brw_draw_upload.c revision 04a11b5f5e22155e5816e2da560b485eb0eaaec9
1/**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#undef NDEBUG
29
30#include "main/glheader.h"
31#include "main/bufferobj.h"
32#include "main/context.h"
33#include "main/enums.h"
34#include "main/macros.h"
35
36#include "brw_draw.h"
37#include "brw_defines.h"
38#include "brw_context.h"
39#include "brw_state.h"
40
41#include "intel_batchbuffer.h"
42#include "intel_buffer_objects.h"
43
44static GLuint double_types[5] = {
45   0,
46   BRW_SURFACEFORMAT_R64_FLOAT,
47   BRW_SURFACEFORMAT_R64G64_FLOAT,
48   BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49   BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50};
51
52static GLuint float_types[5] = {
53   0,
54   BRW_SURFACEFORMAT_R32_FLOAT,
55   BRW_SURFACEFORMAT_R32G32_FLOAT,
56   BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57   BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58};
59
60static GLuint half_float_types[5] = {
61   0,
62   BRW_SURFACEFORMAT_R16_FLOAT,
63   BRW_SURFACEFORMAT_R16G16_FLOAT,
64   BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65   BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66};
67
68static GLuint uint_types_direct[5] = {
69   0,
70   BRW_SURFACEFORMAT_R32_UINT,
71   BRW_SURFACEFORMAT_R32G32_UINT,
72   BRW_SURFACEFORMAT_R32G32B32_UINT,
73   BRW_SURFACEFORMAT_R32G32B32A32_UINT
74};
75
76static GLuint uint_types_norm[5] = {
77   0,
78   BRW_SURFACEFORMAT_R32_UNORM,
79   BRW_SURFACEFORMAT_R32G32_UNORM,
80   BRW_SURFACEFORMAT_R32G32B32_UNORM,
81   BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82};
83
84static GLuint uint_types_scale[5] = {
85   0,
86   BRW_SURFACEFORMAT_R32_USCALED,
87   BRW_SURFACEFORMAT_R32G32_USCALED,
88   BRW_SURFACEFORMAT_R32G32B32_USCALED,
89   BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90};
91
92static GLuint int_types_direct[5] = {
93   0,
94   BRW_SURFACEFORMAT_R32_SINT,
95   BRW_SURFACEFORMAT_R32G32_SINT,
96   BRW_SURFACEFORMAT_R32G32B32_SINT,
97   BRW_SURFACEFORMAT_R32G32B32A32_SINT
98};
99
100static GLuint int_types_norm[5] = {
101   0,
102   BRW_SURFACEFORMAT_R32_SNORM,
103   BRW_SURFACEFORMAT_R32G32_SNORM,
104   BRW_SURFACEFORMAT_R32G32B32_SNORM,
105   BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106};
107
108static GLuint int_types_scale[5] = {
109   0,
110   BRW_SURFACEFORMAT_R32_SSCALED,
111   BRW_SURFACEFORMAT_R32G32_SSCALED,
112   BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113   BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114};
115
116static GLuint ushort_types_direct[5] = {
117   0,
118   BRW_SURFACEFORMAT_R16_UINT,
119   BRW_SURFACEFORMAT_R16G16_UINT,
120   BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121   BRW_SURFACEFORMAT_R16G16B16A16_UINT
122};
123
124static GLuint ushort_types_norm[5] = {
125   0,
126   BRW_SURFACEFORMAT_R16_UNORM,
127   BRW_SURFACEFORMAT_R16G16_UNORM,
128   BRW_SURFACEFORMAT_R16G16B16_UNORM,
129   BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130};
131
132static GLuint ushort_types_scale[5] = {
133   0,
134   BRW_SURFACEFORMAT_R16_USCALED,
135   BRW_SURFACEFORMAT_R16G16_USCALED,
136   BRW_SURFACEFORMAT_R16G16B16_USCALED,
137   BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138};
139
140static GLuint short_types_direct[5] = {
141   0,
142   BRW_SURFACEFORMAT_R16_SINT,
143   BRW_SURFACEFORMAT_R16G16_SINT,
144   BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145   BRW_SURFACEFORMAT_R16G16B16A16_SINT
146};
147
148static GLuint short_types_norm[5] = {
149   0,
150   BRW_SURFACEFORMAT_R16_SNORM,
151   BRW_SURFACEFORMAT_R16G16_SNORM,
152   BRW_SURFACEFORMAT_R16G16B16_SNORM,
153   BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154};
155
156static GLuint short_types_scale[5] = {
157   0,
158   BRW_SURFACEFORMAT_R16_SSCALED,
159   BRW_SURFACEFORMAT_R16G16_SSCALED,
