                  struct brw_reg,
1276                                                  struct brw_reg);
1277   brw_op2_ptr combine_op =
1278      key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1279   unsigned stack_depth = 0;
1280   for (unsigned i = 0; i < num_samples; ++i) {
1281      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1282
1283      /* Push sample i onto the stack */
1284      assert(stack_depth < ARRAY_SIZE(texture_data));
1285      if (i == 0) {
1286         s_is_zero = true;
1287      } else {
1288         s_is_zero = false;
1289         brw_MOV(&func, S, brw_imm_uw(i));
1290      }
1291      texel_fetch(texture_data[stack_depth++]);
1292
1293      if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1294         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1295          * suggests an optimization:
1296          *
1297          *     "A simple optimization with probable large return in
1298          *     performance is to compare the MCS value to zero (indicating
1299          *     all samples are on sample slice 0), and sample only from
1300          *     sample slice 0 using ld2dss if MCS is zero."
1301          *
1302          * Note that in the case where the MCS value is zero, sampling from
1303          * sample slice 0 using ld2dss and sampling from sample 0 using
1304          * ld2dms are equivalent (since all samples are on sample slice 0).
1305          * Since we have already sampled from sample 0, all we need to do is
1306          * skip the remaining fetches and averaging if MCS is zero.
1307          */
1308         brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1309                 mcs_data, brw_imm_ud(0));
1310         brw_IF(&func, BRW_EXECUTE_16);
1311      }
1312
1313      /* Do count_trailing_one_bits(i) times */
1314      for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1315         assert(stack_depth >= 2);
1316         --stack_depth;
1317
1318         /* TODO: should use a smaller loop bound for non_RGBA formats */
1319         for (int k = 0; k < 4; ++k) {
1320            combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1321                       offset(vec8(texture_data[stack_depth - 1]), 2*k),
1322                       offset(vec8(texture_data[stack_depth]), 2*k));
1323         }
1324      }
1325   }
1326
1327   /* We should have just 1 sample on the stack now. */
1328   assert(stack_depth == 1);
1329
1330   if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1331      /* Scale the result down by a factor of num_samples */
1332      /* TODO: should use a smaller loop bound for non-RGBA formats */
1333      for (int j = 0; j < 4; ++j) {
1334         brw_MUL(&func, offset(texture_data[0], 2*j),
1335                 offset(vec8(texture_data[0]), 2*j),
1336                 brw_imm_f(1.0/num_samples));
1337      }
1338   }
1339
1340   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1341      brw_ENDIF(&func);
1342}
1343
1344/**
1345 * Emit code to look up a value in the texture using the SAMPLE message (which
1346 * does blending of MSAA surfaces).
1347 */
1348void
1349brw_blorp_blit_program::sample(struct brw_reg dst)
1350{
1351   static const sampler_message_arg args[2] = {
1352      SAMPLER_MESSAGE_ARG_U_FLOAT,
1353      SAMPLER_MESSAGE_ARG_V_FLOAT
1354   };
1355
1356   texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1357}
1358
1359/**
1360 * Emit code to look up a value in the texture using the SAMPLE_LD message
1361 * (which does a simple texel fetch).
