brw_blorp_blit.cpp revision 62bc4af0e18f76dd30a4d5ae6d45a365a1fa226f
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "main/teximage.h"
25#include "main/fbobject.h"
26
27#include "glsl/ralloc.h"
28
29#include "intel_fbo.h"
30
31#include "brw_blorp.h"
32#include "brw_context.h"
33#include "brw_eu.h"
34#include "brw_state.h"
35
36
37/**
38 * Helper function for handling mirror image blits.
39 *
40 * If coord0 > coord1, swap them and invert the "mirror" boolean.
41 */
42static inline void
43fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
44{
45   if (coord0 > coord1) {
46      mirror = !mirror;
47      GLint tmp = coord0;
48      coord0 = coord1;
49      coord1 = tmp;
50   }
51}
52
53
54/**
55 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
56 * destination coordinates.
57 *
58 * Return true if there is still blitting to do, false if all pixels got
59 * rejected by the clip and/or scissor.
60 *
61 * For clarity, the nomenclature of this function assumes we are clipping and
62 * scissoring the X coordinate; the exact same logic applies for Y
63 * coordinates.
64 *
65 * Note: this function may also be used to account for clipping of source
66 * coordinates, by swapping the roles of src and dst.
67 */
68static inline bool
69clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
70                GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
71{
72   /* If we are going to scissor everything away, stop. */
73   if (!(fb_xmin < fb_xmax &&
74         dst_x0 < fb_xmax &&
75         fb_xmin < dst_x1 &&
76         dst_x0 < dst_x1)) {
77      return false;
78   }
79
80   /* Clip the destination rectangle, and keep track of how many pixels we
81    * clipped off of the left and right sides of it.
82    */
83   GLint pixels_clipped_left = 0;
84   GLint pixels_clipped_right = 0;
85   if (dst_x0 < fb_xmin) {
86      pixels_clipped_left = fb_xmin - dst_x0;
87      dst_x0 = fb_xmin;
88   }
89   if (fb_xmax < dst_x1) {
90      pixels_clipped_right = dst_x1 - fb_xmax;
91      dst_x1 = fb_xmax;
92   }
93
94   /* If we are mirrored, then before applying pixels_clipped_{left,right} to
95    * the source coordinates, we need to flip them to account for the
96    * mirroring.
97    */
98   if (mirror) {
99      GLint tmp = pixels_clipped_left;
100      pixels_clipped_left = pixels_clipped_right;
101      pixels_clipped_right = tmp;
102   }
103
104   /* Adjust the source rectangle to remove the pixels corresponding to those
105    * that were clipped/scissored out of the destination rectangle.
106    */
107   src_x0 += pixels_clipped_left;
108   src_x1 -= pixels_clipped_right;
109
110   return true;
111}
112
113
114static struct intel_mipmap_tree *
115find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
116{
117   struct intel_mipmap_tree *mt = irb->mt;
118   if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
119      mt = mt->stencil_mt;
120   return mt;
121}
122
123void
124brw_blorp_blit_miptrees(struct intel_context *intel,
125                        struct intel_mipmap_tree *src_mt,
126                        unsigned src_level, unsigned src_layer,
127                        struct intel_mipmap_tree *dst_mt,
128                        unsigned dst_level, unsigned dst_layer,
129                        int src_x0, int src_y0,
130                        int dst_x0, int dst_y0,
131                        int dst_x1, int dst_y1,
132                        bool mirror_x, bool mirror_y)
133{
134   brw_blorp_blit_params params(brw_context(&intel->ctx),
135                                src_mt, src_level, src_layer,
136                                dst_mt, dst_level, dst_layer,
137                                src_x0, src_y0,
138                                dst_x0, dst_y0,
139                                dst_x1, dst_y1,
140                                mirror_x, mirror_y);
141   brw_blorp_exec(intel, &params);
142}
143
144static void
145do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit,
146              struct intel_renderbuffer *src_irb,
147              struct intel_renderbuffer *dst_irb,
148              GLint srcX0, GLint srcY0,
149              GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
150              bool mirror_x, bool mirror_y)
151{
152   /* Find source/dst miptrees */
153   struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
154   struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
155
156   /* Get ready to blit.  This includes depth resolving the src and dst
157    * buffers if necessary.
158    */
159   intel_renderbuffer_resolve_depth(intel, src_irb);
160   intel_renderbuffer_resolve_depth(intel, dst_irb);
161
162   /* Do the blit */
163   brw_blorp_blit_miptrees(intel,
164                           src_mt, src_irb->mt_level, src_irb->mt_layer,
165                           dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
166                           srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
167                           mirror_x, mirror_y);
168
169   intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
170   intel_renderbuffer_set_needs_downsample(dst_irb);
171}
172
173
174static bool
175formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
176              struct intel_renderbuffer *dst_irb)
177{
178   /* Note: don't just check gl_renderbuffer::Format, because in some cases
179    * multiple gl_formats resolve to the same native type in the miptree (for
180    * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
181    * between those formats.
182    */
183   return find_miptree(buffer_bit, src_irb)->format ==
184      find_miptree(buffer_bit, dst_irb)->format;
185}
186
187
188static bool
189try_blorp_blit(struct intel_context *intel,
190               GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
191               GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
192               GLenum filter, GLbitfield buffer_bit)
193{
194   struct gl_context *ctx = &intel->ctx;
195
196   /* Sync up the state of window system buffers.  We need to do this before
197    * we go looking for the buffers.
198    */
199   intel_prepare_render(intel);
200
201   const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
202   const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
203
204   /* Detect if the blit needs to be mirrored */
205   bool mirror_x = false, mirror_y = false;
206   fixup_mirroring(mirror_x, srcX0, srcX1);
207   fixup_mirroring(mirror_x, dstX0, dstX1);
208   fixup_mirroring(mirror_y, srcY0, srcY1);
209   fixup_mirroring(mirror_y, dstY0, dstY1);
210
211   /* Make sure width and height match */
212   if (srcX1 - srcX0 != dstX1 - dstX0) return false;
213   if (srcY1 - srcY0 != dstY1 - dstY0) return false;
214
215   /* If the destination rectangle needs to be clipped or scissored, do so.
216    */
217   if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
218                         draw_fb->_Xmin, draw_fb->_Xmax) &&
219         clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
220                         draw_fb->_Ymin, draw_fb->_Ymax))) {
221      /* Everything got clipped/scissored away, so the blit was successful. */
222      return true;
223   }
224
225   /* If the source rectangle needs to be clipped or scissored, do so. */
226   if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
227                         0, read_fb->Width) &&
228         clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
229                         0, read_fb->Height))) {
230      /* Everything got clipped/scissored away, so the blit was successful. */
231      return true;
232   }
233
234   /* Account for the fact that in the system framebuffer, the origin is at
235    * the lower left.