160   BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161   BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162};
163
164static GLuint ubyte_types_direct[5] = {
165   0,
166   BRW_SURFACEFORMAT_R8_UINT,
167   BRW_SURFACEFORMAT_R8G8_UINT,
168   BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169   BRW_SURFACEFORMAT_R8G8B8A8_UINT
170};
171
172static GLuint ubyte_types_norm[5] = {
173   0,
174   BRW_SURFACEFORMAT_R8_UNORM,
175   BRW_SURFACEFORMAT_R8G8_UNORM,
176   BRW_SURFACEFORMAT_R8G8B8_UNORM,
177   BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178};
179
180static GLuint ubyte_types_scale[5] = {
181   0,
182   BRW_SURFACEFORMAT_R8_USCALED,
183   BRW_SURFACEFORMAT_R8G8_USCALED,
184   BRW_SURFACEFORMAT_R8G8B8_USCALED,
185   BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186};
187
188static GLuint byte_types_direct[5] = {
189   0,
190   BRW_SURFACEFORMAT_R8_SINT,
191   BRW_SURFACEFORMAT_R8G8_SINT,
192   BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193   BRW_SURFACEFORMAT_R8G8B8A8_SINT
194};
195
196static GLuint byte_types_norm[5] = {
197   0,
198   BRW_SURFACEFORMAT_R8_SNORM,
199   BRW_SURFACEFORMAT_R8G8_SNORM,
200   BRW_SURFACEFORMAT_R8G8B8_SNORM,
201   BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202};
203
204static GLuint byte_types_scale[5] = {
205   0,
206   BRW_SURFACEFORMAT_R8_SSCALED,
207   BRW_SURFACEFORMAT_R8G8_SSCALED,
208   BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209   BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210};
211
212
213/**
214 * Given vertex array type/size/format/normalized info, return
215 * the appopriate hardware surface type.
216 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217 */
218static GLuint get_surface_type( GLenum type, GLuint size,
219                                GLenum format, bool normalized, bool integer )
220{
221   if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222      printf("type %s size %d normalized %d\n",
223		   _mesa_lookup_enum_by_nr(type), size, normalized);
224
225   if (integer) {
226      assert(format == GL_RGBA); /* sanity check */
227      switch (type) {
228      case GL_INT: return int_types_direct[size];
229      case GL_SHORT: return short_types_direct[size];
230      case GL_BYTE: return byte_types_direct[size];
231      case GL_UNSIGNED_INT: return uint_types_direct[size];
232      case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233      case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234      default: assert(0); return 0;
235      }
236   } else if (normalized) {
237      switch (type) {
238      case GL_DOUBLE: return double_types[size];
239      case GL_FLOAT: return float_types[size];
240      case GL_HALF_FLOAT: return half_float_types[size];
241      case GL_INT: return int_types_norm[size];
242      case GL_SHORT: return short_types_norm[size];
243      case GL_BYTE: return byte_types_norm[size];
244      case GL_UNSIGNED_INT: return uint_types_norm[size];
245      case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246      case GL_UNSIGNED_BYTE:
247         if (format == GL_BGRA) {
248            /* See GL_EXT_vertex_array_bgra */
249            assert(size == 4);
250            return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251         }
252         else {
253            return ubyte_types_norm[size];
254         }
255      default: assert(0); return 0;
256      }
257   }
258   else {
259      assert(format == GL_RGBA); /* sanity check */
260      switch (type) {
261      case GL_DOUBLE: return double_types[size];
262      case GL_FLOAT: return float_types[size];
263      case GL_HALF_FLOAT: return half_float_types[size];
264      case GL_INT: return int_types_scale[size];
265      case GL_SHORT: return short_types_scale[size];
266      case GL_BYTE: return byte_types_scale[size];