1362 */
1363void
1364brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1365{
1366   static const sampler_message_arg gen6_args[5] = {
1367      SAMPLER_MESSAGE_ARG_U_INT,
1368      SAMPLER_MESSAGE_ARG_V_INT,
1369      SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1370      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1371      SAMPLER_MESSAGE_ARG_SI_INT
1372   };
1373   static const sampler_message_arg gen7_ld_args[3] = {
1374      SAMPLER_MESSAGE_ARG_U_INT,
1375      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1376      SAMPLER_MESSAGE_ARG_V_INT
1377   };
1378   static const sampler_message_arg gen7_ld2dss_args[3] = {
1379      SAMPLER_MESSAGE_ARG_SI_INT,
1380      SAMPLER_MESSAGE_ARG_U_INT,
1381      SAMPLER_MESSAGE_ARG_V_INT
1382   };
1383   static const sampler_message_arg gen7_ld2dms_args[4] = {
1384      SAMPLER_MESSAGE_ARG_SI_INT,
1385      SAMPLER_MESSAGE_ARG_MCS_INT,
1386      SAMPLER_MESSAGE_ARG_U_INT,
1387      SAMPLER_MESSAGE_ARG_V_INT
1388   };
1389
1390   switch (brw->intel.gen) {
1391   case 6:
1392      texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1393                     s_is_zero ? 2 : 5);
1394      break;
1395   case 7:
1396      switch (key->tex_layout) {
1397      case INTEL_MSAA_LAYOUT_IMS:
1398         /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1399          * Format):
1400          *
1401          *     If this field is MSFMT_DEPTH_STENCIL
1402          *     [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1403          *     messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1404          *
1405          * So fall through to emit the same message as we use for
1406          * INTEL_MSAA_LAYOUT_CMS.
1407          */
1408      case INTEL_MSAA_LAYOUT_CMS:
1409         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1410                        gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1411         break;
1412      case INTEL_MSAA_LAYOUT_UMS:
1413         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1414                        gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1415         break;
1416      case INTEL_MSAA_LAYOUT_NONE:
1417         assert(s_is_zero);
1418         texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1419                        ARRAY_SIZE(gen7_ld_args));
1420         break;
1421      }
1422      break;
1423   default:
1424      assert(!"Should not get here.");
1425      break;
1426   };
1427}
1428
1429void
1430brw_blorp_blit_program::mcs_fetch()
1431{
1432   static const sampler_message_arg gen7_ld_mcs_args[2] = {
1433      SAMPLER_MESSAGE_ARG_U_INT,
1434      SAMPLER_MESSAGE_ARG_V_INT
1435   };
1436   texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1437                  gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1438}
1439
1440void
1441brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1442                                          struct brw_reg dst)
1443{
1444   brw_MOV(&func, vec8(dst), vec8(src));
1445   brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1446   brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1447   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1448}
1449
1450void
1451brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1452                                       GLuint msg_type,
1453                                       const sampler_message_arg *args,
1454                                       int num_args)
1455{
1456   struct brw_reg mrf =
1457      retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1458   for (int arg = 0; arg < num_args; ++arg) {
1459      switch (args[arg]) {
1460      case SAMPLER_MESSAGE_ARG_U_FLOAT:
1461         expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1462         break;
1463      case SAMPLER_MESSAGE_ARG_V_FLOAT:
1464         expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1465         break;
1466      case SAMPLER_MESSAGE_ARG_U_INT:
1467         expand_to_32_bits(X, mrf);
1468         break;
1469      case SAMPLER_MESSAGE_ARG_V_INT:
1470         expand_to_32_bits(Y, mrf);
1471         break;
1472      case SAMPLER_MESSAGE_ARG_SI_INT:
1473         /* Note: on Gen7, this code may be reached with s_is_zero==true
1474          * because in Gen7's ld2dss message, the sample index is the first
1475          * argument.  When this happens, we need to move a 0 into the
1476          * appropriate message register.
1477          */
1478         if (s_is_zero)
1479            brw_MOV(&func, mrf, brw_imm_ud(0));
1480         else
1481            expand_to_32_bits(S, mrf);
1482         break;
1483      case SAMPLER_MESSAGE_ARG_MCS_INT:
1484         switch (key->tex_layout) {
1485         case INTEL_MSAA_LAYOUT_CMS:
1486            brw_MOV(&func, mrf, mcs_data);
1487            break;
1488         case INTEL_MSAA_LAYOUT_IMS:
1489            /* When sampling from an IMS surface, MCS data is not relevant,
1490             * and the hardware ignores it.  So don't bother populating it.
1491             */
1492            break;
1493         default:
1494            /* We shouldn't be trying to send MCS data with any other
1495             * layouts.