236    */
237   if (_mesa_is_winsys_fbo(read_fb)) {
238      GLint tmp = read_fb->Height - srcY0;
239      srcY0 = read_fb->Height - srcY1;
240      srcY1 = tmp;
241      mirror_y = !mirror_y;
242   }
243   if (_mesa_is_winsys_fbo(draw_fb)) {
244      GLint tmp = draw_fb->Height - dstY0;
245      dstY0 = draw_fb->Height - dstY1;
246      dstY1 = tmp;
247      mirror_y = !mirror_y;
248   }
249
250   /* Find buffers */
251   struct intel_renderbuffer *src_irb;
252   struct intel_renderbuffer *dst_irb;
253   switch (buffer_bit) {
254   case GL_COLOR_BUFFER_BIT:
255      src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
256      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
257         dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
258         if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
259            return false;
260      }
261      for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
262         dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
263         do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
264                       dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
265      }
266      break;
267   case GL_DEPTH_BUFFER_BIT:
268      src_irb =
269         intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
270      dst_irb =
271         intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
272      if (!formats_match(buffer_bit, src_irb, dst_irb))
273         return false;
274      do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
275                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
276      break;
277   case GL_STENCIL_BUFFER_BIT:
278      src_irb =
279         intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
280      dst_irb =
281         intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
282      if (!formats_match(buffer_bit, src_irb, dst_irb))
283         return false;
284      do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
285                    dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
286      break;
287   default:
288      assert(false);
289   }
290
291   return true;
292}
293
294GLbitfield
295brw_blorp_framebuffer(struct intel_context *intel,
296                      GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
297                      GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
298                      GLbitfield mask, GLenum filter)
299{
300   /* BLORP is not supported before Gen6. */
301   if (intel->gen < 6)
302      return mask;
303
304   static GLbitfield buffer_bits[] = {
305      GL_COLOR_BUFFER_BIT,
306      GL_DEPTH_BUFFER_BIT,
307      GL_STENCIL_BUFFER_BIT,
308   };
309
310   for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
311      if ((mask & buffer_bits[i]) &&
312       try_blorp_blit(intel,
313                      srcX0, srcY0, srcX1, srcY1,
314                      dstX0, dstY0, dstX1, dstY1,
315                      filter, buffer_bits[i])) {
316         mask &= ~buffer_bits[i];
317      }
318   }
319
320   return mask;
321}
322
323
324/**
325 * Enum to specify the order of arguments in a sampler message
326 */
327enum sampler_message_arg
328{
329   SAMPLER_MESSAGE_ARG_U_FLOAT,
330   SAMPLER_MESSAGE_ARG_V_FLOAT,
331   SAMPLER_MESSAGE_ARG_U_INT,
332   SAMPLER_MESSAGE_ARG_V_INT,
333   SAMPLER_MESSAGE_ARG_SI_INT,
334   SAMPLER_MESSAGE_ARG_MCS_INT,
335   SAMPLER_MESSAGE_ARG_ZERO_INT,
336};
337
338/**
339 * Generator for WM programs used in BLORP blits.
340 *
341 * The bulk of the work done by the WM program is to wrap and unwrap the
342 * coordinate transformations used by the hardware to store surfaces in
343 * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
344 * sample index for a multisampled surface) to a memory offset by the
345 * following formulas:
346 *
347 *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
348 *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
349 *
350 * For a single-sampled surface, or for a multisampled surface using
351 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
352 * function:
353 *
354 *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
355 *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
356 *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
357 *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
358 *
359 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
360 * embeds the sample number into bit 1 of the X and Y coordinates:
361 *
362 *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
363 *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
364 *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
365 *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
366 *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
367 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
368 *           S = (Y & 0b10) | (X & 0b10) >> 1
369 *
370 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
371 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
372 * the Y coordinate:
373 *
374 *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
375 *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
376 *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
377 *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
378 *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
379 *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
380 *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
381 *
382 * For X tiling, tile() combines together the low-order bits of the X and Y
383 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
384 * bytes wide and 8 rows high:
385 *
386 *   tile(x_tiled, X, Y, S) = A
387 *     where A = tile_num << 12 | offset
388 *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
389 *           offset = (Y' & 0b111) << 9
390 *                    | (X & 0b111111111)
391 *           X' = X * cpp
392 *           Y' = Y + S * qpitch
393 *   detile(x_tiled, A) = (X, Y, S)
394 *     where X = X' / cpp
395 *           Y = Y' % qpitch
396 *           S = Y' / qpitch
397 *           Y' = (tile_num / tile_pitch) << 3
398 *                | (A & 0b111000000000) >> 9
399 *           X' = (tile_num % tile_pitch) << 9
400 *                | (A & 0b111111111)
401 *
402 * (In all tiling formulas, cpp is the number of bytes occupied by a single
403 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
404 * to fill the width of the surface, and qpitch is the spacing (in rows)
405 * between array slices).
406 *
407 * For Y tiling, tile() combines together the low-order bits of the X and Y
408 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
409 * bytes wide and 32 rows high:
410 *
411 *   tile(y_tiled, X, Y, S) = A
412 *     where A = tile_num << 12 | offset
413 *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
414 *           offset = (X' & 0b1110000) << 5
415 *                    | (Y' & 0b11111) << 4
416 *                    | (X' & 0b1111)
417 *           X' = X * cpp
418 *           Y' = Y + S * qpitch
419 *   detile(y_tiled, A) = (X, Y, S)
420 *     where X = X' / cpp
421 *           Y = Y' % qpitch
422 *           S = Y' / qpitch
423 *           Y' = (tile_num / tile_pitch) << 5
424 *                | (A & 0b111110000) >> 4
425 *           X' = (tile_num % tile_pitch) << 7
426 *                | (A & 0b111000000000) >> 5
427 *                | (A & 0b1111)
428 *
429 * For W tiling, tile() combines together the low-order bits of the X and Y
430 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
431 * bytes wide and 64 rows high (note that W tiling is only used for stencil
432 * buffers, which always have cpp = 1 and S=0):
433 *
434 *   tile(w_tiled, X, Y, S) = A
435 *     where A = tile_num << 12 | offset
436 *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
437 *           offset = (X' & 0b111000) << 6
438 *                    | (Y' & 0b111100) << 3
439 *                    | (X' & 0b100) << 2
440 *                    | (Y' & 0b10) << 2
441 *                    | (X' & 0b10) << 1
442 *                    | (Y' & 0b1) << 1
443 *                    | (X' & 0b1)
444 *           X' = X * cpp = X
445 *           Y' = Y + S * qpitch
446 *   detile(w_tiled, A) = (X, Y, S)
447 *     where X = X' / cpp = X'
448 *           Y = Y' % qpitch = Y'
449 *           S = Y / qpitch = 0
450 *           Y' = (tile_num / tile_pitch) << 6
451 *                | (A & 0b111100000) >> 3
452 *                | (A & 0b1000) >> 2
453 *                | (A & 0b10) >> 1
454 *           X' = (tile_num % tile_pitch) << 6
455 *                | (A & 0b111000000000) >> 6
456 *                | (A & 0b10000) >> 2
457 *                | (A & 0b100) >> 1
458 *                | (A & 0b1)
459 *
460 * Finally, for a non-tiled surface, tile() simply combines together the X and
461 * Y coordinates in the natural way:
462 *
463 *   tile(untiled, X, Y, S) = A
464 *     where A = Y * pitch + X'
465 *           X' = X * cpp
466 *           Y' = Y + S * qpitch
467 *   detile(untiled, A) = (X, Y, S)
468 *     where X = X' / cpp
469 *           Y = Y' % qpitch
470 *           S = Y' / qpitch
471 *           X' = A % pitch
472 *           Y' = A / pitch
473 *
474 * (In these formulas, pitch is the number of bytes occupied by a single row
475 * of samples).