267      case GL_UNSIGNED_INT: return uint_types_scale[size];
268      case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269      case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270      /* This produces GL_FIXED inputs as values between INT32_MIN and
271       * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272       */
273      case GL_FIXED: return int_types_scale[size];
274      default: assert(0); return 0;
275      }
276   }
277}
278
279
280static GLuint get_size( GLenum type )
281{
282   switch (type) {
283   case GL_DOUBLE: return sizeof(GLdouble);
284   case GL_FLOAT: return sizeof(GLfloat);
285   case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286   case GL_INT: return sizeof(GLint);
287   case GL_SHORT: return sizeof(GLshort);
288   case GL_BYTE: return sizeof(GLbyte);
289   case GL_UNSIGNED_INT: return sizeof(GLuint);
290   case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291   case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292   case GL_FIXED: return sizeof(GLuint);
293   default: assert(0); return 0;
294   }
295}
296
297static GLuint get_index_type(GLenum type)
298{
299   switch (type) {
300   case GL_UNSIGNED_BYTE:  return BRW_INDEX_BYTE;
301   case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
302   case GL_UNSIGNED_INT:   return BRW_INDEX_DWORD;
303   default: assert(0); return 0;
304   }
305}
306
307static void
308copy_array_to_vbo_array(struct brw_context *brw,
309			struct brw_vertex_element *element,
310			int min, int max,
311			struct brw_vertex_buffer *buffer,
312			GLuint dst_stride)
313{
314   if (min == -1) {
315      /* If we don't have computed min/max bounds, then this must be a use of
316       * the current attribute, which has a 0 stride.  Otherwise, we wouldn't
317       * know what data to upload.
318       */
319      assert(element->glarray->StrideB == 0);
320
321      intel_upload_data(&brw->intel, element->glarray->Ptr,
322                        element->element_size,
323                        element->element_size,
324			&buffer->bo, &buffer->offset);
325
326      buffer->stride = 0;
327      return;
328   }
329
330   int src_stride = element->glarray->StrideB;
331   const unsigned char *src = element->glarray->Ptr + min * src_stride;
332   int count = max - min + 1;
333   GLuint size = count * dst_stride;
334
335   if (dst_stride == src_stride) {
336      intel_upload_data(&brw->intel, src, size, dst_stride,
337			&buffer->bo, &buffer->offset);
338   } else {
339      char * const map = intel_upload_map(&brw->intel, size, dst_stride);
340      char *dst = map;
341
342      while (count--) {
343	 memcpy(dst, src, dst_stride);
344	 src += src_stride;
345	 dst += dst_stride;
346      }
347      intel_upload_unmap(&brw->intel, map, size, dst_stride,
348			 &buffer->bo, &buffer->offset);
349   }
350   buffer->stride = dst_stride;
351}
352
353static void brw_prepare_vertices(struct brw_context *brw)
354{
355   struct gl_context *ctx = &brw->intel.ctx;
356   struct intel_context *intel = intel_context(ctx);
357   /* CACHE_NEW_VS_PROG */
358   GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
359   const unsigned char *ptr = NULL;
360   GLuint interleaved = 0, total_size = 0;
361   unsigned int min_index = brw->vb.min_index;
362   unsigned int max_index = brw->vb.max_index;
363   int delta, i, j;
364   GLboolean can_merge_uploads = GL_TRUE;
365
366   struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
367   GLuint nr_uploads = 0;
368
369   /* _NEW_POLYGON
370    *
371    * On gen6+, edge flags don't end up in the VUE (either in or out of the
372    * VS).  Instead, they're uploaded as the last vertex element, and the data
373    * is passed sideband through the fixed function units.  So, we need to
374    * prepare the vertex buffer for it, but it's not present in inputs_read.