1496             */
1497            assert (!"Unsupported layout for MCS data");
1498            break;
1499         }
1500         break;
1501      case SAMPLER_MESSAGE_ARG_ZERO_INT:
1502         brw_MOV(&func, mrf, brw_imm_ud(0));
1503         break;
1504      }
1505      mrf.nr += 2;
1506   }
1507
1508   brw_SAMPLE(&func,
1509              retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1510              base_mrf /* msg_reg_nr */,
1511              brw_message_reg(base_mrf) /* src0 */,
1512              BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1513              0 /* sampler */,
1514              WRITEMASK_XYZW,
1515              msg_type,
1516              8 /* response_length.  TODO: should be smaller for non-RGBA formats? */,
1517              mrf.nr - base_mrf /* msg_length */,
1518              0 /* header_present */,
1519              BRW_SAMPLER_SIMD_MODE_SIMD16,
1520              BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1521}
1522
1523#undef X
1524#undef Y
1525#undef U
1526#undef V
1527#undef S
1528#undef SWAP_XY_AND_XPYP
1529
1530void
1531brw_blorp_blit_program::render_target_write()
1532{
1533   struct brw_reg mrf_rt_write =
1534      retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1535   int mrf_offset = 0;
1536
1537   /* If we may have killed pixels, then we need to send R0 and R1 in a header
1538    * so that the render target knows which pixels we killed.
1539    */
1540   bool use_header = key->use_kill;
1541   if (use_header) {
1542      /* Copy R0/1 to MRF */
1543      brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1544              retype(R0, BRW_REGISTER_TYPE_UD));
1545      mrf_offset += 2;
1546   }
1547
1548   /* Copy texture data to MRFs */
1549   for (int i = 0; i < 4; ++i) {
1550      /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1551      brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1552              offset(vec8(texture_data[0]), 2*i));
1553      mrf_offset += 2;
1554   }
1555
1556   /* Now write to the render target and terminate the thread */
1557   brw_fb_WRITE(&func,
1558                16 /* dispatch_width */,
1559                base_mrf /* msg_reg_nr */,
1560                mrf_rt_write /* src0 */,
1561                BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1562                BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1563                mrf_offset /* msg_length.  TODO: Should be smaller for non-RGBA formats. */,
1564                0 /* response_length */,
1565                true /* eot */,
1566                use_header);
1567}
1568
1569
1570void
1571brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1572                                        bool mirror)
1573{
1574   if (!mirror) {
1575      /* When not mirroring a coordinate (say, X), we need:
1576       *   x' - src_x0 = x - dst_x0
1577       * Therefore:
1578       *   x' = 1*x + (src_x0 - dst_x0)
1579       */
1580      multiplier = 1;
1581      offset = src0 - dst0;
1582   } else {
1583      /* When mirroring X we need:
1584       *   x' - src_x0 = dst_x1 - x - 1
1585       * Therefore:
1586       *   x' = -1*x + (src_x0 + dst_x1 - 1)
1587       */
1588      multiplier = -1;
1589      offset = src0 + dst1 - 1;
1590   }
1591}
1592
1593
1594/**
1595 * Determine which MSAA layout the GPU pipeline should be configured for,
1596 * based on the chip generation, the number of samples, and the true layout of
1597 * the image in memory.
1598 */
1599inline intel_msaa_layout
1600compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1601                                 intel_msaa_layout true_layout)
1602{
1603   if (num_samples <= 1) {
1604      /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1605       * format buffers, by transforming coordinates appropriately.
1606       */
1607      assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1608             true_layout == INTEL_MSAA_LAYOUT_IMS);
1609      return INTEL_MSAA_LAYOUT_NONE;
1610   } else {
1611      assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1612   }
1613
1614   /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1615   if (brw->intel.gen == 6) {
1616      assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1617   }
1618
1619   return true_layout;
1620}
1621
1622
1623brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1624                                             struct intel_mipmap_tree *src_mt,
1625                                             struct intel_mipmap_tree *dst_mt,
1626                                             GLuint src_x0, GLuint src_y0,
1627                                             GLuint dst_x0, GLuint dst_y0,
1628                                             GLuint dst_x1, GLuint dst_y1,
1629                                             bool mirror_x, bool mirror_y)
1630{
1631   src.set(brw, src_mt, 0, 0);
1632   dst.set(brw, dst_mt, 0, 0);
1633
1634   use_wm_prog = true;
1635   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1636
1637   /* texture_data_type indicates the register type that should be used to
1638    * manipulate texture data.