476 */
477class brw_blorp_blit_program
478{
479public:
480   brw_blorp_blit_program(struct brw_context *brw,
481                          const brw_blorp_blit_prog_key *key);
482   ~brw_blorp_blit_program();
483
484   const GLuint *compile(struct brw_context *brw, GLuint *program_size);
485
486   brw_blorp_prog_data prog_data;
487
488private:
489   void alloc_regs();
490   void alloc_push_const_regs(int base_reg);
491   void compute_frag_coords();
492   void translate_tiling(bool old_tiled_w, bool new_tiled_w);
493   void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
494   void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
495   void kill_if_outside_dst_rect();
496   void translate_dst_to_src();
497   void single_to_blend();
498   void manual_blend(unsigned num_samples);
499   void sample(struct brw_reg dst);
500   void texel_fetch(struct brw_reg dst);
501   void mcs_fetch();
502   void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
503   void texture_lookup(struct brw_reg dst, GLuint msg_type,
504                       const sampler_message_arg *args, int num_args);
505   void render_target_write();
506
507   /**
508    * Base-2 logarithm of the maximum number of samples that can be blended.
509    */
510   static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
511
512   void *mem_ctx;
513   struct brw_context *brw;
514   const brw_blorp_blit_prog_key *key;
515   struct brw_compile func;
516
517   /* Thread dispatch header */
518   struct brw_reg R0;
519
520   /* Pixel X/Y coordinates (always in R1). */
521   struct brw_reg R1;
522
523   /* Push constants */
524   struct brw_reg dst_x0;
525   struct brw_reg dst_x1;
526   struct brw_reg dst_y0;
527   struct brw_reg dst_y1;
528   struct {
529      struct brw_reg multiplier;
530      struct brw_reg offset;
531   } x_transform, y_transform;
532
533   /* Data read from texture (4 vec16's per array element) */
534   struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
535
536   /* Auxiliary storage for the contents of the MCS surface.
537    *
538    * Since the sampler always returns 8 registers worth of data, this is 8
539    * registers wide, even though we only use the first 2 registers of it.
540    */
541   struct brw_reg mcs_data;
542
543   /* X coordinates.  We have two of them so that we can perform coordinate
544    * transformations easily.
545    */
546   struct brw_reg x_coords[2];
547
548   /* Y coordinates.  We have two of them so that we can perform coordinate
549    * transformations easily.
550    */
551   struct brw_reg y_coords[2];
552
553   /* Which element of x_coords and y_coords is currently in use.
554    */
555   int xy_coord_index;
556
557   /* True if, at the point in the program currently being compiled, the
558    * sample index is known to be zero.
559    */
560   bool s_is_zero;
561
562   /* Register storing the sample index when s_is_zero is false. */
563   struct brw_reg sample_index;
564
565   /* Temporaries */
566   struct brw_reg t1;
567   struct brw_reg t2;
568
569   /* MRF used for sampling and render target writes */
570   GLuint base_mrf;
571};
572
573brw_blorp_blit_program::brw_blorp_blit_program(
574      struct brw_context *brw,
575      const brw_blorp_blit_prog_key *key)
576   : mem_ctx(ralloc_context(NULL)),
577     brw(brw),
578     key(key)
579{
580   brw_init_compile(brw, &func, mem_ctx);
581}
582
583brw_blorp_blit_program::~brw_blorp_blit_program()
584{
585   ralloc_free(mem_ctx);
586}
587
588const GLuint *
589brw_blorp_blit_program::compile(struct brw_context *brw,
590                                GLuint *program_size)
591{
592   /* Sanity checks */
593   if (key->dst_tiled_w && key->rt_samples > 0) {
594      /* If the destination image is W tiled and multisampled, then the thread
595       * must be dispatched once per sample, not once per pixel.  This is
596       * necessary because after conversion between W and Y tiling, there's no
597       * guarantee that all samples corresponding to a single pixel will still
598       * be together.
599       */
600      assert(key->persample_msaa_dispatch);
601   }
602
603   if (key->blend) {
604      /* We are blending, which means we won't have an opportunity to
605       * translate the tiling and sample count for the texture surface.  So
606       * the surface state for the texture must be configured with the correct
607       * tiling and sample count.
608       */
609      assert(!key->src_tiled_w);
610      assert(key->tex_samples == key->src_samples);
611      assert(key->tex_layout == key->src_layout);
612      assert(key->tex_samples > 0);
613   }
614
615   if (key->persample_msaa_dispatch) {
616      /* It only makes sense to do persample dispatch if the render target is
617       * configured as multisampled.
618       */
619      assert(key->rt_samples > 0);
620   }
621
622   /* Make sure layout is consistent with sample count */
623   assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
624          (key->tex_samples == 0));
625   assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
626          (key->rt_samples == 0));
627   assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
628          (key->src_samples == 0));
629   assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
630          (key->dst_samples == 0));
631
632   /* Set up prog_data */
633   memset(&prog_data, 0, sizeof(prog_data));
634   prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
635
636   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
637
638   alloc_regs();
639   compute_frag_coords();
640
641   /* Render target and texture hardware don't support W tiling. */
642   const bool rt_tiled_w = false;
643   const bool tex_tiled_w = false;
644
645   /* The address that data will be written to is determined by the
646    * coordinates supplied to the WM thread and the tiling and sample count of
647    * the render target, according to the formula:
648    *
649    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
650    *
651    * If the actual tiling and sample count of the destination surface are not
652    * the same as the configuration of the render target, then these
653    * coordinates are wrong and we have to adjust them to compensate for the
654    * difference.
655    */
656   if (rt_tiled_w != key->dst_tiled_w ||
657       key->rt_samples != key->dst_samples ||
658       key->rt_layout != key->dst_layout) {
659      encode_msaa(key->rt_samples, key->rt_layout);
660      /* Now (X, Y, S) = detile(rt_tiling, offset) */
661      translate_tiling(rt_tiled_w, key->dst_tiled_w);
662      /* Now (X, Y, S) = detile(dst_tiling, offset) */
663      decode_msaa(key->dst_samples, key->dst_layout);
664   }
665
666   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
667    *
668    * That is: X, Y and S now contain the true coordinates and sample index of
669    * the data that the WM thread should output.
670    *
671    * If we need to kill pixels that are outside the destination rectangle,
672    * now is the time to do it.
673    */
674
675   if (key->use_kill)
676      kill_if_outside_dst_rect();
677
678   /* Next, apply a translation to obtain coordinates in the source image. */
679   translate_dst_to_src();
680
681   /* If the source image is not multisampled, then we want to fetch sample
682    * number 0, because that's the only sample there is.
683    */
684   if (key->src_samples == 0)
685      s_is_zero = true;
686
687   /* X, Y, and S are now the coordinates of the pixel in the source image
688    * that we want to texture from.  Exception: if we are blending, then S is
689    * irrelevant, because we are going to fetch all samples.
690    */
691   if (key->blend) {
692      if (brw->intel.gen == 6) {
693         /* Gen6 hardware an automatically blend using the SAMPLE message */
694         single_to_blend();
695         sample(texture_data[0]);
696      } else {
697         /* Gen7+ hardware doesn't automaticaly blend. */
698         manual_blend(key->src_samples);
699      }
700   } else {
701      /* We aren't blending, which means we just want to fetch a single sample
702       * from the source surface.  The address that we want to fetch from is
703       * related to the X, Y and S values according to the formula:
704       *
705       * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
706       *
707       * If the actual tiling and sample count of the source surface are not
708       * the same as the configuration of the texture, then we need to adjust
709       * the coordinates to compensate for the difference.