375    */
376   if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
377                           ctx->Polygon.BackMode != GL_FILL)) {
378      vs_inputs |= VERT_BIT_EDGEFLAG;
379   }
380
381   /* First build an array of pointers to ve's in vb.inputs_read
382    */
383   if (0)
384      printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
385
386   /* Accumulate the list of enabled arrays. */
387   brw->vb.nr_enabled = 0;
388   while (vs_inputs) {
389      GLuint i = ffsll(vs_inputs) - 1;
390      struct brw_vertex_element *input = &brw->vb.inputs[i];
391
392      vs_inputs &= ~BITFIELD64_BIT(i);
393      if (input->glarray->Size && get_size(input->glarray->Type))
394         brw->vb.enabled[brw->vb.nr_enabled++] = input;
395   }
396
397   if (brw->vb.nr_enabled == 0)
398      return;
399
400   if (brw->vb.nr_buffers)
401      goto prepare;
402
403   for (i = j = 0; i < brw->vb.nr_enabled; i++) {
404      struct brw_vertex_element *input = brw->vb.enabled[i];
405      const struct gl_client_array *glarray = input->glarray;
406      int type_size = get_size(glarray->Type);
407
408      input->element_size = type_size * glarray->Size;
409
410      if (_mesa_is_bufferobj(glarray->BufferObj)) {
411	 struct intel_buffer_object *intel_buffer =
412	    intel_buffer_object(glarray->BufferObj);
413	 int k;
414
415	 for (k = 0; k < i; k++) {
416	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
417	    if (glarray->BufferObj == other->BufferObj &&
418		glarray->StrideB == other->StrideB &&
419		glarray->InstanceDivisor == other->InstanceDivisor &&
420		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
421	    {
422	       input->buffer = brw->vb.enabled[k]->buffer;
423	       input->offset = glarray->Ptr - other->Ptr;
424	       break;
425	    }
426	 }
427	 if (k == i) {
428	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
429
430	    /* Named buffer object: Just reference its contents directly. */
431            buffer->bo = intel_bufferobj_source(intel,
432                                                intel_buffer, type_size,
433						&buffer->offset);
434	    drm_intel_bo_reference(buffer->bo);
435	    buffer->offset += (uintptr_t)glarray->Ptr;
436	    buffer->stride = glarray->StrideB;
437	    buffer->step_rate = glarray->InstanceDivisor;
438
439	    input->buffer = j++;
440	    input->offset = 0;
441	 }
442
443	 /* This is a common place to reach if the user mistakenly supplies
444	  * a pointer in place of a VBO offset.  If we just let it go through,
445	  * we may end up dereferencing a pointer beyond the bounds of the
446	  * GTT.  We would hope that the VBO's max_index would save us, but
447	  * Mesa appears to hand us min/max values not clipped to the
448	  * array object's _MaxElement, and _MaxElement frequently appears
449	  * to be wrong anyway.
450	  *
451	  * The VBO spec allows application termination in this case, and it's
452	  * probably a service to the poor programmer to do so rather than
453	  * trying to just not render.
454	  */
455	 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
456      } else {
457	 /* Queue the buffer object up to be uploaded in the next pass,
458	  * when we've decided if we're doing interleaved or not.