1639    */
1640   switch (_mesa_get_format_datatype(src_mt->format)) {
1641   case GL_UNSIGNED_NORMALIZED:
1642   case GL_SIGNED_NORMALIZED:
1643   case GL_FLOAT:
1644      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1645      break;
1646   case GL_UNSIGNED_INT:
1647      if (src_mt->format == MESA_FORMAT_S8) {
1648         /* We process stencil as though it's an unsigned normalized color */
1649         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1650      } else {
1651         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1652      }
1653      break;
1654   case GL_INT:
1655      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1656      break;
1657   default:
1658      assert(!"Unrecognized blorp format");
1659      break;
1660   }
1661
1662   if (brw->intel.gen > 6) {
1663      /* Gen7's rendering hardware only supports the IMS layout for depth and
1664       * stencil render targets.  Blorp always maps its destination surface as
1665       * a color render target (even if it's actually a depth or stencil
1666       * buffer).  So if the destination is IMS, we'll have to map it as a
1667       * single-sampled texture and interleave the samples ourselves.
1668       */
1669      if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1670         dst.num_samples = 0;
1671   }
1672
1673   if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1674      /* If the destination surface is a W-tiled multisampled stencil buffer
1675       * that we're mapping as Y tiled, then we need to arrange for the WM
1676       * program to run once per sample rather than once per pixel, because
1677       * the memory layout of related samples doesn't match between W and Y
1678       * tiling.
1679       */
1680      wm_prog_key.persample_msaa_dispatch = true;
1681   }
1682
1683   if (src.num_samples > 0 && dst.num_samples > 1) {
1684      /* We are blitting from a multisample buffer to a multisample buffer, so
1685       * we must preserve samples within a pixel.  This means we have to
1686       * arrange for the WM program to run once per sample rather than once
1687       * per pixel.
1688       */
1689      wm_prog_key.persample_msaa_dispatch = true;
1690   }
1691
1692   /* The render path must be configured to use the same number of samples as
1693    * the destination buffer.
1694    */
1695   num_samples = dst.num_samples;
1696
1697   GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1698   if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1699       base_format != GL_STENCIL_INDEX &&
1700       src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1701      /* We are downsampling a color buffer, so blend. */
1702      wm_prog_key.blend = true;
1703   }
1704
1705   /* src_samples and dst_samples are the true sample counts */
1706   wm_prog_key.src_samples = src_mt->num_samples;
1707   wm_prog_key.dst_samples = dst_mt->num_samples;
1708
1709   /* tex_samples and rt_samples are the sample counts that are set up in
1710    * SURFACE_STATE.
1711    */
1712   wm_prog_key.tex_samples = src.num_samples;
1713   wm_prog_key.rt_samples  = dst.num_samples;
1714
1715   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1716    * use to access the source and destination surfaces.
1717    */
1718   wm_prog_key.tex_layout =
1719      compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1720   wm_prog_key.rt_layout =
1721      compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1722
1723   /* src_layout and dst_layout indicate the true MSAA layout used by src and
1724    * dst.
1725    */
1726   wm_prog_key.src_layout = src_mt->msaa_layout;
1727   wm_prog_key.dst_layout = dst_mt->msaa_layout;
1728
1729   wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1730   wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1731   x0 = wm_push_consts.dst_x0 = dst_x0;
1732   y0 = wm_push_consts.dst_y0 = dst_y0;
1733   x1 = wm_push_consts.dst_x1 = dst_x1;
1734   y1 = wm_push_consts.dst_y1 = dst_y1;
1735   wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1736   wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1737
1738   if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
1739      /* We must expand the rectangle we send through the rendering pipeline,
1740       * to account for the fact that we are mapping the destination region as
1741       * single-sampled when it is in fact multisampled.  We must also align
1742       * it to a multiple of the multisampling pattern, because the
1743       * differences between multisampled and single-sampled surface formats
1744       * will mean that pixels are scrambled within the multisampling pattern.