710       */
711      if (tex_tiled_w != key->src_tiled_w ||
712          key->tex_samples != key->src_samples ||
713          key->tex_layout != key->src_layout) {
714         encode_msaa(key->src_samples, key->src_layout);
715         /* Now (X, Y, S) = detile(src_tiling, offset) */
716         translate_tiling(key->src_tiled_w, tex_tiled_w);
717         /* Now (X, Y, S) = detile(tex_tiling, offset) */
718         decode_msaa(key->tex_samples, key->tex_layout);
719      }
720
721      /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
722       *
723       * In other words: X, Y, and S now contain values which, when passed to
724       * the texturing unit, will cause data to be read from the correct
725       * memory location.  So we can fetch the texel now.
726       */
727      if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
728         mcs_fetch();
729      texel_fetch(texture_data[0]);
730   }
731
732   /* Finally, write the fetched (or blended) value to the render target and
733    * terminate the thread.
734    */
735   render_target_write();
736   return brw_get_program(&func, program_size);
737}
738
739void
740brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
741{
742#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
743#define ALLOC_REG(name) \
744   this->name = \
745      brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
746
747   ALLOC_REG(dst_x0);
748   ALLOC_REG(dst_x1);
749   ALLOC_REG(dst_y0);
750   ALLOC_REG(dst_y1);
751   ALLOC_REG(x_transform.multiplier);
752   ALLOC_REG(x_transform.offset);
753   ALLOC_REG(y_transform.multiplier);
754   ALLOC_REG(y_transform.offset);
755#undef CONST_LOC
756#undef ALLOC_REG
757}
758
759void
760brw_blorp_blit_program::alloc_regs()
761{
762   int reg = 0;
763   this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
764   this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
765   prog_data.first_curbe_grf = reg;
766   alloc_push_const_regs(reg);
767   reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
768   for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
769      this->texture_data[i] =
770         retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
771      reg += 8;
772   }
773   this->mcs_data =
774      retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
775   for (int i = 0; i < 2; ++i) {
776      this->x_coords[i]
777         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
778      this->y_coords[i]
779         = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
780   }
781   this->xy_coord_index = 0;
782   this->sample_index
783      = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
784   this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
785   this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
786
787   /* Make sure we didn't run out of registers */
788   assert(reg <= GEN7_MRF_HACK_START);
789
790   int mrf = 2;
791   this->base_mrf = mrf;
792}
793
794/* In the code that follows, X and Y can be used to quickly refer to the
795 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
796 * prime") to the inactive elements.
797 *
798 * S can be used to quickly refer to sample_index.
799 */
800#define X x_coords[xy_coord_index]
801#define Y y_coords[xy_coord_index]
802#define Xp x_coords[!xy_coord_index]
803#define Yp y_coords[!xy_coord_index]
804#define S sample_index
805
806/* Quickly swap the roles of (X, Y) and (Xp, Yp).  Saves us from having to do
807 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
808 */
809#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
810
811/**
812 * Emit code to compute the X and Y coordinates of the pixels being rendered
813 * by this WM invocation.
814 *
815 * Assuming the render target is set up for Y tiling, these (X, Y) values are
816 * related to the address offset where outputs will be written by the formula:
817 *
818 *   (X, Y, S) = decode_msaa(detile(offset)).
819 *
820 * (See brw_blorp_blit_program).
821 */
822void
823brw_blorp_blit_program::compute_frag_coords()
824{
825   /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
826    * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
827    * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
828    * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
829    *
830    * Pixels within a subspan are laid out in this arrangement:
831    * 0 1
832    * 2 3
833    *
834    * So, to compute the coordinates of each pixel, we need to read every 2nd
835    * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
836    * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
837    * In other words, the data we want to access is R1.4<2;4,0>UW.
838    *
839    * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
840    * result, since pixels n+1 and n+3 are in the right half of the subspan.
841    */
842   brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
843
844   /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
845    * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
846    * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
847    * R1.4<2;4,0>UW).
848    *
849    * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
850    * pixels n+2 and n+3 are in the bottom half of the subspan.
851    */
852   brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
853
854   if (key->persample_msaa_dispatch) {
855      switch (key->rt_samples) {
856      case 4:
857         /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
858          * Therefore, subspan 0 will represent sample 0, subspan 1 will
859          * represent sample 1, and so on.
860          *
861          * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
862          * 1, 2, 2, 2, 2, 3, 3, 3, 3).  The easiest way to do this is to
863          * populate a temporary variable with the sequence (0, 1, 2, 3), and
864          * then copy from it using vstride=1, width=4, hstride=0.
865          */
866         brw_MOV(&func, t1, brw_imm_v(0x3210));
867         brw_MOV(&func, S, stride(t1, 1, 4, 0));
868         break;
869      case 8: {
870         /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
871          * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
872          * subspan 1 will represent sample 1, and so on.  We can find the
873          * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
874          * Index") and multiplying by two (since samples are always delivered
875          * in pairs).  That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
876          * 0xc0) >> 5.
877          *
878          * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
879          * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
880          * variable with the sequence (0, 1, 2, 3), and then reading from it
881          * using vstride=1, width=4, hstride=0.
882          */
883         struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
884         struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
885         brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
886         brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
887         brw_MOV(&func, t2, brw_imm_v(0x3210));
888         brw_ADD(&func, S, retype(t1_ud1, BRW_REGISTER_TYPE_UW),
889                 stride(t2, 1, 4, 0));
890         break;
891      }
892      default:
893         assert(!"Unrecognized sample count in "
894                "brw_blorp_blit_program::compute_frag_coords()");
895         break;
896      }
897      s_is_zero = false;
898   } else {
899      /* Either the destination surface is single-sampled, or the WM will be
900       * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
901       * per pixel).  In either case, it's not meaningful to compute a sample
902       * value.  Just set it to 0.
903       */
904      s_is_zero = true;
905   }
906}
907
908/**
909 * Emit code to compensate for the difference between Y and W tiling.
910 *
911 * This code modifies the X and Y coordinates according to the formula:
912 *
913 *   (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
914 *
915 * (See brw_blorp_blit_program).
916 *
917 * It can only translate between W and Y tiling, so new_tiling and old_tiling
918 * are booleans where true represents W tiling and false represents Y tiling.
919 */
920void
921brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
922{
923   if (old_tiled_w == new_tiled_w)
924      return;
925
926   /* In the code that follows, we can safely assume that S = 0, because W
927    * tiling formats always use IMS layout.
928    */
929   assert(s_is_zero);
930
931   if (new_tiled_w) {
932      /* Given X and Y coordinates that describe an address using Y tiling,
933       * translate to the X and Y coordinates that describe the same address
934       * using W tiling.