459	  */
460	 if (nr_uploads == 0) {
461	    /* Position array not properly enabled:
462	     */
463	    if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) {
464               intel->Fallback = true; /* boolean, not bitfield */
465               return;
466            }
467
468	    interleaved = glarray->StrideB;
469	    ptr = glarray->Ptr;
470	 }
471	 else if (interleaved != glarray->StrideB ||
472		  (uintptr_t)(glarray->Ptr - ptr) > interleaved)
473	 {
474	    interleaved = 0;
475	 }
476	 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
477	 {
478	    /* enforce natural alignment (for doubles) */
479	    interleaved = 0;
480	 }
481
482	 upload[nr_uploads++] = input;
483
484	 total_size = ALIGN(total_size, type_size);
485	 total_size += input->element_size;
486
487         if (glarray->InstanceDivisor != 0) {
488            can_merge_uploads = GL_FALSE;
489         }
490      }
491   }
492
493   /* If we need to upload all the arrays, then we can trim those arrays to
494    * only the used elements [min_index, max_index] so long as we adjust all
495    * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
496    */
497   brw->vb.start_vertex_bias = 0;
498   delta = min_index;
499   if (nr_uploads == brw->vb.nr_enabled) {
500      brw->vb.start_vertex_bias = -delta;
501      delta = 0;
502   }
503   if (delta && !brw->intel.intelScreen->relaxed_relocations)
504      min_index = delta = 0;
505
506   /* Handle any arrays to be uploaded. */
507   if (nr_uploads > 1) {
508      if (interleaved && interleaved <= 2*total_size) {
509	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
510	 /* All uploads are interleaved, so upload the arrays together as
511	  * interleaved.  First, upload the contents and set up upload[0].
512	  */
513	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
514				 buffer, interleaved);
515	 buffer->offset -= delta * interleaved;
516
517	 for (i = 0; i < nr_uploads; i++) {
518	    /* Then, just point upload[i] at upload[0]'s buffer. */
519	    upload[i]->offset =
520	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
521	    upload[i]->buffer = j;
522	 }
523	 j++;
524
525	 nr_uploads = 0;
526      }
527      else if ((total_size < 2048) && can_merge_uploads) {
528	 /* Upload non-interleaved arrays into a single interleaved array */
529	 struct brw_vertex_buffer *buffer;
530	 int count = MAX2(max_index - min_index + 1, 1);
531	 int offset;
532	 char *map;
533
534	 map = intel_upload_map(&brw->intel, total_size * count, total_size);
535	 for (i = offset = 0; i < nr_uploads; i++) {
536	    const unsigned char *src = upload[i]->glarray->Ptr;
537	    int size = upload[i]->element_size;
538	    int stride = upload[i]->glarray->StrideB;
539	    char *dst;
540	    int n;
541
542	    offset = ALIGN(offset, get_size(upload[i]->glarray->Type));
543	    dst = map + offset;
544	    src += min_index * stride;
545
546	    for (n = 0; n < count; n++) {
547	       memcpy(dst, src, size);
548	       src += stride;
549	       dst += total_size;
550	    }
551
552	    upload[i]->offset = offset;
553	    upload[i]->buffer = j;
554
555	    offset += size;
556	 }
557	 assert(offset == total_size);
558	 buffer = &brw->vb.buffers[j++];
559	 intel_upload_unmap(&brw->intel, map, offset * count, offset,
560			    &buffer->bo, &buffer->offset);
561	 buffer->stride = offset;
562	 buffer->step_rate = 0;
563	 buffer->offset -= delta * offset;
564
565	 nr_uploads = 0;
566      }
567   }
568   /* Upload non-interleaved arrays */
569   for (i = 0; i < nr_uploads; i++) {
570      struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
571      if (upload[i]->glarray->InstanceDivisor == 0) {
572         copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
573                                 buffer, upload[i]->element_size);
574      } else {
575         /* This is an instanced attribute, since its InstanceDivisor
576          * is not zero. Therefore, its data will be stepped after the
577          * instanced draw has been run InstanceDivisor times.