1745       * TODO: what if this makes the coordinates too large?
1746       *
1747       * Note: this only works if the destination surface uses the IMS layout.
1748       * If it's UMS, then we have no choice but to set up the rendering
1749       * pipeline as multisampled.
1750       */
1751      assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
1752      switch (dst_mt->num_samples) {
1753      case 4:
1754         x0 = ROUND_DOWN_TO(x0 * 2, 4);
1755         y0 = ROUND_DOWN_TO(y0 * 2, 4);
1756         x1 = ALIGN(x1 * 2, 4);
1757         y1 = ALIGN(y1 * 2, 4);
1758         break;
1759      case 8:
1760         x0 = ROUND_DOWN_TO(x0 * 4, 8);
1761         y0 = ROUND_DOWN_TO(y0 * 2, 4);
1762         x1 = ALIGN(x1 * 4, 8);
1763         y1 = ALIGN(y1 * 2, 4);
1764         break;
1765      default:
1766         assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
1767         break;
1768      }
1769      wm_prog_key.use_kill = true;
1770   }
1771
1772   if (dst.map_stencil_as_y_tiled) {
1773      /* We must modify the rectangle we send through the rendering pipeline
1774       * (and the size of the destination surface), to account for the fact
1775       * that we are mapping it as Y-tiled when it is in fact W-tiled.  Y
1776       * tiles have dimensions 128x32 whereas W tiles have dimensions 64x64.
1777       * We must also align it to a multiple of the tile size, because the
1778       * differences between W and Y tiling formats will mean that pixels are
1779       * scrambled within the tile.
1780       *
1781       * Note: if the destination surface configured to use IMS layout, then
1782       * the effective tile size we need to align it to is smaller, because
1783       * each pixel covers a 2x2 or a 4x2 block of samples.
1784       *
1785       * TODO: what if this makes the coordinates (or the texture size) too
1786       * large?
1787       */
1788      unsigned x_align = 64, y_align = 64;
1789      if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
1790         x_align /= (dst_mt->num_samples == 4 ? 2 : 4);
1791         y_align /= 2;
1792      }
1793      x0 = ROUND_DOWN_TO(x0, x_align) * 2;
1794      y0 = ROUND_DOWN_TO(y0, y_align) / 2;
1795      x1 = ALIGN(x1, x_align) * 2;
1796      y1 = ALIGN(y1, y_align) / 2;
1797      dst.width *= 2;
1798      dst.height /= 2;
1799      wm_prog_key.use_kill = true;
1800   }
1801
1802   if (src.map_stencil_as_y_tiled) {
1803      /* We must modify the size of the source surface to account for the fact
1804       * that we are mapping it as Y-tiled when it is in fact W tiled.
1805       *
1806       * TODO: what if this makes the texture size too large?
1807       */
1808      src.width *= 2;
1809      src.height /= 2;
1810   }
1811}
1812
1813uint32_t
1814brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1815                                   brw_blorp_prog_data **prog_data) const
1816{
1817   uint32_t prog_offset;
1818   if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1819                         &this->wm_prog_key, sizeof(this->wm_prog_key),
1820                         &prog_offset, prog_data)) {
1821      brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1822      GLuint program_size;
1823      const GLuint *program = prog.compile(brw, &program_size);
1824      brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1825                       &this->wm_prog_key, sizeof(this->wm_prog_key),
1826                       program, program_size,
1827                       &prog.prog_data, sizeof(prog.prog_data),
1828                       &prog_offset, prog_data);
1829   }
1830   return prog_offset;
1831}
1832