935       *
936       * If we break down the low order bits of X and Y, using a
937       * single letter to represent each low-order bit:
938       *
939       *   X = A << 7 | 0bBCDEFGH
940       *   Y = J << 5 | 0bKLMNP                                       (1)
941       *
942       * Then we can apply the Y tiling formula to see the memory offset being
943       * addressed:
944       *
945       *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
946       *
947       * If we apply the W detiling formula to this memory location, that the
948       * corresponding X' and Y' coordinates are:
949       *
950       *   X' = A << 6 | 0bBCDPFH                                     (3)
951       *   Y' = J << 6 | 0bKLMNEG
952       *
953       * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
954       * we need to make the following computation:
955       *
956       *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
957       *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
958       */
959      brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
960      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
961      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
962      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
963      brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
964      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
965      brw_OR(&func, Xp, t1, t2);
966      brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
967      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
968      brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
969      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
970      brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
971      brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
972      brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
973      brw_OR(&func, Yp, t1, t2);
974      SWAP_XY_AND_XPYP();
975   } else {
976      /* Applying the same logic as above, but in reverse, we obtain the
977       * formulas:
978       *
979       * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
980       * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
981       */
982      brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
983      brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
984      brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
985      brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
986      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
987      brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
988      brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
989      brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
990                                    | (Y & 0b1) << 1 */
991      brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
992      brw_OR(&func, Xp, t1, t2);
993      brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
994      brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
995      brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
996      brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
997      brw_OR(&func, Yp, t1, t2);
998      SWAP_XY_AND_XPYP();
999   }
1000}
1001
1002/**
1003 * Emit code to compensate for the difference between MSAA and non-MSAA
1004 * surfaces.
1005 *
1006 * This code modifies the X and Y coordinates according to the formula:
1007 *
1008 *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
1009 *
1010 * (See brw_blorp_blit_program).
1011 */
1012void
1013brw_blorp_blit_program::encode_msaa(unsigned num_samples,
1014                                    intel_msaa_layout layout)
1015{
1016   switch (layout) {
1017   case INTEL_MSAA_LAYOUT_NONE:
1018      /* No translation necessary, and S should already be zero. */
1019      assert(s_is_zero);
1020      break;
1021   case INTEL_MSAA_LAYOUT_CMS:
1022      /* We can't compensate for compressed layout since at this point in the
1023       * program we haven't read from the MCS buffer.
1024       */
1025      assert(!"Bad layout in encode_msaa");
1026      break;
1027   case INTEL_MSAA_LAYOUT_UMS:
1028      /* No translation necessary. */
1029      break;
1030   case INTEL_MSAA_LAYOUT_IMS:
1031      switch (num_samples) {
1032      case 4:
1033         /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
1034          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
1035          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1036          */
1037         brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1038         if (!s_is_zero) {
1039            brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1040            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
1041         }
1042         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
1043                                                   | (S & 0b1) << 1 */
1044         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1045         brw_OR(&func, Xp, t1, t2);
1046         brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1047         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1048         if (!s_is_zero) {
1049            brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1050            brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1051         }
1052         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1053         brw_OR(&func, Yp, t1, t2);
1054         break;
1055      case 8:
1056         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
1057          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
1058          *              | (X & 0b1)
1059          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
1060          */
1061         brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
1062         brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
1063         if (!s_is_zero) {
1064            brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
1065            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
1066            brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
1067            brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
1068            brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
1069                                          | (S & 0b1) << 1 */
1070         }
1071         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1072         brw_OR(&func, Xp, t1, t2);
1073         brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
1074         brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
1075         if (!s_is_zero) {
1076            brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
1077            brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
1078         }
1079         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1080         brw_OR(&func, Yp, t1, t2);
1081         break;
1082      }
1083      SWAP_XY_AND_XPYP();
1084      s_is_zero = true;
1085      break;
1086   }
1087}
1088
1089/**
1090 * Emit code to compensate for the difference between MSAA and non-MSAA
1091 * surfaces.
1092 *
1093 * This code modifies the X and Y coordinates according to the formula:
1094 *
1095 *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
1096 *
1097 * (See brw_blorp_blit_program).
1098 */
1099void
1100brw_blorp_blit_program::decode_msaa(unsigned num_samples,
1101                                    intel_msaa_layout layout)
1102{
1103   switch (layout) {
1104   case INTEL_MSAA_LAYOUT_NONE:
1105      /* No translation necessary, and S should already be zero. */
1106      assert(s_is_zero);
1107      break;
1108   case INTEL_MSAA_LAYOUT_CMS:
1109      /* We can't compensate for compressed layout since at this point in the
1110       * program we don't have access to the MCS buffer.
1111       */
1112      assert(!"Bad layout in encode_msaa");
1113      break;
1114   case INTEL_MSAA_LAYOUT_UMS:
1115      /* No translation necessary. */
1116      break;
1117   case INTEL_MSAA_LAYOUT_IMS:
1118      assert(s_is_zero);
1119      switch (num_samples) {
1120      case 4:
1121         /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
1122          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
1123          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1124          *         S = (Y & 0b10) | (X & 0b10) >> 1
1125          */
1126         brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
1127         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
1128         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1129         brw_OR(&func, Xp, t1, t2);
1130         brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1131         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1132         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1133         brw_OR(&func, Yp, t1, t2);
1134         brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
1135         brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1136         brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1137         brw_OR(&func, S, t1, t2);
1138         break;
1139      case 8:
1140         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
1141          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
1142          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
1143          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
1144          */
1145         brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
1146         brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
1147         brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
1148         brw_OR(&func, Xp, t1, t2);
1149         brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
1150         brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
1151         brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
1152         brw_OR(&func, Yp, t1, t2);
1153         brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
1154         brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
1155         brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
1156         brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
1157         brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
1158         brw_OR(&func, S, t1, t2);
1159         break;
1160      }
1161      s_is_zero = false;
1162      SWAP_XY_AND_XPYP();
1163      break;
1164   }
1165}
1166
1167/**
1168 * Emit code that kills pixels whose X and Y coordinates are outside the
1169 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
1170 * dst_x1, dst_y1).
1171 */
1172void
1173brw_blorp_blit_program::kill_if_outside_dst_rect()
1174{
1175   struct brw_reg f0 = brw_flag_reg();
1176   struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1177   struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
1178
1179   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
1180   brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
1181   brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
1182   brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
1183
1184   brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
1185   brw_push_insn_state(&func);
1186   brw_set_mask_control(&func, BRW_MASK_DISABLE);
1187   brw_AND(&func, g1, f0, g1);
1188   brw_pop_insn_state(&func);
1189}
1190
1191/**
1192 * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
1193 * coordinates.
1194 */
1195void
1196brw_blorp_blit_program::translate_dst_to_src()
1197{
1198   brw_MUL(&func, Xp, X, x_transform.multiplier);
1199   brw_MUL(&func, Yp, Y, y_transform.multiplier);
1200   brw_ADD(&func, Xp, Xp, x_transform.offset);
1201   brw_ADD(&func, Yp, Yp, y_transform.offset);
1202   SWAP_XY_AND_XPYP();
1203}
1204
1205/**
1206 * Emit code to transform the X and Y coordinates as needed for blending
1207 * together the different samples in an MSAA texture.
1208 */
1209void
1210brw_blorp_blit_program::single_to_blend()
1211{
1212   /* When looking up samples in an MSAA texture using the SAMPLE message,
1213    * Gen6 requires the texture coordinates to be odd integers (so that they
1214    * correspond to the center of a 2x2 block representing the four samples
1215    * that maxe up a pixel).  So we need to multiply our X and Y coordinates
1216    * each by 2 and then add 1.