578          */
579         uint32_t instanced_attr_max_index =
580            (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
581         copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
582                                 buffer, upload[i]->element_size);
583      }
584      buffer->offset -= delta * buffer->stride;
585      buffer->step_rate = upload[i]->glarray->InstanceDivisor;
586      upload[i]->buffer = j++;
587      upload[i]->offset = 0;
588   }
589
590   /* can we simply extend the current vb? */
591   if (j == brw->vb.nr_current_buffers) {
592      int delta = 0;
593      for (i = 0; i < j; i++) {
594	 int d;
595
596	 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
597	     brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
598	     brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
599	    break;
600
601	 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
602	 if (d < 0)
603	    break;
604	 if (i == 0)
605	    delta = d / brw->vb.current_buffers[i].stride;
606	 if (delta * brw->vb.current_buffers[i].stride != d)
607	    break;
608      }
609
610      if (i == j) {
611	 brw->vb.start_vertex_bias += delta;
612	 while (--j >= 0)
613	    drm_intel_bo_unreference(brw->vb.buffers[j].bo);
614	 j = 0;
615      }
616   }
617
618   brw->vb.nr_buffers = j;
619
620prepare:
621   brw_prepare_query_begin(brw);
622}
623
624static void brw_emit_vertices(struct brw_context *brw)
625{
626   struct gl_context *ctx = &brw->intel.ctx;
627   struct intel_context *intel = intel_context(ctx);
628   GLuint i, nr_elements;
629
630   brw_prepare_vertices(brw);
631
632   brw_emit_query_begin(brw);
633
634   /* If the VS doesn't read any inputs (calculating vertex position from
635    * a state variable for some reason, for example), emit a single pad
636    * VERTEX_ELEMENT struct and bail.
637    *
638    * The stale VB state stays in place, but they don't do anything unless
639    * a VE loads from them.
640    */
641   if (brw->vb.nr_enabled == 0) {
642      BEGIN_BATCH(3);
643      OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
644      if (intel->gen >= 6) {
645	 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
646		   GEN6_VE0_VALID |
647		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
648		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
649      } else {
650	 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
651		   BRW_VE0_VALID |
652		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
653		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
654      }
655      OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
656		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
657		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
658		(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
659      CACHED_BATCH();
660      return;
661   }
662
663   /* Now emit VB and VEP state packets.
664    */
665
666   if (brw->vb.nr_buffers) {
667      if (intel->gen >= 6) {
668	 assert(brw->vb.nr_buffers <= 33);
669      } else {
670	 assert(brw->vb.nr_buffers <= 17);
671      }
672
673      BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
674      OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
675      for (i = 0; i < brw->vb.nr_buffers; i++) {
676	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
677	 uint32_t dw0;
678
679	 if (intel->gen >= 6) {
680	    dw0 = buffer->step_rate
681	             ? GEN6_VB0_ACCESS_INSTANCEDATA
682	             : GEN6_VB0_ACCESS_VERTEXDATA;
683	    dw0 |= i << GEN6_VB0_INDEX_SHIFT;
684	 } else {
685	    dw0 = buffer->step_rate
686	             ? BRW_VB0_ACCESS_INSTANCEDATA
687	             : BRW_VB0_ACCESS_VERTEXDATA;
688	    dw0 |= i << BRW_VB0_INDEX_SHIFT;
689	 }
690
691	 if (intel->gen >= 7)
692	    dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
693
694	 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
695	 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
696	 if (intel->gen >= 5) {
697	    OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
698	 } else
699	    OUT_BATCH(0);
700	 OUT_BATCH(buffer->step_rate);
701
702	 brw->vb.current_buffers[i].handle = buffer->bo->handle;
703	 brw->vb.current_buffers[i].offset = buffer->offset;
704	 brw->vb.current_buffers[i].stride = buffer->stride;
705	 brw->vb.current_buffers[i].step_rate = buffer->step_rate;
706      }
707      brw->vb.nr_current_buffers = i;
708      ADVANCE_BATCH();
709   }
710
711   nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
712
713   /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
714    * for VertexID/InstanceID.