1217    */
1218   brw_SHL(&func, t1, X, brw_imm_w(1));
1219   brw_SHL(&func, t2, Y, brw_imm_w(1));
1220   brw_ADD(&func, Xp, t1, brw_imm_w(1));
1221   brw_ADD(&func, Yp, t2, brw_imm_w(1));
1222   SWAP_XY_AND_XPYP();
1223}
1224
1225
1226/**
1227 * Count the number of trailing 1 bits in the given value.  For example:
1228 *
1229 * count_trailing_one_bits(0) == 0
1230 * count_trailing_one_bits(7) == 3
1231 * count_trailing_one_bits(11) == 2
1232 */
1233inline int count_trailing_one_bits(unsigned value)
1234{
1235#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
1236   return __builtin_ctz(~value);
1237#else
1238   return _mesa_bitcount(value & ~(value + 1));
1239#endif
1240}
1241
1242
1243void
1244brw_blorp_blit_program::manual_blend(unsigned num_samples)
1245{
1246   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1247      mcs_fetch();
1248
1249   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
1250    *
1251    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
1252    *
1253    * This ensures that when all samples have the same value, no numerical
1254    * precision is lost, since each addition operation always adds two equal
1255    * values, and summing two equal floating point values does not lose
1256    * precision.
1257    *
1258    * We perform this computation by treating the texture_data array as a
1259    * stack and performing the following operations:
1260    *
1261    * - push sample 0 onto stack
1262    * - push sample 1 onto stack
1263    * - add top two stack entries
1264    * - push sample 2 onto stack
1265    * - push sample 3 onto stack
1266    * - add top two stack entries
1267    * - add top two stack entries
1268    * - divide top stack entry by 4
1269    *
1270    * Note that after pushing sample i onto the stack, the number of add
1271    * operations we do is equal to the number of trailing 1 bits in i.  This
1272    * works provided the total number of samples is a power of two, which it
1273    * always is for i965.
1274    *
1275    * For integer formats, we replace the add operations with average
1276    * operations and skip the final division.
1277    */
1278   typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
1279                                                  struct brw_reg,
1280                                                  struct brw_reg,
1281                                                  struct brw_reg);
1282   brw_op2_ptr combine_op =
1283      key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
1284   unsigned stack_depth = 0;
1285   for (unsigned i = 0; i < num_samples; ++i) {
1286      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
1287
1288      /* Push sample i onto the stack */
1289      assert(stack_depth < ARRAY_SIZE(texture_data));
1290      if (i == 0) {
1291         s_is_zero = true;
1292      } else {
1293         s_is_zero = false;
1294         brw_MOV(&func, S, brw_imm_uw(i));
1295      }
1296      texel_fetch(texture_data[stack_depth++]);
1297
1298      if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
1299         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
1300          * suggests an optimization:
1301          *
1302          *     "A simple optimization with probable large return in
1303          *     performance is to compare the MCS value to zero (indicating
1304          *     all samples are on sample slice 0), and sample only from
1305          *     sample slice 0 using ld2dss if MCS is zero."
1306          *
1307          * Note that in the case where the MCS value is zero, sampling from
1308          * sample slice 0 using ld2dss and sampling from sample 0 using
1309          * ld2dms are equivalent (since all samples are on sample slice 0).
1310          * Since we have already sampled from sample 0, all we need to do is
1311          * skip the remaining fetches and averaging if MCS is zero.
1312          */
1313         brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
1314                 mcs_data, brw_imm_ud(0));
1315         brw_IF(&func, BRW_EXECUTE_16);
1316      }
1317
1318      /* Do count_trailing_one_bits(i) times */
1319      for (int j = count_trailing_one_bits(i); j-- > 0; ) {
1320         assert(stack_depth >= 2);
1321         --stack_depth;
1322
1323         /* TODO: should use a smaller loop bound for non_RGBA formats */
1324         for (int k = 0; k < 4; ++k) {
1325            combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
1326                       offset(vec8(texture_data[stack_depth - 1]), 2*k),
1327                       offset(vec8(texture_data[stack_depth]), 2*k));
1328         }
1329      }
1330   }
1331
1332   /* We should have just 1 sample on the stack now. */
1333   assert(stack_depth == 1);
1334
1335   if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
1336      /* Scale the result down by a factor of num_samples */
1337      /* TODO: should use a smaller loop bound for non-RGBA formats */
1338      for (int j = 0; j < 4; ++j) {
1339         brw_MUL(&func, offset(texture_data[0], 2*j),
1340                 offset(vec8(texture_data[0]), 2*j),
1341                 brw_imm_f(1.0/num_samples));
1342      }
1343   }
1344
1345   if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
1346      brw_ENDIF(&func);
1347}
1348
1349/**
1350 * Emit code to look up a value in the texture using the SAMPLE message (which
1351 * does blending of MSAA surfaces).
1352 */
1353void
1354brw_blorp_blit_program::sample(struct brw_reg dst)
1355{
1356   static const sampler_message_arg args[2] = {
1357      SAMPLER_MESSAGE_ARG_U_FLOAT,
1358      SAMPLER_MESSAGE_ARG_V_FLOAT
1359   };
1360
1361   texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
1362}
1363
1364/**
1365 * Emit code to look up a value in the texture using the SAMPLE_LD message
1366 * (which does a simple texel fetch).
1367 */
1368void
1369brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
1370{
1371   static const sampler_message_arg gen6_args[5] = {
1372      SAMPLER_MESSAGE_ARG_U_INT,
1373      SAMPLER_MESSAGE_ARG_V_INT,
1374      SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
1375      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1376      SAMPLER_MESSAGE_ARG_SI_INT
1377   };
1378   static const sampler_message_arg gen7_ld_args[3] = {
1379      SAMPLER_MESSAGE_ARG_U_INT,
1380      SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
1381      SAMPLER_MESSAGE_ARG_V_INT
1382   };
1383   static const sampler_message_arg gen7_ld2dss_args[3] = {
1384      SAMPLER_MESSAGE_ARG_SI_INT,
1385      SAMPLER_MESSAGE_ARG_U_INT,
1386      SAMPLER_MESSAGE_ARG_V_INT
1387   };
1388   static const sampler_message_arg gen7_ld2dms_args[4] = {
1389      SAMPLER_MESSAGE_ARG_SI_INT,
1390      SAMPLER_MESSAGE_ARG_MCS_INT,
1391      SAMPLER_MESSAGE_ARG_U_INT,
1392      SAMPLER_MESSAGE_ARG_V_INT
1393   };
1394
1395   switch (brw->intel.gen) {
1396   case 6:
1397      texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
1398                     s_is_zero ? 2 : 5);
1399      break;
1400   case 7:
1401      switch (key->tex_layout) {
1402      case INTEL_MSAA_LAYOUT_IMS:
1403         /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
1404          * Format):
1405          *
1406          *     If this field is MSFMT_DEPTH_STENCIL
1407          *     [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
1408          *     messages allowed are "ld2dms", "resinfo", and "sampleinfo".
1409          *
1410          * So fall through to emit the same message as we use for
1411          * INTEL_MSAA_LAYOUT_CMS.