715    */
716   if (intel->gen >= 6) {
717      assert(nr_elements <= 34);
718   } else {
719      assert(nr_elements <= 18);
720   }
721
722   struct brw_vertex_element *gen6_edgeflag_input = NULL;
723
724   BEGIN_BATCH(1 + nr_elements * 2);
725   OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
726   for (i = 0; i < brw->vb.nr_enabled; i++) {
727      struct brw_vertex_element *input = brw->vb.enabled[i];
728      uint32_t format = get_surface_type(input->glarray->Type,
729					 input->glarray->Size,
730					 input->glarray->Format,
731					 input->glarray->Normalized,
732                                         input->glarray->Integer);
733      uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
734      uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
735      uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
736      uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
737
738      /* The gen4 driver expects edgeflag to come in as a float, and passes
739       * that float on to the tests in the clipper.  Mesa's current vertex
740       * attribute value for EdgeFlag is stored as a float, which works out.
741       * glEdgeFlagPointer, on the other hand, gives us an unnormalized
742       * integer ubyte.  Just rewrite that to convert to a float.
743       */
744      if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
745         /* Gen6+ passes edgeflag as sideband along with the vertex, instead
746          * of in the VUE.  We have to upload it sideband as the last vertex
747          * element according to the B-Spec.
748          */
749         if (intel->gen >= 6) {
750            gen6_edgeflag_input = input;
751            continue;
752         }
753
754         if (format == BRW_SURFACEFORMAT_R8_UINT)
755            format = BRW_SURFACEFORMAT_R8_SSCALED;
756      }
757
758      switch (input->glarray->Size) {
759      case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
760      case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
761      case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
762      case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
763                                              : BRW_VE1_COMPONENT_STORE_1_FLT;
764	 break;
765      }
766
767      if (intel->gen >= 6) {
768	 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
769		   GEN6_VE0_VALID |
770		   (format << BRW_VE0_FORMAT_SHIFT) |
771		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
772      } else {
773	 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
774		   BRW_VE0_VALID |
775		   (format << BRW_VE0_FORMAT_SHIFT) |
776		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
777      }
778
779      if (intel->gen >= 5)
780          OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
781                    (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
782                    (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
783                    (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
784      else
785          OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
786                    (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
787                    (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
788                    (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
789                    ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
790   }
791
792   if (intel->gen >= 6 && gen6_edgeflag_input) {
793      uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
794                                         gen6_edgeflag_input->glarray->Size,
795                                         gen6_edgeflag_input->glarray->Format,
796                                         gen6_edgeflag_input->glarray->Normalized,
797                                         gen6_edgeflag_input->glarray->Integer);
798
799      OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
800                GEN6_VE0_VALID |
801                GEN6_VE0_EDGE_FLAG_ENABLE |
802                (format << BRW_VE0_FORMAT_SHIFT) |
803                (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
804      OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
805                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
806                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
807                (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
808   }
809
810   if (brw->vs.prog_data->uses_vertexid) {
811      uint32_t dw0 = 0, dw1 = 0;
812
813      dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
814	     (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
815	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
816	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
817
818      if (intel->gen >= 6) {
819	 dw0 |= GEN6_VE0_VALID;
820      } else {
821	 dw0 |= BRW_VE0_VALID;
822	 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
823      }
824
825      /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
826       * the format is ignored and the value is always int.