1412          */
1413      case INTEL_MSAA_LAYOUT_CMS:
1414         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
1415                        gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
1416         break;
1417      case INTEL_MSAA_LAYOUT_UMS:
1418         texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
1419                        gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
1420         break;
1421      case INTEL_MSAA_LAYOUT_NONE:
1422         assert(s_is_zero);
1423         texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
1424                        ARRAY_SIZE(gen7_ld_args));
1425         break;
1426      }
1427      break;
1428   default:
1429      assert(!"Should not get here.");
1430      break;
1431   };
1432}
1433
1434void
1435brw_blorp_blit_program::mcs_fetch()
1436{
1437   static const sampler_message_arg gen7_ld_mcs_args[2] = {
1438      SAMPLER_MESSAGE_ARG_U_INT,
1439      SAMPLER_MESSAGE_ARG_V_INT
1440   };
1441   texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
1442                  gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
1443}
1444
1445void
1446brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
1447                                          struct brw_reg dst)
1448{
1449   brw_MOV(&func, vec8(dst), vec8(src));
1450   brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
1451   brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
1452   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
1453}
1454
1455void
1456brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
1457                                       GLuint msg_type,
1458                                       const sampler_message_arg *args,
1459                                       int num_args)
1460{
1461   struct brw_reg mrf =
1462      retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
1463   for (int arg = 0; arg < num_args; ++arg) {
1464      switch (args[arg]) {
1465      case SAMPLER_MESSAGE_ARG_U_FLOAT:
1466         expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
1467         break;
1468      case SAMPLER_MESSAGE_ARG_V_FLOAT:
1469         expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
1470         break;
1471      case SAMPLER_MESSAGE_ARG_U_INT:
1472         expand_to_32_bits(X, mrf);
1473         break;
1474      case SAMPLER_MESSAGE_ARG_V_INT:
1475         expand_to_32_bits(Y, mrf);
1476         break;
1477      case SAMPLER_MESSAGE_ARG_SI_INT:
1478         /* Note: on Gen7, this code may be reached with s_is_zero==true
1479          * because in Gen7's ld2dss message, the sample index is the first
1480          * argument.  When this happens, we need to move a 0 into the
1481          * appropriate message register.
1482          */
1483         if (s_is_zero)
1484            brw_MOV(&func, mrf, brw_imm_ud(0));
1485         else
1486            expand_to_32_bits(S, mrf);
1487         break;
1488      case SAMPLER_MESSAGE_ARG_MCS_INT:
1489         switch (key->tex_layout) {
1490         case INTEL_MSAA_LAYOUT_CMS:
1491            brw_MOV(&func, mrf, mcs_data);
1492            break;
1493         case INTEL_MSAA_LAYOUT_IMS:
1494            /* When sampling from an IMS surface, MCS data is not relevant,
1495             * and the hardware ignores it.  So don't bother populating it.
1496             */
1497            break;
1498         default:
1499            /* We shouldn't be trying to send MCS data with any other
1500             * layouts.
1501             */
1502            assert (!"Unsupported layout for MCS data");
1503            break;
1504         }
1505         break;
1506      case SAMPLER_MESSAGE_ARG_ZERO_INT:
1507         brw_MOV(&func, mrf, brw_imm_ud(0));
1508         break;
1509      }
1510      mrf.nr += 2;
1511   }
1512
1513   brw_SAMPLE(&func,
1514              retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
1515              base_mrf /* msg_reg_nr */,
1516              brw_message_reg(base_mrf) /* src0 */,
1517              BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
1518              0 /* sampler */,
1519              WRITEMASK_XYZW,
1520              msg_type,
1521              8 /* response_length.  TODO: should be smaller for non-RGBA formats? */,
1522              mrf.nr - base_mrf /* msg_length */,
1523              0 /* header_present */,
1524              BRW_SAMPLER_SIMD_MODE_SIMD16,
1525              BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
1526}
1527
1528#undef X
1529#undef Y
1530#undef U
1531#undef V
1532#undef S
1533#undef SWAP_XY_AND_XPYP
1534
1535void
1536brw_blorp_blit_program::render_target_write()
1537{
1538   struct brw_reg mrf_rt_write =
1539      retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
1540   int mrf_offset = 0;
1541
1542   /* If we may have killed pixels, then we need to send R0 and R1 in a header
1543    * so that the render target knows which pixels we killed.
1544    */
1545   bool use_header = key->use_kill;
1546   if (use_header) {
1547      /* Copy R0/1 to MRF */
1548      brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
1549              retype(R0, BRW_REGISTER_TYPE_UD));
1550      mrf_offset += 2;
1551   }
1552
1553   /* Copy texture data to MRFs */
1554   for (int i = 0; i < 4; ++i) {
1555      /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
1556      brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
1557              offset(vec8(texture_data[0]), 2*i));
1558      mrf_offset += 2;
1559   }
1560
1561   /* Now write to the render target and terminate the thread */
1562   brw_fb_WRITE(&func,
1563                16 /* dispatch_width */,
1564                base_mrf /* msg_reg_nr */,
1565                mrf_rt_write /* src0 */,
1566                BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
1567                BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
1568                mrf_offset /* msg_length.  TODO: Should be smaller for non-RGBA formats. */,
1569                0 /* response_length */,
1570                true /* eot */,
1571                use_header);
1572}
1573
1574
1575void
1576brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
1577                                        bool mirror)
1578{
1579   if (!mirror) {
1580      /* When not mirroring a coordinate (say, X), we need:
1581       *   x' - src_x0 = x - dst_x0
1582       * Therefore:
1583       *   x' = 1*x + (src_x0 - dst_x0)
1584       */
1585      multiplier = 1;
1586      offset = src0 - dst0;
1587   } else {
1588      /* When mirroring X we need:
1589       *   x' - src_x0 = dst_x1 - x - 1
1590       * Therefore:
1591       *   x' = -1*x + (src_x0 + dst_x1 - 1)
1592       */
1593      multiplier = -1;
1594      offset = src0 + dst1 - 1;
1595   }
1596}
1597
1598
1599/**
1600 * Determine which MSAA layout the GPU pipeline should be configured for,
1601 * based on the chip generation, the number of samples, and the true layout of
1602 * the image in memory.
1603 */
1604inline intel_msaa_layout
1605compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
1606                                 intel_msaa_layout true_layout)
1607{
1608   if (num_samples <= 1) {
1609      /* When configuring the GPU for non-MSAA, we can still accommodate IMS
1610       * format buffers, by transforming coordinates appropriately.
1611       */
1612      assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
1613             true_layout == INTEL_MSAA_LAYOUT_IMS);
1614      return INTEL_MSAA_LAYOUT_NONE;
1615   } else {
1616      assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
1617   }
1618
1619   /* Prior to Gen7, all MSAA surfaces use IMS layout. */
1620   if (brw->intel.gen == 6) {
1621      assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
1622   }
1623
1624   return true_layout;
1625}
1626
1627
1628brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
1629                                             struct intel_mipmap_tree *src_mt,
1630                                             unsigned src_level, unsigned src_layer,
1631                                             struct intel_mipmap_tree *dst_mt,
1632                                             unsigned dst_level, unsigned dst_layer,
1633                                             GLuint src_x0, GLuint src_y0,
1634                                             GLuint dst_x0, GLuint dst_y0,
1635                                             GLuint dst_x1, GLuint dst_y1,
1636                                             bool mirror_x, bool mirror_y)
1637{
1638   src.set(brw, src_mt, src_level, src_layer);
1639   dst.set(brw, dst_mt, dst_level, dst_layer);
1640
1641   use_wm_prog = true;
1642   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
1643
1644   /* texture_data_type indicates the register type that should be used to
1645    * manipulate texture data.
1646    */
1647   switch (_mesa_get_format_datatype(src_mt->format)) {
1648   case GL_UNSIGNED_NORMALIZED:
1649   case GL_SIGNED_NORMALIZED:
1650   case GL_FLOAT:
1651      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1652      break;
1653   case GL_UNSIGNED_INT:
1654      if (src_mt->format == MESA_FORMAT_S8) {
1655         /* We process stencil as though it's an unsigned normalized color */
1656         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
1657      } else {
1658         wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
1659      }
1660      break;
1661   case GL_INT:
1662      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
1663      break;
1664   default:
1665      assert(!"Unrecognized blorp format");
1666      break;
1667   }
1668
1669   if (brw->intel.gen > 6) {
1670      /* Gen7's rendering hardware only supports the IMS layout for depth and
1671       * stencil render targets.  Blorp always maps its destination surface as
1672       * a color render target (even if it's actually a depth or stencil
1673       * buffer).  So if the destination is IMS, we'll have to map it as a
1674       * single-sampled texture and interleave the samples ourselves.
1675       */
1676      if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
1677         dst.num_samples = 0;
1678   }
1679
1680   if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
1681      /* If the destination surface is a W-tiled multisampled stencil buffer
1682       * that we're mapping as Y tiled, then we need to arrange for the WM
1683       * program to run once per sample rather than once per pixel, because
1684       * the memory layout of related samples doesn't match between W and Y
1685       * tiling.
1686       */
1687      wm_prog_key.persample_msaa_dispatch = true;
1688   }
1689
1690   if (src.num_samples > 0 && dst.num_samples > 1) {
1691      /* We are blitting from a multisample buffer to a multisample buffer, so
1692       * we must preserve samples within a pixel.  This means we have to
1693       * arrange for the WM program to run once per sample rather than once
1694       * per pixel.
1695       */
1696      wm_prog_key.persample_msaa_dispatch = true;
1697   }
1698
1699   /* The render path must be configured to use the same number of samples as
1700    * the destination buffer.
1701    */
1702   num_samples = dst.num_samples;
1703
1704   GLenum base_format = _mesa_get_format_base_format(src_mt->format);
1705   if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
1706       base_format != GL_STENCIL_INDEX &&
1707       src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
1708      /* We are downsampling a color buffer, so blend. */
1709      wm_prog_key.blend = true;
1710   }
1711
1712   /* src_samples and dst_samples are the true sample counts */
1713   wm_prog_key.src_samples = src_mt->num_samples;
1714   wm_prog_key.dst_samples = dst_mt->num_samples;
1715
1716   /* tex_samples and rt_samples are the sample counts that are set up in
1717    * SURFACE_STATE.
1718    */
1719   wm_prog_key.tex_samples = src.num_samples;
1720   wm_prog_key.rt_samples  = dst.num_samples;
1721
1722   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
1723    * use to access the source and destination surfaces.
1724    */
1725   wm_prog_key.tex_layout =
1726      compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
1727   wm_prog_key.rt_layout =
1728      compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
1729
1730   /* src_layout and dst_layout indicate the true MSAA layout used by src and
1731    * dst.
1732    */
1733   wm_prog_key.src_layout = src_mt->msaa_layout;
1734   wm_prog_key.dst_layout = dst_mt->msaa_layout;
1735
1736   wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
1737   wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
1738   x0 = wm_push_consts.dst_x0 = dst_x0;
1739   y0 = wm_push_consts.dst_y0 = dst_y0;
1740   x1 = wm_push_consts.dst_x1 = dst_x1;
1741   y1 = wm_push_consts.dst_y1 = dst_y1;
1742   wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
1743   wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
1744
1745   if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
1746      /* We must expand the rectangle we send through the rendering pipeline,
1747       * to account for the fact that we are mapping the destination region as
1748       * single-sampled when it is in fact multisampled.  We must also align
1749       * it to a multiple of the multisampling pattern, because the
1750       * differences between multisampled and single-sampled surface formats
1751       * will mean that pixels are scrambled within the multisampling pattern.
1752       * TODO: what if this makes the coordinates too large?
1753       *
1754       * Note: this only works if the destination surface uses the IMS layout.
1755       * If it's UMS, then we have no choice but to set up the rendering
1756       * pipeline as multisampled.
1757       */
1758      assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
1759      switch (dst_mt->num_samples) {
1760      case 4:
1761         x0 = ROUND_DOWN_TO(x0 * 2, 4);
1762         y0 = ROUND_DOWN_TO(y0 * 2, 4);
1763         x1 = ALIGN(x1 * 2, 4);
1764         y1 = ALIGN(y1 * 2, 4);
1765         break;
1766      case 8:
1767         x0 = ROUND_DOWN_TO(x0 * 4, 8);
1768         y0 = ROUND_DOWN_TO(y0 * 2, 4);
1769         x1 = ALIGN(x1 * 4, 8);
1770         y1 = ALIGN(y1 * 2, 4);
1771         break;
1772      default:
1773         assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
1774         break;
1775      }
1776      wm_prog_key.use_kill = true;
1777   }
1778
1779   if (dst.map_stencil_as_y_tiled) {
1780      /* We must modify the rectangle we send through the rendering pipeline
1781       * (and the size of the destination surface), to account for the fact
1782       * that we are mapping it as Y-tiled when it is in fact W-tiled.  Y
1783       * tiles have dimensions 128x32 whereas W tiles have dimensions 64x64.
1784       * We must also align it to a multiple of the tile size, because the
1785       * differences between W and Y tiling formats will mean that pixels are
1786       * scrambled within the tile.
1787       *
1788       * TODO: what if this makes the coordinates (or the texture size) too
1789       * large?
1790       */
1791      const unsigned x_align = 64, y_align = 64;
1792      x0 = ROUND_DOWN_TO(x0, x_align) * 2;
1793      y0 = ROUND_DOWN_TO(y0, y_align) / 2;
1794      x1 = ALIGN(x1, x_align) * 2;
1795      y1 = ALIGN(y1, y_align) / 2;
1796      dst.width *= 2;
1797      dst.height /= 2;
1798      wm_prog_key.use_kill = true;
1799   }
1800
1801   if (src.map_stencil_as_y_tiled) {
1802      /* We must modify the size of the source surface to account for the fact
1803       * that we are mapping it as Y-tiled when it is in fact W tiled.
1804       *
1805       * TODO: what if this makes the texture size too large?
1806       */
1807      src.width *= 2;
1808      src.height /= 2;
1809   }
1810}
1811
1812uint32_t
1813brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
1814                                   brw_blorp_prog_data **prog_data) const
1815{
1816   uint32_t prog_offset;
1817   if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1818                         &this->wm_prog_key, sizeof(this->wm_prog_key),
1819                         &prog_offset, prog_data)) {
1820      brw_blorp_blit_program prog(brw, &this->wm_prog_key);
1821      GLuint program_size;
1822      const GLuint *program = prog.compile(brw, &program_size);
1823      brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
1824                       &this->wm_prog_key, sizeof(this->wm_prog_key),
1825                       program, program_size,
1826                       &prog.prog_data, sizeof(prog.prog_data),
1827                       &prog_offset, prog_data);
1828   }
1829   return prog_offset;
1830}
1831