827       */
828
829      OUT_BATCH(dw0);
830      OUT_BATCH(dw1);
831   }
832
833   CACHED_BATCH();
834}
835
836const struct brw_tracked_state brw_vertices = {
837   .dirty = {
838      .mesa = _NEW_POLYGON,
839      .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
840      .cache = CACHE_NEW_VS_PROG,
841   },
842   .emit = brw_emit_vertices,
843};
844
845static void brw_upload_indices(struct brw_context *brw)
846{
847   struct gl_context *ctx = &brw->intel.ctx;
848   struct intel_context *intel = &brw->intel;
849   const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
850   GLuint ib_size;
851   drm_intel_bo *bo = NULL;
852   struct gl_buffer_object *bufferobj;
853   GLuint offset;
854   GLuint ib_type_size;
855
856   if (index_buffer == NULL)
857      return;
858
859   ib_type_size = get_size(index_buffer->type);
860   ib_size = ib_type_size * index_buffer->count;
861   bufferobj = index_buffer->obj;
862
863   /* Turn into a proper VBO:
864    */
865   if (!_mesa_is_bufferobj(bufferobj)) {
866
867      /* Get new bufferobj, offset:
868       */
869      intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
870			&bo, &offset);
871      brw->ib.start_vertex_offset = offset / ib_type_size;
872   } else {
873      offset = (GLuint) (unsigned long) index_buffer->ptr;
874
875      /* If the index buffer isn't aligned to its element size, we have to
876       * rebase it into a temporary.
877       */
878       if ((get_size(index_buffer->type) - 1) & offset) {
879           GLubyte *map = ctx->Driver.MapBufferRange(ctx,
880						     offset,
881						     ib_size,
882						     GL_MAP_WRITE_BIT,
883						     bufferobj);
884
885	   intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
886			     &bo, &offset);
887	   brw->ib.start_vertex_offset = offset / ib_type_size;
888
889           ctx->Driver.UnmapBuffer(ctx, bufferobj);
890       } else {
891	  /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
892	   * the index buffer state when we're just moving the start index
893	   * of our drawing.
894	   */
895	  brw->ib.start_vertex_offset = offset / ib_type_size;
896
897	  bo = intel_bufferobj_source(intel,
898				      intel_buffer_object(bufferobj),
899				      ib_type_size,
900				      &offset);
901	  drm_intel_bo_reference(bo);
902
903	  brw->ib.start_vertex_offset += offset / ib_type_size;
904       }
905   }
906
907   if (brw->ib.bo != bo) {
908      drm_intel_bo_unreference(brw->ib.bo);
909      brw->ib.bo = bo;
910
911      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
912   } else {
913      drm_intel_bo_unreference(bo);
914   }
915
916   if (index_buffer->type != brw->ib.type) {
917      brw->ib.type = index_buffer->type;
918      brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
919   }
920}
921
922const struct brw_tracked_state brw_indices = {
923   .dirty = {
924      .mesa = 0,
925      .brw = BRW_NEW_INDICES,
926      .cache = 0,
927   },
928   .emit = brw_upload_indices,
929};
930
931static void brw_emit_index_buffer(struct brw_context *brw)
932{
933   struct intel_context *intel = &brw->intel;
934   const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
935   GLuint cut_index_setting;
936
937   if (index_buffer == NULL)
938      return;
939
940   if (brw->prim_restart.enable_cut_index) {
941      cut_index_setting = BRW_CUT_INDEX_ENABLE;
942   } else {
943      cut_index_setting = 0;
944   }
945
946   BEGIN_BATCH(3);
947   OUT_BATCH(CMD_INDEX_BUFFER << 16 |
948             cut_index_setting |
949             get_index_type(index_buffer->type) << 8 |
950             1);
951   OUT_RELOC(brw->ib.bo,
952             I915_GEM_DOMAIN_VERTEX, 0,
953             0);
954   OUT_RELOC(brw->ib.bo,
955             I915_GEM_DOMAIN_VERTEX, 0,
956	     brw->ib.bo->size - 1);
957   ADVANCE_BATCH();
958}
959
960const struct brw_tracked_state brw_index_buffer = {
961   .dirty = {
962      .mesa = 0,
963      .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
964      .cache = 0,
965   },
966   .emit = brw_emit_index_buffer,
967};
968